A REDUCIBILITY LEMMA

BENJAMIN D. MILLER

ABSTRACT. At the request of Kechris, we prove a technical lemma involved with weak reducibility.

Lemma 1. Suppose that E, F are countable Borel equivalence relations on uncountable Polish spaces X, Y and $E \leq_B F$. Then for every Borel subequivalence relation E' of E, there is a Borel subequivalence relation F' of F such that $E' \sim_B F'$.

Proof. Fix a Borel reduction $\pi : X \to Y$ of E into F. By the Lusin-Novikov uniformization theorem, there is a partition of X into Borel sets $X_n \subseteq X$ on which π is injective. Define $Z \subseteq X$ by

 $Z = \{ x \in X : \forall n \in \mathbb{N} \ (X_n \cap [x]_{E'} \text{ is empty or infinite}) \}.$

For each $n \in \mathbb{N}$, set $Z_n = X_n \cap Z$ and define F_n on $\pi(Z_n)$ by

$$\pi(z)F_n\pi(z') \Leftrightarrow zE'z'.$$

Then F_n is an aperiodic countable Borel equivalence relation on $\pi(Z_n)$, so Proposition 7.4 of Kechris-Miller [1] implies that there is a Borel subequivalence relation F'_n of F_n , all of whose classes are of cardinality 2^{n+1} . Fix a Borel linear ordering \leq of Y, and let $\varphi_n : \pi(Z_n) \to \pi(Z_n)$ be the map which sends $y \in \pi(Z_n)$ to the \leq -minimal element of $[y]_{F'_n}$. Note that $\varphi_n \circ \pi(Z_n)$ is of measure at most $1/2^{n+1}$ with respect to every F-invariant probability measure on Y.

By repeatedly appealing to Proposition 7.4 of Kechris-Miller [1], we can find Borel sets $X = B_0 \supseteq B_1 \supseteq \cdots$ and fixed-point free Borel involutions $i_n : B_n \to B_n$ such that B_{n+1} consists of exactly one point from each i_n -orbit. Then the sets $i_0(B_1), i_1(B_2), \ldots$ are pairwise disjoint, and $i_n(B_{n+1})$ is of measure exactly $1/2^{n+1}$ with respect to every *F*-invariant probability measure on *Y*.

By the proof of Lemma 7.10 of Kechris-Miller [1], there is an *F*-invariant Borel set $C \subseteq Y$ on which *F* is compressible, off of which we can find Borel injections $\psi_n : \pi(Z_n) \setminus C \to i_n(B_{n+1}) \setminus C$ such that $\operatorname{graph}(\psi_n) \subseteq F$. As F|C is compressible, there are injections $\psi'_n : C \to C$ whose graphs are contained in *F* and whose ranges are pairwise disjoint.

Define now $\theta: Z \to Y$ by

$$\theta(z) = \begin{cases} \psi_n \circ \varphi_n \circ \pi(z) & \text{if } z \in Z_n \text{ and } \pi(z) \notin C, \\ \psi'_n \circ \pi(z) & \text{if } z \in Z_n \text{ and } \pi(z) \in C. \end{cases}$$

Since $\forall z, z' \in Z \ (\theta(z) = \theta(z') \Rightarrow zE'z')$, we can define F' on $\theta(Z)$ by

$$\theta(z)F'\theta(z') \Leftrightarrow zE'z'.$$

BENJAMIN D. MILLER

Then θ is a reduction of E'|Z into F', thus $E'|Z \sim_B F'$. As $E'|(X \setminus Z)$ is smooth, it then follows that either: (1) E'|Z is non-smooth, in which case $E' \sim_B E'|Z \sim_B F' \sim_B F' \cup \Delta(Y \setminus \theta(Z))$, or (2) E'|Z is smooth, in which case E' is smooth, so the lemma trivializes. \Box

References

 A. Kechris and B. Miller. Topics in orbit equivalence, volume 1852 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2004)