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Abstract. At the request of Andrés Caicedo, we describe how ideas from the

study of Borel equivalence relations can be used to establish the consistency
of the failure of the (weak) dual Schröder-Bernstein theorem from Con(ZF).

The Schröder-Bernstein theorem (SBT) is the statement that for all sets X and
Y , if there are injections from each of X and Y into the other, then there is a
bijection from X to Y . Of course, it is well known that ZF ⇒ SBT. The dual
Schröder-Bernstein theorem (DSBT) is the statement that for all sets X and Y , if
there are surjections from each of X and Y onto the other, then there is a bijection
from X to Y . Clearly ZFC ⇒ DSBT, and it is known that ZF + DC 6⇒ DSBT. The
weak dual Schröder-Bernstein theorem (WDSBT) is the statement that for all sets X
and Y , if there are surjections from each of X and Y onto the other, then there is
an injection from at least one of X or Y into the other.

Let BP abbreviate the statement that all subsets of 2ω have the Baire property.
Let CU abbreviate the statement that for all sets R ⊆ 2ω × 2ω with full projections,
there is a comeager set C ⊆ 2ω and a function f : C → 2ω whose graph is contained
in R. Shelah has shown that Con(ZF) ⇒ Con(ZF + DC + BP + CU). We will show
that ZF + BP⇒ ¬DSBT and ZF + BP + CU⇒ ¬WDSBT.

We begin with an observation that suggests Borel equivalence relations on Polish
spaces as a natural place to look for counterexamples to DSBT.

Proposition 1. Suppose that X is a Polish space and E is a Borel equivalence
relation on X with uncountably many equivalence classes. Then there is a surjective
Borel homomorphism from E to ∆(2ω). In particular, if Y is a Polish space and F
is a Borel equivalence relation on Y , then there is a surjective Borel homomorphism
from E to F , so there is a surjection from X/E onto Y/F .

Proof. By Silver’s theorem, there is a continuous embedding φ : 2ω → X of ∆(2ω)
into E. Then the set

[φ(2ω)]E = {x ∈ X : ∃y ∈ 2ω (xEφ(y))} = {x ∈ X : ∃!y ∈ 2ω (xEφ(y))}
is Borel, as is the function ψ : [φ(2ω)]E → 2ω given by ψ(x) = y ⇔ xEφ(y). Fix
y0 ∈ 2ω, and define π : X → 2ω by

π(x) =
{
ψ(x) if x ∈ [φ(2ω)]E ,
y0 otherwise.

Then π is a surjective Borel homomorphism from E to ∆(2ω). The desired surjective
Borel homomorphism from E to F can be obtained by composing π with any Borel
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surjection from 2ω onto Y , and the resulting map then factors over the quotients
to give the desired surjection from X/E onto Y/F .

Define E0 on 2ω by xE0y ⇔ ∃n < ω∀m ≥ n (x(m) = y(m)). It is well known
that there is no Baire measurable reduction of E0 to ∆(2ω).

Theorem 2 (ZF+ BP). There are surjections from each of 2ω and 2ω/E0 onto the
other, but there is no injection from 2ω/E0 into 2ω. In particular, it follows that
the dual Schröder-Bernstein theorem is false.

Proof. Proposition 1 implies that there are surjections from each of 2ω and 2ω/E0

onto the other (this can also be easily established directly).
To see that there is no injection from 2ω/E0 into 2ω, simply observe that oth-

erwise there is a reduction of E0 to ∆(2ω), so BP ensures that there is a Baire
measurable reduction of E0 to ∆(2ω), a contradiction.

On the other hand, it is easy to see that there is an injection from 2ω into 2ω/E0.
Moreover, results of Harrington-Kechris-Louveau and Hjorth-Kechris imply that if
X and Y are Polish spaces and E and F are Borel equivalence relations on X and
Y , at least one of which is countable, then after reversing the roles of (X,E) and
(Y, F ) if necessary, there is a dense, Gδ set C ⊆ X for which there is a continuous
reduction of E � C to F , thus there is an injection from C/E into Y/F . So if we
wish to obtain an analogous counterexample to WDSBT, we must leave the realm of
countable Borel equivalence relations. (There are similar counterexamples in the
countable case if we replace Baire category with Lebesgue measure, but the proof
seems to require sophisticated ergodic-theoretic arguments, and the consistency
strength of the corresponding set of axioms goes beyond that of ZF.)

It will be convenient to think of Eω0 as an equivalence relation on 2ω×ω.

Proposition 3. Suppose that Y is a Polish space, F is an Fσ equivalence relation
on Y , π : 2ω×ω → Y is Baire measurable, and C ⊆ 2ω×ω is comeager. Then π � C
is not a reduction of Eω0 � C to F .

Proof. We can assume, without loss of generality, that (x, y) /∈ Eω0 ⇒ (π(x), π(y)) /∈
F , for all x, y ∈ C. By refining C if necessary, we can also assume that C is Gδ
and π � C is continuous. Fix dense, open sets Un ⊆ 2ω×ω such that C =

⋂
n<ω Un,

as well as open sets Vn ⊆ Y × Y with (Y × Y ) \ F =
⋂
n<ω Vn. For s, t ∈ 2≤ω×ω,

set δ(s, t) = {(i, j) ∈ dom(s) ∩ dom(t) : s(i, j) 6= t(i, j)}.
Set s0 = t0 = ∅. Given sn, tn ∈ 2<ω×ω, fix (un, vn) w (sn, tn) with n × n ⊆

dom(un) = dom(vn), δ(sn, tn) = δ(un, vn), and Nun ∪Nvn ⊆ Un. Let φ denote the
homeomorphism from Nun

to Nvn
given by

[φ(x)](i, j) =

 vn(i, j) if (i, j) ∈ dom(un),
x(i, j) if (i, j) /∈ dom(un) and i < n,

1− x(i, j) otherwise.

Then (C ∩ Nun
) ∩ φ−1(C ∩ Nvn

) is comeager, so there exists xn ∈ (C ∩ Nun
) ∩

φ−1(C ∩ Nvn
). Set yn = φ(xn). Then δ(sn, tn) ∩ (n × ω) = δ(un, vn) ∩ (n × ω) =

δ(xn, yn) ∩ (n × ω) and (xn, yn) /∈ Eω0 , so (π(xn), π(yn)) /∈ F , thus there is an
initial segment (sn+1, tn+1) w (un, vn) of (xn, yn) with (π(x), π(y)) ∈ Vn, for all
x ∈ C ∩Nsn+1 and y ∈ C ∩Ntn+1 .

Set x = limn→∞ sn and y = limn→∞ tn, and note that x, y ∈ C, xEω0 y, and
(π(x), π(y)) /∈ F , thus π is not a reduction of Eω0 � C to F .
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Given a topological space X and a point x ∈ X, let τX(x) denote the family of
all open neighborhoods of x.

Proposition 4 (Hjorth). Suppose that G and H are Polish groups, X is a Polish G-
space, Y is a Polish H-space, π : X → Y is Baire measurable, C ⊆ X is comeager,
π � C is a homomorphism from EG � C to EH , and V is an open neighborhood of
1H . Then ∀∗x ∈ X∃U ∈ τG(1G)∀∗g ∈ U (x, g · x ∈ C and π(g · x) ∈ V · π(x)).

Proof. Fix an open neighborhood W of 1H such that WW−1 ⊆ V −1, as well as a
countable, dense set D ⊆ H. For each h ∈ D and x ∈ C, define Gh,x ⊆ G by

Gh,x = {g ∈ G : g · x ∈ C and π(g · x) ∈Wh · π(x)}.

Lemma 5. Suppose that g0, g1 ∈ Gh,x. Then π(g0 · x) ∈ V −1 · π(g1 · x).

Proof. For each i < 2, fix wi ∈ W with π(gi · x) = wih · π(x). Then π(g0 · x) =
w0h(w1h)−1 · π(g1 · x) = w0w

−1
1 · π(g1 · x) ∈WW−1 · π(g1 · x) ⊆ V −1 · π(g1 · x).

Observe now that ∀g ∈ G∀∗x ∈ X (g · x ∈ C), so the Kuratowski-Ulam theorem
implies that ∀∗x ∈ X∀∗g ∈ G (g · x ∈ C). It follows that for comeagerly many
x ∈ X, the set

⋃
h∈D Gh,x is comeager, so there are open sets Uh,x ⊆ G such that

Gh,x is comeager in Uh,x and
⋃
h∈D Uh,x is comeager, thus

∀∗g0 ∈ Uh,x∀∗g1 ∈ Uh,xg−1
0

(g0 · x, g1 · (g0 · x) ∈ C and π(g0 · x) ∈ V −1 · π(g1 · (g0 · x))).

Since g0 ∈ Uh,x ⇒ 1G ∈ Uh,xg−1
0 , it follows that

∀∗x ∈ X∀∗g0 ∈ G∃U ∈ τG(1G)∀∗g1 ∈ U
(g0 · x, g1 · (g0 · x) ∈ C and π(g0 · x) ∈ V −1 · π(g1 · (g0 · x))).

The Kuratowski-Ulam theorem then implies that

∀∗g0 ∈ G∀∗x ∈ X∃U ∈ τG(1G)∀∗g1 ∈ U
(g0 · x, g1 · (g0 · x) ∈ C and π(g0 · x) ∈ V −1 · π(g1 · (g0 · x))).

Fix g0 ∈ G such that the set

B = {x ∈ X : ∃U ∈ τG(1G)∀∗g1 ∈ U
(g0 · x, g1 · (g0 · x) ∈ C and π(g0 · x) ∈ V −1 · π(g1 · (g0 · x)))}

is comeager. Then so too is the set

g0(B) = {x ∈ X : ∃U ∈ τG(1G)∀∗g ∈ U (x, g · x ∈ C and π(x) ∈ V −1 · π(g · x))},

thus ∀∗x ∈ X∃U ∈ τG(1G)∀∗g ∈ U (x, g · x ∈ C and π(g · x) ∈ V · π(x)).

Define E1 on (2ω)ω by xE1y ⇔ ∃n < ω∀m ≥ n (x(m) = y(m)). It will be
convenient to think of E1 as an equivalence relation on 2ω×ω.

Theorem 6 (Kechris-Louveau). Suppose that H is a Polish group, Y is a Polish
H-space, π : 2ω×ω → Y is Baire measurable, and C ⊆ 2ω×ω is comeager. Then
π � C is not a reduction of E1 � C to EH .
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Proof (Hjorth). Let the Polish group G = ((Z/2Z)ω)ω act on 2ω×ω by

[g · x](i, j) =
{

x(i, j) if [g(i)](j) ≡ 0 (mod 2),
1− x(i, j) otherwise.

Set Gn = {g ∈ G : ∀i ≥ n∀j < ω ([g(i)](j) ≡ 0 (mod 2))}. Then E1 =
⋃
n<ω EGn

.
We can assume, without loss of generality, that (x, y) ∈ E1 ⇒ (π(x), π(y)) ∈ EH ,

for all x, y ∈ C. By refining C if necessary, we can also assume that C is Gδ and
π � C is continuous. Fix dense, open sets Un ⊆ 2ω×ω such that C =

⋂
n<ω Un.

Proposition 4 ensures that the set C0 of x ∈ C for which

∀n < ω∀V ∈ τH(1H)∃U ∈ τGn
(1Gn

)∀∗g ∈ U (g · x ∈ C and π(g · x) ∈ V · π(x))

is comeager. The Kuratowski-Ulam theorem implies that each of the sets defined
recursively by Ck+1 =

⋂
n<ω{x ∈ Ck : ∀∗g ∈ Gn (g · x ∈ Ck)} is comeager, thus so

too is the set C∞ =
⋂
k<ω Ck. Note that ∀n < ω∀x ∈ C∞∀∗g ∈ Gn (g · x ∈ C∞).

Fix x ∈ C∞ and a compatible, complete metric dH on H. We will recursively
construct sn ∈ 2<ω×ω, gn ∈ G, and hn ∈ H such that for all n < ω, the following
conditions are satisfied:

(1) gn · · · g0 · x ∈ C∞ ∩Nsn .
(2) π(gn · · · g0 · x) = hn · · ·h0 · π(x).
(3) dH(hn · · ·h0, hn+1 · · ·h0) < 1/2n.
(4) sn v sn+1.
(5) n× n ⊆ dom(sn+1).
(6) Nsn+1 ⊆ Un.
(7) δ(sn+1, x) ∩ ({n} × ω) 6= ∅.

We begin by setting s0 = ∅, g0 = 1G, and h0 = 1H . Suppose now that we have
already found sm, gm, and hm, for m ≤ n. Define V ⊆ H by

V = {h ∈ H : dH(hn · · ·h0, hhn · · ·h0) < 1/2n}.

Fix an open neighborhood U of 1Gn+1 such that

∀∗g ∈ U (ggn · · · g0 · x ∈ C and π(ggn · · · g0 · x) ∈ V · π(gn · · · g0 · x)),

fix gn+1 ∈ U with gn+1 · · · g0 · x ∈ C∞ ∩Nsn
and δ(gn+1 · · · g0 · x, x) ∩ ({n} × ω) 6=

∅, fix hn+1 ∈ V with π(gn+1 · · · g0 · x) = hn+1 · · ·h0 · π(x), and fix an initial
segment sn+1 w sn of gn+1 · · · g0 · x with n × n ⊆ dom(sn+1), Nsn+1 ⊆ Un, and
δ(sn+1, x) ∩ ({n} × ω) 6= ∅. This completes the recursive construction.

Set y = limn→∞ sn and h = limn→∞ hn · · ·h0. Then y ∈ C, (x, y) /∈ E1, and
π(y) = h · π(x), thus π � C is not a reduction of E1 � C to EH .

Theorem 7 (ZF + BP + CU). There are surjections from each of 2ω×ω/Eω0 and
2ω×ω/E1 onto the other, but there is no injection from either of 2ω×ω/Eω0 or
2ω×ω/E1 into the other. In particular, it follows that the weak dual Schröder-
Bernstein theorem is false.

Proof. Proposition 1 implies that there are surjections from each of 2ω×ω/Eω0 and
2ω×ω/E1 onto the other (this can also be easily established directly).

Suppose, towards a contradiction, that there is an injection from 2ω×ω/Eω0 into
2ω×ω/E1. Then CU yields a comeager set C ⊆ 2ω×ω and a reduction π : C → 2ω×ω

of Eω0 � C to E1. As E1 is Fσ and BP implies that π is Baire measurable, this
contradicts Proposition 3.
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Suppose now, towards a contradiction, that there is an injection from 2ω×ω/E1

into 2ω×ω/Eω0 . Then CU yields a comeager set C ⊆ 2ω×ω and a reduction π : C →
2ω×ω of E1 � C to Eω0 . As Eω0 is generated by a continuous action of (Z/2Z)ω and
BP implies that π is Baire measurable, this contradicts Theorem 6.


