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Abstract

We consider the problem of characterizing the circumstances under
which a Borel action of a countable semigroup on a Polish space admits an
invariant probability measure, and we prove that aperiodic Borel actions
of countable semigroups generically lack invariant probability measures.

1 Introduction

Suppose that X is a Polish space, G is a countable semigroup of Borel functions
on X, and µ is a (Borel) probability measure on X. For each g ∈ G, we use g∗µ
to denote the measure on X given by g∗µ(B) = µ(g−1(B)), and we say that µ
is G-invariant if g∗µ = µ, for all g ∈ G.

The orbits of the action of G are the sets of the form [x]G = {g · x : g ∈ G}.
A compression of the action of G is a partition 〈Bg〉g∈G of X for which the
function π =

⋃
g∈G g|Bg is an injection such that X \ π[X] intersects every G-

orbit. (We break slightly with tradition here, as it is usually the map π itself
which is called a compression.) We say that the action of G is compressible
if it admits a Borel compression. Nadkarni has asked whether the following
remarkable theorem can be generalized to semigroup actions of N:

Theorem 1 (Nadkarni). Suppose that X is a Polish space and G is a countable
group of Borel automorphisms of X. Then exactly one of the following holds:

1. The action of G admits an invariant probability measure;

2. The action of G is compressible.

It is not difficult to see that the notion of compressibility itself has little to
do with the inexistence of invariant probability measures for semigroup actions.
The proper interpretation of Nadkarni’s question then is whether there is a prop-
erty of semigroup actions which syntactically resembles compressibility, agrees
with compressibility on group actions, easily rules out the existence of invariant
probability measures for semigroup actions and, in fact, characterizes the inex-
istence of invariant probability measures. Here we suggest a notion which could
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conceivably satisfy these criteria. In the process, we discuss some of the obsta-
cles that any such notion must overcome, we prove a theorem of independent
interest regarding the generic inexistence of invariant probability measures, and
we pose a new question about compressibility of Borel automorphisms.

A redundant cover of X is a sequence 〈Bi〉i∈I of Borel subsets of X such
that, for every x ∈ X, there exist infinitely many i ∈ I for which x ∈ Bi. A
spreading of the action of G is a sequence 〈Bg〉g∈G of pairwise disjoint subsets of
X such that 〈g−1(Bg)〉g∈G is a redundant cover of X. We say that the action of
G is spreadable if it admits a Borel spreading. It is straightforward to check that
universally measurable spreadings rule out the existence of invariant probability
measures.

In §2, we consider the question of whether Baire category can be used to
distinguish spreadability from the inexistence of invariant probability measures.
We say that an action of G is aperiodic if all of its orbits are infinite. We say
that a property P holds generically of the action of G if there is a comeager
G-invariant Borel set C ⊆ X such that property P holds of the action of G
on C. By an unpublished result of Kechris (which extends a result of Wright
[2]), every aperiodic Borel action of a countable group is generically compress-
ible. It follows that any notion which characterizes the inexistence of invariant
probability measures must hold generically of every aperiodic Borel action of
a countable group. The following fact both generalizes Kechris’s theorem and
shows that spreadability passes this test:

Theorem 2. Every aperiodic Borel action of a countable semigroup on a Polish
space is generically spreadable.

In addition to a Kuratowski-Ulam argument in the style of Kechris’s orig-
inal argument, our proof of Theorem 2 uses an elementary generalization of
the “marker lemma” from aperiodic countable Borel equivalence relations to
transitive Borel subsets of the plane with countably infinite vertical sections.

In §3, we restrict our attention to actions of semigroups by Borel automor-
phisms. We note first the following fact:

Theorem 3. Suppose that X is a Polish space and G is a semigroup of Borel
automorphisms of X. Then the following are equivalent:

1. The action of G is compressible;

2. The action of G is spreadable.

This implies that spreadability characterizes the inexistence of invariant
probability measures for group actions. Unfortunately, the corresponding fact
for semigroup actions by automorphisms remains open. In the special case that
G = N, however, this leads to an interesting question about compressibility.

Suppose that T : X → X is a Borel automorphism. We say that T is com-
pressible if the corresponding action of Z is compressible, and that T is forward
compressible if the corresponding action of N is compressible. By Theorems
1 and 3, the question of whether spreadability characterizes the inexistence
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of invariant probability measures for actions of N by Borel automorphisms is
equivalent to the following:

Question 4. Suppose that X is a Polish space and T : X → X is a Borel
automorphism. Is T compressible iff T is forward compressible?

Through an elementary argument, we reduce this to the following:

Question 5. Suppose that X is a Polish space and T : X → X is a Borel
automorphism. Is T forward compressible iff T−1 is forward compressible?

By Theorem 2, there is not a generic negative answer to Question 5. The
following fact implies that there is not a measure-theoretic negative answer:

Theorem 6 (MA). Suppose that X is a Polish space and T : X → X is a Borel
automorphism. Then exactly one of the following holds:

1. There is a T -invariant probability measure;

2. There is a universally measurable forward compression of T .

Taken together, these results seem to provide fairly strong evidence that
spreadability should characterize the inexistence of invariant probability mea-
sures, at least for semigroup actions by Borel automorphisms. It should be
noted, however, that even the following basic question remains open:

Question 7. Is the action of N induced by the shift on [N]N spreadable?

2 Generic spreadability

Here we prove that aperiodic Borel actions of semigroups are generically spread-
able. Before getting to our main result, we prove a generalization of the “marker
lemma” for equivalence relations. The vertical sections of R ⊆ X × Y are the
sets of the form Rx = {y ∈ Y : (x, y) ∈ R}, and we say that a set B ⊆ Y is an
R-complete section if it intersects every vertical section of R.

Proposition 8. Suppose that X is a Polish space and R ⊆ X×X is a transitive
Borel set all of whose vertical sections are countably infinite. Then there are
Borel R-complete sections B0 ⊇ B1 ⊇ · · · such that

⋂
n∈N Bn = ∅.

It will be convenient to prove instead a slight rephrasing of Proposition 8.
We use “∃∞n” as shorthand for “there exist infinitely many n.”

Proposition 9. Suppose that X is a Polish space and R ⊆ X×X is a transitive
Borel set all of whose vertical sections are countably infinite. Then there is a
sequence 〈Bn〉n∈N of pairwise disjoint Borel sets such that

∀x ∈ X ∃∞n ∈ N (Rx ∩Bn 6= ∅).
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Proof. Fix a sequence 〈Un〉n∈N of Borel subsets of X such that

∀x, y ∈ X ∃∞n ∈ N (x ∈ Un and y 6∈ Un).

Set B0 = ∅. Given Bn ⊆ X, set Xn = X \
⋃

i≤n Bi and

Vn = {x ∈ X : |Rx ∩ (Xn \ Un)| = ℵ0},

and define Bn+1 = Xn \ (Un∆Vn).

Lemma 10. For all x ∈ X and n ∈ N, the set Rx ∩Xn is infinite.

Proof. We proceed by induction. The case n = 0 is a triviality, so suppose that
we have shown that each Rx ∩Xn is infinite. Note that for all y ∈ X,

Ry ∩Xn+1 = (Ry ∩Xn) \Bn+1

= (Ry ∩Xn) \ (Xn \ (Un∆Vn))
= (Ry ∩Xn) ∩ (Un∆Vn)
= (Ry ∩Xn) ∩ ((Un \ Vn) ∪ (Vn \ Un)).

There are now two cases.
If Rx * Vn, then fix y ∈ Rx \ Vn, note that Ry ∩ Vn = ∅, and observe that

Rx ∩Xn+1 ⊇ Ry ∩Xn+1

= (Ry ∩Xn) ∩ ((Un \ Vn) ∪ (Vn \ Un))
= (Ry ∩Xn) ∩ (Un \ Vn)
= Ry ∩Xn ∩ Un.

As our assumption that y ∈ Rx \ Vn implies that Ry ∩ Xn ∩ Un is infinite, it
follows that Rx ∩Xn+1 is infinite.

If Rx ⊆ Vn, then

Rx ∩Xn+1 = (Rx ∩Xn) ∩ ((Un \ Vn) ∪ (Vn \ Un))
= (Rx ∩Xn) ∩ (Vn \ Un)
= Rx ∩ (Xn \ Un).

As Rx is non-empty, R is transitive, and Rx ⊆ Vn, it follows that x ∈ Vn, so
Rx ∩ (Xn \ Un) is infinite, thus Rx ∩Xn+1 is infinite.

Now suppose, towards a contradiction, that there exists m ∈ N such that
Rx ∩ Bn = ∅, for all n > m. By Lemma 10, we can fix y ∈ Rx ∩ Xm and
z ∈ Ry ∩Xm, as well as n > m such that y ∈ Un and z 6∈ Un. As y, z ∈ Xn, our
assumption that y 6∈ Bn+1 then ensures that y 6∈ Vn, so z 6∈ Vn, thus z ∈ Bn+1,
the desired contradiction.

We are now ready for the main result of this section:
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Theorem 11. Suppose that X is a Polish space and G is a countable semigroup
of Borel endomorphisms of X which acts aperiodically. Then there is a G-
invariant comeager Borel set on which the action of G is spreadable.

Proof. Set R =
⋃

g∈G graph(g), and note that by Proposition 9 there is a se-
quence 〈Bn〉n∈N of pairwise disjoint Borel subsets of X such that

∀x ∈ X ∃∞n ∈ N (Rx ∩Bn 6= ∅).

Let P denote the Polish space of all injections of G into N. For each p ∈ P and
g ∈ G, set Bp

g = Bp(g) and define a G-invariant Borel set Cp ⊆ X by setting

Cp = {x ∈ X : ∀g ∈ G ∃∞h ∈ G (g · x ∈ h−1(Bp
h))}.

Lemma 12. There exists p ∈ P such that Cp is comeager.

Proof. For each g ∈ G, n ∈ N, and x ∈ X, let Ux,g,n denote the set of p ∈ P for
which there is a sequence 〈hi〉i<n of pairwise distinct elements of G such that
g · x ∈ h−1

i (Bp
hi

), for all i < n. As Ux,g,n is clearly open dense, it follows that
the set Vx =

⋂
g∈G,n∈N Ux,g,n is comeager, for all x ∈ X. We use the shorthand

“∀∗x” to denote “for comeagerly many x.” As

∀x ∈ X ∀∗p ∈ P∀g ∈ G ∃∞h ∈ G (g · x ∈ h−1(Bh)),

the Kuratowski-Ulam Theorem (see, for example, §8 of Kechris [1]) implies that

∀∗p ∈ P∀∗x ∈ X ∀g ∈ G ∃∞h ∈ G (g · x ∈ h−1(Bh)),

or equivalently, ∀∗p ∈ P (Cp is comeager).

Fix p ∈ P such that Cp is comeager, and observe that 〈Bp
g 〉g∈G is a spreading

of the action of G on Cp.

3 Spreadability of semigroups of automorphisms

In this section, we examine the spreadability of actions of semigroups of Borel
automorphisms. We begin with the following fact:

Proposition 13. Suppose that X is a Polish space and G is a countable semi-
group of Borel automorphisms of X. Then the following are equivalent:

1. The action of G is spreadable;

2. The action of G is compressible.

Proof. To see (1) ⇒ (2), suppose that 〈Ag〉g∈G is a spreading of the action of
G, and fix a Borel function ϕ : X → G such that ϕ(x) ·x ∈ Aϕ(x), for all x ∈ X.
Set Bg = ϕ−1(g), and observe that 〈Bg〉g∈G is a compression of the action of G.

To see (2) ⇒ (1), we note first a pair of lemmas:
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Lemma 14. Suppose that there is a sequence 〈gn〉n∈N of elements of G and a
sequence 〈An〉n∈N of pairwise disjoint Borel subsets of X such that 〈g−1

n (An)〉n∈N
is a redundant cover of X. Then the action of G is spreadable.

Proof. For each g ∈ G, define Bg ⊆ X by

Bg =
⋃
{An : n ∈ N and gn = g}.

It is clear that these sets are pairwise disjoint. For each x ∈ X, there are
infinitely many natural numbers n0, n1, . . . such that x ∈ g−1

ni
(Ani

). As the
Ani are pairwise disjoint, it follows that the gni are pairwise distinct. As x ∈
g−1

ni
(Bgni

), for each i ∈ N, it follows that 〈Bg〉g∈G is a spreading of the action
of G.

We say that B ⊆ X is a G-complete section if it intersects every orbit of G.

Lemma 15. Suppose that there is a Borel G-complete section B ⊆ X, a se-
quence 〈gn〉n∈N of elements of G, and a sequence 〈An〉n∈N of pairwise disjoint
Borel subsets of X such that 〈g−1

n (An)〉n∈N is a redundant cover of B. Then the
action of G is spreadable.

Proof. Fix an enumeration 〈hn〉n∈N of G, as well as a bijection 〈·, ·〉 of N × N
with N. For each i, j, k ∈ N, define A′ijk ⊆ X by

A′ijk = {x ∈ Ai : 〈j, k〉 = |{` ≤ i : g`g
−1
i · x ∈ A`}|},

and set g′ijk = gihk. By Lemma 14, to see that the action of G is spreadable, it
only remains to check that the sequence 〈(g′ijk)−1(Aijk)〉i,j,k∈N is a redundant
cover of X. Towards this end, note that for each x ∈ X, there exists k ∈ N such
that hk ·x ∈ B. Then for each j ∈ N, there exists i ∈ N such that gihk ·x ∈ A′ijk,
thus x ∈ (g′ijk)−1(A′ijk).

Suppose now that 〈Bg〉g∈G is a compression of the action of G, let π =⋃
g∈G g|Bg, set A = X \ π[X], and fix an enumeration 〈gn〉n∈N of G. For each

i, j ∈ N, define Aij ⊆ X by

Aij = {πi(x) : x ∈ A and j is least such that πi(x) = gj · x},

and set gij = gj . As 〈g−1
ij (Aij)〉i,j∈N is a redundant cover of A, it follows that

the action of G is spreadable.

As a corollary, we immediately obtain:

Theorem 16. Suppose that X is a Polish space and G is a countable group of
Borel automorphisms of X. Then exactly one of the following holds:

1. The action of G admits an invariant probability measure;

2. The action of G is spreadable.
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Proof. This follows from Theorem 1 and Proposition 13.

Unfortunately, the generalization of Theorem 16 to semigroups of automor-
phisms remains open, although there are some interesting things to be said
about the case G = N.

Proposition 17. Suppose that X is a Polish space and T : X → X is a com-
pressible Borel automorphism. Then there is a partition of X into T -invariant
Borel sets A,B ⊆ X such that both T |A and T−1|B are forward compressible.

Proof. Fix a compression 〈Cn〉n∈Z of the action of Z induced by T , put π =⋃
n∈N Tn|Cn, and set

A′ = {x ∈ X \ π[X] : ∃∞n ∈ N∃i ∈ Z+ (πn(x) = T i(x))}.

Set A =
⋃

n∈Z Tn[A′], B = X \A, and

B′ = {x ∈ B \ π[B] : ∃∞n ∈ N∃i ∈ Z+ (πn(x) = T−i(x))}.

For each x ∈ A′, set k0(x) = 0 and recursively define

kn+1(x) = min{k ∈ N : ∃i ∈ Z+ (πk(x) = T i ◦ πkn(x)(x))}.

For each x ∈ B′, set `0(x) = 0 and recursively define

`n+1(x) = min{` ∈ N : ∃i ∈ Z+ (π`(x) = T−i ◦ π`n(x)(x))}.

Finally, define An, Bn ⊆ X by

An = {x ∈ X : ∃y ∈ A′ ∃i ∈ N (x = πki(y)(y) and n = ki+1(y)− ki(y))}

and

Bn = {x ∈ X : ∃y ∈ B′ ∃i ∈ N (x = π`i(y)(y) and n = `i+1(y)− `i(y))}.

Then, off of a set where the orbit equivalence relation induced by T is smooth,
the sequences 〈An〉n∈N and 〈Bn〉n∈N are forward compressions of T |A and
T−1|B, respectively.

This reduces the question of whether Theorem 16 generalizes to actions of
N by Borel automorphisms to the following:

Question 18. Suppose that X is a Polish space and T : X → X is a forward
compressible Borel automorphism. Is T−1 forward compressible?

In the measure-theoretic setting, this question has a positive answer. This
is a consequence of the (proof of) the following fact:

Theorem 19 (MA). Suppose that X is a Polish space and T : X → X is a Borel
automorphism. Then exactly one of the following holds:

7



1. There is a T -invariant probability measure;

2. There is a universally measurable forward compression of T .

Proof. To see (2) ⇒ ¬(1) suppose, towards a contradiction, that µ is a T -
invariant probability measure and π : X → X is a µ-measurable forward com-
pression of T . Set B = X \ π[X], and observe that 〈πn[B]〉n∈N is a sequence of
pairwise disjoint Borel sets of µ-measure µ(B), thus µ(B) = 0. It then follows
that µ(X) ≤

∑
n∈Z µ(Tn[B]) = 0, the desired contradiction.

In order to show ¬(1) ⇒ (2), assume that there is no T -invariant probability
measure. We note first the following:

Lemma 20. For every probability measure µ on X, there is a T -invariant,
µ-conull Borel set C ⊆ X such that T |C is forward compressible.

Proof. By Theorem 1.8 of Zakrzewski [3], there is a Borel set A ⊆ X whose
T -saturation B =

⋃
n∈Z Tn[A] is of µ-positive measure, as well as an infinite

set S ⊆ N such that 〈Tn[A]〉n∈S is a sequence of pairwise disjoint sets. For
each n ∈ S, set An = Tn[A] and gn = Tn, and observe that 〈g−1

n (An)〉n∈S is a
redundant cover of A, thus Lemma 15 ensures that T |B is forward compressible.
By repeating this argument countably many times and taking the union of the
resulting sets, we obtain the desired µ-conull Borel set.

Now fix an enumeration 〈µα〉α<c of the probability measures on X, and fix
a sequence 〈Bα〉α<c of pairwise disjoint, T -invariant Borel sets such that each
of the restrictions T |Bα is forward compressible and for each α < c, the set⋃

β≤α Bβ is µα-conull. Fix forward compressions πα of T |Bα, and let π be any
forward compression of T which agrees with πα on Bα. It is now easily verified
that π is the desired universally measurable forward compression of T .
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