A REDUCIBILITY LEMMA

BENJAMIN D. MILLER

Abstract

At the request of Kechris, we prove a technical lemma involved with weak reducibility.

Lemma 1. Suppose that E, F are countable Borel equivalence relations on uncountable Polish spaces X, Y and $E \leq_{B} F$. Then for every Borel subequivalence relation E^{\prime} of E, there is a Borel subequivalence relation F^{\prime} of F such that $E^{\prime} \sim_{B} F^{\prime}$.

Proof. Fix a Borel reduction $\pi: X \rightarrow Y$ of E into F. By the Lusin-Novikov uniformization theorem, there is a partition of X into Borel sets $X_{n} \subseteq X$ on which π is injective. Define $Z \subseteq X$ by

$$
Z=\left\{x \in X: \forall n \in \mathbb{N}\left(X_{n} \cap[x]_{E^{\prime}} \text { is empty or infinite }\right)\right\} .
$$

For each $n \in \mathbb{N}$, set $Z_{n}=X_{n} \cap Z$ and define F_{n} on $\pi\left(Z_{n}\right)$ by

$$
\pi(z) F_{n} \pi\left(z^{\prime}\right) \Leftrightarrow z E^{\prime} z^{\prime}
$$

Then F_{n} is an aperiodic countable Borel equivalence relation on $\pi\left(Z_{n}\right)$, so Proposition 7.4 of Kechris-Miller [1] implies that there is a Borel subequivalence relation F_{n}^{\prime} of F_{n}, all of whose classes are of cardinality 2^{n+1}. Fix a Borel linear ordering \leq of Y, and let $\varphi_{n}: \pi\left(Z_{n}\right) \rightarrow \pi\left(Z_{n}\right)$ be the map which sends $y \in \pi\left(Z_{n}\right)$ to the $\leq-$ minimal element of $[y]_{F_{n}^{\prime}}$. Note that $\varphi_{n} \circ \pi\left(Z_{n}\right)$ is of measure at most $1 / 2^{n+1}$ with respect to every F-invariant probability measure on Y.

By repeatedly appealing to Proposition 7.4 of Kechris-Miller [1], we can find Borel sets $X=B_{0} \supseteq B_{1} \supseteq \cdots$ and fixed-point free Borel involutions $i_{n}: B_{n} \rightarrow B_{n}$ such that B_{n+1} consists of exactly one point from each i_{n}-orbit. Then the sets $i_{0}\left(B_{1}\right), i_{1}\left(B_{2}\right), \ldots$ are pairwise disjoint, and $i_{n}\left(B_{n+1}\right)$ is of measure exactly $1 / 2^{n+1}$ with respect to every F-invariant probability measure on Y.

By the proof of Lemma 7.10 of Kechris-Miller [1], there is an F-invariant Borel set $C \subseteq Y$ on which F is compressible, off of which we can find Borel injections $\psi_{n}: \pi\left(Z_{n}\right) \backslash C \rightarrow i_{n}\left(B_{n+1}\right) \backslash C$ such that $\operatorname{graph}\left(\psi_{n}\right) \subseteq F$. As $F \mid C$ is compressible, there are injections $\psi_{n}^{\prime}: C \rightarrow C$ whose graphs are contained in F and whose ranges are pairwise disjoint.

Define now $\theta: Z \rightarrow Y$ by

$$
\theta(z)=\left\{\begin{array}{cl}
\psi_{n} \circ \varphi_{n} \circ \pi(z) & \text { if } z \in Z_{n} \text { and } \pi(z) \notin C, \\
\psi_{n}^{\prime} \circ \pi(z) & \text { if } z \in Z_{n} \text { and } \pi(z) \in C .
\end{array}\right.
$$

Since $\forall z, z^{\prime} \in Z\left(\theta(z)=\theta\left(z^{\prime}\right) \Rightarrow z E^{\prime} z^{\prime}\right)$, we can define F^{\prime} on $\theta(Z)$ by

$$
\theta(z) F^{\prime} \theta\left(z^{\prime}\right) \Leftrightarrow z E^{\prime} z^{\prime}
$$

Then θ is a reduction of $E^{\prime} \mid Z$ into F^{\prime}, thus $E^{\prime} \mid Z \sim_{B} F^{\prime}$. As $E^{\prime} \mid(X \backslash Z)$ is smooth, it then follows that either: (1) $E^{\prime} \mid Z$ is non-smooth, in which case $E^{\prime} \sim_{B} E^{\prime} \mid Z \sim_{B}$ $F^{\prime} \sim_{B} F^{\prime} \cup \Delta(Y \backslash \theta(Z))$, or (2) $E^{\prime} \mid Z$ is smooth, in which case E^{\prime} is smooth, so the lemma trivializes.

References

[1] A. Kechris and B. Miller. Topics in orbit equivalence, volume 1852 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2004)

