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Abstract. We examine the circumstances under which certain analytic
equivalence relations on Polish spaces have definable transversals.

1. Introduction

Suppose that X is a Polish space and E is a Σ1
1 equivalence relation on X. A

transversal of E is a set B ⊆ X which intersects every equivalence class of E in
exactly one point. Our goal here is to provide some insight into the circumstances
under which E admits a definable transversal.

A reduction of E to another equivalence relation F on a Polish space Y is a
function π : X → Y such that

∀x1, x2 ∈ X (x1Ex2 ⇔ π(x1)Fπ(x2)).

An embedding is an injective reduction. Given a pointclass Γ of subsets of Polish
spaces, we write E ≤Γ F to indicate the existence of a Γ-measurable reduction of E
to F , and we write E vΓ F to indicate the existence of a Γ-measurable embedding
of E into F . Following standard convention, we use the subscripts c and B as
shorthand for the classes of open and Borel sets in Polish spaces, respectively.

The diagonal on a Polish space Y is given by

∆(Y ) = {(y1, y2) ∈ Y × Y : y1 = y2}.

We say that E is Γ-smooth if E ≤Γ ∆(NN). We say that E is smooth if it is Borel
smooth. From the descriptive set-theoretic point of view, these are the simplest
equivalence relations. Let E0 denote the equivalence relation on 2N given by

αE0β ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)).

Harrington-Kechris-Louveau [3] have shown that E0 is the ≤B-minimal non-smooth
Borel equivalence relation, and Hjorth-Kechris [5] have shown a similar theorem for
Σ1

1 equivalence relations, in the presence of mild large cardinals.
Following standard terminology, we say that E is countable if all of its equiva-

lence classes are countable, and we say that E is Γ-treeable if Γ contains an acyclic
graph G such that E = EG , where EG denotes the equivalence relation whose classes
are the connected components of G. We say that E is treeable if it is Borel-treeable.
Our main result is the following:
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Theorem. Assume that ∀x ∈ R (x] exists). Suppose that X is a Polish space, E
is a Σ1

1 equivalence relation on X, and at least one of the following holds:

(a) E is Borel;

(b) E is countable;

(c) E is Σ1
1-treeable.

Then exactly one of the following holds:

1. E admits a Π1
1 transversal;

2. E0 vc E.

Moreover, if (a) holds and either (b) or (c) holds, then (1) is equivalent to the
existence of a Borel transversal of E.

Remark 1.1. It seems worth noting that condition (c) can be weakened to:

(c′) E is the union of countably many Σ1
1-treeable equivalence relations.

This is a consequence of a straightforward generalization of our arguments here.

Case (a) follows easily from Theorem 1 of Harrington-Kechris-Louveau [3]. Case
(a) + (b) is well known, and case (b) follows from case (a), case (a) + (b), and a
result of Lecomte-Miller [9] regarding Σ1

1 graphs of uncountable Borel chromatic
number. We give the proofs of these cases in §2. Case (a) + (c) follows from
Theorem 1 of Harrington-Kechris-Louveau [3] and a recent result of Hjorth [4]. In
§3, we prove a technical modification of the main dichotomy theorem of Kechris-
Solecki-Todorčević [8] regarding Σ1

1 graphs of uncountable Borel chromatic number,
which we use in §4 to prove case (c) and give a new proof of case (a) + (c).

2. Transversals in the Borel and countable cases

We begin with the case of Borel equivalence relations, which has already been
essentially dealt with by Harrington-Kechris-Louveau [3]:

Theorem 2.1. Suppose that X is a Polish space and E is a Borel equivalence
relation on X. Then at least one of the following holds:

1. E admits a Π1
1 transversal;

2. E0 vc E.

Proof. If E0 6vc E, then Theorem 1 of Harrington-Kechris-Louveau [3] ensures
that there is a finer Polish topology τ on X, compatible with its underlying Borel
structure, such that E is τ -closed. Fix a closed set C ⊆ NN and a continuous
bijection f : C → X (see, for example, Exercise 15.3 of Kechris [7]), and define

αFβ ⇔ f(α)Ef(β),

for α, β ∈ C. It is clear that F is closed, and it follows that the set

B = {α ∈ C : ∀β ∈ C (αFβ ⇒ α ≤lex β)}

is a Π1
1 transversal of F , thus f [B] is a Π1

1 transversal of E. 2
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It is not hard to see that under ZFC + All ∆1
2 sets of reals are Baire

measurable, if E admits a Π1
1 transversal, then E is ∆1

2-smooth. As ∀x ∈ R (x]

exists) implies Σ1
1 determinacy, which in turn implies that all Σ1

1 sets of reals are
Baire measurable, it follows from the well-known fact that E0 is not BP -smooth
that conditions (1) and (2) are mutually exclusive. This completes the proof of case
(a) of our main theorem.

We next turn our attention to the countable case. We say that a set B ⊆ X is
a partial transversal of E if it intersects every equivalence class of E in at most one
point. The following consequence of the Glimm-Effros dichotomy is well known:

Theorem 2.2. Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X. Then exactly one of the following holds:

1. X is the union of countably many Borel partial transversals of E;

2. E0 vc E.

Case (a) + (b) of our main theorem is therefore a consequence of the following:

Proposition 2.3. Suppose that X is a Polish space and E is a countable Σ1
1 equiv-

alence relation on X. Then the following are equivalent:

1. X is the union of countably many Borel partial transversals of E;

2. E admits a Π1
1 transversal.

Moreover, if E is Borel, then (1) is equivalent to the existence of a Borel transversal.

Proof. To see (1) ⇒ (2), suppose that there are countably many Borel partial
transversals Bn ⊆ X which cover X. The E-saturation of a set B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.

For each n ∈ N, define Cn = Bn \
S

m<n[Bm]E , and observe that the set
S

n∈N Cn

is a Π1
1 transversal of E. Moreover, if E is Borel, then so too is C.

To see (2) ⇒ (1), suppose that B ⊆ X is a Π1
1 transversal of E. As the property

of having countable sections is Π1
1 on Σ1

1, it follows from the first reflection theorem
(see, for example, Theorem 35.10 of Kechris [7]) that E is contained in a Borel set
R ⊆ X × X with countable sections. The Lusin-Novikov uniformization theorem
(see, for example, Theorem 18.10 of Kechris [7]) implies that the transitive closure F
of the symmetrization of R is a countable Borel equivalence relation, and Theorem
1 of Feldman-Moore [1] implies that there are Borel automorphisms fn : X → X
such that F =

S
n∈N graph(fn). For each n ∈ N, define An ⊆ X by

An = {x ∈ X : xEfn(x)}.

Given a graph G on X, we say that a set A ⊆ X is G-discrete if G ∩ (A×A) = ∅.
A (NN-valued) coloring of G is a function c : X → NN such that each of the sets
c−1(y) is G-discrete. The Γ-measurable chromatic number of G, or χΓ(G), is the
least cardinal of the form |c[X]|, where c is a Γ-measurable coloring of G.

Let G = E \∆(X), noting that a set is a partial transversal of E if and only if
it is G-discrete, thus the disjointification of the sets of the form fn[An ∩B] witness
that χσ(Σ1

1)(E \ ∆(X)) ≤ ℵ0. Theorem 6.3 of Kechris-Solecki-Todorčević [8] then
implies that χB(E \ ∆(X)) ≤ ℵ0, thus X is the union of countably many Borel
partial transversals of E. 2
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In order to obtain case (b) of our main theorem, it is now sufficient to prove the
following generalization of Theorem 2.2:

Theorem 2.4. Suppose that X is a Polish space and E is a countable Σ1
1 equiva-

lence relation on X. Then exactly one of the following holds:

1. X is the union of countably many Borel partial transversals of E;

2. E0 vc E.

Proof. To see that (1) and (2) are mutually exclusive, fix a cover of X by countably
many Borel partial transversals Bn ⊆ X, and suppose that π : 2N → X is a
continuous embedding of E0 into E. Fix n ∈ N such that π−1(Bn) is non-meager,
and observe that π−1(Bn) is a partial transversal of E0, which contradicts the well
known fact that E0 does not admit a non-meager Baire measurable transversal.

It remains to show ¬(1) ⇒ (2). Let G = E \ ∆(X). If (1) is false, then
χB(G) > ℵ0, and Proposition 3.12 of Lecomte-Miller [9] ensures that there is a
Borel set B ⊆ X such that G|B is Borel and χB(G|B) > ℵ0. The Lusin-Novikov
uniformization theorem then implies that E|B is Borel. Fix a finer Polish topology
τ on X, compatible with its underlying Borel structure, such that B is τ -clopen (see,
for example, Theorem 13.1 of Kechris [7]), and observe that Theorem 2.2 implies
that E0 vc E|B vc E. 2

3. Borel chromatic numbers of sequences of graphs

Suppose that G = 〈Gi〉i∈I is a sequence of graphs on a set X. We say that a set
A ⊆ X is G-discrete if Gi ∩ (A × A) = ∅, for some i ∈ I. A (NN-valued) coloring
of G is a function c : X → NN such that each of the sets c−1(y) is G-discrete. The
Γ-measurable chromatic number of G, or χΓ(G), is the least cardinal of the form
|c[X]|, where c is a Γ-measurable coloring of G.

Fix sequences sn ∈ 2n such that ∀s ∈ 2<N ∃n ∈ N (s ⊆ sn), set

Gn
0 =

[

m≥n

{(smiα, smıα) : i ∈ {0, 1} and α ∈ 2N},

and define G0 = 〈Gn
0 〉n∈N.

Proposition 3.1. If A ⊆ 2N is a non-meager Borel set, then χBP(G0|A) > ℵ0.

Proof. Fix s ∈ 2<N such that A is comeager in Ns. It is enough to show that no
Baire measurable subset of A is both non-meager in Ns and G0-discrete. Towards
this end, suppose that B ⊆ A is Baire measurable and non-meager in Ns, and fix
t ⊇ s such that B is comeager in Nt. Given m ∈ N, fix u ⊇ t such that m ≤ |u|,
and fix n ∈ N such that u ⊆ sn, noting that m ≤ n. Then there are comeagerly
many α ∈ 2N such that (sn0α, sn1α) ∈ Gm

0 ∩ (B×B), so B is not Gm
0 -discrete, thus

B is not G0-discrete. 2

Suppose that G = 〈Gn〉n∈N and H = 〈Hn〉n∈N are decreasing vanishing se-
quences of graphs on X and Y , respectively, and fix a strictly increasing sequence
k ∈ NN. A k-homomorphism from G to H is a function π : X → Y such that

∀n ∈ N ∀x1, x2 ∈ X ((x1, x2) ∈ Gn \ Gn+1 ⇒ (π(x1), π(x2)) ∈ Hk2n \ Hk2n+1).
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Given f : N<N → N, we say that k is evenly f-dominating if

∀n ∈ N (k2n > f(k0, k1, . . . , k2n−1)).

We write G �f
c H if there is a continuous k-homomorphism from G to H, for some

strictly increasing, evenly f -dominating sequence k.

Theorem 3.2. Suppose that X is a Polish space, G = 〈Gn〉n∈N is a decreasing
vanishing sequence of Σ1

1 graphs on X, and f : N<N → N. Then exactly one of the
following holds:

1. χB(G) ≤ ℵ0;

2. G0 �f
c G.

Proof. As Proposition 3.1 implies that (1) and (2) are mutually exclusive, it is
enough to prove ¬(1) ⇒ (2). In fact, it is enough to prove the special case of
¬(1) ⇒ (2) in which X = NN, as can be easily seen by appealing to the fact that
every Polish space is the continuous injective image of a closed subset of NN. From
this point forward, we will therefore assume that X = NN and χB(G) > ℵ0.

Lemma 3.3. Every G-discrete Σ1
1 set is contained in a G-discrete Borel set.

Proof. Simply note that a set A ⊆ X is G-discrete if and only if

∃n ∈ N ∀x, y ∈ X (x /∈ A or y /∈ A or (x, y) /∈ Gn).

As this is Π1
1 on Σ1

1, the lemma follows from the first reflection theorem. 2

By the first reflection theorem, there is a decreasing vanishing sequence H =
〈Hn〉n∈N of Borel graphs such that ∀n ∈ N (Gn ⊆ Hn). For each pair of natural
numbers k < `, fix a tree T [k,`) on N× (N× N) such that p[T [k,`)] = Gk \ H`.

For each pair of natural numbers m < n, set

Jm,n = {(sm0t, sm1t) ∈ 2n × 2n : t ∈ 2n−m−1},

as well as Jn =
S

m<n Jm,n and J≤n =
S

k≤n Jk. For i, n ∈ N and s ∈ 2i, set

Gn
s = {(〈xt〉, 〈yt〉) ∈ X2i

×X2i

: (xs, ys) ∈ Gn},

and define Gi = 〈Gn
s 〉(s,n)∈2i×N.

We will recursively find k0, . . . , k2n ∈ N, 〈us〉 ∈ (Nn)2
n

, and 〈vs,t〉 ∈ (Nn)Jn ,
from which we obtain the Σ1

1 set Xn of sequences 〈xs〉s∈2n such that:

(a) ∀s ∈ 2n (xs ∈ Nus
);

(b) ∀m < n ∀(s, t) ∈ Jm,n ((xs, xt) ∈ p[T [k2m,k2m+1)
(vs,t,(us,ut))

]).

We begin by fixing k0 > f(∅) and setting u∅ = ∅. Suppose now that we have found
〈ki〉i≤2n, 〈us〉s∈2≤n , and 〈vs,t〉(s,t)∈J≤n

which satisfy the following conditions:

1. ∀i ≤ n (χB(Gi|Xi) > ℵ0);
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2. ∀i ≤ n (k2i−1 > k2i−2 and k2i > max(k2i−1, f(k0, . . . , k2i−1)));

3. ∀i < n∀s ∈ 2i (us ⊆ us0, us1);

4. ∀i < n∀(s, t) ∈ Ji (vs,t ⊆ vs0,t0, vs1,t1);

5. ∀i < n∀m < i∀(s, t) ∈ Jm,i ((vs,t, (us, ut)) ∈ T [k2m,k2m+1)).

Let P denote the set of triples

p = (kp, 〈up
s〉, 〈v

p
s,t〉)

in N× (Nn+1)2
n+1 × (Nn+1)Jn+1 which satisfy the following conditions:

2′. kp > k2n;

3′. ∀s ∈ 2n (us ⊆ up
s0, u

p
s1);

4′. ∀(s, t) ∈ Jn (vs,t ⊆ vp
s0,t0, v

p
s1,t1);

5′. ∀m < n ∀(s, t) ∈ Jm,n+1 ((vp
s,t, (up

s , u
p
t )) ∈ T [k2m,k2m+1));

6′. ∀(s, t) ∈ Jn,n+1 ((vp
s,t, (up

s , u
p
t )) ∈ T [k2n,kp)).

For each p ∈ P, let Yp denote the set of sequences 〈ys〉s∈2n+1 such that:

(a′) ∀s ∈ 2n+1 (ys ∈ Nup
s
);

(b′) ∀m < n ∀(s, t) ∈ Jm,n+1 ((ys, yt) ∈ p[T [k2m,k2m+1)

(vp
s,t,(u

p
s ,up

t ))
]);

(c′) ∀(s, t) ∈ Jn,n+1 ((ys, yt) ∈ p[T [k2n,kp)

(vp
s,t,(u

p
s ,up

t ))
]).

Lemma 3.4. There exists p ∈ P such that χB(Gn+1|Yp) > ℵ0.

Proof. Suppose, towards a contradiction, that ∀p ∈ P (χB(Gn+1|Yp) ≤ ℵ0). Then
for each p ∈ P, there are Gn+1-discrete Borel sets Ap,m ⊆ X2n+1

such that Yp ⊆S
m∈N Ap,m. For each p ∈ P and m ∈ N, fix i ∈ {0, 1} such that the set

proji[Ap,m] = {〈xsi〉s∈2n : 〈xs〉 ∈ Ap,m}

is Gn-discrete, and set ip,m = i. By Lemma 3.3, there are Gn-discrete Borel sets
Bp,m ⊇ projip,m

[Ap,m]. Then the set

A = Xn \
[

p∈P,m∈N
Bp,m

is Σ1
1 and χB(Gn|A) > ℵ0. In particular, it follows that A is not Gn-discrete.

Fix (〈ys0〉, 〈ys1〉) ∈ Gk2n
sn

|A. Then there exists kp > k2n such that (ysn0, ysn1) /∈
Hkp

. For each s ∈ 2n+1, set up
s = ys|(n + 1). For each m < n, (s, t) ∈ Jm,n, and

i ∈ {0, 1}, fix vp
si,ti ⊇ vs,t in Nn+1 such that

(ysi, yti) ∈ p[T [k2m,k2m+1)

(vp
si,ti

,(up
si

,up
ti

))
].
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As (ysn0, ysn1) ∈ Gkn \ Hkp

, there exists vp
sn0,sn1 ∈ Nn+1 such that

(ysn0, ysn1) ∈ p[T [k2n,kp)

(vp
sn0,sn1,(up

sn0,up
sn1))

].

It is clear that p = (kp, 〈up
s〉, 〈v

p
s,t〉) is in P, and since 〈ys〉 ∈ Yp, there exists m ∈ N

such that 〈ys〉 ∈ Ap,m, thus 〈ysip,m
〉 ∈ Bp,k, which contradicts the definition of A,

and therefore completes the proof of the lemma. 2

Fix p ∈ P as in Lemma 3.4. Set k2n+1 = kp, 〈us〉s∈2n+1 = 〈up
s〉s∈2n+1 , and

〈vs,t〉(s,t)∈Jn+1 = 〈vp
s,t〉(s,t)∈Jn+1 . Fix k2n+2 > max(k2n+1, f(k0, . . . , k2n+1)). Then

Xn+1 = Yp, so condition (1) holds, and conditions (2)− (7) follow from the defini-
tions of P and Yp. This completes the recursive construction.

Condition (3) ensures that the function π : 2N → X given by

π(α) = lim
n→∞

uα|n

is well-defined and continuous. Condition (2) ensures that the sequence k = 〈kn〉 is
strictly increasing and evenly f -dominating, so it only remains to check that π is a
homomorphism from Gm

0 \ Gm+1
0 to Gk2m \ Gk2m+1 , for all m ∈ N. Given α ∈ 2N, fix

n ≥ m, set k = n−m, and observe that the pair (sm0(α|k), sm1(α|k)) is in Jm,n+1.
Condition (5) then ensures that

(vsm0(α|k),sm1(α|k), (usm0(α|k), usm1(α|k))) ∈ T [k2m,k2m+1),

thus condition (4) implies that

(π(sm0α), π(sm1α)) ∈ Gk2m \ Hk2m+1 ⊆ Gk2m \ Gk2m+1 ,

which completes the proof of the theorem. 2

It is not difficult to modify the above proof so as to obtain new proofs of The-
orems 6.3 and 6.6 of Kechris-Solecki-Todorčević [8] which do not require the use of
effective descriptive set theory.

We say that a set A ⊆ X is globally Baire measurable if for every Polish space
Y and continuous function π : Y → X, the set π−1(A) is Baire measurable. Let
GB denote the class of all such sets. We will use Theorem 3.2 to study maps
C 7→ dC which assign a metric dC on C to each equivalence class C of a GB-smooth
Σ1

1 equivalence relation E. We say that such a map is Σ1
1 if the graph of the

corresponding function d : E → R given by d(x, y) = d[x]E (x, y) = d[y]E (x, y) is Σ1
1.

We say that a set A ⊆ X is d-bounded if there exists n ∈ N such that

∀x, y ∈ A (xEy ⇒ d(x, y) ≤ n).

Theorem 3.5. Suppose that X is a Polish space, E is a GB-smooth Σ1
1 equivalence

relation on X, and C 7→ dC is a Σ1
1 assignment of metrics to the equivalence classes

of E. Then X is the union of countably many d-bounded Borel sets.

Proof. For each n ∈ N, let Gn denote the graph on X given by

Gn = {(x, y) ∈ E : d(x, y) > n},
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and set G = 〈Gn〉n∈N. Note that a set is d-bounded if and only if it is G-discrete,
so it is enough to show that χB(G) ≤ ℵ0. Suppose, towards a contradiction, that
χB(G) > ℵ0, and fix f : N<N → N such that

∀n ∈ N (f(k0, . . . , k2n−1) = 2nk1 + 2n−1k3 + · · ·+ 2k2n−1).

By Theorem 3.2, there is a strictly increasing, evenly f -dominating sequence k and
a continuous k-homomorphism π : 2N → X from G0 to G.

Fix a globally Baire measurable reduction ϕ : X → NN of E to ∆(NN). Then
the composition ϕ ◦ π is Baire measurable, so there is a dense Gδ set C ⊆ 2N such
that ϕ ◦ π|C is continuous. Then the set

R = {(ϕ ◦ π(α), π(α)) ∈ NN ×X : α ∈ C}

is Σ1
1, so the Jankov-von Neumann uniformization theorem (see, for example, The-

orem 18.1 of Kechris [7]) ensures the existence of a σ(Σ1
1)-measurable function

ψ : ϕ ◦ π[C] → π[C] such that

∀α ∈ C (π(α)Eψ ◦ ϕ ◦ π(α)).

As ψ ◦ϕ ◦π|C is σ(Σ1
1)-measurable, there is a comeager Borel set D ⊆ C such that

ψ ◦ ϕ ◦ π|D is Borel. Then for each n ∈ N, the set

Dn = {α ∈ D : d(π(α), ψ ◦ ϕ ◦ π(α)) ≤ n}

is G2n
0 -discrete, thus χσ(Σ1

1)(G0|D) ≤ ℵ0, which contradicts Proposition 3.1. 2

4. Transversals in the treeable case

Suppose that G is an acyclic Σ1
1 treeing of E. Associated with G is the corresponding

graph metric dG , as well as the sequence G = 〈Gn〉n∈N, where Gn = {(x, y) ∈ E :
dG(x, y) > n}. The G-convex closure of a set A ⊆ X is the set [A]G of points which
lie along an injective G-path from one point of A to another. We say that a set is
G-convex if it is equal to its convex closure.

Proposition 4.1. Suppose that X is a Polish space, E is an equivalence relation
on X, G is a Σ1

1 treeing of E, and A ⊆ X is a Gn-discrete Σ1
1 set. Then there is a

G-convex Gn-discrete Borel set B ⊇ A.

Proof. Set A0 = A, and given a Gn-discrete Σ1
1 set An ⊆ X, appeal to Lemma 3.3

to obtain a Gn-discrete Borel set Bn ⊇ An. Then the set An+1 = [Bn]G is Σ1
1. It

follows that the set B =
S

n∈N Bn is Borel and Gn-discrete, and since B =
S

n∈N An,
it is also G-convex. 2

The G-interior of a set A ⊆ X is the set of all x ∈ A for which there is an
injective G-path x0, x1, . . . , xn such that x0, xn ∈ A and x ∈ {x1, . . . , xn−1}. A
partial quasi-transversal of E is a set which intersects every equivalence class of E
in at most two points.
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Proposition 4.2. Suppose that X is a Polish space, E is an equivalence relation
on X, G is a Σ1

1 treeing of E, and A ⊆ X is a G2n-discrete Σ1
1 set. Then there are

G-convex Borel sets B0, B1, . . . , Bn ⊆ X such that the corresponding sets

Ci = Bi \ [Bi+1 ∪ · · · ∪Bn]E

are partial quasi-transversals and A ⊆ [C0 ∪ · · · ∪ Cn]E.

Proof. Set A0 = A. Given i < n and a G2(n−i)-discrete Σ1
1 set Ai ⊆ X, appeal

to Proposition 4.1 to obtain a G-convex G2(n−i)-discrete Borel set Bi ⊇ Ai, and
observe that the Σ1

1 set Ai+1 = B′i is G2(n−(i+1))-discrete.
To see that the corresponding sets Ci are as desired, not first that Ci ⊆ Bi \

[B′i]E . As the latter set is G1-discrete, so too is the former. As G1-discrete sets
are necessarily partial quasi-transversals of E, it follows that Ci is a partial quasi-
transversal of E. It only remains to observe that if x ∈ A, then there is a maximal
i ≤ n such that x ∈ [Bi]E is non-empty, from which it follows that x ∈ [Ci]E . 2

We say that a set B ⊆ X is an E-complete section if it intersects every E-class.

Theorem 4.3. Suppose that X is a Polish space, E is a GB-smooth equivalence
relation on X, and G is a Σ1

1 treeing of E. Then there are G-convex Borel sets
Bn ⊆ X such that:

1.
S

n∈N Bn is an E-complete section;

2. ∀n ∈ N (Bn \
S

m<n[Bm]E is a partial quasi-transversal of E).

Proof. By Theorem 3.5, there are countably many dG-bounded Borel sets Bn ⊆ X
which cover X. For each n ∈ N, fix kn ∈ N such that Bn is G2kn -bounded, and fix
Borel sets Bn0, Bn1, . . . , Bnkn

as in Proposition 4.2. Then the sets B0k0 , . . . , B00,
B1k1 , . . . , B10, . . . are as desired. 2

We can now give a new proof of case (a) + (c) of our main theorem:

Theorem 4.4 (Hjorth). Suppose that E is a treeable equivalence relation on a
Polish space X. Then exactly one of the following holds:

1. E admits a Borel transversal;

2. E0 vc E.

Proof. To see (1) ⇒ ¬(2), fix a Borel transversal B of E, and define π : X → B by

π(x) = y ⇔ (xEy and y ∈ B).

Then π is Borel. It follows that if ϕ : 2N → X is a continuous embedding of E0 into
E, then π ◦ ϕ is a Borel reduction of E0 to ∆(Y ), a contradiction.

It remains to show ¬(2) ⇒ (1). By Theorem 1 of Harrington-Kechris-Louveau
[3], if E0 6vc E, then E is smooth. By Theorem 4.3, there are G-convex Borel sets
Bn ⊆ X such that:

1.
S

n∈N Bn is an E-complete section;
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2. ∀n ∈ N (Bn \
S

m<n[Bm]E is a partial quasi-transversal of E).

As E-saturations of G-convex Borel sets are Borel, it follows that the set

B =
[

n∈N
Bn \

[

m<n

[Bm]E

is Borel. Fix a linear ordering ≤ of X, and observe that

C = {x ∈ B : ∀y ∈ B (xEy ⇒ x ≤ y)}

is a transversal of E. As the Lusin-Novikov uniformization theorem implies that C
is Borel, this completes the proof of the theorem. 2

Before going further, we will need the following corollary of Hjorth-Kechris [2]:

Theorem 4.5. Assume that ∀x ∈ R (x] exists). Suppose that X is a Polish space
and E is a Σ1

1 equivalence relation on X. Then exactly one of the following holds:

1. E is GB-smooth;

2. E0 vc E.

Proof. Let ∆(2<ω1) denote the equivalence relation on 2N×N × 2N given by

(x1, x2)∆(2<ω1)(y1, y2) ⇔ (x1, y1 /∈ WO or (x1, x2) ∼= (y1, y2)),

where (x1, x2) ∼= (y1, y2) indicates the existence of a bijection π : N → N such
that ∀m,n ∈ N (x1(m,n) = y1(π(m), π(n)) and x2(n) = y2(π(n))). As noted
by Hjorth-Kechris [2], the equivalence relation ∆(2<ω1) is not “definably” smooth
under appropriate determinacy hypotheses. However, we do have the following:

Lemma 4.6. ∆(2<ω1) is GB-smooth.

Proof. Let ∆(ω1) denote the equivalence relation on 2N×N given by

x∆(ω1)y ⇔ (x, y /∈ WO or x ∼= y),

where x ∼= y indicates the existence of a bijection π : N → N such that ∀n ∈
N (x(n) = y(π(n))). Fix a reduction ϕ : 2N×N → NN of ∆(ω1) to ∆(NN). For each
ordinal α < ω1, let Cα = {x ∈ 2N×N : x ∼= α} (where x ∼= α indicates that the order
type of x−1(1) is α), fix xα ∈ Cα, and define ψCα : Cα × 2N → 2N by

ψCα
(x1, x2) = y ⇔ (x1, x2) ∼= (xα, y).

For the remaining ∆(ω1)-class C, define ψC : C × 2N → 2N by ψC(x1, x2) = 0∞.
For each equivalence class C of ∆(ω1), define πC : C × 2N → NN × 2N by

πC(x1, x2) = (ϕ(x1), ψC(x1, x2)),

and define π : 2N×N × 2N → NN × 2N by

π(x1, x2) = π[x1]∆(ω1)
(x1, x2).
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It is clear that π is a reduction of ∆(2<ω1) to ∆(NN × 2N), so it only remains to
show that π is globally Baire measurable. That is, we must show that for every
open set U ⊆ NN × 2N, every Polish space X, and every continuous function f :
X → 2N×N × 2N, the set f−1(π−1(U)) is Baire measurable. Towards this end, fix a
Borel set B ⊆ f−1(WO× 2N) such that f−1(WO× 2N) \B is meager, and set

A = {x ∈ X : ∃y ∈ B (f(x) = f(y))}.

It is enough to show that both f−1(π−1(U)) \ f−1(WO× 2N) and f−1(π−1(U))∩A
are Σ1

1. The former set is clearly Σ1
1, since it is either empty or X \ f−1(WO× 2N).

To see that the latter set is Σ1
1, note that the Kunen-Martin theorem (see, for

example, Theorem 31.1 of Kechris [7]) ensures the existence of an ordinal α < ω1

such that ∀x ∈ A (proj2N×N(f(x)) ≤ α), thus

f−1(π−1(U)) ∩A = f−1(π−1(U) ∩ f [A])

=
[

β≤α

f−1(π−1
Cβ

(U) ∩ f [A]),

which is clearly Σ1
1. 2

As it is well known that E0 is not BP-smooth, it is enough to show ¬(2) ⇒ (1).
Theorem 1 of Hjorth-Kechris [2] ensures that if E0 6vc E, then there is a ∆1

2

measurable reduction ϕ of E to ∆(2<ω1). Our assumption that ∀x ∈ R (x] exists)
ensures that Σ1

1 determinacy holds, so all Σ1
2 sets are Baire measurable, thus ϕ

is globally Baire measurable. By Lemma 4.6, there is a globally Baire measurable
reduction ψ of ∆(2<ω1) to ∆(NN), and since the composition of globally Baire
measurable functions is globally Baire measurable, the theorem follows. 2

We can now establish case (c) of our main theorem:

Theorem 4.7. Assume that ∀x ∈ R (x] exists). Suppose that E is a Σ1
1 treeable

equivalence relation on a Polish space X. Then exactly one of the following holds:

1. E admits a Π1
1 transversal;

2. E0 vc E.

Proof. To see (1) ⇒ ¬(2), fix a Π1
1 transversal C of E, and define π : X → C by

π(x) = y ⇔ (xEy and y ∈ C).

Then π is ∆1
2 measurable, thus our assumption that ∀x ∈ R (x] exists) implies that

π is globally Baire measurable, and Theorem 4.5 implies that condition (2) fails.
It only remains to show ¬(2) ⇒ (1). Theorem 4.5 implies that if E0 6vc E, then

E is GB-smooth. By Theorem 4.3, there are G-convex Borel sets Bn ⊆ X such that:

1.
S

n∈N Bn is an E-complete section;

2. ∀n ∈ N (Bn \
S

m<n[Bm]E is a partial quasi-transversal of E).

Fix a linear ordering ≤ of X, and for each n ∈ N, set

Cn = {x ∈ Bn : ∀y ∈ Bn (xEy ⇒ x ≤ y)}.

Then the set C =
S

n∈N Cn \
S

m<n[Bm]E is the desired Π1
1 transversal of E. 2
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