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Abstract. We investigate the existence of non-trivial bases for
actions of locally-compact Polish groups satisfying a broad array
of recurrence properties.

Introduction

Given an ordered family (F ,�) of mathematical structures and an
upward-closed property Φ of structures in F , a basis for the family
FΦ = {F ∈ F | Φ(F )} under � is a set B ⊆ FΦ with the property that
∀F ∈ FΦ∃B ∈ B B � F . Singleton bases are particularly useful, as
their existence ensures that satisfying Φ is equivalent to containing a
copy of a canonical structure. Even when there are no small bases, the
existence of a basis consisting solely of particularly simple structures
nevertheless yields substantial insight into the nature of Φ. Here we
show that this is the case for myriad properties of actions of locally-
compact Polish groups, including non-smoothness, the inexistence of
suitably-large weakly-wandering Borel sets, and weak mixing.

In §1, we introduce the actions in our bases. In the special case of
Z-actions, these are made up of actions induced by transformations
obtained via cutting and stacking with a sufficiently quickly growing
number of insertions at each stage. In order to endow our actions
with appropriate topologies and handle groups other than Z, we use
quotients associated with cocycles to generalize the cutting and stack-
ing construction to produce continuous actions of non-compact locally-
compact Polish groups G on locally-compact Polish spaces that are
minimal, in the sense that their orbits are dense. We refer to these ac-
tions as being obtained through expansive cutting and stacking. More
generally, we define continuous disjoint unions of such actions.

In §2, we consider a generalized notion of recurrence. Given d ∈
Z+ and a binary relation R on a set X, we say that a sequence x ∈
X{0,...,d} is R-discrete if there do not exist distinct i, j ≤ d for which

2010 Mathematics Subject Classification. Primary 03E15, 28A05, 37B20, 54H20.
Key words and phrases. Bases, recurrence, transitivity, wandering.
The authors were supported in part by FWF Grants P28153 and P29999.

1



2 M. INSELMANN AND B.D. MILLER

xi R xj. The orbit relation on X associated with an action G y X
and a set K ⊆ G is given by x RX

K y ⇐⇒ x ∈ Ky. For all sets
R ⊆

⋃
d∈Z+ X{0,...,d}, define ∆X

G (R) = {g ∈
⋃
d∈Z+ G{1,...,d} | ∃x ∈

X gx ∈ R}, where g ∈ G{0,...,d} is the extension of g given by g0 = 1G.
Given a family S ⊆ P(

⋃
d∈Z+ G{1,...,d}), we say that a set Y ⊆ X

is expansively S-transient if there exist a compact set K ⊆ G and
S ∈ S for which ∆X

G ({y ∈
⋃
d∈Z+ Y {0,...,d} | y is RX

K-discrete}) ∩ S = ∅.
We say that a G-action by homeomorphisms of a topological space
is expansively S-recurrent if no non-empty open set is expansively S-
transient, and a Borel G-action on a standard Borel space X is σ-
expansively S-transient if X is a union of countably-many expansively-
S-transient Borel sets. Every minimal continuous G-action on a Polish
space is either expansively S-recurrent or σ-expansively (

⋃
g∈G gSg−1)-

transient. Given a family S of subsets of P(
⋃
d∈Z+ G{1,...,d}), we say that

a Borel G-action on a standard Borel space is σ-expansively S-transient
if it is σ-expansively S-transient for some S ∈ S. A homomorphism
from G y X to G y Y is a function φ : X → Y with the property
that φ(g · x) = g · φ(x) for all g ∈ G and x ∈ X, a stabilizer-preserving
homomorphism is a homomorphism whose restriction to each orbit is
injective, and an embedding is an injective homomorphism.

Building on arguments of [Wei84], we show that if S is a non-empty
countable family, then among all non-σ-expansively-(

⋃
g∈G gSg−1)-tran-

sient Borel G-actions on Polish spaces, those obtained via expansive
cutting and stacking form a basis under continuous embeddability.
Similarly, we show that if S is a family of non-empty countable families,
then among all non-σ-expansively-{

⋃
g∈G gSg−1 | S ∈ S}-transient

Borel G-actions on Polish spaces, those that are continuous disjoint
unions of actions obtained via expansive cutting and stacking form a
basis under continuous stabilizer-preserving homomorphism.

Building on arguments of [EHW98], we show that if S is a non-empty
countable family and G y X is a non-σ-expansively-(

⋃
g∈G gSg−1)-

transient Borel action on a Polish space, then there is a family F of
2ℵ0-many non-σ-expansively-(

⋃
g∈G gSg−1)-transient Borel actions on

Polish spaces such that every action in F admits a continuous em-
bedding into G y X, but every Borel G-action on a standard Bor-
el space admitting a Borel stabilizer-preserving homomorphism to at
least two actions in F is σ-expansively {G}-transient. Building on
this, we show that if S is a family of non-empty countable families
and G y X is a non-σ-expansively-{

⋃
g∈G gSg−1 | S ∈ S}-transient
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Borel action on a Polish space, then there is no countable basis, un-
der Borel stabilizer-preserving homomorphism, for the family of non-σ-
expansively-{

⋃
g∈G gSg−1 | S ∈ S}-transient Borel G-actions on Polish

spaces that admit a continuous stabilizer-preserving homomorphism to
Gy X.

In §3, we turn our attention to actions that are particularly simple
from the descriptive-set-theoretic point of view. The orbit equivalence
relation associated with an action G y X is given by EX

G = RX
G . A

reduction of an equivalence relation E on X to an equivalence relation
F on Y is a function π : X → Y such that w E x ⇐⇒ π(w) F π(x)
for all w, x ∈ X, a Borel equivalence relation on a standard Borel space
is smooth if it admits a Borel reduction to equality on a standard Borel
space, and a Borel action Gy X on a standard Borel space is smooth
if EX

G is smooth. It is easy to see that the latter notion is equivalent
to σ-expansive {G}-transience, from which it follows that the family of
actions obtained via expansive cutting and stacking is a basis, under
continuous embeddability, for the family of all non-smooth Borel G-
actions on Polish spaces. This generalizes and strengthens the original
Glimm-Effros dichotomy [Gli61, Eff65], as well as the subsequent re-
sults of [SW82, Wei84] (and strengthens the corresponding special case
of [HKL90]). It also follows that if Gy X is a non-smooth Borel action
on a Polish space, then there is no basis of cardinality strictly less than
2ℵ0 , under Borel stabilizer-preserving homomorphism, for the family of
non-smooth Borel G-actions on Polish spaces that admit a continuous
embedding into G y X. This negatively answers Louveau’s question
as to whether there is a singleton basis, under Borel embeddability, for
the family of all non-smooth Borel Z-actions on standard Borel spaces.

In an attempt to salvage the hope underlying Louveau’s question,
we also consider Borel free G-actions on standard Borel spaces that
contain a basis, in the sense that their non-smooth G-invariant Bor-
el restrictions form a basis, under Borel embeddability, for the family
of all non-smooth Borel free G-actions on standard Borel spaces. We
show that this notion is robust, in the sense that it remains unchanged
if Borel embedding is replaced with Borel stabilizer-preserving homo-
morphism. Recalling that the diagonal product of Gy X and Gy Y
is the action Gy X ×Y given by g · (x, y) = (g ·x, g · y), we also show
that a Borel free action G y X on a standard Borel space contains a
basis if and only if G y X × Y is non-smooth for every non-smooth
Borel free action G y Y on a standard Borel space. Examples of
such actions include all continuous free G-actions on compact Polish
spaces, as well as all Borel free G-actions on standard Borel spaces
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that are invariant with respect to some Borel probability measure µ
on X, in the sense that µ = g∗µ for all g ∈ G. Let s denote the
shift on the class of N-sequences given by sn(g) = gn+1, and define

IP(g) = {gs | s ∈ 2<N} for all g ∈ GN, where gs =
∏

n<|s| g
s(n)
n

for all s ∈ 2<N. Letting Scb denote the family of sets of the form
{IP(sn(g))IP(sn(g))−1 | n ∈ N}, where g ∈ GN is an injective sequence
for which IP(g)IP(g)−1 is closed and discrete, we show that if G is
abelian, then a Borel free G-action on a standard Borel space contains
a basis if and only if it is not σ-expansively Scb-transient. It follows
that among all Borel free G-actions on Polish spaces that contain a
basis, those that are continuous disjoint unions of actions obtained
via expansive cutting and stacking form a basis under Borel stabilizer-
preserving homomorphism. It also follows that if Gy X is a Borel free
action on a Polish space containing a basis, then there is no countable
basis, under Borel stabilizer-preserving homomorphism, for the family
of Borel free G-actions on Polish spaces that contain a basis and admit
a continuous stabilizer-preserving homomorphism to Gy X.

We also consider sets Y ⊆ X that are weakly wandering, in the
sense that there is an infinite set S ⊆ G such that g−1Y ∩ h−1Y = ∅
for all distinct g, h ∈ S. We say that a set Y ⊆ X is complete if
X = GY , and σ-complete if there is a countable set H ⊆ G for which
X = HY . When G y X is continuous and Y is open, these notions
are equivalent. Letting Swwσ denote the family of sets consisting of a
single closed discrete infinite subset of G of the form SS−1, and Sσww

denote the family of countable sets of closed discrete infinite subsets of
G of the form SS−1, we note that a Borel free G-action on a standard
Borel space admits a weakly-wandering σ-complete Borel set if and
only if it is σ-expansively {

⋃
g∈G gSg−1 | S ∈ Swwσ}-transient, whereas

the underlying space is a union of countably-many weakly-wandering
Borel sets if and only if it is σ-expansively {

⋃
g∈G gSg−1 | S ∈ Sσww}-

transient. These notions are the same for minimal continuous free
actions, but the latter is strictly weaker outside of the minimal case.
Strengthening the earlier measure-theoretic result, we show that the
failure of either of these properties ensures that the action in question
contains a basis. We also show that if G admits a compatible two-
sided-invariant metric, then the failure of either of these properties is
strictly stronger than containing a basis. It also follows that among
all Borel free G-actions on Polish spaces that do not have one of these
properties, those that are continuous disjoint unions of actions obtained
via expansive cutting and stacking form a basis under Borel stabilizer-
preserving homomorphism. In addition, we show that if G y X is
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a Borel free action on a Polish space that does not have one of these
properties, then there is no countable basis, under Borel stabilizer-
preserving homomorphism, for the family of Borel G-actions on Polish
spaces that do not have the property and admit a continuous stabilizer-
preserving homomorphism to Gy X. This answers [EHN93, Question
1] concerning the circumstances under which a Borel Z-action on a
standard Borel space admits a weakly-wandering σ-complete Borel set.

The main result of [EHN93] is the existence of a Borel Z-action on a
standard Borel space that admits neither an invariant Borel probability
measure nor a weakly-wandering σ-complete Borel set. Their example
is a disjoint union of 2ℵ0-many Z-actions obtained via expansive cutting
and stacking. We show that there is an example that is itself obtained
via expansive cutting and stacking, and retains the advantages of the
more recent examples appearing in [Mil04, Tse15, IM17], in that the
same straightforward argument not only rules out weakly-wandering
σ-complete Borel sets, but also σ-complete Borel sets satisfying still
weaker wandering conditions, yielding a structurally simpler negative
answer to [EHN93, Question 2].

In §4, we turn our attention towards mixing conditions. An action
G y X by homeomorphisms of a topological space is topologically
transitive if ∆X

G (U × V ) 6= ∅ for all non-empty open sets U, V ⊆ X.
More generally, such an action is topologically d-transitive if G y Xd

is topologically transitive. In the special case that d = 2, we also say
that G y X is weakly mixing. Fix a countable dense subset H of G.
Setting Stdt = H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g2i+1 = g1g2i},
we note that a topologically-transitive continuous G-action on a Polish
space with no open orbits is topologically d-transitive if and only if
it is expansively (

⋃
g∈G gStdtg−1)-recurrent. It follows that among all

topologically-d-transitive continuous G-actions on Polish spaces with
no open orbits, those obtained via expansive cutting and stacking form
a basis under continuous embeddability. It also follows that if Gy X is
a topologically-d-transitive continuous G-action on a Polish space with
no open orbits, then there is no basis of cardinality strictly less than
2ℵ0 , under Borel stabilizer-preserving homomorphism, for the family of
topologically-d-transitive continuous G-actions on Polish spaces with
no open orbits that admit a continuous embedding into Gy X.

A Borel action G y X on a standard Borel space is ergodic with
respect to a Borel measure µ on X if every G-invariant Borel set is
µ-conull or µ-null, and weakly mixing with respect to µ if Gy X ×X
is (µ × µ)-ergodic. In the spirit of [SW82, Wei84], we show that if G
is abelian, then a Borel action G y X on a standard Borel space is
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weakly mixing with respect to a Polish topology compatible with the
Borel structure of X on a G-invariant closed set if and only if it is
weakly mixing with respect to a G-invariant σ-finite Borel measure on
X.

We also note that if G has a compatible two-sided-invariant metric
and Gy X is a continuous action on a Polish space with no open or-
bits satisfying any mixing condition at least as strong as weak mixing,
then there is no basis of cardinality strictly less than the additivity
of the meager ideal on R, under continuous stabilizer-preserving ho-
momorphism, for the family of continuous G-actions on Polish spaces
with no open orbits satisfying the mixing condition and admitting a
continuous embedding into Gy X.

We say that a continuous action G y X on a Polish space with
no open orbits is mildly mixing if G y X × Y is topologically tran-
sitive for every topologically-transitive continuous action G y Y on
a Polish space with no open orbits. Letting Smm denote the family
of sets consisting of a single closed discrete subset of G of the form
gIP(g)IP(g)−1, where g ∈ G and g ∈ GN is injective, we note that
a topologically-transitive continuous G-action on a Polish space with
no open orbits is mildly mixing if and only if it is not σ-expansively
{
⋃
g∈G gSg−1 | S ∈ Smm}-transient if and only if there is a non-σ-

expansively {
⋃
g∈G gSg−1 | S ∈ Smm}-transient continuous disjoint

union of G-actions obtained via expansive cutting and stacking that
admits a continuous stabilizer-preserving homomorphism to Gy X.

A continuous action G y X on a Polish space is strongly mixing if
∆X
G (U × V ) is co-compact for all non-empty open sets U, V ⊆ X. Let-

ting Ssm denote the family of sets consisting of a single closed discrete
infinite subset of G, we note that a topologically-transitive continuous
G-action on a Polish space with no open orbits is strongly mixing if and
only if it is not σ-expansively {

⋃
g∈G gSg−1 | S ∈ Ssm}-transient if and

only if there is a non-σ-expansively {
⋃
g∈G gSg−1 | S ∈ Ssm}-transient

continuous disjoint union of G-actions obtained via expansive cutting
and stacking that admits a continuous stabilizer-preserving homomor-
phism to Gy X.

1. A generalization of cutting and stacking

1.1. Quotients. Given a topological space X and an equivalence re-
lation E on X, we endow X/E with the topology consisting of all sets
U ⊆ X/E for which

⋃
U is an open subset of X. We begin by noting

a sufficient condition under which such quotients are Polish spaces:
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Proposition 1.1.1. Suppose that X is a Polish space and E is an
equivalence relation on X for which every E-class is closed, E-satura-
tions of open sets are open, and there is a basis of open sets U ⊆ X
such that [U ]E ⊆ [U ]E. Then X/E is a Polish space.

Proof. The fact that every E-class is closed ensures that X/E is T1,
and the fact that X is second countable implies that so too is X/E, for
if (Un)n∈N is a basis for X, then ([Un]E/E)n∈N is a basis for X/E. To
see that X/E is regular, note that if V ⊆ X/E is an open neighbor-
hood of [x]E, then there is an open neighborhood U ⊆

⋃
V of x such

that U ⊆
⋃
V and [U ]E ⊆ [U ]E, in which case [U ]E/E ⊆ [U ]E/E ⊆

[U ]E/E ⊆ V , where the first containment follows from the fact that

[U ]E is E-invariant. The Urysohn metrization theorem (see, for exam-
ple, [Kec95, Theorem 1.1]) therefore ensures that X/E is metrizable.
As the surjection π : X → X/E given by π(x) = [x]E is continuous and
open, it follows that X/E is Polish (see, for example, [Kec95, Theorem
8.19]).

In the special case that E is closed and X is locally compact, so too
is the quotient:

Proposition 1.1.2. Suppose that X is a locally-compact Polish space
and E is a closed equivalence relation on X for which E-saturations of
open sets are open. Then X/E is a locally-compact Polish space.

Proof. To see that X/E is Hausdorff, note that if [x]E and [y]E are
distinct elements of X/E, then there are open neighborhoods U ⊆ X
of x and V ⊆ X of y whose product is disjoint from E, in which case
[U ]E/E and [V ]E/E are disjoint open neighborhoods of [x]E and [y]E.
As the function π : X → X/E given by π(x) = [x]E is continuous, it
follows that if U ⊆ X is an open set with compact closure, then the
set π(U) = [U ]E/E is compact, so [U ]E is closed, thus [U ]E/E is an

open set with compact closure and [U ]E ⊆ [U ]E, hence X/E is locally
compact, and Proposition 1.1.1 ensures that it is Polish.

Suppose that R and S are binary relations on X and Y . A homomor-
phism from R to S is a function φ : X → Y for which (φ× φ)(R) ⊆ S,
a reduction of R to S is a homomorphism from R to S that is also a ho-
momorphism from ∼R to ∼S, an embedding of R into S is an injective
reduction of R to S, and an isomorphism of R with S is a surjective
embedding of R into S. Note that if G is a group and G y X is an
action by homomorphisms from E to E, then it is an action by iso-
morphisms of E with E, and we obtain an action Gy X/E by setting
g · [x]E = [g · x]E for all g ∈ G and x ∈ X.
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Proposition 1.1.3. Suppose that G is a topological group, X is a
topological space, E is an equivalence relation on X for which the E-
saturation of every open set is open, and Gy X is a continuous action
by homomorphisms from E to E. Then Gy X/E is continuous.

Proof. Suppose that g ∈ G, x ∈ X, and W ⊆ X/E is an open neigh-
borhood of g · [x]E. Then there are open neighborhoods U ⊆ G of g
and V ⊆ X of x such that UV ⊆

⋃
W , in which case U and [V ]E/E

are open neighborhoods of g and [x]E for which U([V ]E/E) ⊆ W .

Suppose thatG is a group, X is a set, and E is an equivalence relation
on X. A function ρ : E → G is a cocycle if ρ(x, z) = ρ(x, y)ρ(y, z) for
all x E y E z. This trivially implies that ρ(x, x) = 1G for all x ∈ X,
thus ρ(x, y) = ρ(y, x)−1 for all x E y.

More generally, we say that a function P : E → P(G) \ {∅} is a
cocycle if P (x, z) = P (x, y)g for all x E y E z and g ∈ P (y, z). This
trivially implies that 1G ∈ P (x, x) for all x ∈ X, so P (x, y) = P (y, x)−1

for all x E y, thus P (x, z) = gP (y, z) for all x E y E z and g ∈ P (x, y).
Let S(G) denote the set of all subgroups of G. We say that a function

G : X → S(G) is compatible with a cocycle ρ : E → G if Gxρ(x, y) =
ρ(x, y)Gy for all x E y, in which case we define P : E → P(G) \ {∅}
by setting P (x, y) = ρ(x, y)Gy. Observe that if x E y E z and g ∈
P (y, z), then there exists h ∈ Gz for which g = ρ(y, z)h, and it follows
that P (x, z) = ρ(x, z)Gz = ρ(x, y)ρ(y, z)Gzh = ρ(x, y)Gyρ(y, z)h =
P (x, y)g, thus P is a cocycle.

The orbit cocycle on EX
G associated with an action Gy X is given by

PX
G (x, y) = {g ∈ G | x = g · y}. For each cocycle P : E → P(G) \ {∅},

define the equivalence relation EP ⊆ E by x EP y ⇐⇒ 1G ∈ P (x, y).
Suppose now that EX

G ⊆ E and PX
G (x, y) ⊆ P (x, y) for all x EX

G y. If
g ∈ G and x E y, then the facts that g ∈ P (g ·x, x) and g−1 ∈ P (y, g ·y)
ensure that P (g · x, g · y) = gP (x, y)g−1, so x EP y =⇒ g · x EP g · y,
thus G y X is an action by homomorphisms from EP to EP . The
fact that g−1 ∈ P (y, g · y) also implies that P (x, g · y) = P (x, y)g−1,
so [x]EP

= g · [y]EP
⇐⇒ 1G ∈ P (x, g · y) ⇐⇒ g ∈ P (x, y), thus P

factors over EP to the orbit cocycle of Gy X/EP .
Let G y G × X denote the action given by g · (h, x) = (gh, x),

set I(G) = G × G, identify the product of equivalence relations E
on X and F on Y with the equivalence relation on X × Y given by
(x1, y1) (E × F ) (x2, y2) ⇐⇒ (x1 E x2 and y1 F y2), and let P
denote the cocycle on I(G)×E given by P ((g, x), (h, y)) = gP (x, y)h−1.
Clearly EG×X

G ⊆ I(G) × E. Moreover, if g ∈ G and (h, x) ∈ G × X,
then P (g · (h, x), (h, x)) = ghP (x, x)h−1, so g ∈ P (g · (h, x), (h, x)),



BASES FOR NOTIONS OF RECURRENCE 9

thus PG×X
G (g · (h, x), (h, x)) ⊆ P (g · (h, x), (h, x)), hence P factors over

EP to the orbit cocycle of Gy (G×X)/EP .
An equivalence relation on a topological space is minimal if its equiv-

alence classes are dense.

Proposition 1.1.4. Suppose that G is a topological group, X is a
topological space, E is a minimal equivalence relation on X for which
the E-saturation of every open set is open, and P : E → P(G) \ {∅} is
a cocycle. Then Gy (G×X)/EP is minimal.

Proof. Suppose that W ⊆ (G × X)/EP is a non-empty G-invariant
open set. Then there are non-empty open sets U ⊆ G and V ⊆ X with
the property that U × V ⊆

⋃
W . The fact that

⋃
W is G-invariant

then ensures that G× V ⊆
⋃
W . To see that G×X ⊆

⋃
W , suppose

that g ∈ G and x ∈ X, fix y ∈ V such that x E y, fix h ∈ gP (x, y), and
observe that 1G ∈ gP (x, y)h−1 = P ((g, x), (h, y)), so the EP -invariance
of
⋃
W ensures that it contains (g, x).

When Y is a topological space, we use F(Y ) to denote the family of
all closed subsets of Y , equipped with the Fell topology generated by the
sets of the form {F | F ∩K = ∅} and {F | F ∩U 6= ∅}, where K ⊆ Y is
compact and U ⊆ Y is open. We say that a function φ : X → F(Y ) is
upper semi-continuous if it is continuous with respect to the topology
generated by the sets of the former type, and lower semi-continuous if
it is continuous with respect to the topology generated by the sets of
the latter type.

We say that a sequence (En)n∈N of subequivalence relations of E is
exhaustive if E =

⋃
n∈NEn.

Proposition 1.1.5. Suppose that G is a topological group, X is a
topological space, E is an equivalence relation on X, and P : E → F(G)
is a cocycle for which there is an exhaustive increasing sequence (En)n∈N
of subequivalence relations of E such that En-saturations of open sets
are open and P � En is lower semi-continuous for all n ∈ N. Then
EP -saturations of open sets are open.

Proof. Suppose that U × V ⊆ G × X is an open rectangle. Given
(g, x) ∈ [U × V ]EP

, fix (h, y) ∈ U × V for which (g, x) EP (h, y), as
well as n ∈ N for which x En y, and open neighborhoods Ug, Uh ⊆ G
of g and h for which Ugg

−1Uh ⊆ U . As g−1h ∈ P (x, y), there is
an open neighborhood Vx × Vy ⊆ X × V of (x, y) with the property
that g−1Uh ∩ P (x′, y′) 6= ∅ for all (x′, y′) ∈ En ∩ (Vx × Vy). Define
V ′x = Vx ∩ [Vy]En , and note that if (g′, x′) ∈ Ug × V ′x, then there exists
y′ ∈ Vy for which x′ En y

′, and since g−1Uh ∩P (x′, y′) 6= ∅, there exists
h′ ∈ g′P (x′, y′)∩U , so (g′, x′) EP (h′, y′), thus Ug×V ′x ⊆ [U×V ]EP

.
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We say that an increasing sequence (Kn)n∈N of compact subsets of
G is exhaustive if every compact subset of G is contained in some Kn.

Proposition 1.1.6. Suppose that G is a locally-compact separable group.
Then there is an exhaustive increasing sequence (Kn)n∈N of compact
subsets of G.

Proof. Fix a countable dense set D ⊆ G and a non-empty open set U ⊆
G with compact closure. As D−1g is dense—and therefore intersects
U—for all g ∈ G, it follows that G = DU . Fix an enumeration (gn)n∈N
of D, set Fn = {gm | m ≤ n} and Kn = FnU for all n ∈ N, and observe
that if K ⊆ G is compact, then the fact that K ⊆ DU yields n ∈ N
for which K ⊆ FnU ⊆ Kn.

For each set K ⊆ G and cocycle P : E → F(G), define RX
K =

P−1({H ⊆ G | H ∩ K 6= ∅}). Note that the relations RX
K associ-

ated with an action and its orbit cocycle coincide. We say that P is
(En, Kn)n∈N-expansive if RX

Kn
⊆ En for all n ∈ N.

Proposition 1.1.7. Suppose that G is a locally-compact group, X is
a Polish space, E is an equivalence relation on X, P : E → F(G)
is a cocycle, (Kn)n∈N is an exhaustive increasing sequence of compact
subsets of G, and there is an exhaustive increasing sequence (En)n∈N
of closed subequivalence relations of E such that P is (En, Kn)n∈N-
expansive and P � En is upper semi-continuous for all n ∈ N. Then
EP is closed.

Proof. If ((g, x), (h, y)) ∈ ∼EP , then x E y =⇒ g−1h /∈ P (x, y). The
fact that every topological group is regular (see, for example, [HR79,
Theorem 8.4]) yields an open neighborhood Ug×Uh ⊆ G×G of (g, h) for

which U−1
g Uh is compact and x E y =⇒ P (x, y)∩U−1

g Uh = ∅. Fix n ∈ N
sufficiently large that U−1

g Uh ⊆ Kn, as well as an open neighborhood

Vx×Vy ⊆ X×Y of (x, y) with the property that P (x′, y′)∩U−1
g Uh = ∅

for all (x′, y′) ∈ En ∩ (Vx× Vy), and observe that (Ug × Vx)× (Uh× Vy)
is disjoint from EP .

We say that an equivalence relation E on a metric space X is locally
generated by continuous actions of compact Polish groups if X is the
union of E-invariant open sets U ⊆ X for which there are compact Po-
lish groups G and continuous actions G y U such that E � U = EU

G .
Note that every such equivalence relation is necessarily closed, for if
(x, y) ∈ E, then it is the limit of a sequence (xn, yn)n∈N of elements of
E, and if U ⊆ X is an E-invariant open neighborhood of x for which
there is a compact Polish group G and a continuous action G y U
such that E � U = EU

G , then by passing to a terminal subsequence, we
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can assume that xn ∈ U for all n ∈ N, in which case there is a sequence
(gn)n∈N of elements of G such that gn · xn = yn for all n ∈ N, and by
passing to infinite subsequences, we can assume that (gn)n∈N converges
to some g ∈ G, so g · x = y, thus x E y.

Proposition 1.1.8. Suppose that G is a locally-compact Polish group,
X is a metric space, E is an equivalence relation on X, P : E → F(G)
is a cocycle, (Kn)n∈N is an exhaustive increasing sequence of compact
subsets of G, and there is an exhaustive increasing sequence (En)n∈N of
subequivalence relations of E such that En is locally generated by contin-
uous actions of compact Polish groups, P is (En, Kn)n∈N-expansive, and

P � En is upper semi-continuous for all n ∈ N. Then [R]EP
⊆ [R]EP

for all sets R ⊆ G×X with the property that projG(R) is compact.

Proof. Suppose that (g, x) ∈ [R]EP
, and fix a sequence (gn, xn)n∈N of

elements of [R]EP
for which (gn, xn) → (g, x), as well as a sequence

(hn, yn)n∈N of elements of R such that (gn, xn) EP (hn, yn) for all n ∈
N. By passing to infinite subsequences, we can assume that (hn)n∈N
converges to some h ∈ G. As the closure of {gn | n ∈ N}∪{hn | n ∈ N}
is compact, so too is the closure of {g−1

n hn | n ∈ N}. Fix m ∈ N for
which the latter set is contained in Km. As g−1

n hn ∈ P (xn, yn) for all
n ∈ N, it follows that xn Em yn for all n ∈ N. Fix an Em-invariant
open neighborhood V ⊆ X of x, a compact Polish group K, and a
continuous action K y V such that EV

K = Em � V . By passing to
terminal subsequences, we can assume that xn ∈ V for all n ∈ N, so
there is a sequence (kn)n∈N of elements of K such that yn = kn · xn for
all n ∈ N. By passing to infinite subsequences, we can assume that
(kn)n∈N converges to some k ∈ K, in which case (yn)n∈N converges to
the point y = k ·x, so x Em y and (hn, yn)→ (h, y), thus (h, y) ∈ R. To
see that (g, x) EP (h, y), note that if U ⊆ G is an open neighborhood
of g−1h, then g−1

n hn ∈ U—so P (xn, yn) ∩ U 6= ∅—for all but finitely
many n ∈ N. The upper semi-continuity of P � Em therefore ensures
that if U is compact, then P (x, y) ∩ U 6= ∅, so the local compactness
and regularity of G imply that g−1h ∈ P (x, y).

Suppose that P : E → P(G) and Σ: F → P(G). A homomorphism
from P to Σ is a homomorphism φ from E to F such that P (x, y) ⊆
Σ(φ(x), φ(y)) for all x E y, a reduction of P to Σ is a reduction φ
of E to F such that P (x, y) = Σ(φ(x), φ(y)) for all x E y, and an
embedding of P into Σ is an injective reduction of P to Σ. Given an
action G y Y and a function φ : X → Y , define φG : G ×X → Y by
φG(g, x) = g · φ(x).
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Proposition 1.1.9. Suppose that G is a group, X and Y are sets, E
is an equivalence relation on X, P : E → P(G) \ {∅} is a cocycle, and
Gy Y is an action.

(1) If φ : X → Y is a homomorphism from P to P Y
G , then φG/EP

is a homomorphism from Gy (G×X)/EP to Gy Y .
(2) If φ : X → Y is a reduction of P to P Y

G , then φG/EP is an
embedding of Gy (G×X)/EP into Gy Y .

Proof. If φ : X → Y is a homomorphism from P to P Y
G , g, h ∈ G, and

w E x, then P ((g, w), (h, x)) = gP (w, x)h−1 ⊆ gP Y
G (φ(w), φ(x))h−1 =

P Y
G (φG(g, w), φG(h, x)), so φG is a homomorphism from P to P Y

G , and
therefore factors over EP to a homomorphism from P/EP to P Y

G , thus
to a homomorphism from Gy (G×X)/EP to Gy Y .

Similarly, if φ : X → Y is a reduction of P to P Y
G , g, h ∈ G, and

w E x, then P ((g, w), (h, x)) = gP (w, x)h−1 = gP Y
G (φ(w), φ(x))h−1 =

P Y
G (φG(g, w), φG(h, x)), so φG is a reduction of P to P Y

G , and there-
fore factors over EP to an embedding of P/EP into P Y

G , thus to an
embedding of Gy (G×X)/EP into Gy Y .

1.2. Cutting and stacking. For all n ∈ N, let E0,n(N) denote the
equivalence relation on NN given by a E0,n(N) b ⇐⇒ ∀m ≥ n am = bm,
and define E0(N) =

⋃
n∈N E0,n(N). For all s ∈ (

⋃
d∈Z+ G{1,...,d})<N,

define Xs =
∏

n<|s|{0, . . . , |sn|}, and for all g ∈ (
⋃
d∈Z+ G{1,...,d})N, set

Tg =
⋃
n∈NXg�n and Xg =

∏
n∈N{0, . . . , |gn|}, and let �g be the cocycle

on E0(N) � Xg given by �g((0)n a (k) a c, (0)n a (0) a c) = (gn)k
for all n ∈ N, c ∈ Xsn+1(g), and 1 ≤ k ≤ |gn|. We say that a function
G : Xg → S(G) is compatible with g if it is compatible with �g. For
every such G, define Pg,G on E0(N) � Xg by Pg,G(c, d) = �g(c, d)Gd,
and set Eg,G = EPg,G

and Xg,G = (G×Xg)/Eg,G.

In the special case that G is the function 1G with constant value
{1G}, we use Pg, Eg, and Xg to denote Pg,G, Eg,G, and Xg,G. When
G = Z and ∀n ∈ N∀k < |gn| (gn)k+1 > (gn)k +

∑
m<n(gm)|gm|, it

is not difficult to see that G y Xg is essentially generated by the
automorphism obtained via cutting and stacking with stacks of height
|gn| + 1 and (gn)k+1 − 1 − (gn)k −

∑
m<n(gm)|gm| insertions between

the kth and (k + 1)st levels of the nth stack.
For all s ∈ Tg, define gs =

∏
n<|s|(gn)s(n).

Proposition 1.2.1. Suppose that G is a group, g ∈ (
⋃
d∈Z+ G{1,...,d})N,

G : Xg → S(G) is compatible with g, n ∈ N, c ∈ Xsn(g), and s, t ∈
Xg�n. Then Pg,G(s a c, t a c) = gsG(0)nac(g

t)−1.
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Proof. As

Pg,G(s a c, t a c) = �g(s a c, t a c)Gtac

= �g(s a c, (0)n a c)�g((0)n a c, t a c)Gtac

= �g(s a c, (0)n a c)G(0)nac�g((0)n a c, t a c),

it is sufficient to show that �g(s a c, (0)n a c) = gs for all n ∈ N,
c ∈ Xsn(g), and s ∈ Xg�n. But if this holds at n, and if c ∈ Xsn+1(g),
k ≤ |gn|, and s ∈ Xg�n, then

�g(s a (k) a c, (0)n a (0) a c)

= �g(s a (k) a c, (0)n a (k) a c)�g((0)n a (k) a c, (0)n a (0) a c)

= gs(gn)k

= gsa(k),

so it holds at n+ 1.

Given a binary relation R on X, we say that a sequence (Xi)i∈I of
subsets of X is R-discrete if every element of

∏
i∈I Xi is R-discrete.

For all n ∈ N, define IP(g � n) = {gs | s ∈ Xg�n}. We say that (g,G)
is (Kn)n∈N-expansive if gnG(0)n+1ac is RG

IP(g�n)−1KnIP(g�n)-discrete for all

n ∈ N and c ∈ Xsn+1(g). In the special case that G = 1G, we say that
g is (Kn)n∈N-expansive.

Proposition 1.2.2. Suppose that G is a topological group, (Kn)n∈N is
an increasing sequence of compact subsets of G, g ∈ (

⋃
d∈Z+ G{1,...,d})N,

G : Xg → S(G) is compatible with g, and (g,G) is (Kn)n∈N-expansive.
Then Pg,G is (E0,n(N) � Xg, Kn)n∈N-expansive.

Proof. Simply observe that if n ∈ N, m ≥ n, c ∈ Xsm+1(g), j, k ≤ |gm|
are distinct, and s, t ∈ Xg�m, then (gm)jG(0)m+1ac∩(gs)−1Kmg

t(gm)k =

∅, so gs(gm)jG(0)m+1ac(gm)−1
k (gt)−1 ∩Km = ∅, thus Proposition 1.2.1

ensures that Pg,G(s a (j) a c, t a (k) a c) ∩Kn = ∅.

We say that an action of a locally compact Polish group is obtained
via expansive cutting and stacking if it is of the form Gy Xg,G, where
g ∈ (

⋃
d∈Z+ G{1,...,d})N, G : Xg → F(G) ∩ S(G) is compatible with g

and continuous, and (g,G) is (Kn)n∈N-expansive for some exhaustive
increasing sequence (Kn)n∈N of compact subsets of G.

Proposition 1.2.3. Suppose that G is a locally-compact Polish group
and Gy X is obtained via expansive cutting and stacking. Then X is
a locally-compact Polish space and Gy X is minimal and continuous.
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Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact sub-
sets of G and g ∈ (

⋃
d∈Z+ G{1,...,d})N, as well as a continuous func-

tion G : Xg → F(G) ∩ S(G) compatible with g for which (g,G) is
(Kn)n∈N-expansive and G y X is G y Xg,G. As E0(N) � Xg is mini-
mal, Proposition 1.1.4 implies that Gy Xg,G is minimal. Proposition
1.2.1 ensures that Pg,G � (E0,n(N) � Xg) is continuous for all n ∈ N.
As (E0,n(N) � Xg)-saturations of open sets are open for all n ∈ N,
Proposition 1.1.5 implies that Eg,G-saturations of open sets are open,
so Proposition 1.1.3 ensures that G y Xg,G is continuous. Propo-
sition 1.2.2 ensures that Pg,G is (E0,n(N) � Xg, Kn)n∈N-expansive. As
E0,n(N) � Xg is closed for all n ∈ N, Proposition 1.1.7 implies that Eg,G

is closed. As G×Xg is a locally-compact Polish space, Proposition 1.1.2
ensures that so too is Xg,G.

The composition of relations R ⊆ X × Y and S ⊆ Y ×Z is given by
RS = {(x, z) ∈ X × Z | ∃y ∈ Y x R y S z}.

Proposition 1.2.4. Suppose that G y X is a continuous action of a
topological group on a topological space, K,L ⊆ G are compact, R ⊆
X × X is closed, and (x, y) ∈ ∼RX

K−1RRX
L . Then there are open sets

UK , UL ⊆ G containing K and L and open neighborhoods Vx, Vy ⊆ X
of x and y such that (Vx × Vy) ∩RX

U−1
K

RRX
UL

= ∅.

Proof. The fact that R is closed ensures that for all (g, h) ∈ K × L,
there are open neighborhoods Wg,h,x,Wg,h,y ⊆ X of g · x and h · y such
that R ∩ (Wg,h,x ×Wg,h,y) = ∅. As G y X is continuous, there are
open neighborhoods Ug,h,x, Ug,h,y ⊆ G of g and h and Vg,h,x, Vg,h,y ⊆ X
of x and y such that Ug,h,xVg,h,x ⊆ Wg,h,x and Ug,h,yVg,h,y ⊆ Wg,h,y. As
K × L is compact, there is a finite set F ⊆ K × L such that K × L ⊆⋃

(g,h)∈F Ug,h,x × Ug,h,y. Define F ′ = {F ′ ⊆ F | L ⊆
⋃

(g,h)∈F ′ Ug,h,y},
UK =

⋃
F ′∈F ′

⋂
(g,h)∈F ′ Ug,h,x and UL =

⋂
F ′∈F ′

⋃
(g,h)∈F ′ Ug,h,y, and Vx =⋂

(g,h)∈F Vg,h,x and Vy =
⋂

(g,h)∈F Vg,h,y. As the fact that K × L ⊆⋃
(g,h)∈F Ug,h,x × Ug,h,y implies that K ⊆ UK , and the definition of F ′

ensures that L ⊆ UL, it only remains to observe that if g′ ∈ UK ,
h′ ∈ UL, x′ ∈ Vx, and y′ ∈ Vy, then there exists F ′ ∈ F ′ such that
g′ ∈

⋂
(g,h)∈F ′ Ug,h,x, as well as (g, h) ∈ F ′ for which h′ ∈ Ug,h,y, and

since x′ ∈ Vg,h,x and y′ ∈ Vg,h,y, it follows that (g′ · x′, h′ · y′) /∈ R.

A homomorphism from ρ : E → G to Σ: F → P(G) is a homomor-
phism from the function P : E → P(G) given by P (w, x) = {ρ(w, x)}
to Σ. Given an equivalence relation E on X and a binary relation R on
X, we say that a function φ : Xg → X is doubly (R, (Kn)n∈N)-expansive
with respect to a cocycle P : E → P(G) \ {∅} if it is a homomorphism
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from ∼E0,n(N) � Xg to ∼RX
KnIP(g�n)RR

X
IP(g�n)−1Kn

for all n ∈ N. When

R is equality on X, we say that φ is doubly (Kn)n∈N-expansive. We say
that (g,G) is doubly (Kn)n∈N-expansive if gnG(0)n+1ac is RG

(IP(g�n)−1Kn

IP(g�n))2-discrete for all n ∈ N and c ∈ Xsn+1(g).

Proposition 1.2.5. Suppose that G is a locally-compact separable group,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of
G, g ∈ (

⋃
d∈Z+ G{1,...,d})N, E is an equivalence relation on a set X,

P : E → P(G) \ {∅} is a cocycle, and φ : Xg → X is a doubly-
(Kn)n∈N-expansive homomorphism from �g to P . Then the function
G : Xg → S(G) given by Gc = P (φ(c), φ(c)) is compatible with g,
(g,G) is doubly (Kn)n∈N-expansive, and φ is a reduction of Pg,G to P .

Proof. To see that G is compatible with g, note that

�g(c, d)Gd = �g(c, d)P (φ(d), φ(d))

= P (φ(c), φ(d))

= P (φ(c), φ(c))�g(c, d)

= Gc�g(c, d).

To see that (g,G) is doubly (Kn)n∈N-expansive, suppose that n ∈ N,
c ∈ Xsn+1(g), j, k ≤ |gn| are distinct, and s, t ∈ Xg�n. The fact that
P (φ(s a (j) a c), φ(t a (k) a c)) and KnIP(g � n)IP(g � n)−1Kn

are disjoint ensures that so too are P (φ(s a (j) a c), φ((0)n+1 a c))
and KnIP(g � n)IP(g � n)−1KnP (φ(t a (k) a c), φ((0)n+1 a c)).
As gr(gn)iG(0)n+1ac = P (φ(r a (i) a c), φ((0)n+1 a c)) for all (r, i) ∈
{(s, j), (t, k)}, it follows that gnG(0)n+1ac isRG

(IP(g�n)−1KnIP(g�n))2-discrete.

To see that φ is a homomorphism from Pg,G to P , simply observe
that if n ∈ N, c ∈ Xsn(g), and s, t ∈ Xg�n, then Pg,G(s a c, t a c) =
�g(s a c, t a c)P (φ(t a c), φ(t a c)) = P (φ(s a c), φ(t a c)).

To see that φ is a homomorphism from ∼E0(N) � Xg to ∼E, note
that if c, d ∈ Xg are E0(N)-inequivalent but φ(c) E φ(d), then Kn ∩
P (φ(c), φ(d)) = ∅ for all n ∈ N, a contradiction.

A homomorphism parameter for an action G y X of a group by
homeomorphisms of a Polish space is a sequence of the form P =
(dPX , (ε

P
n )n∈N,g

P ,VP ), where dPX is a compatible complete metric on
X, (εPn )n∈N is a sequence of positive real numbers converging to zero,
gP ∈ (

⋃
d∈Z+ G{1,...,d})N, and VP is a countable basis for X.

A P -code is a sequence V ∈ (VP )N such that, for all n ∈ N, the
following hold:

(1) ∀k ≤ |gPn | (gPn )kVn+1 ⊆ Vn.
(2) ∀s ∈ XgP �{0,...,n} diamdPX

((gP )sVn+1) ≤ εPn .
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Condition (1) yields that if c ∈ XgP and n ∈ N, then (gP )c�(n+1)Vn+1 =

(gP )c�n(gn)c(n)Vn+1 ⊆ (gP )c�nVn, so condition (2) implies that we ob-
tain a continuous function φP,V : XgP → X by letting φP,V(c) be the
unique element of

⋂
n∈N(gP )c�nVn.

Proposition 1.2.6. Suppose that G y X is an action of a group by
homeomorphisms of a Polish space, P is a homomorphism parameter,
and V ∈ (VP )N is a P -code. Then φP,V is a homomorphism from �gP

to PX
G .

Proof. Simply observe that

{�gP ((0)n a (k) a c, (0)n a (0) a c) · φP,V((0)n a (0) a c)}

= {(gPn )k · φP,V((0)n a (0) a c)}

=
⋂
m∈N(gPn )k(g

P )(0)na(0)ac�mVn+1+m

=
⋂
m∈N(gP )(0)na(k)ac�mVn+1+m

= {φP,V((0)n a (k) a c)}

for all n ∈ N, c ∈ Xsn+1(gP ), and k ≤ |gPn |.

An embedding parameter for an action Gy X of a σ-compact group
by homeomorphisms of a Polish space is a sequence of the form P =
(dPX , (ε

P
n )n∈N,g

P , (KP
n )n∈N, R

P ,VP ) with the property that the sequence
P ′ = (dPX , (ε

P
n )n∈N,g

P ,VP ) is a homomorphism parameter, (KP
n )n∈N is

an exhaustive increasing sequence of compact subsets of G, and RP is
a closed binary relation on X.

A P -code is a P ′-code V ∈ (VP )N such that gPnVn+1 is RX
LP
n
RPRX

LP
n

-

discrete, where LPn = IP(gP � n)−1KP
n IP(gP � n), for all n ∈ N.

Proposition 1.2.7. Suppose that Gy X is an action of a σ-compact
group by homeomorphisms of a Polish space, P is an embedding param-
eter, and V ∈ (VP )N is a P -code. Then φP,V is doubly (RP , (KP

n )n∈N)-
expansive.

Proof. If n ∈ N, m ≥ n, c, d ∈ Xsm+1(gP ), s, t ∈ XgP �m, and j, k ≤ |gPm|
are distinct, then φP,V(r a (i) a b) ∈ IP(gP � m)(gPm)iVm+1 for all
i ∈ {j, k}, r ∈ {s, t}, and b ∈ {c, d}, in which case (φP,V(s a (j) a
c), φP,V(t a (k) a d)) /∈ RX

KP
n IP(gP �n)R

PRX
IP(gP �n)−1KP

n
, as gPmVm+1 is

RX
LP
m
RPRX

LP
m

-discrete.

1.3. Continuous disjoint unions. We associate with each function
g : I → (

⋃
d∈Z+ G{1,...,d})N the set Xg = {(i, c) ∈ I × NN | c ∈ Xg(i)}

and the cocycle �g : (=× E0(N)) � Xg → G given by �g((i, c), (i, d)) =
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�g(i)(c, d). We say that a function G : Xg → S(G) is compatible with g
if G(i) : Xg(i) → S(G) given by G(i)(c) = G((i, c)) is compatible with
g(i) for all i ∈ I. In this case we define Pg,G : (=×E0(N)) � Xg → S(G)
by Pg,G((i, c), (i, d)) = Pg(i),G(i)(c, d), and set Eg,G = EPg,G

and Xg,G =

(G×Xg)/Eg,G. We say that (g,G) is (Kn)n∈N-expansive if (g(i),G(i))
is (Kn)n∈N-expansive for all i ∈ I. We say that an action of a locally
compact Polish group is a continuous disjoint union of actions obtained
via expansive cutting and stacking if it is of the form G y Xg,G,
where I is a Polish space, g : I → (

⋃
d∈Z+ G{1,...,d})N is continuous,

G : Xg → F(G) ∩ S(G) is compatible with G and continuous, and
(g,G) is (Kn)n∈N-expansive for some exhaustive increasing sequence
(Kn)n∈N of compact subsets of G.

Proposition 1.3.1. Suppose that G is a locally-compact Polish group
and G y X is a continuous disjoint union of actions obtained via
expansive cutting and stacking. Then X is Polish and G y X is
continuous.

Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact sub-
sets of G, a Polish space I, a continuous map g : I → (

⋃
d∈Z+ G{1,...,d})N,

and a continuous function G : Xg → F(G) ∩ S(G) compatible with g
for which (g,G) is (Kn)n∈N-expansive and Gy X is Gy Xg,G. Note
that (= × E0,n(N)) � Xg is locally generated by continuous actions
of compact groups, ((= × E0,n(N)) � Xg)-saturations of open sets are
open, and Proposition 1.2.1 ensures that Pg,G � ((= × E0,n(N)) � Xg)
is continuous for all n ∈ N. Proposition 1.1.5 ensures that Eg,G-
saturations of open sets are open. As Proposition 1.2.2 implies that
Pg,G is ((=×E0,n(N)) � Xg, Kn)n∈N-expansive, Proposition 1.1.7 yields
that Eg,G is closed, thus Xg,G is Polish by Propositions 1.1.1 and 1.1.8.
Proposition 1.1.3 ensures that Gy Xg,G is continuous.

The stabilizer function associated with an action Gy X is given by
Stab(x) = {g ∈ G | g · x = x} for all x ∈ X.

Proposition 1.3.2. Suppose that G y X is a continuous action of a
topological group on a Hausdorff space. Then the corresponding stabi-
lizer function is upper semicontinuous.

Proof. If K ⊆ G is compact, then Stab−1({F ⊆ G | F ∩ K = ∅}) =
{x ∈ X | ¬x RX

K x}, and the latter set is open by Proposition 1.2.4.

A function φ : X → Y between topological spaces is Baire class one
if the pre-image of every open subset of Y is Fσ. In the special case that
Y is second countable, this is equivalent to the existence of a sequence
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(Fn)n∈N of closed subsets of X for which the pre-image of every open
subset of Y is a union of sets along (Fn)n∈N.

Proposition 1.3.3. Suppose that X is a topological space, Y is a
locally-compact regular second-countable space, and φ : X → F(Y ) is
upper semicontinuous. Then φ is Baire class one.

Proof. If U ⊆ Y is open, then there are compact sets Kn ⊆ Y with
the property that U =

⋃
n∈NKn, so φ−1({F ⊆ Y | F ∩ U 6= ∅}) =⋃

n∈N φ
−1({F ⊆ Y | F ∩Kn 6= ∅}), and the latter set is Fσ.

Proposition 1.3.4. Suppose that X is a locally-compact regular space.
Then {(F1, F2) ∈ F(X)×F(X) | F1 ⊆ F2} is closed.

Proof. If F1, F2 ∈ F(X) but there exists x ∈ F1 \ F2, then there is an
open neighborhood U ⊆ X of x whose closure is compact and disjoint
from F2, so {(F ′1, F ′2) ∈ F(X)×F(X) | F ′1 ∩U 6= ∅ and F ′2 ∩U = ∅} is
an open neighborhood of (F1, F2) disjoint from the set in question.

A universal embedding parameter for a Borel action G y X of a
locally-compact Polish group on a Polish space is a sequence of the
form P = (dPG, d

P
X , (ε

P
n )n∈N, (F

P
n )n∈N, (K

P
n )n∈N, R

P ,UP ,VP , (W P
n )n∈N)

for which there is a Polish topology τ on X such that X and (X, τ)
have the same Borel sets, G y (X, τ) is continuous, dPG is a com-
patible complete metric on G, dPX is a compatible complete metric on
(X, τ), (εPn )n∈N is a sequence of positive real numbers converging to
zero, (F P

n )n∈N is a sequence of closed subsets of (X, τ) such that the
pre-image of every open subset of F(G) under the stabilizer function
is a union of sets along (F P

n )n∈N, (KP
n )n∈N is an exhaustive increasing

sequence of compact subsets of G containing 1G, RP is a closed binary
relation on (X, τ), UP is a countable basis for G, VP is a countable
basis for (X, τ), and (W P

n )n∈N is a sequence of dense open subsets of
(X, τ) for which the topology

⋂
n∈NW

P
n inherits from (X, τ) is finer

than that it inherits from X.
For all n ∈ N, d ∈ (Z+)n, and U ∈

∏
m<nP(G){0,...,dm}, define

IP(U) = {U s | s ∈
∏

m<n{0, . . . , dm}}, where U s =
∏

m<n(Um)sm
for all s ∈

∏
m<n{0, . . . , dm}.

A P -code is a pair (U,V) ∈ (
∏

n∈N
∏

m<n(UP ){0,...,dm}) × (VP )N,
where d ∈ (Z+)N, such that for all n ∈ N, the following hold:

(1) ∀m < n∀k ≤ dm ((Un+1)m)k ⊆ ((Un)m)k.
(2) ∀m ≤ n∀k ≤ dm diamdPG

(((Un+1)m)k) ≤ εPn .

(3) ∀s ∈
∏

m≤n{0, . . . , dm} Us
n+1Vn+1 ⊆ Us�n

n Vn.

(4) ∀s ∈
∏

m≤n{0, . . . , dm} diamdPX
(Us

n+1Vn+1) ≤ εPn .
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(5) ∀s ∈
∏

m≤n{0, . . . , dm} Us
n+1Vn+1 ⊆ W P

n .

(6) ∀s ∈
∏

m≤n{0, . . . , dm}∃F ∈ {F P
n ,∼F P

n } Us
n+1Vn+1 ⊆ F .

(7) (((Un+1)n)kVn+1)k≤dn is RX
LP,U
n
RPRX

LP,U
n

-discrete, where

LP,Un = IP(Un+1 � n)−1KP
n IP(Un+1 � n).

(8) ∀m ≤ n 1G ∈ ((Un+1)m)0.

Let IP denote the set of all P -codes. Note that IP is a closed subset of
(
∏

n∈N
∏

m<n(
⋃
d∈Z+(UP ){0,...,d})) × (VP )N. Conditions (1) and (2) en-

sure that we obtain a continuous function gP : IP → (
⋃
d∈Z+ G{1,...,d})N

by letting (gPm(U,V))k be the unique element of
⋂
n>m((Un)m)k. Con-

ditions (3) and (4) imply that we obtain a continuous function φP : XgP

→ (X, dPX) by letting φP ((U,V), c) be the unique element of
⋂
n∈N

Uc�n
n Vn. Define GP : XgP → F(G) ∩ S(G) by GP = Stab ◦ φP .

Proposition 1.3.5. Suppose that Gy X is a Borel action of a locally-
compact Polish group on a Polish space and P is a universal embedding
parameter. Then φP : XgP → X and GP are continuous.

Proof. As condition (5) ensures that φP (XgP ) ⊆
⋂
n∈NW

P
n , it follows

that φP : XgP → X is continuous.
To see that GP is continuous, note that if (U,V) is a P -code,

((U,V), c) ∈ XgP , and U ⊆ F(G) is an open neighborhood of the
stabilizer of φP ((U,V), c), then there exists n ∈ N with the property
that φP ((U,V), c) ∈ F P

n and Stab(F P
n ) ⊆ U , so condition (6) ensures

that U
c�(n+1)
n+1 Vn+1 ⊆ F P

n , thus GP (XgP ∩ ((NU�(n+2) × NV�(n+2)) ×
Nc�(n+1))) ⊆ U .

2. Transience

2.1. Basis theorems. Given a sequence d ∈ (Z+)N, we say that a set
T ⊆

⋃
n∈N

∏
m<n{0, . . . , dm} isv-dense if for all s ∈

⋃
n∈N

∏
m<n[{0, . . . ,

dm}, there exists t ∈ T such that s v t. For a set S ⊆ P(
⋃
d∈Z+ G{1,...,d}),

we say that a sequence g ∈
∏

n∈NG
{1,...,dn} is S-dense if for all S ∈ S,

there are densely-many g ∈ G such that there are v-densely-many
t ∈ Tg for which ggtg|t|(gg

t)−1 ∈ S.

Proposition 2.1.1. Suppose that G is a topological group, (Kn)n∈N
is an exhaustive increasing sequence of compact subsets of G, S ⊆
P(
⋃
d∈Z+ G{1,...,d}), g ∈ (

⋃
d∈Z+ G{1,...,d})N is S-dense, G : Xg → S(G)

is compatible with g, and (g,G) is (Kn)n∈N-expansive. Then Gy Xg,G

is expansively S-recurrent.
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Proof. Suppose that K ⊆ G is compact, S ∈ S, and V ⊆ Xg,G is a
non-empty open set. Fix s ∈ Tg and a non-empty open set U ⊆ G for
which U × Ns ⊆

⋃
V . Fix n ∈ N for which g−1Kg ⊆ Kn. As g is

S-dense, there exists g ∈ U and t ∈ Tg, of length at least n, for which
s v t and ggtg|t|(gg

t)−1 ∈ S. Fix c ∈ Xs|t|+1(g). Then Pg,G((g, t a
(j) a c), (g, t a (k) a c)) = ggt(g|t|)jG(0)|t|+1ac(g|t|)

−1
k (ggt)−1 for all

j, k ≤ |g|t||, by Proposition 1.2.1. But the latter set is disjoint from

K whenever j 6= k, so the sequence x ∈ V {0,...,|g|t||} given by xk =

[(g, t a (k) a c)]Eg,G
is R

Xg,G

K -discrete. It only remains to note that

xk = ggt(g|t|)k(gg
t)−1 · x0 for all 1 ≤ k ≤ |g|t||, thus ∆

Xg,G

G ({y ∈
V {0,...,|g|t||} | y is R

Xg,G

K -discrete}) ∩ S 6= ∅.

The following generalization of Pettis’s Lemma easily implies that if
a continuous action is σ-expansively (

⋃
g∈G gSg−1)-transient, then it is

not expansively S-recurrent:

Proposition 2.1.2. Suppose that G y X is an action of a group by
homeomorphisms of a Baire space, d ∈ Z+, R ⊆ X{0,...,d} is closed,
(Vk)k≤d is a sequence of non-empty open subsets of X, and Bk ⊆
X is comeager in Vk for all k ≤ d. Then ∆X

G ((
∏

k≤d Vk) \ R) ⊆
∆X
G ((
∏

k≤dBk) \R).

Proof. If g ∈ ∆X
G ((
∏

k≤d Vk) \ R), then there exists x ∈
⋂
k≤d(gk)

−1Vk
such that g ·x /∈ R. Fix an open neighborhood V ⊆

⋂
k≤d(gk)

−1Vk of x

with the property that (
∏

k≤d gkV ) ∩ R = ∅. As (gk)
−1Bk is comeager

in (gk)
−1Vk for all k ≤ d, it follows that

⋂
k≤d(gk)

−1Bk is comeager in⋂
k≤d(gk)

−1Vk, and therefore intersects V , from which it follows that

g ∈ ∆X
G ((
∏

k≤dBk) \R).

If S is conjugation invariant and a continuous action is not σ-expan-
sively S-transient, then it is somewhere expansively S-recurrent:

Proposition 2.1.3. Suppose that G y X is an action of a group by
homeomorphisms of a second-countable topological space whose open
subsets are Fσ, S ⊆ P(

⋃
d∈Z+ G{1,...,d}), and X is not a union of

countably-many expansively-(
⋃
g∈G gSg−1)-transient closed sets. Then

there is a G-invariant non-empty closed set C ⊆ X such that G y C
is expansively S-recurrent.

Proof. As X is second countable, there is a maximal open set V ⊆
X contained in a union of countably-many expansively (

⋃
g∈G gSg−1)-

transient closed sets. To see that the G-invariant non-empty closed
set C = ∼V is as desired, suppose that W ⊆ C is an expansively
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(
⋃
g∈G gSg−1)-transient open set, and fix an open set W ′ ⊆ X such that

W = C∩W ′, as well as closed sets Cn ⊆ X for whichW ′ =
⋃
n∈NCn. As

the sets C∩Cn are expansively (
⋃
g∈G gSg−1)-transient, the maximality

of V ensures that it contains W ′, thus W = ∅.

Given a binary relation R on X, we say that a point x ∈ X is
R-expansively S-recurrent if for all open neighborhoods V ⊆ X of
x, compact sets K ⊆ G, and S ∈ S, there exists g ∈ S such that
x ∈

⋂
k≤|g|(gk)

−1V and g · x is RX
K−1RRX

K-discrete. In the special case
that R is equality, we say that x is expansively S-recurrent.

Proposition 2.1.4. Suppose that G is a locally-compact separable group,
S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is countable, and G y X is an expansively

S-recurrent continuous action on a second-countable topological space.
Then there are comeagerly-many expansively S-recurrent points.

Proof. By Proposition 1.1.6, we need only show that if V ⊆ X is a
non-empty open set, K ⊆ G is compact, and S ∈ S, then there exist
g ∈ S and a non-empty open set W ⊆

⋂
k≤|g|(gk)

−1V for which gW is

RX
K-discrete. But this is a straightforward consequence of Proposition

1.2.4.

Let ≤lex denote the linear ordering of N<N given by s <lex t ⇐⇒
(|s| < |t| or (|s| = |t| and sδ(s,t) < tδ(s,t))), where δ(s, t) is the least
natural number for which sδ(s,t) 6= tδ(s,t), and let 〈·〉 : 2<N → N denote
the isomorphism of ≤lex � 2<N with the usual ordering of N. For all
d ∈ 2N, g ∈ (

⋃
d∈Z+ G{1,...,d})N, and G : Xg → F(G) ∩ S(G), define

both g ∗ d ∈ (
⋃
d∈Z+ G{1,...,d})N and G ∗ d : Xg∗d → F(G) ∩ S(G) by

(g ∗ d)n = g〈d�n〉 and (G ∗ d)c = Gφd(c), where φd : NN → NN is given by

φd(b) =
⊕

n∈N bn a (0)〈d�(n+1)〉−〈d�n〉−1.

Proposition 2.1.5. Suppose that Gy X is a Borel action of a locally-
compact Polish group on a Polish space, P is a universal embedding
parameter, S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is countable, and G y (X, dPX) has

densely-many RP -expansively S-recurrent points. Then there is a P -
code (U,V) such that gP (U,V) ∗ d is S-dense for all d ∈ 2N.

Proof. Fix a countable dense set H ⊆ G, and define T =
⋃
h∈H h

−1Sh.

Lemma 2.1.6. There exists T ∈ T N with the property that ∀d ∈
2N∀T ∈ T ∃∞n ∈ N T = T〈d�n〉.

Proof. Fix an enumeration (Tn)n∈N of T , as well as a sequence (kn)n∈N
of natural numbers such that ∀k ∈ N∃∞n ∈ N kn = k, and define
T〈s〉 = Tk|s| for all s ∈ 2<N.
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Set U0 = ∅, s0 = ∅, and fix a non-empty set V0 ∈ VP . We will recur-
sively find cn ∈ Z+, sn ∈

∏
m<n{0, . . . , cm}, gn ∈ G{1,...,cn}, sequences

(((Un+1)m)k)k≤cm,m≤n of non-empty sets in UP , and non-empty sets
Vn+1 ∈ VP such that:

(1) ∀m < n∀k ≤ cm ((Un+1)m)k ⊆ ((Un)m)k.
(2) ∀m ≤ n∀k ≤ cm diamdPG

(((Un+1)m)k) ≤ εPn .

(3) ∀s ∈ Xg�{0,...,n} Us
n+1Vn+1 ⊆ gs�nVn.

(4) ∀s ∈ Xg�{0,...,n} diamdPX
(Us

n+1Vn+1) ≤ εPn .

(5) ∀s ∈ Xg�{0,...,n} U
s
n+1Vn+1 ⊆ W P

n .
(6) ∀s ∈ Xg�{0,...,n}∃F ∈ {F P

n ,∼F P
n } Us

n+1Vn+1 ⊆ F .
(7) (((Un+1)n)kVn+1)k≤cn is RX

LP,U
n
RPRX

LP,U
n

-discrete.

(8) ∀m ≤ n∀k ≤ cm (gm)k ∈ ((Un+1)m)k.
(9) sn+1 = s a (0)〈t〉−|s|, where t ∈ 2<N, n + 1 = 〈t〉, and s

is the ≤lex-least element of
⋃
n≤|t|

∏
m<n{0, . . . , cm} such that

supp(s) ⊆ {〈t � `〉 | ` < |t|} but there does not exist ` < |t| for
which s v s〈t�`〉 and T〈t�`〉 = T〈t〉.

Suppose that n ∈ N and we have already found c � n, g � n,
s � n + 1, Un, and Vn. Fix an RP -expansively T -recurrent point
yn ∈ gsnVn, and define Ln = IP(g � n)−1KP

n IP(g � n). Then there
exists gn ∈ Tn for which yn ∈

⋂
k≤|gn|(gn)−1

k gsnVn and gn · yn is

RX
gsnLn

RPRX
Ln(gsn )−1-discrete. Set cn = |gn| and gn = (gsn)−1gng

sn .

Then the point xn = (gsn)−1 · yn is in
⋂
k≤cn(gn)−1

k Vn and gn · xn
is RX

Ln
RPRX

Ln
-discrete. For all s ∈

∏
m≤n{0, . . . , cm}, the regularity

of X and the fact that gs · xn = gs�n(gn)s(n) · xn ∈ gs�nVn yield an
open neighborhood Ws ⊆ X of gs · xn whose closure is contained in
gs�nVn and whose dPX-diameter is at most εPn , and the continuity of
G y (X, dPX) yields open neighborhoods Um,s ⊆ G of (gm)s(m) and an
open neighborhood Vs ⊆ X of xn for which (

∏
m≤n Um,s)Vs ⊆ Ws, in

which case the intersections ((Un+1)m)k of the sets Um,s where s(m) = k
and the intersection Vn+1 of the sets Vs satisfy conditions (3) and
(4). The regularity of G ensures that we can thin down the sets
((Un+1)m)k to neighborhoods of (gm)k satisfying conditions (1) and
(2). For all s, t ∈

∏
m<n{0, . . . , cm} and s′, t′ ∈

∏
m≤n{0, . . . , cm}

such that s′(n) 6= t′(n), Proposition 1.2.4 yields open neighborhoods
(Us,s′,t,t′)m ⊆ G of (gm)s(m) and (Vs,s′,t,t′)m ⊆ G of (gm)t(m) for all
m < n, (U ′s,s′,t,t′)m ⊆ G of (gm)s′(m) and (V ′s,s′,t,t′)m ⊆ G of (gm)t′(m)

for all m ≤ n, and Ws,s′,t,t′ ⊆ X of xn with the property that the
product of (

∏
m<n(Us,s′,t,t′)m)−1(KP

n )−1(
∏

m≤n(U ′s,s′,t,t′)m)Ws,s′,t,t′ with

(
∏

m<n(Vs,s′,t,t′)m)−1KP
n (
∏

m≤n(V ′s,s′,t,t′)m)Ws,s′,t,t′ is disjoint from RP ,
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so we obtain sets satisfying condition (7) by replacing ((Un+1)m)k with
its intersection with the sets (Us,s′,t,t′)m where s(m) = k, (U ′s,s′,t,t′)m
where s′(m) = k, (Vs,s′,t,t′)m where t(m) = k, and (V ′s,s′,t,t′)m where
t′(m) = k, and Vn+1 with its intersection with the sets Ws,s′,t,t′ . As
the intersection Wn of the sets (gs)−1W P

n for s ∈
∏

m≤n{0, . . . , cm} is
dense, there exists x′n ∈ Vn+1 ∩Wn. For all s ∈

∏
m≤n{0, . . . , cm}, the

continuity of G y X yields open neighborhoods U ′m,s ⊆ G of (gm)s(m)

and V ′s ⊆ X of x′n for which (
∏

m≤n U
′
m,s)V

′
s ⊆ W P

n , in which case we ob-
tain sets satisfying condition (5) by replacing each ((Un+1)m)k with its
intersection with the sets U ′m,s where s(m) = k, and Vn+1 with its inter-
section with the sets V ′s . Note that if s ∈ Xg�{0,...,n}, then there is a non-
empty open set W ′

s ⊆ gsVn+1 contained in F P
n or ∼F P

n , and the conti-
nuity of Gy X yields neighborhoods U ′′m,s ⊆ ((Un+1)m)s(m) of (gm)s(m)

and a non-empty open set V ′′s ⊆ Vn+1 for which (
∏

m≤n U
′′
m,s)V

′′
s ⊆ W ′

s,
so by replacing ((Un+1)m)s(m) with U ′′m,s and Vn+1 with V ′′s , we obtain
sets satisfying the instance of condition (6) at s. By recursively ap-
plying this observation to each s ∈

∏
m≤n{0, . . . , cm}, we obtain sets

satisfying condition (6). Replacing each of the sets ((Un+1)m)k with
a subneighborhood of (gm)k in UP , and Vn+1 with a non-empty sub-
set in VP and choosing sn+1 according to condition (9) complete the
construction.

Condition (9) implies that supp(s〈t〉) ⊆ {〈t � n〉 | n < |t|} for all t ∈
2<N, and supp(s) ⊆ {〈d � n〉 | n ∈ N} =⇒ ∃n ∈ N (s v s〈d�n〉 and T =
T〈d�n〉 for all d ∈ 2N, s ∈

⋃
n∈N

∏
m<n{0, . . . , cm}, and T ∈ T .

In order to complete the proof, it only remains to note that (U,V) is
a P -code, g = gP (U,V), and gP (U,V)∗d is S-dense for all d ∈ 2N.

We next characterize σ-expansive (
⋃
g∈G gSg−1)-transience:

Theorem 2.1.7. Suppose that G is a locally-compact Polish group, I
is a finite set, (Xi)i∈I is a sequence of Polish spaces, and (Gy Xi)i∈I
is a sequence of Borel actions such that Stab(xi) = Stab(xj) for all
distinct i, j ∈ I, xi ∈ Xi, and xj ∈ Xj, and S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is

a countable non-empty set. Then the following are equivalent:

(1) The action G y
∏

i∈I Xi is not σ-expansively (
⋃
g∈G gSg−1)-

transient.
(2) There is an expansively S-recurrent action, obtained via ex-

pansive cutting and stacking, that admits a Baire-measurable
stabilizer-preserving homomorphism to each Gy Xi.

(3) There is an expansively S-recurrent action, obtained via expan-
sive cutting and stacking, that admits a continuous embedding
into each Gy Xi.
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Proof. Clearly (3) =⇒ (2).
To see ¬(1) =⇒ ¬(2), observe that if Gy X is a continuous action

on a Polish space that admits a Baire-measurable stabilizer-preserving
homomorphism to each G y Xi, then it admits a Baire-measurable
stabilizer-preserving homomorphism to G y

∏
i∈I Xi, and since pull-

backs of expansively (
⋃
g∈G gSg−1)-transient sets through stabilizer-

preserving homomorphisms are expansively (
⋃
g∈G gSg−1)-transient, it

follows that if G y
∏

i∈I Xi is σ-expansively (
⋃
g∈G gSg−1)-transient,

then G y X admits an expansively S-transient non-meager Baire-
measurable set, in which case Proposition 2.1.2 ensures that Gy X is
not expansively S-recurrent.

To see (1) =⇒ (3), appeal to [BK96, Theorem 5.2.1] to obtain a
Polish topology τi on each Xi for which Xi and (Xi, τi) have the same
Borel sets and G y (Xi, τi) is continuous, and set X =

∏
i∈I Xi and

τ =
∏

i∈I τi. By Proposition 2.1.3, there is a G-invariant non-empty
closed set C ⊆ (X, τ) such that Gy (C, τ) is expansively S-recurrent,
so Proposition 2.1.4 ensures that Gy (C, τ) has comeagerly-many ex-
pansively S-recurrent points. Set R =

⋃
i∈I{(x, y) ∈ X ×X | xi = yi}.

As Stab(xi) = Stab(xj) for all distinct i, j ∈ I, xi ∈ Xi, and xj ∈ Xj,
it follows that every expansively S-recurrent point is R-expansively S-
recurrent. As the “identity” function from (C, τ) to C is Borel, and
therefore Baire measurable, there is a comeager subset of (C, τ) on
which it is continuous, in which case the topology that the comeager
subset inherits from τ is finer than that it inherits from X. In par-
ticular, it follows that there is a universal embedding parameter P for
G y C such that dPC is compatible with (C, τ) and RP = R, in which
case Proposition 2.1.5 yields a P -code (U,V) for which gP (U,V) is S-
dense. Proposition 1.3.5 ensures that GP (U,V) is continuous, Proposi-
tion 1.2.7 implies that each of the functions φi = projXi

◦φP ((U,V), ·) is

a doubly-(KP
n )n∈N-expansive homomorphism from �gP (U,V) to PXi

G , and

Proposition 1.2.5 yields that GP (U,V) is compatible with gP (U,V),
(gP (U,V),GP (U,V)) is (KP

n )n∈N-expansive, and each φi is a reduc-
tion of PgP (U,V),GP (U,V) to PXi

G . Then G y XgP (U,V),GP (U,V) is ob-
tained via expansive cutting and stacking. Proposition 1.1.9 yields that
each (φi)G/EgP (U,V),GP (U,V) is an embedding of Gy XgP (U,V),GP (U,V)

into Gy Xi, and Proposition 2.1.1 implies that Gy XgP (U,V),GP (U,V)

is expansively S-recurrent.

The σ-expansive-transience spectrum of G y X is the family of all
countable non-empty sets S ⊆ P(

⋃
d∈Z+ G{1,...,d}) for which G y X is

σ-expansively (
⋃
g∈G gSg−1)-transient.
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Theorem 2.1.8. Suppose that Gy X is a Borel (continuous) action
of a locally-compact Polish group on a Polish space. Then there is a
continuous disjoint union of actions obtained via expansive cutting and
stacking that has the same σ-expansive-transience spectrum as Gy X
and admits a Borel (continuous) stabilizer-preserving homomorphism
to Gy X.

Proof. By [BK96, Theorem 5.2.1], it is sufficient to establish the par-
enthetical (continuous) version of the theorem. Towards this end,
fix a universal embedding parameter P for G y X such that dPX is
compatible with X and RP is equality on X. Proposition 1.3.5 en-
sures that φP and GP are continuous, Propositions 1.2.6 and 1.2.7 im-
ply that φP ((U,V), ·) is a doubly-(KP

n )n∈N-expansive homomorphism
from �gP (U,V) to PX

G for all P -codes (U,V), and Proposition 1.2.5

yields that GP is compatible with gP , (gP ,GP ) is (KP
n )n∈N-expansive,

and φP ((U,V), ·) is a reduction of PgP (U,V),GP (U,V) to PX
G for all P -

codes (U,V). It follows that G y XgP ,GP is a continuous disjoint
union of actions obtained via expansive cutting and stacking, and
Proposition 1.1.9 implies that (φP )G/EgP ,GP is a stabilizer-preserving
homomorphism from G y XgP ,GP to G y X. To see that the
σ-expansive-transience spectrum of G y X is contained in that of
Gy XgP ,GP , observe that if S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is a countable non-

empty set for which G y X is σ-expansively (
⋃
g∈G gSg−1)-transient,

then the fact that pullbacks of expansively (
⋃
g∈G gSg−1)-transient sets

through stabilizer-preserving homomorphisms are themselves expan-
sively (

⋃
g∈G gSg−1)-transient ensures that G y XgP ,GP is σ-expan-

sively (
⋃
g∈G gSg−1)-transient. To see that the two spectra actually

coincide, note that if S ⊆ P(
⋃
d∈Z+ G{1,...,d}) is a countable non-empty

set for which G y X is not σ-expansively (
⋃
g∈G gSg−1)-transient,

then Proposition 2.1.5 yields a P -code (U,V) for which gP (U,V)
is S-dense, in which case Propositions 2.1.1 and 2.1.2 ensure that
Gy XgP ,GP is not σ-expansively (

⋃
g∈G gSg−1)-transient.

2.2. Anti-basis theorems. When T ⊆ P(
⋃
d∈Z+ X{0,...,d})×P(

⋃
d∈Z+

G{1,...,d}), we say that a set Y ⊆ X is T -transient if there exist (R, S) ∈
T for which ∆X

G ((
⋃
d∈Z+ Y {0,...,d}) \R)∩S = ∅. We say that a G-action

by homeomorphisms of a topological space is T -recurrent if no non-
empty open set is T -transient, and a BorelG-action on a standard Borel
space X is σ-T -transient if X is a union of countably-many T -transient
Borel sets. Let G act on P(

⋃
d∈Z+ X{0,...,d}) ×

⋃
d∈Z+ P(G{1,...,d}) via

g · (R, S) = (gR, gSg−1).
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Associated with each action Gy X of a group by homeomorphisms
of a topological space is the equivalence relation FX

G on X given by
x FX

G y ⇐⇒ Gx = Gy. Recall that a subset of a topological space is
Gδ if its complement is Fσ. A straightforward calculation reveals that
if X is a Polish space, then FX

G is Gδ, so each of its equivalence classes
is Gδ, thus Polish (see, for example, [Kec95, Theorem 3.11]).

Proposition 2.2.1. Suppose that G y X is a continuous action of
a locally-compact separable group on a Polish space and T ⊆ (

⋃
d∈Z+

F(X{0,...,d})) × P(
⋃
d∈Z+ G{1,...,d}) is a countable non-empty set. Then

exactly one of the following holds:

(1) The action Gy X is σ-(GT )-transient.
(2) There exists x ∈ X for which Gy [x]FX

G
is T -recurrent.

Proof. Proposition 2.1.2 ensures that conditions (1) and (2) are mutu-
ally exclusive. To see ¬(2) =⇒ (1), note that if (R, S) ∈ T , V ⊆ X
is open, and x ∈ X, then the minimality of G y [x]FX

G
ensures that

V ∩[x]FX
G

= ∅ ⇐⇒ V ∩Gx = ∅ ⇐⇒ x /∈ GV , so V ∩[x]FX
G

is {(R, S)}-
transient ⇐⇒

⋃
g∈S{y ∈

⋂
k≤|g|(gk)

−1V | g · y /∈ R} ∩ [x]FX
G

= ∅ ⇐⇒⋃
g∈S{y ∈

⋂
k≤|g|(gk)

−1V | g · y /∈ R} ∩ Gx = ∅ ⇐⇒ x is not in the

G-saturation of
⋃
g∈S{y ∈

⋂
k≤|g|(gk)

−1V | g · y /∈ R}, thus the set of

x ∈ X for which V ∩ [x]FX
G

is {(R, S)}-transient is closed. Fix enu-

merations (Rm, Sm)m∈N of T and (Vn)n∈N of a basis for X. For all
(m,n) ∈ N × N, let Vm,n be the set of x ∈ Vn for which Vn ∩ [x]FX

G

is {(Rm, Sm)}-transient. Fix a countable dense set H ⊆ G, and ob-
serve that the sets of the form hVm,n, where h ∈ H and m,n ∈ N, are
(GT )-transient and cover X.

We use ∀∗x ∈ X φ(x) to indicate that {x ∈ X | φ(x)} is comeager,
and ∃∗x ∈ X φ(x) to indicate that {x ∈ X | φ(x)} is not meager. We
say that a function φ : X → Y is almost a homomorphism from Gy X
to Gy Y at a point x ∈ X if ∀∗g ∈ G φ(g · x) = g · φ(x).

Proposition 2.2.2. Suppose that G is a non-empty Baire group, X
and Y are sets, G y X and G y Y are actions, φ : X → Y is a
function, and x ∈ X is a point at which φ is almost a homomorphism
from Gy X to Gy Y . Then Stab(x) ⊆ Stab(φ(x)).

Proof. Suppose that h ∈ Stab(x). As {g ∈ G | φ(gh · x) = gh · φ(x)} =
{g ∈ G | φ(g · x) = g · φ(x)}h−1, there are comeagerly-many g ∈ G
with the property that φ(g · x) = g · φ(x) and φ(gh · x) = gh · φ(x). As
φ(g ·x) = φ(gh ·x), it follows that g ·φ(x) = gh ·φ(x), so φ(x) = h ·φ(x),
thus h ∈ Stab(φ(x)).
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We say that φ is almost a stabilizer-preserving homomorphism from
G y X to G y Y if there are comeagerly-many x ∈ X, at which
φ is almost a homomorphism from G y X to G y Y , such that
Stab(φ(x)) ⊆ Stab(x).

Proposition 2.2.3. Suppose that G is a Polish group, X is a Polish
space, Y and Z are standard Borel spaces, G y X is a continuous
action, G y Y is a Borel action, φ : Y → Z is a G-invariant Borel
function, and R is the set of z ∈ Z for which there is a Borel function
ψ : X → Y that is almost a stabilizer-preserving homomorphism from
Gy X to Gy φ−1({z}). Then R is analytic.

Proof. Fix a Polish topology on Y with the same Borel sets, as well
as compatible metrics dX and dY on X and Y . If ψ : X → Y is a
Borel function, then there is a comeager set C ⊆ X on which ψ is
continuous (see, for example, [Kec95, Theorem 8.38]), in which case
the separability of X yields an enumeration (xn)n∈N of a dense subset
of C. Then there are trivially comeagerly-many x ∈ X such that

(1)x ∀δ > 0∃n ∈ N dX(x, xn) < δ.

Setting yn = ψ(xn) for all n ∈ N, the continuity of ψ � C yields
comeagerly-many x ∈ X for which there exists y ∈ Y such that

(2)x,y ∀ε > 0∃δ > 0∀n ∈ N (dX(x, xn) < δ =⇒ dY (y, yn) < ε).

If z ∈ Z and ψ is almost a stabilizer-preserving homomorphism from
G y X to G y φ−1({z}), then there are comeagerly-many x ∈ X for
which (1)x holds and there exists y ∈ Y such that (2)x,y holds, as do

(3) φ(y) = z and
(4) Stab(y) ⊆ Stab(x).

As ∀g ∈ G∀∗x ∈ X g · x ∈ C, the Kuratowski-Ulam theorem (see, for
example, [Kec95, Theorem 8.41]) yields that ∀∗x ∈ X∀∗g ∈ G g ·x ∈ C,
so there are comeagerly-many x ∈ X for which there are comeagerly-
many g ∈ G such that (1)x and (1)g·x hold and there exist y, yg ∈ Y
such that (2)x,y, (2)g·x,yg , (3), and (4) hold, as does

(5) g · y = yg.

Conversely, suppose that (xn)n∈N ∈ XN and (yn)n∈N ∈ Y N, let C
be the set of x ∈ X for which condition (1)x holds and there exists
y ∈ Y for which condition (2)x,y holds, and define ψ : C → Y by
setting ψ(x) = y if and only if condition (2)x,y holds. If z ∈ Z, there are
comeagerly-many x ∈ X for which there are comeagerly-many g ∈ G
such that (1)x and (1)g·x hold and there exist y, yg ∈ Y such that (2)x,y,
(2)g·x,yg , (3), (4), and (5) hold, and B ⊆ C is a comeager Borel set
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consisting of such x, then any Borel extension of ψ � B to X is almost
a stabilizer-preserving homomorphism from Gy X to Gy φ−1({z}).

As {(x, y) ∈ X × Y | Stab(y) ⊆ Stab(x)} is Borel (by Propositions
1.3.2–1.3.4), and a result of Novikov’s ensures that the pointclass of
analytic sets is closed under category quantification (see, for example,
[Kec95, Theorem 29.22]), it follows that R is analytic.

The following observation yields our primary means of producing
incompatible actions:

Proposition 2.2.4. Suppose that G is a locally-compact Polish group,
g ∈ (

⋃
d∈Z+ G{1,...,d})N, G : Xg → F(G) ∩ S(G) is compatible with g

and continuous, (Kn)n∈N is an exhaustive increasing sequence of com-
pact subsets of G with the property that (g,G) is doubly (Kn)n∈N-
expansive, and d0, d1 ∈ 2N are distinct. Then no expansively-{G}-
recurrent continuous action G y X on a Polish space admits Borel
functions φi : X → Xg∗di,G∗di that are almost stabilizer-preserving ho-
momorphisms from Gy X to Gy Xg∗di,G∗di for all i < 2.

Proof. Suppose, towards a contradiction, that there are such functions.
Then there is a compact set L ⊆ G with the property that the set
B =

⋂
i<2 φ

−1
i (Li) is non-meager, where Li = (L × Xg∗di)/Eg∗di,G∗di

for all i < 2. Fix m ∈ N sufficiently large that L ∪ L−1L ⊆ Km and
d0 � {0, . . . ,m} 6= d1 � {0, . . . ,m}, set K = KmIP(g � {0, . . . , 〈(1)m〉}),
and fix a non-empty open set V ⊆ X in which B is comeager. As
G y X is expansively {G}-recurrent, there exist g ∈ G and x ∈
V ∩ g−1V for which ¬x RX

KK−1 g · x. By Proposition 1.2.4, there are
open neighborhoods U ⊆ G of g and W ⊆ V of x for which UW ⊆ V
and RX

KK−1 ∩ (W × UW ) = ∅. As ∀h ∈ U∀∗y ∈ W h · y ∈ B, the
Kuratowski-Ulam theorem ensures that ∀∗y ∈ W∀∗h ∈ U h · y ∈ B, so
Proposition 2.2.2 yields h ∈ U and y ∈ B ∩ h−1B with the property
that ¬y RX

KK−1 h ·y, Stab(φi(y)) = Stab(y) for all i < 2, and φi(h ·y) =

h · φi(y) for all i < 2, thus P
Xg∗di,G∗di
G (φi(h · y), φi(y)) = hStab(φi(y)) =

hStab(y) = PX
G (h · y, y) for all i < 2.

For all i, j < 2, fix gi,j ∈ L and ci,j ∈ Xg∗di such that φi(h
j · y) is

the Eg∗di,G∗di-class of (gi,j, ci,j). Note that for all i < 2, there exists
mi ≥ m for which ci,0(mi) 6= ci,1(mi), since otherwise Proposition 1.2.1
ensures that LIP(g � {0, . . . , 〈(1)m〉})IP(g � {0, . . . , 〈(1)m〉})−1L−1 ∩
PX
G (y, h · y) 6= ∅, contradicting the fact that ¬y RX

KK−1 h · y.
For all i < 2, let mi be the maximal natural number with the prop-

erty that ci,0(mi) 6= ci,1(mi), set ci = smi+1(ci,0) = smi+1(ci,1) and
ni = 〈di � {0, . . . ,mi}〉, and fix i < 2 with the property that ni > n1−i.
As LIP(g � {0, . . . , n1−i})IP(g � {0, . . . , n1−i})−1L−1 ∩ PX

G (y, h · y) 6= ∅
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and PX
G (y, h · y) ⊆ LIP(g � {0, . . . , ni − 1})(gni

)(ci,0)ni
(G ∗ di)(0)mi+1aci

(gni
)−1
(ci,1)ni

IP(g � {0, . . . , ni − 1})−1L−1 by Proposition 1.2.1, the fact

that ni ≥ 〈d � {0, . . . ,m}〉 ≥ m contradicts the double (Kn)n∈N-
expansivity of (g,G).

We now establish our primary anti-basis results:

Theorem 2.2.5. Suppose that G is a locally-compact Polish group,
S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is a non-empty countable set, and G y X

is a non-σ-expansively-S-transient Borel action on a standard Borel
space. Then there is a family B of continuum-many G-invariant Borel
subsets of X on which G y X is not σ-expansively-S-transient such
that every non-σ-expansively-{G}-transient Borel action on a standard
Borel space admits a Borel stabilizer-preserving homomorphism to at
most one action of the form Gy B, where B ∈ B.

Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact sub-
sets of G. By Proposition 2.1.5 and Theorem 2.1.7, we can assume that
Gy X is of the form Gy Xg,G, where g ∈ (

⋃
d∈Z+ G{1,...,d})N and g∗d

is S-dense for all d ∈ 2N, G : Xg → F(G) ∩ S(G) is compatible with g
and continuous, and (g,G) is doubly (Kn)n∈N-expansive. Proposition
2.2.4 then ensures that the family B = {(G×φd(Xg∗d))/Eg,G | d ∈ 2N}
is as desired.

Theorem 2.2.6. Suppose that G is a locally-compact Polish group,
G y X is a Borel action on a standard Borel space, and F is a
countable family of non-σ-expansively-{G}-transient Borel actions on
standard Borel spaces. Then there is a Borel G-action on a standard
Borel space that admits a Borel stabilizer-preserving homomorphism to
Gy X and has the same σ-expansive-transience spectrum as Gy X,
but to which no action in F admits a Borel almost stabilizer-preserving-
homomorphism.

Proof. By Proposition 2.2.1, we can assume that each action in F is
continuous and minimal. Fix a universal embedding parameter P , and
let R be the set of pairs ((U,V), d) ∈ IP × 2N with the property that
no action in F admits a Borel function that is almost a stabilizer-
preserving homomorphism to Gy XgP (U,V)∗d,GP (U,V)∗d.

Proposition 2.2.3 ensures that R is co-analytic, whereas Proposition
2.2.4 implies that every vertical section of R is co-countable. The usual
uniformization results for co-analytic sets with large vertical sections
(see, for example, [Kec95, Corollary 36.24]) therefore yield a Borel
uniformization δ : IP → 2N of R. Define g : IP → (

⋃
d∈Z+ G{1,...,d})N
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and G : Xg → F(G) ∩ S(G) by g(U,V) = gP (U,V) ∗ δ(U,V) and
G(U,V) = GP (U,V) ∗ δ(U,V).

The usual change-of-topology results (see, for example, [Kec95, §13])
and Proposition 1.3.1 ensure that Gy Xg,G is a Borel action on a stan-
dard Borel space. Note that if φ : Xg∗d → X is given by φ((U,V), c) =

(φP ◦ φδ(U,V))(c), then φ/Eg,G is a stabilizer-preserving Borel homo-
morphism from Gy Xg,G to Gy X.

To see that the σ-expansive-transience spectrum of G y Xg,G is
contained in that of G y X, note that if S ⊆ P(

⋃
d∈Z+ G{1,...,d}) is

a countable non-empty set for which G y X is not σ-expansively S-
transient, then Proposition 2.1.5 yields (U,V) ∈ IP for which g(U,V)
is S-dense, so Proposition 2.1.1 ensures that G y Xg(U,V),G(U,V) is
expansively S-recurrent, thus Proposition 2.1.2 implies that Gy Xg,G

is not σ-expansively S-transient.
To see that none of the actions Gy Y in F admit a Borel function

φ that is almost a stabilizer-preserving homomorphism to G y Xg,G,
note that the minimality of Gy Y would otherwise yield (U,V) ∈ IP
with the property that φ−1(Xg(U,V),G(U,V)) is comeager, contradicting
the fact that ((U,V), δ(U,V)) ∈ R.

3. Wandering

3.1. Smoothness. A transversal of an action Gy X is a set Y ⊆ X
containing exactly one point of every orbit. Burgess has shown that a
Borel action of a Polish group on a standard Borel space is smooth if
and only if it has a Borel transversal [Bur79].

Proposition 3.1.1. A Borel action G y X of a locally-compact Po-
lish group on a standard Borel space is smooth if and only if it is
σ-expansively {G}-transient.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish and
Gy X is continuous. Fix a compatible complete metric d on X.

To see (=⇒), fix a Borel transversal B ⊆ X of Gy X, and let s be
the unique function from X to B whose graph is contained in EX

G . As
the graph of s is Borel, so too is s (see, for example, [Kec95, Theorem
14.12]). It follows that if K ⊆ G is compact, then KB is Borel, for if H
is a countable dense subset of K, then x ∈ KB ⇐⇒ x ∈ Ks(x) ⇐⇒
∀ε > 0∃h ∈ H d(x, h · s(x)) < ε for all x ∈ X. But if (Kn)n∈N is a
sequence of compact subsets of G whose union is G, then (KnB)n∈N is
a sequence of expansively {G}-transient Borel sets whose union is X.

To see (⇐=), suppose that (Bn)n∈N is a sequence of expansively {G}-
transient Borel sets whose union is X, and fix compact sets Kn ⊆ G
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such that EX
G � Bn ⊆ RX

Kn
for all n ∈ N. Then the uniformization the-

orem for Borel subsets of the plane with non-meager vertical sections
(see, for example, [Kec95, Corollary 18.7]) ensures that the correspond-
ing sets Cn = {x ∈ X | ∃∗g ∈ G g · x ∈ Bn} are Borel and there are
Borel functions φn : Cn → Bn whose graphs are contained in EX

G . For

all n ∈ N, Proposition 1.2.4 ensures that [x]EX
G
∩Bn ⊆ [x]EX

G
for all

x ∈ Bn, which easily implies that EX
G � Bn is smooth (see, for example,

the proof of [Kec95, Theorem 12.16]), thus so too is G y Cn. As the
sets Cn are G-invariant and X =

⋃
n∈NCn, it follows that G y X is

smooth.

We now establish our strengthening of the Glimm-Effros dichotomy
for Borel actions of locally-compact Polish groups on Polish spaces:

Theorem 3.1.2. Suppose that G y X is a Borel action of a locally-
compact Polish group on a Polish space. Then the following are equiv-
alent:

(1) The action Gy X is not smooth.
(2) There is a Baire-measurable stabilizer-preserving homomorph-

ism from a G-action obtained via expansive cutting and stacking
to Gy X.

(3) There is a continuous embedding of a G-action obtained via
expansive cutting and stacking into Gy X.

Proof. As the proof of Proposition 2.1.1 shows that every G-action ob-
tained via expansive cutting and stacking is expansively {G}-recurrent,
the desired result follows from Theorem 2.1.7 and Proposition 3.1.1.

We now establish our anti-basis theorem for non-smooth Borel ac-
tions of locally-compact Polish groups on standard Borel spaces:

Theorem 3.1.3. Suppose that G y X a non-smooth Borel action of
a locally-compact Polish group on a standard Borel space. Then there
is a family B of continuum-many G-invariant Borel subsets of X on
which G y X is non-smooth such that every non-smooth Borel G-
action on a standard Borel space admits a Borel stabilizer-preserving
homomorphism to at most one action of the form G y B, where B ∈
B.

Proof. Again appealing to the proof of Proposition 2.1.1 to see that
every G-action obtained via expansive cutting and stacking is expan-
sively {G}-recurrent, the desired result follows from Theorem 2.2.5 and
Proposition 3.1.1.
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3.2. Containing bases. The following fact is a local refinement of our
promised results on the robustness of the property of containing bases
and its characterization via diagonal products:

Theorem 3.2.1. Suppose that G y X and G y Y are Borel free
actions of a locally-compact Polish group on Polish spaces. Then the
following are equivalent:

(1) The action Gy X × Y is not smooth.
(2) There is a Baire-measurable stabilizer-preserving homomorphism

from a G-action obtained via expansive cutting and stacking to
Gy X and Gy Y .

(3) There is a continuous embedding of a G-action obtained via
expansive cutting and stacking into Gy X and Gy Y .

Proof. Once more appealing to the proof of Proposition 2.1.1 to see
that every action obtained via expansive cutting and stacking is ex-
pansively {G}-recurrent, the desired result follows from Theorem 2.1.7
and Proposition 3.1.1.

When g ∈ GN, we use Xg, Eg, and Xg to denote Xh, Eh, and
Xh, where h ∈ (G{1})N is given by (hn)1 = gn for all n ∈ N. In
light of Theorems 3.1.2 and 3.2.1, the fact that every homomorphism
between free actions is stabilizer preserving, and the fact that there is
a continuous embedding of G y X(gsn )n∈N into G y Xg whenever g ∈
(
⋃
d∈Z+ G{1,...,d})N, (kn)n∈N is a strictly increasing sequence of natural

numbers, and sn ∈ Tg is supported on [kn, kn+1) for all n ∈ N, the
following fact ensures that continuous free actions of locally-compact
Polish groups on compact Polish spaces contain bases:

Proposition 3.2.2. Suppose that G is a locally-compact Polish group,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of
G, G y X is a continuous action on a compact Polish space, and
g ∈ (

⋃
d∈Z+ G{1,...,d})N is (Kn)n∈N-expansive. Then there exist a strictly

increasing sequence (kn)n∈N of natural numbers, sequences sn ∈ Tg with
non-trivial support contained in [kn, kn+1) for all n ∈ N, and a contin-
uous homomorphism from Gy X(gsn )n∈N to Gy X.

Proof. The following fact will allow us to mimic the proof of the exis-
tence ofG-invariant non-empty closed sets on whichGy X is minimal.

Lemma 3.2.3. If x ∈ X and y ∈
⋂
n∈N (IP(sn(g)) \ {1G}) · x, then⋂

n∈N (IP(sn(g)) \ {1G}) · y ⊆
⋂
n∈N (IP(sn(g)) \ {1G}) · x.

Proof. It is sufficient to show that if z ∈
⋂
n∈N (IP(sn(g)) \ {1G}) · y,

n ∈ N, and W ⊆ X is an open neighborhood of z, then W intersects
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(IP(sn(g))\{1G})·x. Fix a sequence s ∈ Tsn(g) with non-trivial support
for which sn(g)s · y ∈ W . As Gy X is an action by homeomorphisms,
there is an open neighborhood V ⊆ X of y such that sn(g)sV ⊆ W .
Fix t ∈ Xsn+|s|(g) with the property that sn+|s|(g)t · x ∈ V , and observe

that sn(g)sat ·x = sn(g)ssn+|s|(g)t ·x ∈ sn(g)sV ⊆ W and the (Kn)n∈N-
expansivity of g ensures that sn(g)sat 6= 1G.

By Lemma 3.2.3, there is an ordinal λ for which there is a maximal
sequence (xα)α<λ such that xα ∈

⋂
β<α

⋂
n∈N (IP(sn(g)) \ {1G}) · xβ

but
⋂
n∈N (IP(sn(g)) \ {1G}) · xα 6=

⋂
β<α

⋂
n∈N (IP(sn(g)) \ {1G}) · xβ

for all α < λ. Fix any point x ∈
⋂
α<λ

⋂
n∈N (IP(sn(g)) \ {1G}) · xα,

and observe that x is {IP(sn(g)) \ {1G} | n ∈ N}-recurrent.
Fix a sequence (εn)n∈N of positive real numbers converging to zero,

as well as a compatible complete metric on X, and set k0 = 0 and V0 =
X. We will recursively construct kn+1, sn, and open neighborhoods
Vn+1 of x. Given n ∈ N for which we have already found kn and Vn,
fix a sequence sn ∈ Tg, whose support is non-empty and contained
in [kn,∞), for which gsn · x ∈ Vn, set kn+1 = |sn|, and fix an open
neighborhood Vn+1 ⊆ X of x such that Vn+1 ⊆ Vn ∩ (gsn)−1Vn and
diam(gsVn+1) ≤ εn for all s ∈ Tg of length kn+1.

Define a continuous function φ : X(gsn )n∈N → X by φ(c) = the unique

element of
⋂
n∈N(gsn)c�nn∈NVn. Then φG/E(gsn )n∈N is a homomorphism

from Gy X(gsn )n∈N to Gy X by the proof of Proposition 1.2.6.

In light of Theorem 3.2.1, the following fact ensures that Borel-
probability-measure-preserving Borel free actions of locally-compact
Polish groups on standard Borel spaces contain bases:

Proposition 3.2.4. Suppose that G is a locally-compact Polish group,
X and Y are standard Borel spaces, G y X is a Borel action that
is invariant with respect to a Borel probability measure µ on X, and
G y Y is a Borel action for which G y X × Y is free and smooth.
Then Gy Y is smooth.

Proof. Fix a Borel transversal B ⊆ X × Y of G y X × Y , and define
φ : X × Y → G by letting φ(x, y) be the unique g ∈ G for which
g · (x, y) ∈ B. Let P (G) denote the standard Borel space of Bor-
el probability measures on G (see, for example, [Kec95, §17.E]), and
define ν : Y → P (G) by ν(y) = φ(·, y)∗µ. If H ⊆ G is Borel and y ∈ Y ,
then

ν(y)(H) = µ({x ∈ X | ∃h ∈ H h · (x, y) ∈ B})
= µ({x ∈ X | (x, y) ∈ H−1B}),
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so the G-invariance of µ ensures that if g ∈ G, then

ν(g · y)(H) = µ(g−1 · {x ∈ X | (x, g · y) ∈ H−1B})
= µ({x ∈ X | (g · x, g · y) ∈ H−1B})
= µ({x ∈ X | (x, y) ∈ (Hg)−1B})
= ν(y)(Hg).

But if K ⊆ G is compact and g /∈ K−1K, then K ∩Kg = ∅, in which
case {y ∈ Y | ν(y)(K) > 1/2} is σ-expansively {G}-transient, thus
Theorem 3.1.1 ensures that Gy Y is smooth.

We next characterize expansive {G}-recurrence of products with free
actions obtained via expansive cutting and stacking:

Proposition 3.2.5. Suppose that G is a locally-compact Polish group,
X is a Polish space, G y X is a continuous free action, and g ∈
(
⋃
d∈Z+ G{1,...,d})N. Then G y X × Xg is expansively {G}-recurrent

⇐⇒ Gy X is expansively {IP(sn(g))IP(sn(g))−1 | n ∈ N}-recurrent.

Proof. To see (=⇒), suppose that K ⊆ G is compact, n ∈ N, and
V ⊆ X is a non-empty open set, and fix an open neighborhood U ⊆ G
of 1G with compact closure and a non-empty open set V ′ ⊆ X for
which UV ′ ⊆ V . As Gy X × Xg is expansively {G}-recurrent, it fol-

lows that ∆X
G (V ′×V ′)∩∆

Xg

G ((U−1×N(0)n)/Eg× (U−1×N(0)n)/Eg) *
U−1KU . But U∆X

G (V ′ × V ′)U−1 = ∆X
G (UV ′ × UV ′) and Proposi-

tion 1.2.1 ensures that ∆
Xg

G ((U−1 ×N(0)n)/Eg × (U−1 ×N(0)n)/Eg) =
U−1IP(sn(g))IP(sn(g))−1U , so ∆X

G (V ×V )∩IP(sn(g))IP(sn(g))−1 * K.
To see (⇐=), suppose that K ⊆ G is compact, s ∈ Tg, U ⊆ G is a

non-empty open set with compact closure, and V ⊆ X is a non-empty
open set. Then ∆X

G ((Ugs)−1V × (Ugs)−1V )∩ IP(s|s|(g))IP(s|s|(g))−1 *
(Ugs)−1KUgs by expansive {IP(sn(g))IP(sn(g))−1 | n ∈ N}-recur-
rence. But ∆X

G ((Ugs)−1V × (Ugs)−1V ) = (Ugs)−1∆X
G (V × V )Ugs and

UgsIP(s|s|(g))IP(s|s|(g))−1(Ugs)−1 = ∆
Xg

G ((U×Ns)/Eg×(U×Ns)/Eg)

by Proposition 1.2.1, so ∆X
G (V×V )∩∆

Xg

G ((U×Ns)/Eg×(U×Ns)/Eg) *
K.

We now establish a local version of the promised characterization of
free actions containing bases in the abelian case:

Theorem 3.2.6. Suppose that G y X is a Borel free action of a
locally-compact Polish group on a standard Borel space, (Km)m∈N is an
exhaustive increasing sequence of compact subsets of G, and g ∈ (

⋃
d∈Z+

G{1,...,d})N is (Km)m∈N-expansive.
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(1) If G y X × Xg is smooth, then G y X is σ-expansively
(
⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transient.

(2) If G is abelian, then the converse holds.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish
and G y X is continuous. Proposition 2.2.1 ensures that G y X
is σ-expansively (

⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transient

if and only if there does not exist x ∈ X for which G y [x]FX
G

is

expansively {IP(sn(g))IP(sn(g))−1 | n ∈ N}-recurrent, and Proposi-
tion 3.2.5 implies that the latter condition holds if and only if there
does not exist x ∈ X for which G y [x]FX

G
× Xg is expansively {G}-

recurrent. So it is enough to prove the analog of the theorem in which
the σ-expansive (

⋃
g∈G g{IP(sn(g))IP(sn(g))−1 | n ∈ N}g−1)-transience

of G y X is replaced with the condition that there is no x ∈ X for
which Gy [x]FX

G
× Xg is expansively {G}-recurrent.

To see the analog of (1), appeal to Proposition 3.1.1 to see that
Gy X×Xg is σ-expansively {G}-transient, in which case Proposition
2.1.2 ensures that there does not exist x ∈ X for which Gy [x]FX

G
×Xg

is expansively {G}-recurrent.
To see the analog of (2), note that if K ⊆ G is compact, V ×W ⊆

X ×Xg is open, and x ∈ X, then the minimality of Gy [x]FX
G

ensures

that V ∩ [x]FX
G
6= ∅ ⇐⇒ V ∩Gx 6= ∅ ⇐⇒ x ∈ GV , and the freeness

of G y X implies that E
X×Xg

G � ((V ∩ [x]FX
G

) ×W ) ⊆ R
X×Xg

K ⇐⇒
V ∩ (∆

Xg

G (W ×W ) \ K)−1V ∩ [x]FX
G

= ∅ ⇐⇒ V ∩ (∆
Xg

G (W ×W ) \
K)−1V ∩ Gx = ∅ ⇐⇒ x /∈ G(V ∩ (∆

Xg

G (W × W ) \ K)−1V ), so

the set of x ∈ X for which V ∩ [x]FX
G

is non-empty but E
X×Xg

G �

((V ∩ [x]FX
G

) × W ) ⊆ R
X×Xg

K is a difference of two G-invariant open

sets. Fix an enumeration (Vn ×Wn)n∈N of a basis for X × Xg, and for
all (m,n) ∈ N×N, let Um,n be the set of x ∈ X for which Vn ∩ [x]FX

G
is

non-empty but E
X×Xg

G � ((Vn∩ [x]FX
G

)×Wn) ⊆ R
X×Xg

Km
. Fix a countable

dense set H ⊆ G. Then the sets of the form Um,n∩ (gVn×hWn), where
g, h ∈ H and m,n ∈ N, cover X × Xg, and the fact that G is abelian
ensures that they are expansively {G}-transient, so Proposition 3.1.1
implies that Gy X × Xg is smooth.

The promised basis theorem easily follows:

Theorem 3.2.7. Suppose that G y X is a Borel (continuous) free
action of an abelian locally-compact Polish group on a Polish space
that contains a basis. Then there is a continuous disjoint union of
actions obtained via expansive cutting and stacking that contains a basis
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and admits a Borel (continuous) stabilizer-preserving homomorphism
to Gy X.

Proof. By Theorems 2.1.8, 3.1.2, and 3.2.6.

We similarly obtain the promised anti-basis theorem:

Theorem 3.2.8. Suppose that G y X is a Borel free action of an
abelian locally-compact Polish group on a standard Borel space contain-
ing a basis, and F is a countable family of non-smooth Borel actions on
standard Borel spaces. Then there is a Borel G-action on a standard
Borel space that admits a Borel stabilizer-preserving homomorphism to
G y X and contains a basis, but to which no action in F admits a
Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorems 2.2.6, 3.1.2, and 3.2.6.

3.3. Weak wandering. The following straightforward observation en-
sures that the notions of completeness and σ-completeness with respect
to continuous actions Gy X of separable groups on topological spaces
are equivalent for sets of the form

⋃
n∈N Un \Bn, where each of the sets

Bn ⊆ X is G-invariant and each of the sets Un ⊆ X is open:

Proposition 3.3.1. Suppose that G y X is a continuous action of a
topological group on a topological space, H ⊆ G is dense, and U ⊆ X
is open. Then GU = HU .

Proof. Note that if g ∈ G and x ∈ U , then g−1g ·x ∈ U , so there exists
h ∈ H for which the point y = h−1g · x is in U . But g · x = h · y.

When S ⊆ P(
⋃
d∈Z+ G{1,...,d}), we say that a set Y ⊆ X is S-transient

if there exists S ∈ S with the property that ∆X
G (
⋃
d∈Z+ Y {0,...,d})∩S = ∅.

Note that if S ⊆ G, then a set Y ⊆ X is S-wandering if and only if it is
{SS−1 \ {1G}}-transient. We say that a G-action by homeomorphisms
of a topological space is S-recurrent if no non-empty open set is S-
transient, and a Borel G-action on a standard Borel space X is σ-S-
transient if X is a union of countably-many S-transient Borel sets.

The following fact ensures that if G y X is a minimal continuous
action, then the existence of a weakly-wandering σ-complete Borel set
is equivalent to the existence of a cover by countably-many weakly-
wandering Borel sets:

Proposition 3.3.2. Suppose that G is a separable group, S ⊆ P(⋃
d∈Z+ G{1,...,d}), and G y X is a σ-(

⋃
g∈G gSg−1)-transient minimal

continuous action on a Baire space. Then there exists S ∈ S for which
there is an {S}-transient complete open set.
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Proof. Fix an S-transient non-meager Borel set B ⊆ X, as well as
S ∈ S for which B is {S}-transient, and a non-empty open set V ⊆ X
in which B is comeager. Then Proposition 2.1.2 ensures that V is {S}-
transient, and the minimality of Gy X implies that it is complete.

We say that a sequence g ∈ GN is S-dense, (Kn)n∈N-expansive, or
doubly (Kn)n∈N-expansive if the sequence h ∈ (G{1})N, given by (hn)1 =
gn for all n ∈ N, has the corresponding property. The following fact
ensures that the above assumption of minimality is necessary:

Proposition 3.3.3. Suppose that G is a locally-compact Polish group,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of G,
and g ∈ GN is doubly (Kn)n∈N-expansive. Then there is a continuous
disjoint union G y X of free actions obtained via expansive cutting
and stacking, a continuous surjective homomorphism φ : X → 2N from
EX
G to equality, and a complete open set V ⊆ X such that V ∩φ−1({d})

is IP(g ∗ d)-wandering for all d ∈ 2N, but for all sets S ⊆ G with non-
compact closure, there is at most one d ∈ 2N with the property that
Gy φ−1({d}) is σ-expansively {S}-transient.

Proof. We first note a pair of lemmas:

Lemma 3.3.4. Suppose that d, e ∈ 2N are distinct, K,L ⊆ G are
compact, and S ⊆ KIP(g ∗ d)IP(g ∗ d)−1K−1. Then the closure of
LIP(g ∗ e)IP(g ∗ e)−1L−1 ∩ S is compact.

Proof. Let s be the maximal common initial segment of d and e. As g
is doubly (Kn)n∈N-expansive, there is a natural number n > 〈s〉 such
that gm /∈ (IP(g � m)−1(K−1L)±1IP(g � m))2 for all m ≥ n, in which
case a straightforward calculation reveals that

LIP(g ∗ e)IP(g ∗ e)−1L−1 ∩ S
⊆ KIP(g ∗ d)IP(g ∗ d)−1K−1 ∩ LIP(g ∗ e)IP(g ∗ e)−1L−1

⊆ KIP(g � n)IP(g � n)−1K−1 ∩ LIP(g � n)IP(g � n)−1L−1,

so it only remains to note that the latter set is compact.

Lemma 3.3.5. Suppose that K ⊆ G is compact, but the closure of
S ⊆ G is not compact. Then there exists d ∈ 2N such that for all
e 6= d, there is a (Kn)n∈N-expansive {S}-dense sequence ge ∈ GN for
which KIP(ge)IP(ge)

−1K−1 ∩ IP(g ∗ e)IP(g ∗ e)−1 = {1G}.

Proof. Fix a countable dense set H ⊆ G, as well as a sequence h ∈ HN

such that ∀h ∈ H∃∞n ∈ N h = hn, and a sequence s ∈
∏

n∈N 2n

such that {sn | n ∈ N and h = hn} is v-dense for all h ∈ H. As
the closure of S is not compact, Lemma 3.3.4 yields d ∈ 2N such that
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S * LIP(g ∗ e)IP(g ∗ e)−1L−1 for all e 6= d and compact sets L ⊆ G, in
which case a simple recursive construction yields ge ∈ GN such that:

(1) ∀n ∈ N (ge)n /∈ IP(ge � n)−1K±1
n IP(ge � n).

(2) ∀n ∈ N (ge)n ∈ (gsn
e )−1h−1

n Shng
sn
e .

(3) ∀n ∈ N (ge)n /∈ IP(ge � n)−1K−1IP(g∗e)IP(g∗e)−1KIP(ge � n).

The first condition ensures that ge is (Kn)n∈N-expansive, the second
condition implies that ge is {S}-dense, and the third condition yields
that KIP(ge)IP(ge)

−1K−1 ∩ IP(g ∗ e)IP(g ∗ e)−1 = {1G}.

Fix an open neighborhood U ⊆ G of 1G with compact closure, let
I be the set of (d,gd) ∈ 2N × GN for which gd is (Kn)n∈N-expansive
and UIP(gd)IP(gd)

−1U−1 ∩ IP(g ∗ d)IP(g ∗ d)−1 = {1G}, and define
X = Xproj

GN�I . Then G y X is a continuous disjoint union of actions

obtained via expansive cutting and stacking, the function φ : X → 2N

given by φ([(g, ((d,gd), c))]Eproj
GN �I ) = d is a homomorphism from EX

G

to equality, and V = (U ×Xproj
GN�I)/Eproj

GN�I is a complete open set.

Proposition 1.2.1 ensures that V ∩φ−1({d}) is IP(g∗d)-wandering for
all d ∈ 2N. If the closure of S ⊆ G is not compact, then Lemma 3.3.5
yields d ∈ 2N such that for all e 6= d, there is an {S}-dense sequence
ge ∈ Ie, thus G y φ−1({e}) is not σ-expansively {S}-transient by
Propositions 2.1.1 and 2.1.2. If d ∈ 2N, e 6= d, and ge ∈ Ie, then
G y Xge is not {IP(g ∗ e)IP(g ∗ e)−1 \ {1G}}-recurrent, and therefore
not expansively {(g ∗ e)(N)}-recurrent, so Proposition 2.1.1 ensures
that ge is not {(g ∗ e)(N)}-dense, thus Lemma 3.3.5 implies that there
is a {(g ∗ e)(N)}-dense sequence gd ∈ Id, hence φ is surjective.

Even without minimality, a similar idea can be used to show that
the existence of an S-wandering σ-complete Borel set is equivalent to
σ-(
⋃
g∈G g{SS−1 \ 1G}g−1)-transience:

Proposition 3.3.6. Suppose that G is a Polish group, S ∈ P(
⋃
d∈Z+

G{1,...,d}), and Gy X is a σ-(
⋃
g∈G g{S}g−1)-transient continuous ac-

tion on a Polish space. Then G y X admits an {S}-transient σ-
complete Fσ set.

Proof. Proposition 2.1.2 ensures that there is no x ∈ X for which
G y [x]FX

G
is {S}-recurrent. Note that if V ⊆ X is open and x ∈ X,

then the minimality of G y [x]FX
G

ensures that V ∩ [x]FX
G
6= ∅ ⇐⇒

V ∩ Gx 6= ∅ ⇐⇒ x ∈ GV , and V ∩ [x]FX
G

is {S}-transient ⇐⇒⋃
g∈S
⋂
k≤|g|(gk)

−1V ∩ [x]FX
G

= ∅ ⇐⇒
⋃
g∈S
⋂
k≤|g|(gk)

−1V ∩ Gx =

∅ ⇐⇒ x /∈ G(
⋃
g∈S
⋂
k≤|g|(gk)

−1V ), so the set of x ∈ X for which V ∩
[x]FX

G
is non-empty but {S}-transient is a difference of two G-invariant
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open sets. Fix an enumeration (Vn)n∈N of a basis for X, and for all x ∈
X, let n(x) be the least natural number for which Vn(x) ∩ [x]FX

G
is non-

empty but {S}-transient. Then the set B =
⋃
n∈N{x ∈ Vn | n(x) = n}

is Fσ, {S}-transient, and σ-complete by Proposition 3.3.1.

We next note a restriction on the sets S ⊆ G appearing in the
definition of weak wandering in the topological setting:

Proposition 3.3.7. Suppose that G y X is a continuous action of
a locally-compact Polish group on a Polish space, S ⊆ G, and there
is an S-wandering non-empty open set U ⊆ X. Then S is closed and
discrete.

Proof. Otherwise, there is an injective sequence (gn)n∈N of elements of
S that converges to some g ∈ G, so gng

−1 → 1G. But if x ∈ U , then
gng

−1 · x → x, so there exists n ∈ N such that gmg
−1 · x ∈ U for all

m ≥ n, thus g−1 · x ∈
⋂
m≥n g

−1
m U , a contradiction.

Proposition 3.3.8. Suppose that G is a locally-compact Polish group
and the closure of S ⊆ G is not compact. Then there is an infinite set
T ⊆ S for which TT−1 is closed and discrete.

Proof. Fix an increasing sequence (Un)n∈N of open subsets of G with
compact closures whose union is G, and recursively construct gn ∈
S\(U±1

n {gi | i < n}) for all n ∈ N. To see that the set T = {gn | n ∈ N}
is as desired, note that for all g ∈ G, there exists n ∈ N such that
g ∈ Un, but TT−1 ∩ Un ⊆ {gig−1

j | i, j < n}.

Clearly {S\{1G}}-transience implies expansive {S}-transience. When
S is closed and discrete, a natural weakening of the converse also holds:

Proposition 3.3.9. Suppose that G y X is a Borel free action of
a locally-compact Polish group on a standard Borel space, S ⊆ G is
closed and discrete, and B ⊆ X is an expansively {S}-transient Borel
set. Then B is a union of finitely-many {S \ {1G}}-transient Borel
sets.

Proof. Fix a compact set K ⊆ G for which RB
S ⊆ RB

K . As G y X
is free, it follows that RB

S ⊆ RB
K∩S. As S is closed and discrete, it

follows that K ∩ S is finite. Set F = (K ∩ S)±1 \ {1G}, and note that
RX
F is a Borel graph of vertex degree |F |, and therefore has a Borel

(|F |+ 1)-coloring (see [KST99, Proposition 4.6]), so B is the union of
(|F |+ 1)-many {S \ {1G}}-transient Borel sets.

In light of Proposition 3.3.6, the following facts characterize both the
existence of a weakly-wandering σ-complete Borel set and the existence
of a cover by weakly-wandering Borel sets:
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Proposition 3.3.10. Suppose that Gy X is a Borel free action of a
locally-compact Polish group on a standard Borel space and S ⊆ P(G).
Then the following are equivalent:

(1) There are infinite sets Sn ∈
⋃
S∈S P(S) and Sn-wandering Borel

sets Bn ⊆ X for which X =
⋃
n∈NBn.

(2) There are infinite sets Tn ∈
⋃
S∈S P(S) for which TnT

−1
n is

closed and discrete with the property that G y X is σ-expan-
sively (

⋃
g∈G g{TnT−1

n | n ∈ N}g−1)-transient.

Proof. To see (1) =⇒ (2), note first that we can assume that X is
Polish and G y X is continuous by [BK96, Theorem 5.2.1]. Propo-
sition 2.1.2 then ensures that for all x ∈ X, there exists n ∈ N for
which G y [x]FX

G
is not {SnS−1

n \ {1G}}-recurrent, in which case
Proposition 3.3.7 implies that Sn is closed and discrete. Define N =
{n ∈ N | Sn is closed and discrete}, and for all n ∈ N , appeal to
Proposition 3.3.8 to obtain an infinite set Tn ⊆ Sn for which TnT

−1
n

is closed and discrete. Then Proposition 2.2.1 ensures that G y
X is σ-(

⋃
g∈G g{TnT−1

n \ {1G} | n ∈ N}g−1)-transient, and therefore σ-

expansively (
⋃
g∈G g{TnT−1

n | n ∈ N}g−1)-transient.

To see (2) =⇒ (1), appeal to Proposition 3.3.9 to see that G y X
is σ-(

⋃
g∈G g{TnT−1

n \ {1G} | n ∈ N}g−1)-transient.

The following fact easily follows from the proof of Proposition 3.3.10.

Proposition 3.3.11. Suppose that G y X is a Borel free action of
a locally-compact Polish group on a standard Borel space. Then the
following are equivalent:

(1) The action G y X is σ-(
⋃
g∈G g{SS−1 \ {1G}}g−1)-transient

for some infinite set S ∈ P(G).
(2) There is an infinite set T for which TT−1 is closed and dis-

crete with the property that G y X is σ-expansively (
⋃
g∈G

g{TT−1}g−1)-transient.

We next note that finite changes to S have little influence on the
existence of large S-wandering Borel sets:

Proposition 3.3.12. Suppose that Gy X is a Borel free action of a
locally-compact Polish group on a standard Borel space, g ∈ G, S ⊆ G
is countable, and B ⊆ X is an S-wandering Borel set. Then B is a
union of countably-many ({g} ∪ S)-wandering Borel sets.

Proof. We can assume that g /∈ S. Note that for all x ∈ B, there
is at most one pair (h, y) ∈ S × B for which g−1 · x = h−1 · y. Let
φ : B ⇀ B be the partial function sending x to y. The freeness of
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G y X ensures that φ is fixed-point free, in which case graph(φ)±1

is a graph generated by a Borel function, and therefore has a Bor-
el ℵ0-coloring (see [KST99, Proposition 4.5]), thus B is a union of
countably-many ({g} ∪ S)-wandering Borel sets.

In light of Theorem 3.1.2, the following fact ensures that if a free Bor-
el action does not contain a basis, then it admits a weakly-wandering
σ-complete Borel set:

Proposition 3.3.13. Suppose that G y X is a Borel free action of
a locally-compact Polish group on a standard Borel space, (Kn)n∈N is
an exhaustive increasing sequence of compact subsets of G, g ∈ GN is
(Kn)n∈N-expansive, and Gy X ×Xg is smooth. Then Gy X admits
a g(N)-wandering σ-complete Borel set.

Proof. Appeal first to Theorem 3.2.6 to see thatGy X is σ-expansively
(
⋃
g∈G g{g(N \ n)g(N \ n)−1 | n ∈ N}g−1)-transient. The (Kn)n∈N- ex-

pansivity of g yields that g(N)g(N)−1 is closed and discrete, so Gy X
is σ-(

⋃
g∈G g{g(N \ n)g(N \ n)−1 \ {1G} | n ∈ N}g−1)-transient by Pro-

position 3.3.9, thus σ-(
⋃
g∈G g{g(N)g(N)−1 \ {1G}}g−1)-transient by

Proposition 3.3.12, in which case Proposition 3.3.6 yields a g(N)-wander-
ing σ-complete Borel set.

The following fact yields a sufficient condition for the existence of a
non-smooth restriction with a suitably transient complete Borel set:

Proposition 3.3.14. Suppose that G is a locally-compact Polish group,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of G,
g ∈ GN is (Kn)n∈N-expansive, S ⊆ G is disjoint from a neighbor-
hood of 1G, and there is no compact set K ⊆ G with the property that
IP(g)IP(g)−1 ⊆ K−1SK. Then there is a G-action obtained via ex-
pansive cutting and stacking that admits a continuous embedding into
Gy Xg and an {S}-transient non-empty open set.

Proof. Note that for all compact sets K ⊆ G and n ∈ N, there exist
s0, s1 ∈ 2<N for which sn(g)s1(sn(g)s0)−1 /∈ K ∪K−1SK. Fix an open
neighborhood U ⊆ G of 1G with the property that U is compact and
S ∩ UU−1 = ∅, recursively find `n ∈ N and s0,n, s1,n ∈ 2`n such that
hn /∈ IP(h � n)−1(K±1

n ∪ U−1SU)IP(h � n) for all n ∈ N, where
hn = g

⊕
m<n s0,ms

∑
m<n `m(g)s1,n(s

∑
m<n `m(g)s0,n)−1(g

⊕
m<n s0,m)−1 for all

n ∈ N, and define φ : 2N → 2N by φ(c) =
⊕

n∈N sc(n),n. Then h is
(Kn)n∈N-expansive, so G y Xh is obtained via expansive cutting and
stacking, φG factors over Eh and Eg to a continuous embedding of
Gy Xh into Gy Xg, and Proposition 1.2.1 ensures that (U ×2N)/Eh

is an {S}-transient non-empty open set.
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For each set N , let [N ]ℵ0 denote the family of countably-infinite sub-
sets ofN , and for each sequence of sets (Xn)n∈N , define lim supn∈N Xn =
{x | ∃∞n ∈ N x ∈ Xn}. We say that a sequence h ∈ GN is sufficiently
(Kn)n∈N-expansive if the following hold, where Hn = {hm | m < n}:

(1) ∀n ∈ N hn /∈ (KnHnH
−1
n )3KnHn.

(2) ∀n ∈ N∀m > n
hn /∈ KnhmH

−1
n KnHnh

−1
m KnHn ∪KnHnh

−1
m KnhmH

−1
n KnHn ∪

K−1
n Hnh

−1
m K−1

n HnH
−1
n K−1

n hm∪KnHnH
−1
n KnHnh

−1
m Knhm.

(3) ∀K ⊆ G compact∀N ∈ [N× N]ℵ0∃M ∈ [N ]ℵ0

lim sup(m,n)∈M Khmh−1
n Khnh−1

m K is compact.

Proposition 3.3.15. Suppose that G is a non-compact locally-compact
Polish group that admits a compatible two-sided-invariant metric, and
(Kn)n∈N is an increasing sequence of compact subsets of G. Then there
is a sufficiently-(Kn)n∈N-expansive sequence h ∈ GN.

Proof. The primary observation is as follows:

Lemma 3.3.16. Suppose that K ⊆ G is compact and H ∈ [G]ℵ0. Then

there exists H ′ ∈ [H]ℵ0 such that lim supg∈H′ KgKg
−1K is compact.

Proof. By [Kle52, 1.5], there is a conjugation-invariant open neighbor-
hood U ⊆ G of 1G with compact closure. Fix a finite set F ⊆ G for
which K ⊆ FU . By a straightforward induction, it is sufficient to show
that for all f ∈ F and H ∈ [G]ℵ0 , there exists H ′ ∈ [H]ℵ0 for which

lim supg∈H′ Kgfg
−1KU is compact. Towards this end, we can assume

that there is a set H ′ ∈ [H]ℵ0 for which
⋂
g∈H′ Kgfg

−1KU 6= ∅. Fix

h ∈ H ′, and note that ∀g ∈ H ′ gfg−1 ∈ K−1Khfh−1KK−1UU−1, so⋃
g∈H′ Kgfg

−1KU ⊆ KK−1Khfh−1KK−1KUU−1U . As the latter set

has compact closure, so too does lim supg∈H′ Kgfg
−1KU .

As G is not compact, there is a discrete set G0 ∈ [G]ℵ0 . Given n ∈ N,
Gn ∈ [G0]ℵ0 , and h � n, set Hn = {hm | m < n} and define

Lg,n = KngH
−1
n KnHng

−1KnHn ∪KnHng
−1KngH

−1
n KnHn ∪

K−1
n Hng

−1K−1
n HnH

−1
n K−1

n g ∪KnHnH
−1
n KnHng

−1Kng

for all g ∈ Gn, and observe that four successive applications of Lemma
3.3.16 yield a set G′n ∈ [Gn]ℵ0 with the property that the closure of
lim supg∈G′n Lg,n is compact. As Gn is discrete and infinite, there exists

hn ∈ Gn \ ((KnHnH
−1
n )3KnHn ∪ lim supg∈G′n Lg,n), in which case the

set Gn+1 = {g ∈ G′n | hn /∈ Lg,n} is infinite. Clearly h is as desired.
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The following observation ensures that one can obtain a Borel free
action Gy X that contains a basis and admits a weakly-wandering σ-
complete Borel set by fixing an exhaustive increasing sequence (Kn)n∈N
of compact subsets of G and a sufficiently-(Kn)n∈N-expansive sequence
h ∈ GN, and taking a continuous disjoint union of the actions and
weakly-wandering sets obtained by applying Proposition 3.3.14 to every
(Kn)n∈N-expansive sequence g ∈ GN with S = h(N)h(N)−1 \ {1G}:
Proposition 3.3.17. Suppose that G is a locally-compact Polish group,
(Kn)n∈N is an exhaustive increasing sequence of compact subsets of G,
g ∈ GN is (Kn)n∈N-expansive, and h ∈ GN is sufficiently (Kn)n∈N-
expansive. Then there is no compact set K ⊆ G with the property that
IP(g)IP(g)−1 ⊆ K−1h(N)h(N)−1K.

Proof. Suppose, towards a contradiction, that there is such a K, and
set Hn = {hm | m < n} for all n ∈ N. The (Kn)n∈N-expansivity of
g ensures that g(N) is closed, discrete, and infinite, so by passing to
a subsequence of g, we can assume that there is a strictly increasing
sequence k ∈ NN such that gn ∈ K−1(hknH

−1
kn

)±1K for all n ∈ N. By
passing to a terminal segment of g, we can assume that KK−1 ⊆ Kk0 .

Lemma 3.3.18. For all n ∈ N, the set IP(g � n)gn(IP(g � n))−1 is
contained in K−1(hknH

−1
kn

)±1K.

Proof. Granting that we have established the lemma below n, suppose
that s, t ∈ 2n, fix k ∈ N for which gsgn(gt)−1 ∈ K−1(hkH

−1
k )±1K, and

note that gsgn(gt)−1 ∈ K−1HknH
−1
kn
KK−1(hknH

−1
kn

)±1KK−1HknH
−1
kn
K.

A simple calculation then reveals that if k 6= kn and ` = max(k, kn),
then h` ∈ (K`H`H

−1
` )3K`H`, contradicting the sufficient (Kn)n∈N-ex-

pansivity of h.

Lemma 3.3.19. Suppose that k,m ∈ N. Then there exists n ∈ N and
t ∈ 2n such that ∀s ∈ 2m gsata(1) ∈ K−1(hkm+n(Hkm+n \Hk)

−1)±1K.

Proof. Suppose that the lemma fails, and fix n ∈ N for which km+n ≥ k.
Then there exist i ∈ {±1}, s0, s1 ∈ 2m, and distinct t0, t1 ∈ 22 such that
∀j < 2 gsja(0)natja(1) ∈ K−1(hkm+n+2H

−1
k )iK, and ` ∈ {m+n,m+n+1}

for which gs0a(0)nat0(gs1a(0)nat1)−1 ∈ K−1(hk`H
−1
k`

)±1K. A simple cal-

culation then yields that hk` ∈ Kk`hkm+n+2H
−1
k`
Kk`Hk`h

−1
km+n+2

Kk`Hk`∪
Kk`Hk`h

−1
km+n+2

Kk`hkm+n+2H
−1
k`
Kk`Hk` , which contradicts the sufficient

(Kn)n∈N-expansivity of h.

In particular, there exist sequences sn ∈ 2<N such that gφ(ta(1)) ∈
K−1(hkn+

∑
m≤n |sm|

(Hkn+
∑

m≤n |sm|
\ Hkn+

∑
m<n |sm|

)−1)±1K for all n ∈ N
and t ∈ 2n, where φ : 2<N → 2<N is given by φ(t) =

⊕
n<|t| sn a tn.
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Lemma 3.3.20. Suppose that i ∈ {±1}, n ∈ N, `0, `1 ∈ [kn+
∑

m<n |sm|,

kn+
∑

m≤n |sm|), t0, t1 ∈ 2n, and gφ(tja(1)) ∈ K−1(hkn+
∑

m≤n |sm|
h−1
`j

)iK for

all j < 2. Then `0 = `1.

Proof. Observe that if `0 6= `1, k = kn+
∑

m≤n |sm|, and ` = max(`0, `1),

then K−1H`H
−1
` KK−1(hkH

−1
` )iK ∩K−1(hkh

−1
` )iK 6= ∅, so a straight-

forward calculation reveals that h` ∈ K−1
` H`h

−1
k K−1

` H`H
−1
` K−1

` hk ∪
K`H`H

−1
` K`H`h

−1
k K`hk, contradicting the sufficient (Kn)n∈N-expan-

sivity of h.

In particular, there are integers `i,n ∈ [kn+
∑

m<n |sm|, kn+
∑

m≤n |sm|)

such that gφ(ta(1)) ∈
⋃
i∈{±1}K

−1(hkn+
∑

m≤n |sm|
h−1
`i,n

)iK for all n ∈ N
and t ∈ 2n. Fix N ∈ [N]ℵ0 with the property that the closure Li of
lim supn∈N K

−1(hkn+
∑

m≤n |sm|
h−1
`i,n

)iKK−1(hkn+
∑

m≤n |sm|
h−1
`i,n

)−iK is com-

pact for all i ∈ {±1}, as well as n ∈ N such that L−1 ∪ L1 ⊆ Kn, and
i ∈ {±1}, N ′ ∈ [N \(n+2)]ℵ0 , and distinct t0, t1 ∈ 22 with the property

that gφ((0)natja(0)n
′−n−2a(1)) ∈ K−1(hkn′+∑

m≤n′ |sm|
h−1
`i,n′

)iK for all j < 2

and n′ ∈ N ′. Then gφ((0)nat0)(gφ((0)nat1))−1 ∈ Li, contradicting the
(Kn)n∈N-expansivity of g.

We now establish our basis and anti-basis theorems for our two no-
tions of admitting large weakly-wandering Borel sets:

Theorem 3.3.21. Suppose that G y X is a Borel (continuous) free
action of a locally-compact Polish group on a Polish space that does
not admit a weakly-wandering σ-complete Borel set. Then there is a
continuous disjoint union of actions obtained via expansive cutting and
stacking that does not admit a weakly-wandering σ-complete Borel set
but does admit a Borel (continuous) stabilizer-preserving homomor-
phism to Gy X.

Proof. By Theorem 2.1.8, Proposition 3.3.6, and Proposition 3.3.11.

Theorem 3.3.22. Suppose that G y X is a Borel (continuous) free
action of a locally-compact Polish group on a Polish space that does not
admit a cover by countably-many weakly-wandering Borel set. Then
there is a continuous disjoint union of actions obtained via expan-
sive cutting and stacking that does not admit a cover by countably-
many weakly-wandering Borel sets but does admit a Borel (continuous)
stabilizer-preserving homomorphism to Gy X.

Proof. By Theorem 2.1.8 and Proposition 3.3.10.
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Theorem 3.3.23. Suppose that G y X is a Borel free action of a
locally-compact Polish group on a standard Borel space that does not
admit a weakly-wandering σ-complete Borel set, and F is a countable
family of non-smooth Borel actions on standard Borel spaces. Then
there is a Borel G-action on a standard Borel space that admits a Bor-
el stabilizer-preserving homomorphism to G y X and does not admit
a weakly-wandering σ-complete Borel set, but to which no action in F
admits a Borel almost stabilizer-preserving-homomorphism.

Proof. By Theorem 2.2.6 and Propositions 3.1.1, 3.3.6, and 3.3.11.

Theorem 3.3.24. Suppose that G y X is a Borel free action of a
locally-compact Polish group on a standard Borel space that does not
admit a cover by countably-many weakly-wandering Borel sets, and F
is a countable family of non-smooth Borel actions on standard Bor-
el spaces. Then there is a Borel G-action on a standard Borel space
that admits a Borel stabilizer-preserving homomorphism to G y X
and does not admit a cover by countably-many weakly-wandering Borel
sets, but to which no action in F admits a Borel almost stabilizer-
preserving-homomorphism.

Proof. By Theorem 2.2.6 and Propositions 3.1.1 and 3.3.10.

We say that a set Y ⊆ X is locally very-weakly-wandering if for all
n ∈ N and x ∈ X, there is a set S ⊆ G of cardinality n such that
Gx ∩ Y is S-wandering.

Proposition 3.3.25. Suppose that gn = 3n for all n ∈ N. Then there
is neither a Z-invariant Borel probability measure on Xg nor a smooth

Borel superequivalence relation F of E
Xg

Z such that Z y [x]F admits a
locally-very-weakly-wandering complete Borel set for all x ∈ Xg.

Proof. It is easy to see that the sets Bn
k = ({k} × N(0)n)/Eg for k ∈

[0, 3n) are pairwise disjoint, for every n ∈ N. If µ is a Z-invariant Borel
measure on Xg, then a straightforward calculation shows that µ(Xg) ≥
(3/2)nµ(({0} × 2N)/Eg) for all n ∈ N. It follows that µ(Xg) ∈ {0,∞}.

Suppose that F is a smooth Borel superequivalence relation of E
Xg

Z .
As Proposition 1.2.3 ensures that Z y Xg is minimal, every F -invariant
set with the Baire property is comeager or meager, so there exists
x ∈ Xg for which [x]F is comeager. Suppose that B ⊆ [x]F is a Borel
set that is complete with respect to G y [x]F . Then the countability
of Z ensures that B is non-meager, so there exist n ∈ Z and s ∈ 2<N

for which B is comeager in the open set U = ({n} × Ns)/Eg.
We will make use of the following well-known fact, which we provide

a proof of for the reader’s convenience.
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Lemma 3.3.26. For all z ∈ Z there exist finite disjoint sets Pz and
Nz of N such that z =

∑
k∈Pz

3k −
∑

k∈Nz
3k.

Proof. Fix m ∈ N such that |z| ≤
∑

k<m 3k. Let t ∈ 3m be the base
three representation of z +

∑
k<m 3k of length m, and define Pz, Nz

by k ∈ Pz ⇐⇒ tk = 2 and k ∈ Nz ⇐⇒ tk = 0. Then z =∑
k∈Pz

3k −
∑

k∈Nz
3k.

The lemma implies that ∆
Xg

Z (U{0,1}) = 3|s|Z. Fix y ∈ [x]F \Z(U \B)

and note that ∆
Xg

Z ((U ∩ Zy){0,1}) = ∆
Xg

Z (U{0,1}) = 3|s|Z. Suppose that
S ⊆ Z is a set of cardinality strictly greater than 3|s|. Then there exist

distinct j, k ∈ S such that j−k ∈ 3|s|Z, thus ∆
Xg

Z ((U ∩Zy){0,1})∩((S−
S) \ {0}) 6= ∅. Hence Z y [x]F does not admit a locally-very-weakly-
wandering complete Borel set.

Remark 3.3.27. The odometer on 3N is the isometry σ : 3N → 3N given
by σ((2)n a (i) a c) = (0)n a (i + 1) a c, where c ∈ 3N and i < 2.
It is easy to see that the above action Z y Xg is Borel isomorphic to
that generated by the restriction of σ to the saturation of 2N.

4. Mixing

4.1. Weak mixing. For our current purpose we restrict ourselves to
families of the form S ⊆

⋃
d∈Z+ P(G{1,...,d}) and say that an action

G y X by homeomorphisms of a topological space is S-transitive if
∆X
G (
∏

k≤d Vk)∩S 6= ∅ for all d ∈ Z+, S ∈ S∩P(G{1,...,d}), and sequences
(Vk)k≤d of non-empty open subsets of X.

Proposition 4.1.1. Suppose that G is a group, S ⊆
⋃
d∈Z+ P(G{1,...,d}),

and Gy X is an S-transitive action by homeomorphisms of a topologi-
cal space. Then Gy X is

⋃
d∈Z+ G{1,...,d}(S ∩ P(G{1,...,d}))G-transitive.

Proof. Note that if d ∈ Z+, g ∈ G{0,...,d}, h ∈ G{1,...,d}, and (Xk)k≤d is a
sequence of subsets of X, then

h ∈ ∆X
G (
∏

k≤d gkXk) ⇐⇒ g0X0 ∩
⋂

1≤k≤d h
−1
k gkXk 6= ∅

⇐⇒ X0 ∩
⋂

1≤k≤d(g
−1
k hkg0)−1Xk 6= ∅

⇐⇒ (g−1
k hkg0)1≤k≤d ∈ ∆X

G (
∏

k≤dXk)

⇐⇒ h ∈ (gk)1≤k≤d∆
X
G (
∏

k≤dXk)g
−1
0 .

It follows that if S ∈ S ∩P(G{1,...,d}) and (Uk)k≤d is a sequence of non-
empty open subsets of X, then the fact that ∆X

G (
∏

k≤d gkUk) ∩ S 6= ∅
ensures that ∆X

G (
∏

k≤d Uk) ∩ (g−1
k )1≤k≤dSg0 6= ∅.
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Proposition 4.1.2. Suppose that G is a topological group, X is a topo-
logical space, H ⊆ G is dense, S ⊆

⋃
d∈Z+ P(G{1,...,d}), and G y X

is continuous,
⋃
d∈Z+ H{1,...,d}(S ∩ P(G{1,...,d}))-recurrent, and topologi-

cally transitive. Then Gy X is S-transitive.

Proof. Suppose that d ∈ Z+, S ∈ S ∩ P(G{1,...,d}), and (Uk)k≤d is a
sequence of non-empty open subsets of X. Set V0 = U0, and construct
h ∈ H{1,...,d} by recursively appealing to the topological transitivity of
G y X to obtain hk+1 ∈ H such that the set Vk+1 = hk+1Uk+1 ∩ Vk is

non-empty for all k < d. As ∆X
G (V

{0,...,d}
d ) ∩ hS 6= ∅, the same calcu-

lation as in the proof of Proposition 4.1.1 reveals that ∆X
G ((h)−1Vd) =

h−1∆X
G (V

{0,...,d}
d ), so ∆X

G ((h)−1Vd) ∩ S 6= ∅. As (hk)
−1Vd ⊆ Uk for all

k ≤ d, it follows that ∆X
G (
∏

k≤d Uk) ∩ S 6= ∅.

Observe that if G y X is a continuous action of a locally-compact
Polish group on a Polish space, x ∈ X, and Gx is non-meager, then
there is a compact set K ⊆ G for which Kx is non-meager, and there-
fore comeager in some non-empty open set U ⊆ X, in which case the
fact that Kx is closed ensures that U ⊆ Kx, thus Gx = GU is an
σ-expansively-{G}-transient open orbit.

Proposition 4.1.3. Suppose that G y X is a continuous action of a
topological group on a Hausdorff space with no open orbits, K ⊆ G is
compact, d ∈ Z+, and (Uk)k≤d is a sequence of non-empty open subsets
of X. Then there are non-empty open sets Vk ⊆ Uk for which (Vk)k≤d
is RX

K-discrete.

Proof. By the obvious induction, it is sufficient to show that for all
distinct j, k ≤ d, there are non-empty open sets Vj ⊆ Uj and Vk ⊆ Uk
such that Vj ∩KVk = ∅. Towards this end, fix xk ∈ Uk, and note that
Uj * Gxk, since otherwise GUj = Gxk, contradicting the fact that Gxk
is not open. Fix xj ∈ Uj \ Kxk, and observe that Proposition 1.2.4
yields open neighborhoods Vj ⊆ Uj of xj and Vk ⊆ Uk of xk such that
Vj ∩KVk = ∅.

Along similar lines, we say that Gy X is expansively S-transitive if
∆X
G ({y ∈

∏
k≤d Vk | y is RX

K-discrete})∩ S 6= ∅ for all d ∈ Z+, compact

sets K ⊆ G, S ∈ S ∩ P(G{1,...,d}), and sequences (Vk)k≤d of non-empty
open subsets of X.

Proposition 4.1.4. Suppose that d ∈ Z+, G y X is a continuous
action of a locally-compact Polish group on a Polish space, and H ⊆
G is dense. Then G y X is topologically d-transitive and has no
open orbits if and only if it is topologically transitive and expansively
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(
⋃
g∈G gH

{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g2i+1 = g1g2i}g−1)-rec-
urrent.

Proof. Clearly Gy Xd is topologically transitive if and only if Gy X
is {{g ∈ G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}}-transitive. By
Proposition 4.1.1, the latter condition holds if and only if G y X
is H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}-transitive.
By Proposition 4.1.3 and the comment immediately preceding it, the
conjunction of this with the inexistence of open orbits is equivalent to
the expansive H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}-
transitivity of G y X. And this holds if and only if G y X is
expansively H{1,...,2d−1}{g ∈ G{1,...,2d−1} | ∀0 < i < d g1g2i = g2i+1}-
recurrent and topologically transitive, by Proposition 4.1.2.

We now establish our basis theorem for weakly-mixing continuous
actions of Polish groups:

Theorem 4.1.5. Suppose that G y X is a topologically-transitive
continuous action of a locally-compact Polish group on a Polish space
with no open orbits. Then the following are equivalent:

(1) The action Gy X is weakly mixing.
(2) There is a Baire-measurable stabilizer-preserving homomorphism

from a weakly-mixing G-action obtained via expansive cutting
and stacking to Gy X.

(3) There is a continuous embedding of a weakly-mixing G-action
obtained via expansive cutting and stacking into Gy X.

Proof. By Theorem 2.1.7 and Proposition 4.1.4.

We now establish our anti-basis theorem for weakly-mixing continu-
ous actions of Polish groups:

Theorem 4.1.6. Suppose that G y X is a weakly-mixing continuous
action of a locally-compact Polish group on a Polish space. Then there
is a family A of continuum-many weakly-mixing continuous G-actions
on Polish spaces that admit continuous embeddings into G y X such
that every non-smooth Borel G-action on a standard Borel space admits
a Borel stabilizer-preserving homomorphism to at most one action in
A.

Proof. By Theorem 2.2.5 and Propositions 3.1.1 and 4.1.4.

We now establish the promised equivalence of the measure-theoretic
and topological notions of weak mixing:
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Theorem 4.1.7. Suppose that G y X is a continuous action of an
abelian locally-compact Polish group on a Polish space. Then the fol-
lowing are equivalent:

(1) There is a G-invariant σ-finite Borel measure µ on X with re-
spect to which Gy X is weakly mixing.

(2) There is a G-invariant closed set C ⊆ X for which G y C is
weakly mixing.

Proof. To see (1) =⇒ (2), let C be the complement of the union of all
µ-null non-empty open sets U ⊆ X, and observe that if U,U ′, V, V ′ ⊆ C
are non-empty open sets, then the G-saturations of U ×V and U ′×V ′
are (µ× µ)-conull, thus ∆C×C

G ((U × V )× (U ′ × V ′)) 6= ∅.
To see (2) =⇒ (1), we first note the following:

Lemma 4.1.8. Suppose that x ∈ C and Gx is an open subset of C.
Then x is the unique element of Gx, and therefore of C.

Proof. Note that if g ∈ G and U ⊆ G, then RGx
gU = (g, 1G)RGx

U . It
follows that if H ⊆ G is a countable dense set, H ′ = H × {1G}, and
U ⊆ G is a non-empty open set, then Gx×Gx =

⋃
h∈H R

Gx
hU = H ′RGx

U ,
so RGx

U is not meager.
Proposition 1.1.2 easily implies that G/Stab(x) is a Hausdorff space.

It follows that if x is not the unique element of Gx, in which case
Stab(x) 6= G, then there are disjoint non-empty open sets U, V ⊆
G/Stab(x). As G is abelian, it follows that RGx⋃

U and RGx⋃
V are disjoint

G-invariant non-meager sets with the Baire property, contradicting the
fact that Gy C × C is topologically transitive.

If C is a singleton, then any finite Borel measure concentrating on
C is as desired. Otherwise, fix a countable dense subgroup H of G, as
well as an exhaustive increasing sequence (Kn)n∈N of compact subsets
of G. By the proof of Theorem 4.1.5 and Lemma 4.1.8, we can assume
that Gy X is of the form Gy Xh, where h ∈ (H{1,2,3})N is (Kn)n∈N-
expansive and ∀h ∈ H∃∞n ∈ N h(hn)1(hn)2 = (hn)3.

For each n ∈ N, let Gn denote the digraph on 2n consisting of all
pairs (s, t) ∈ 2n×2n such that supp(s) ⊆ supp(t) and supp(t)\ supp(s)
is a singleton.

Lemma 4.1.9. Suppose that n ∈ N. Then there there is a partial
injection φ : 2n ⇀ 2n whose graph is contained in Gn and whose domain
has cardinality 2n −

(
n
dn/2e

)
.
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Proof. Set φ0 = ∅ and recursively define

φn+1(s a (i)) =

{
φn(s) a (i) if s ∈ dom(φi+1

n ) and

s a (1) if i = 0 and s /∈ dom(φn).

To see that the injectivity of φn yields that of φn+1, suppose that
i ≤ j ≤ 1, s a (i) and t a (j) are distinct elements of dom(φn+1), and
φn+1(s a (i))(n) = φn+1(t a (j))(n). Let k be the latter quantity. If
i = j = k = 0 or i = j = 1, then s 6= t, so the injectivity of φn ensures
that φn+1(s a (i)) = φn(s) a (i) 6= φn(t) a (j) = φn+1(t a (j)).
Similarly, if i = j = 0 and k = 1, then s 6= t, and it immediately
follows that φn+1(s a (i)) = s a (1) 6= t a (1) = φn+1(t a (j)).
Finally, if i < j, then s /∈ dom(φn) and φn(t) ∈ dom(φn), so s 6= φn(t),
thus φn+1(s a (i)) = s a (1) 6= φn(t) a (1) = φn+1(t a (j)).

For all n ∈ N and s ∈ 2n, definem(s) = max{m ∈ N | s ∈ dom(φmn )}.
As the definition of φn+1 ensures that m(s a (0)) = m(s) + 1 and
m(s a (1)) ≥ m(s) − 1, a straightforward inductive argument reveals
that m(s) ≥ n−2|supp(s)|, so the set Tn = {t ∈ 2n | |supp(t)| = dn/2e}
is a transversal of the orbit equivalence relation generated by φn. As
the complement of dom(φn) is also a transversal of this equivalence
relation, it follows that |Tn| = |∼dom(φn)|, in which case |dom(φn)| =
2n − |∼dom(φn)| = 2n − |Tn| = 2n −

(
n
dn/2e

)
.

Let µ be the N-fold power of the uniform probability measure on
{0, 1, 2, 3}.

Lemma 4.1.10. Suppose that ε > 0, n ∈ N, h ∈ H, and s, t ∈ 4n×4n.
Then there exist a clopen set C ⊆ Ns0 ×Ns1 and continuous functions
φi : C → Nti with the property that φ0 × φ1 is injective, (µ × µ)(C) ≥
(1− ε)(µ×µ)(Ns0×Ns1), and �h(c0, φ0(c0, c1))h = �h(c1, φ1(c0, c1)) for
all (c0, c1) ∈ C.

Proof. It is well known that
(

k
dk/2e

)
/2k converges to zero, so there exists

k ∈ N for which
(

k
dk/2e

)
/2k < ε. For all ` ∈ N, appeal to Lemma 4.1.9

to obtain a partial injection φ` : 2` ⇀ 2` whose graph is contained in G`

and whose domain has cardinality 2`−
(

`
d`/2e

)
. For all (u0, u1) ∈ 4≤N×

4≤N, let K(u0,u1) be the set of k ∈
⋂
i<2 dom(ui) with the property that

h−1(hs0)−1ht0(ht1)−1hs1(hk+n)1(hk+n)2 = (hk+n)3 and ((u0)k, (u1)k) ∈
{(0, 2), (1, 3)}. As K(c0,c1) is infinite for (µ× µ)-almost every (c0, c1) ∈
4N × 4N, there exists m ∈ N such that (µ × µ)({(c0, c1) ∈ 4N × 4N |
|K(c0�m,c1�m)| < k}) +

(
k
dk/2e

)
/2k < ε. For all K ⊆ m, let (kKi )i<|K| be

the strictly increasing enumeration of K. For all r0, r1 ∈ 4m\K , set
UK,(r0,r1) = {(u0, u1) ∈ 4m×4m | K = K(u0,u1) and ∀i < 2 ri v ui}, and
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define ψK,(r0,r1) : UK,(r0,r1) → 2|K| by ψK,(r0,r1)(u0, u1)i = (u0)kKi . Define

π : 4m×4m ⇀ 4m×4m by π(u0, u1) = (ψ−1
K,(r0,r1)◦φ|K|◦ψK,(r0,r1))(u0, u1),

where K = K(u0,u1) and ri = ui � (m \ K) for all i < 2, and observe
that the partial function (si a ui a ci)i<2 7→ (ti a πi(u0, u1) a ci)i<2

is as desired, by Proposition 1.2.1.

Fix a Haar measure µG on G. Clearly Gy G× 4N is invariant with
respect to µG × µ, and the latter is Eh-invariant.

Lemma 4.1.11. Suppose that B ⊆ (G× 4N)× (G× 4N) is G-invariant
and (Eh ×Eh)-invariant. Then B or ∼B is (µG × µ)× (µG × µ)-null.

Proof. Suppose that B is (µG × µ)× (µG × µ)-positive. Then Fubini’s
theorem (see, for example, [Kec95, §17.A]) yields g0 ∈ G such that the
set B(g0,g1) = {(c0, c1) ∈ 4N × 4N | ((g0, c0), (g1, c1)) ∈ B} is (µ × µ)-
positive for a µG-positive set of g1 ∈ G. Lemma 4.1.10 ensures that
if ε > 0, g1 ∈ G, h ∈ H, s ∈

⋃
n∈N 4n × 4n, and B(g0,g1) has density

strictly greater than 1 − ε in Ns0 × Ns1 , then B(g0,g1h) has density
strictly greater than 1 − ε in 4N × 4N for all h ∈ H. It follows that if
g1 ∈ G and (µ × µ)(B(g0,g1)) > 0, then (µ × µ)(B(g0,g1h)) = 1 for all
h ∈ H, so (µ × µ)(B(g0,g1)) = 1 for µG-almost all g1 ∈ G, since the
uniqueness of Haar measure up to a scaling factor ensures that H y G
is ergodic with respect to µG. As B is G-invariant, it follows that B is
(µG × µ)× (µG × µ)-conull.

It follows that the restriction of µG × µ to any Borel transversal of
Eh induces the desired measure on Xh.

Remark 4.1.12. While the above arguments work just as well for
topological d-transitive when d > 2, this does not yield any greater gen-
erality, as these notions coincide with weak mixing for abelian groups.

We next turn our attention to anti-basis theorems for strengthenings
of weak mixing. The primary observation we will use to obtain such
results is the following:

Proposition 4.1.13. Suppose that G is a Polish group that admits a
compatible two-sided-invariant metric, G y X is a continuous action
on a non-empty Polish space, G y Y is a continuous action on a Po-
lish space with at least two elements, and G y X × Y is topologically
transitive. Then there exist x ∈ X and a G-invariant dense Gδ set
C ⊆ Y for which there is no continuous homomorphism φ : X → Y
from Gy X to Gy Y with the property that φ(x) ∈ C.

Proof. Fix a compatible complete metric on X, positive real numbers
εn → 0, non-empty open sets W0,W1 ⊆ Y with disjoint closures, and
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open neighborhoods U ⊆ G of 1G and non-empty open setsW ′
0,W

′
1 ⊆ Y

such that UW ′
i ⊆ Wi for all i < 2. By [Kle52, 1.5], we can assume that

U is conjugation invariant. Fix natural numbers in < 2 and non-empty
open sets Vn ⊆ Y such that for all i < 2 and non-empty open sets
V ⊆ Y , there are infinitely many n ∈ N for which in = i and Vn ⊆ V .

Set U0 = X. Given n ∈ N and a non-empty open set Un ⊆ X, fix
gn ∈ ∆X×Y

G ((Un×Vn)×(Un×W ′
in)) and non-empty open sets Un+1 ⊆ X

and V ′n ⊆ Vn such that diam(Un+1) ≤ εn, Un+1 ∪ gnUn+1 ⊆ Un, and
gnV

′
n ⊆ W ′

in .
Let x be the unique point of

⋂
n∈N Un. Note that for all i < 2 and

n ∈ N, the open set Vi,n =
⋃
i=im,m≥n V

′
m is dense, thus so too is the

Gδ set D =
⋂
i<2,n∈N Vi,n. Fix a countable dense set H ⊆ G, and

observe that the Gδ set DH =
⋂
h∈H h

−1D is also dense. Noting that
∀g ∈ G∀∗y ∈ Y g ·y ∈ DH , the Kuratowski-Ulam theorem ensures that
the G-invariant set C = {y ∈ Y | ∀∗g ∈ G g · y ∈ DH} is comeager. By
[Vau75, Corollary 1.8], it is also Gδ.

Suppose now that φ : X → Y is a continuous homomorphism from
G y X to G y Y . To see that φ(x) /∈ C, it is sufficient to show
that if y ∈ C, then gn · y 6→ y, since gn · x → x. Towards this end,
fix i < 2 for which y /∈ Wi, as well as g ∈ G for which g · y ∈ DH .
As G = UH, there exists h ∈ H for which g−1 ∈ Uh. As the set
N = {n ∈ N | hg · y ∈ V ′n and i = in} is infinite, it only remains to
note that if n ∈ N , then gn · y ∈ gnUhg · y = Ugnhg · y ⊆ Wi.

In order to apply this result to obtain lower bounds on the cardinal-
ities of bases consisting solely of weakly mixing actions, we will need
the following straightforward observation:

Proposition 4.1.14. Suppose that G is a group, Gy X is a weakly-
mixing action by homeomorphisms of a topological space, G y Y is a
minimal action by homeomorphisms of a topological space, and there
is a continuous homomorphism φ : X → Y from G y X to G y Y .
Then Gy X × Y is topologically transitive.

Proof. Suppose that U ×V, U ′×V ′ ⊆ X ×Y are non-empty open sets.
As Gy Y is minimal, the sets φ−1(V ) and φ−1(V ′) are non-empty. As
Gy X is weakly mixing, the set ∆X×X

G ((U×φ−1(V ))×(U ′×φ−1(V ′)))
is non-empty. But the fact that φ is a homomorphism ensures that this
set is contained in ∆X×Y

G ((U × V )× (U ′ × V ′)).

As a corollary, we obtain the following:

Theorem 4.1.15. Suppose that G is a Polish group that admits a
compatible two-sided-invariant metric and A is a non-empty class of
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minimal continuous G-actions on Polish spaces of cardinality at least
two that is closed under restrictions to G-invariant dense Gδ sets. Then
any basis B for A under continuous homomorphism consisting solely
of weakly-mixing actions has cardinality at least the additivity of the
meager ideal.

Proof. Fix an action G y X in A, and suppose, towards a contradic-
tion, that there is an enumeration (Gy Xα)α<κ of B of length strictly
less than the additivity of the meager ideal. For all α < κ, Proposi-
tion 4.1.14 ensures that G y X × Xα is topologically transitive, so
Proposition 4.1.13 yields a G-invariant dense Gδ set Cα ⊆ X for which
there is no continuous homomorphism from G y Xα to G y Cα. Fix
a dense Gδ set C ⊆

⋂
α<κCα. Then ∀g ∈ G∀∗x ∈ X g · x ∈ C, so the

Kuratowski-Ulam theorem ensures that ∀∗x ∈ X∀∗g ∈ G g · x ∈ C, in
which case B = {x ∈ X | ∀∗g ∈ G g · x ∈ C} is a G-invariant dense
Gδ set for which no action in B admits a continuous homomorphism to
Gy B, the desired contradiction.

4.2. Mild mixing. We begin this section with an alternative charac-
terization of mild mixing:

Proposition 4.2.1. Suppose that G y X is a continuous action of
a locally-compact Polish group on a Polish space with no open orbits
and (Kn)n∈N is an exhaustive increasing sequence of compact subsets
of G. Then G y X is mildly mixing if and only if G y X × Xg is
topologically transitive for all (Kn)n∈N-expansive sequences g ∈ GN.

Proof. By Proposition 1.2.3, it is sufficient to show (⇐=). Towards this
end, suppose that G y Y is a topologically-transitive continuous G-
action with no open orbits, and fix y ∈ Y for which [y]FY

G
is comeager.

The minimality of Gy [y]FY
G

ensures that it is topologically transitive.

It also ensures that it has no open orbits, since otherwise [y]FY
G

would
itself be an orbit of G y Y , and since it is non-meager in Y , it would
necessarily be open in Y .

Given g ∈ GN and G : Xg → F(G) ∩ S(G), we say that (g,G) is
(Kn)n∈N-expansive if (h,G) is (Kn)n∈N-expansive, where h ∈ (G{1})N

is given by (hn)1 = gn for all n ∈ N.

Lemma 4.2.2. There exist a (Kn)n∈N-exhaustive sequence g ∈ GN and
a continuous homomorphism φ : Xg → [y]FY

G
from Gy Xg to Gy Y .

Proof. While it is easy enough to establish this directly, we will use
the tools at hand: By Theorem 2.1.7 and Proposition 4.1.4, there exist
a sequence g ∈ GN, a continuous function G : Xg → F(G) ∩ S(G)
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compatible with �g for which (g,G) is (Kn)n∈N-expansive, and a con-
tinuous embedding ψ : Xg,G → [y]FY

G
from G y Xg,G to G y Y . As

the function π : Xg → Xg,G given by π([(g, x)]Eg) = [(g, x)]Eg,G
is a

homomorphism from G y Xg to G y Xg,G, the function φ = ψ ◦ π is
as desired.

Suppose now that U0, U1 ⊆ X and V0, V1 ⊆ Y are non-empty open
sets. The fact that [y]FY

G
is comeager ensures that it intersects each

Vi, so the fact that G y [y]FY
G

is minimal implies that the pull-
back of each Vi through φ is non-empty. The topological transitivity

of G y X × Xg therefore implies that ∆
X×Xg

G (
∏

i<2 Ui × φ−1(Vi)) is
non-empty, and since φ is a homomorphism, this set is contained in
∆X×Y
G (

∏
i<2 Ui × Vi), so the latter set is non-empty as well.

In light of Proposition 4.2.1, the following facts can be viewed as local
refinements of further alternative characterizations of mild mixing:

Proposition 4.2.3. Suppose that G y X is a continuous action of
a topological group on a topological space and g ∈ (

⋃
d∈Z+ G{1,...,d})N.

Then G y X × Xg is topologically transitive if and only if G y X is
{IP(sn(g))IP(sn(g))−1 | n ∈ N}-transitive.

Proof. Note that if Gy Y is topologically transitive, then Gy X×Y
is topologically transitive if and only if ∆X

G (U × V )∩∆Y
G(W ×W ) 6= ∅

for all non-empty open sets U, V ⊆ X and W ⊆ Y , since ∆X
G (U ×V )∩

∆Y
G(W × gW ) = g(∆X

G (U × g−1V ) ∩ ∆Y
G(W ×W )) for all g ∈ G. In

particular, this holds when Y = Xg, since Proposition 1.1.4 ensures
that Gy Xg is minimal.

To see (=⇒), suppose that n ∈ N and V,W ⊆ X are non-empty
open sets, and fix an open neighborhood U ⊆ G of 1G and non-
empty open sets V ′,W ′ ⊆ X such that UV ′ ⊆ V and UW ′ ⊆ W .

Then ∆X
G (V ′ ×W ′) ∩ ∆

Xg

G ((U−1 × N(0)n)/Eg × (U−1 × N(0)n)/Eg) 6=
∅. But U∆X

G (V ′ × W ′)U−1 = ∆X
G (UV ′ × UW ′), and it follows from

Proposition 1.2.1 that ∆
Xg

G ((U−1 × N(0)n)/Eg × (U−1 × N(0)n)/Eg) =
U−1IP(sn(g))IP(sn(g))−1U , so ∆X

G (V ×W )∩IP(sn(g))IP(sn(g))−1 6= ∅.
To see (⇐=), suppose that s ∈ Tg, and U ⊆ G and V,W ⊆ X are

non-empty open sets, and observe that ∆X
G ((Ugs)−1V × (Ugs)−1W ) ∩

IP(s|s|(g))IP(s|s|(g))−1 6= ∅. Noting that UgsIP(sng)IP(sng)−1(Ugs)−1

⊆ ∆
Xg

G ((U×Ns)/Eg×(U×Ns)/Eg) by Proposition 1.2.1, the fact that
∆X
G ((Ugs)−1V × (Ugs)−1W ) = (Ugs)−1∆X

G (V ×W )Ugs ensures that

∆X
G (V ×W ) ∩∆

Xg

G ((U ×Ns)/Eg × (U ×Ns)/Eg) 6= ∅.
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Proposition 4.2.4. Suppose that G y X is a continuous action of a
locally-compact Polish group on a Polish space and g ∈ (

⋃
d∈Z+ G{1,...,d})N.

Then the following are equivalent:

(1) The action Gy X×Xg is topologically transitive and the action
Gy X has no open orbits.

(2) The action G y X is topologically transitive and expansively
{gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈ N}-recurrent.

Proof. Note that G y X × Xg is topologically transitive if and only
if G y X is {IP(sn(g))IP(sn(g))−1 | n ∈ N}-transitive, by Propo-
sition 4.2.3. The latter condition holds if and only if G y X is
{gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈ N}-transitive, by Proposi-
tion 4.1.1. The conjunction of this with the inexistence of open orbits
is equivalent to the expansive {gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈
N}-transitivity of G y X, by Proposition 4.1.3 and the comment im-
mediately preceding it. And the latter condition holds if and only if
G y X is expansively {gIP(sn(g))IP(sn(g))−1 | g ∈ G and n ∈ N}-
recurrent and topologically transitive, by Proposition 4.1.2.

As a consequence, we obtain a necessary and sufficient condition for
an intransitive minimal continuous action to be mildly mixing:

Theorem 4.2.5. Suppose that Gy X is an intransitive minimal con-
tinuous action of a locally-compact Polish group on a Polish space.
Then the following are equivalent:

(1) The action Gy X is mildly mixing.
(2) There is a continuous disjoint union of actions that is obtained

via expansive cutting and stacking that is not σ-expansively
{
⋃
g∈G gSg−1 | S ∈ Smm}-transient but admits a continuous

stabilizer-preserving homomorphism to Gy X.

Proof. Fix an exhaustive increasing sequence (Kn)n∈N of compact sub-
sets of G.

To see (1) =⇒ (2), note that if S ∈
⋃
Smm, then there exist g ∈ G

and a (Kn)n∈N-expansive sequence g ∈ (
⋃
d∈Z+ G{1,...,d})N for which

gIP(g)IP(g)−1 ⊆ S. As the intransitivity and minimality of G y X
rule out the existence of open orbits, Proposition 4.2.4 ensures that
Gy X is expansively {gIP(g)IP(g)−1}-recurrent, so Proposition 2.1.2
implies that G y X is not σ-expansively (

⋃
g∈G g{S}g−1)-transient,

thus Theorem 2.1.8 yields the desired disjoint union and embedding.
To see (2) =⇒ (1), given a sequence g ∈ (

⋃
d∈Z+ G{1,...,d})N that is

(Kn)n∈N-expansive, observe that if g ∈ G, n ∈ N, and S = gIP(sn(g))
IP(sn(g))−1, thenGy X is not σ-expansively

⋃
g∈G g{S}g−1-transient,
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so the minimality ofGy X ensures that it is expansively {S}-recurrent.
As G y X is topologically transitive, Proposition 4.2.4 implies that
Gy X×Xg is topologically transitive, so Proposition 4.2.1 yields that
Gy X is mildly mixing.

We now establish the corresponding anti-basis theorem:

Theorem 4.2.6. Suppose that G is a Polish group that admits a com-
patible two-sided-invariant metric and A is a non-empty class of mildly-
mixing minimal continuous G-actions on Polish spaces of cardinality
at least two that is closed under restrictions to G-invariant dense Gδ

sets. Then any basis B for A under continuous homomorphism has
cardinality at least the additivity of the meager ideal.

Proof. Exactly as in the proof of Theorem 4.1.15, albeit without the
need for Proposition 4.1.14.

4.3. Strong mixing. We begin this section with two local refinements
of characterizations of strong mixing:

Proposition 4.3.1. Suppose that G y X is a continuous action of a
locally-compact Polish group on a topological space. Then G y X is
strongly mixing if and only if it is (

⋃
Ssm)-transitive.

Proof. This is a straightforward consequence of the fact that a closed
subset of G is compact if and only if it does not contain a closed discrete
infinite subset.

Proposition 4.3.2. Suppose that G y X is a continuous action of
a locally-compact Polish group on a Polish space. Then G y X is
strongly mixing and has no open orbits if and only if it is topologically
transitive and expansively (

⋃
Ssm)-recurrent.

Proof. Note that Gy X is strongly mixing if and only if it is (
⋃
Ssm)-

transitive, by Proposition 4.3.1. The conjunction of the latter condi-
tion with the inexistence of open orbits is equivalent to the expansive
(
⋃

Ssm)-transitivity of Gy X, by Proposition 4.1.3 and the comment
immediately preceding it. And the latter condition holds if and only if
G y X is expansively (

⋃
Ssm)-recurrent and topologically transitive,

by Propositions 4.1.2 and 4.1.3.

As a consequence, we obtain a necessary and sufficient condition for
an intransitive minimal continuous action to be strongly mixing:

Theorem 4.3.3. Suppose that Gy X is an intransitive minimal con-
tinuous action of a locally-compact Polish group on a Polish space.
Then the following are equivalent:
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(1) The action Gy X is strongly mixing.
(2) There is a continuous disjoint union of actions obtained via

expansive cutting and stacking that is not σ-expansively {
⋃
g∈G

gSg−1 | S ∈ Ssm}-transient but admits a continuous stabilizer-
preserving homomorphism to Gy X.

Proof. To see (1) =⇒ (2), note that the intransitivity and minimality of
Gy X ensures that there are no open orbits, in which case Proposition
4.3.2 implies that Gy X is expansively (

⋃
Ssm)-recurrent, so Proposi-

tion 2.1.2 implies that Gy X is not σ-expansively {
⋃
g∈G gSg−1 | S ∈

Ssm}-transient, thus Theorem 2.1.8 yields the desired disjoint union
and continuous stabilizer-preserving homomorphism.

To see (2) =⇒ (1), observe that G y X is not σ-expansively
{
⋃
g∈G gSg−1 | S ∈ Ssm}-transient, so the minimality of G y X en-

sures that it is expansively (
⋃
Ssm)-recurrent. As Gy X is topologi-

cally transitive, Proposition 4.3.2 implies that it is strongly mixing.
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