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We study the Borel structure of quotient spaces of the form X/E, where X
is a Polish space and E is a countable Borel equivalence relation on X. Our
main result is the classification of finite Borel equivalence relations on the non-
smooth hyperfinite quotient space 2N/E0. In particular, we see that for each
natural number n ∈ N, there are only finitely many Borel equivalence relations
on 2N/E0 whose classes are all of cardinality n, up to Borel isomorphism. We
achieve our main result by classifying Borel cocycles from hyperfinite equiv-
alence relations into finite groups, up to Borel reducibility. This, in turn,
depends on a parameterized family of embedding theorems in the style of
Glimm-Effros and Dougherty-Jackson-Kechris.

1. Introduction
A topological space X is Polish if it is separable and completely metrizable. The
Borel subsets of such a space are those which can be obtained from the open sets via
countable unions and complements. A function f : X → Y between Polish spaces
is said to be Borel if the preimages of open sets under f are Borel.

The study of Borel sets and functions on Polish spaces is a central focus of de-
scriptive set theory. Part of the motivation for this study comes from the fact that
numerous spaces appearing throughout mathematics are Polish. There are other
objects, however, which are naturally realized not as Polish spaces, but as quotients
of the form X/E, where X is a Polish space and E is a countable Borel equivalence
relation on X.

The space X/E inherits a Borel structure from X. We say that a set B ⊆ X/E

is Borel if its lifting B̃ = {x ∈ X : [x]E ∈ B} is Borel. A transversal of E is a
set B ⊆ X which intersects every E-class in exactly one point. We say that E is
smooth if it admits a Borel transversal. If E is smooth, then the quotient Borel
structure on X/E is standard, i.e., it is induced by a Polish topology on X/E. If E
is non-smooth, then Theorem 1 of Harrington-Kechris-Louveau [2] can be used to
show that the quotient Borel structure on X/E is not even countably generated.

Suppose now that E and F are countable Borel equivalence relations on Polish
spaces X and Y . We say that a set R ⊆ X/E × Y/F is Borel if its lifting R̃ =
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{(x, y) ∈ X × Y : ([x]E , [y]F ) ∈ R} is Borel. It is important here that we do not
simply take the product of the σ-algebras on X/E and Y/F (i.e., the σ-algebra
generated by the sets of the form A × B, where A ⊆ X/E and B ⊆ Y/F are
Borel), for if either E or F is non-smooth, then the product of the σ-algebras is far
too small (e.g., if E is non-smooth, then it does not even contain the graph of a
countable-to-one function).

We say that a function f : X/E → Y/F is Borel if its graph is Borel. This is
equivalent to the existence of a Borel lifting, i.e., a Borel function f̃ : X → Y such
that ∀x ∈ X (f̃(x) ∈ f([x]E)). One could also ask that the pre-image of Borel
subsets of Y/F are necessarily Borel subsets of X/E. While the former requirement
implies the latter, as soon as X is uncountable and F is non-smooth, it is consistent
with ZFC that the converse is false.

We say that E is hyperfinite if it is of the form
S

n∈N Fn, where F0 ⊆ F1 ⊆ · · ·
are finite Borel equivalence relations on X. The typical example is the equivalence
relation E0 on 2N, which is given by

αE0β ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)).

Theorem 1 of Dougherty-Jackson-Kechris [1] implies that if E and F are non-
smooth, hyperfinite equivalence relations, then X/E and Y/F are Borel isomorphic,
i.e., there is a Borel bijection π : X/E → Y/F . In particular, all such quotient spaces
are Borel isomorphic to 2N/E0. We therefore refer to this as the (non-smooth)
hyperfinite quotient space. Theorem 1 of Harrington-Kechris-Louveau [2] implies
that 2N/E0 is the minimal quotient space whose Borel structure is not countably
generated, in the sense that if E is non-smooth, then there is a Borel injection of
2N/E0 into X/E.

Suppose now that E ⊆ F are countable Borel equivalence relations on X. We
use F/E to denote the equivalence relation on X/E given by

[x]E(F/E)[y]E ⇔ xFy.

Given Ei ⊆ Fi on Xi, we say that F1/E1 is isomorphic to F2/E2, or F1/E1
∼=B

F2/E2, if there is a Borel isomorphism π : X1/E1 → X2/E2 such that

∀x1, y1 ∈ X1/E1 (x1(F1/E1)y1 ⇔ π(x1)(F2/E2)π(y1)).

The main goal of this paper is to give a complete classification of finite Borel equiv-
alence relations on 2N/E0, up to Borel isomorphism.

Given a positive natural number n, we say that F is of index n over E, or
[F : E] = n, if every equivalence class of F/E is of cardinality n. In this case,
we say that F/E is smooth if X/E can be partitioned into n Borel transversals of
F/E. It follows easily from Theorem 1 of Dougherty-Jackson-Kechris [1] that all
smooth equivalence relations on the hyperfinite quotient space whose classes are of
cardinality n are Borel isomorphic. As it turns out, one obtains a complete invariant
for Borel equivalence relations on the hyperfinite quotient space whose classes are of
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cardinality n by measuring the fashion in which the equivalence relation in question
fails to be smooth.

Suppose that E ⊆ F are countable Borel equivalence relations on a Polish space
X and [F : E] = n. We define Enum(E,F ) ⊆ Xn by

Enum(E,F ) = {(x1, . . . , xn) ∈ Xn : [x1]F = [x1]E ∪ · · · ∪ [xn]E}.

We say that a set S ⊆ Sn is an essential value of (E,F ) if, for every cover B of
Enum(E,F ) by countably many Borel sets, there exists B ∈ B such that

∀σ ∈ S ∃(x1, . . . , xn) 6= (y1, . . . , yn) ∈ B ∀1 ≤ i ≤ n (xiEyσ−1(i)).

We use Ess(E,F ) to denote the family of all essential values of (E,F ). Our main
theorem is that this family is a complete invariant for Borel isomorphism:

Theorem A. Suppose that X1 and X2 are Polish spaces, E1 ⊆ F1 and E2 ⊆ F2

are non-smooth, hyperfinite equivalence relations on X1 and X2, and [F1 : E1] =
[F2 : E2] = n. Then

F1/E1
∼=B F2/E2 ⇔ Ess(E1, F1) = Ess(E2, F2).

As there are only finitely many possibilities for Ess(F ), we therefore obtain:

Theorem B. There are only finitely many Borel equivalence relations on the non-
smooth hyperfinite quotient space whose classes are of cardinality n.

Our proof of Theorem A relies primarily upon an investigation of Borel cocy-
cles. Suppose that G is a countable group. A function ρ : E → G is a cocycle if
∀xEyEz (ρ(x, z) = ρ(x, y)ρ(y, z)). For each B ⊆ X and x ∈ B, let

Val(ρ,B, x) = {ρ(x, y) : xEy and x 6= y and y ∈ B},

and set Val(ρ,B) =
S

x∈B Val(ρ,B, x). We say that a set H ⊆ G is an essential
value of a Borel cocycle ρ : E → G if, for every cover B of X by countably many
Borel sets, there exists B ∈ B such that H ⊆ Val(ρ,B). We use Ess(ρ) to denote
the family of all essential values of ρ.

We use E∗ to denote the equivalence relation on Enum(E,F ) which is given
by (x1, . . . , xn)E∗(y1, . . . , yn) ⇔ x1Ey1, and we use F ∗ to denote the equivalence
relation on Enum(E,F ) which is given by (x1, . . . , xn)F ∗(y1, . . . , yn) ⇔ x1Fy1.
Then the projection (x1, . . . , xn) 7→ x1 induces a Borel isomorphism of F ∗/E∗ with
F/E. The advantage of considering F ∗/E∗ in place of F/E is that it comes equipped
with a cocycle into Sn, which is defined by setting ρ(E,F )((x1, . . . , xn), (y1, . . . , yn))
equal to the unique σ ∈ Sn such that ∀1 ≤ i ≤ n (xiEyσ−1(i)). It is easy to see that
the families of essential values of F/E and ρ(E,F ) are one and the same.

Suppose that ρ1 : E1 → G1 and ρ2 : E2 → G2 are Borel cocycles. We say that ρ1

is Borel reducible to ρ2, or ρ1 ≤B ρ2, if there is a Borel π : X1 → X2 such that:



4 B.D. Miller

1. ∀x, y ∈ X1 (xE1y ⇔ π(x)E2π(y));

2. ∀xE1y (ρ1(x, y) = ρ2(π(x), π(y))).

We say that ρ : E → G has everywhere full range if Val(ρ,X, x) = G, for all x ∈ X.
We actually obtain Theorem A as a corollary of the following fact:

Theorem C. Suppose that X1 and X2 are Polish spaces, E1 and E2 are non-
smooth hyperfinite equivalence relations on X1 and X2, G is a finite group, and
ρ1 : E1 → G and ρ2 : E2 → G are Borel cocycles with everywhere full ranges. Then

ρ1 ≤B ρ2 ⇔ Ess(ρ1) ⊆ Ess(ρ2).

We say that ρ1 is Borel embeddable into ρ2, or ρ1 vB ρ2, if there is an injective
Borel reduction of ρ1 into ρ2. The proof of Theorem C consists essentially of two
separate embedding theorems. The first is a Glimm-Effros style theorem which
describes the circumstances under which a Borel cocycle ρ : E → G has a given set
H ⊆ G as an essential value, in terms of whether ρ contains a copy of a canonical
Borel cocycle ρH : E0 → H, whose somewhat technical description we give in §2:

Theorem D. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X, G is a countable group, ρ : E → G is a Borel cocycle, and H ≤ G.
Then the following are equivalent:

1. H is an essential value of ρ;

2. ρH vB ρ.

The second ingredient in the proof of Theorem C is the following Dougherty-
Jackson-Kechris style embedding theorem:

Theorem E. Suppose that X is a Polish space, E is a hyperfinite equivalence re-
lation on X, G is a countable group, H ≤ G, and ρ : E → H is a Borel cocycle.
Then ρ vB ρG.

We prove Theorem D in §2, Theorem E in §3, Theorem C in §4, and Theorems A
and B in §5. In §6, we turn our attention to a measure-theoretic problem. The main
result of Shelah-Weiss [5] is a characterization of the circumstances under there is an
atomless, E-ergodic, E-quasi-invariant probability measure. For 2 ≤ [F : E] < ℵ0,
we characterize the circumstances under which there is an atomless, E-ergodic,
F -quasi-invariant probability measure.

2. Glimm-Effros-style embeddings
In this section, we describe the circumstances under which a given set is among the
essential values of a Borel cocycle. We begin by giving “combinatorially simple”
examples of cocycles with a given essential value.
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For each countable group H, fix a sequence 〈gH
0 , g

H
1 , . . .〉 of elements of H in

which every element appears infinitely often. Let g∅H = 1H , and set

gs
H = (gH

0 )s(0)(gH
1 )s(1) · · · (gH

n )s(n),

for each n ∈ N and s ∈ 2n+1. Define a Borel cocycle ρH : E0 → H by setting

ρH(sα, tα) = gs
H(gt

H)−1,

where s, t ∈ 2<N are of the same length and α ∈ 2N.

Proposition 1. Suppose that H is a countable group and B ⊆ 2N is a non-meager

Borel set. Then H ⊆ Val(ρH , B), thus H is an essential value of ρH .

Proof. Suppose that h ∈ H, fix s ∈ 2<N such that B is comeager in Ns, and fix
k ∈ N such that

gH
k+|s| = (gs

H)−1h−1gs
H .

As B is comeager in Ns, there exists α ∈ 2N such that s0k0α, s0k1α ∈ B. Then

ρH(s0k0α, s0k1α) = gs0k0
H (gs0k1

H )−1

= gs
H(gH

k+|s|)
−1(gs

H)−1

= h,

so h ∈ Val(ρH , B). As h ∈ H was arbitrary, it follows that H ⊆ Val(ρH , B). 2

Remark 2. The above argument really shows that H = Val(ρH , B, x), for all but
meagerly many x ∈ B. We will not need this stronger fact, however.

We will now show that ρH is the minimal Borel cocycle with essential value H:

Theorem 3. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a countable group, ρ : E → G is a Borel cocycle, and H ≤ G.

Then the following are equivalent:

1. H is an essential value of ρ;

2. ρH vB ρ.

Proof. To see (2) ⇒ (1), suppose that π : 2N → X is a Borel embedding of ρH into
ρ, and B is a cover of X by countable many Borel sets. Then π−1[B] is a cover of 2N

by countably many Borel sets, thus Proposition 1 ensures that there exists B ∈ B
such that H ⊆ Val(ρH , π

−1[B]) = Val(ρ,B), thus H is an essential value of ρ.
It remains to prove (1) ⇒ (2). Let IH denote the σ-ideal generated by Borel sets

B ⊆ X such that H 6⊆ Val(ρ,B). Fix a countable group Γ of Borel automorphisms
of X such that E = EX

Γ , as well as an increasing sequence ∆0 ⊆ ∆1 ⊆ · · · of finite,
symmetric neighborhoods of 1Γ such that Γ =

S
n∈N ∆n. By standard change of

topology results (see, for example, §13 of Kechris [3]), we can assume that X is a
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zero-dimensional Polish space, Γ acts by homeomorphisms, and for each γ ∈ Γ and
h ∈ H, the set {x ∈ X : ρ(x, γ · x) = h} is clopen. We will find clopen sets An ⊆ X

and γn ∈ Γ, from which we define δs : X → X by δ∅ = id and

δs = γ
s(0)
0 . . . γs(n)

n ,

for s ∈ 2n+1. We will ensure that, for all n ∈ N, the following conditions hold:

(a) An 6∈ IH ;

(b) An+1 ⊆ An ∩ γ−1
n [An];

(c) ∀x ∈ An+1 (ρ(γn · x, x) = gH
n );

(d) ∀s, t ∈ 2n ∀δ ∈ ∆n (δδs[An+1] ∩ δtγn[An+1] = ∅);

(e) ∀s ∈ 2n+1 (diam(δs[An+1]) ≤ 1/n).

We begin by setting A0 = X. Suppose now that we have found 〈Ai〉i≤n and
〈γi〉i<n. For each γ ∈ Γ, let Uγ denote the set of x ∈ An ∩ γ−1[An] such that

ρ(γ · x, x) = gH
n and ∀s, t ∈ 2n ∀δ ∈ ∆n (γ · x 6= δ−1

t δδs · x).

Our choice of topology ensures that each of these sets is open.

Lemma 4. There exists γ ∈ Γ such that Uγ /∈ IH .

Proof. It is enough to show that the set

B = An \
[
γ∈Γ

Uγ

is in IH . Observe that if x, y ∈ B, xEy, and ρ(y, x) = gH
n , then there exists γ ∈ Γ

such that γ · x = y, and since x 6∈ Uγ , we can find s, t ∈ 2n and δ ∈ ∆n such that
y = γ ·x = δ−1

t δδs ·x. It follows that for each x ∈ B, there are at most k = 22n|∆n|
points y ∈ B ∩ [x]E such that ρ(y, x) = gH

n . Define a directed graph G on B by
setting

(x, y) ∈ G ⇔ ρ(y, x) = gH
n .

Then the vertex degree of G is at most k, thus Proposition 4.6 of Kechris-Solecki-
Todorčević [4] ensures that there is a partition of B into Borel sets B0, B1, . . . , Bk

which are G-discrete. This implies that

gH
n 6∈ Val(ρ,B0) ∪ · · · ∪Val(ρ,Bk),

and it follows that B ∈ IH . 2

By Lemma 4, there exists γ ∈ Γ such that Uγ /∈ IH . Set γn = γ. As Γ acts by
homeomorphisms, we can write Uγ as the union of countably many clopen sets U
which satisfy the following two conditions:
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(d′) ∀s, t ∈ 2n ∀δ ∈ ∆n (δδs[U ] ∩ δtγn[U ] = ∅);

(e′) ∀s ∈ 2n+1 (diam(δs[U ]) ≤ 1/n).

Fix such a U which is not in IH , and set An+1 = U .
This completes the recursive construction. For each s ∈ 2n, put Bs = δs[An].

Conditions (b) and (e) ensure that, for each α ∈ 2N, the sets Bα|0, Bα|1, . . . are
decreasing and of vanishing diameter, and since they are clopen, they have singleton
intersection. Define π : 2N → X by

π(α) = the unique element of
\
n∈N

Bα|n.

It follows from conditions (d) and (e) that π is a continuous injection.

Lemma 5. Suppose that n ∈ N, s ∈ 2n, and α ∈ 2N. Then π(sα) = δs · π(0nα).

Proof. Simply observe that

{π(sα)} =
\
i≥n

B(sα)|i

=
\
i≥0

δsδ0n(α|i)[Ai+n]

= δs

2
4\

i≥0

δ0n(α|i)[Ai+n]

3
5

= δs

2
4\

i≥n

B(0nα)|i

3
5

= {δs · π(0nα)},

thus π(sα) = δs · π(0nα). 2

To see that π is an embedding of ρH into ρ, we must check the following:

(i) ∀α, β ∈ 2N (αE0β ⇒ π(α)Eπ(β));

(ii) ∀α, β ∈ 2N (π(α)Eπ(β) ⇒ αE0β);

(iii) ∀(α, β) ∈ E0 (ρH(α, β) = ρ(π(α), π(β))).

To see (i), suppose that αE0β, and fix n ∈ N such that ∀m ≥ n (α(m) = β(m)).
Lemma 5 then ensures that δ−1

α|n · π(α) = δ−1
β|n · π(β), so π(α)Eπ(β).

To see (ii), it is enough to show that if α(n) 6= β(n), then there is no δ ∈ ∆n

such that δ · π(α) = π(β). As ∆n is symmetric, we can assume that α(n) = 0
and β(n) = 1. Suppose, towards a contradiction, that there exists δ ∈ ∆n with
δ · π(α) = π(β). Then π(α) ∈ δα|n[An+1] and π(β) ∈ δβ|nγn[An+1], so π(β) ∈
δδα|n[An+1] ∩ δβ|nγn[An+1], which contradicts condition (d).
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To see (iii), suppose that αE0β, and fix n ∈ Z+ such that ∀m ≥ n (α(m) = β(m)).
Lemma 5 then ensures that δ−1

α|n · π(α) = δ−1
β|n · π(β), and condition (c) ensures that

ρ(π(α), π(β)) = ρ(π(α), δ−1
α|n · π(α))ρ(δ−1

β|n · π(β), π(β))

= ρ(δ−1
α|0 · π(α), δ−1

α|1 · π(α)) · · · ρ(δ−1
α|(n−1) · π(α), δ−1

α|n · π(α))

ρ(δ−1
β|n · π(β), δ−1

β|(n−1) · π(β)) · · · ρ(δ−1
β|1 · π(β), δ−1

β|0 · π(β))

= (gH
0 )α(0) · · · (gH

n−1)
α(n−1)(gH

n−1)
−β(n−1) · · · (gH

0 )β(0)

= g
α|n
H (gβ|n

H )−1

= ρH(α, β),

which completes the proof of the theorem. 2

3. Dougherty-Jackson-Kechris-style embeddings
In this section, we show that the cocycles ρG of §2 contain copies of all Borel cocycles
from hyperfinite equivalence relations into G.

A selector for an equivalence relation E on X is a function f : X → X such that:

1. ∀x, y ∈ X (xEy ⇒ f(x) = f(y));

2. ∀x ∈ X (xEf(x)).

A coherent sequence of Borel selectors for F0 ⊆ F1 ⊆ · · · is a sequence 〈f0, f1, . . .〉,
where fi is a Borel selector for Fi, such that f0[X] ⊇ f1[X] ⊇ · · · .

Proposition 6. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, H is a countable group, and ρ : E → H is a Borel cocycle.

Then there are finite Borel equivalence relations ∆(X) = F0 ⊆ F1 ⊆ · · · and a

coherent sequence of Borel selectors 〈f0, f1, . . .〉 such that:

1. E =
S

n∈N Fn;

2. ∀n ∈ N∀x ∈ X ∃y ∈ X ([x]Fn+1 = [x]Fn
∪ [y]Fn

);

3. ∀n ∈ N ∀x ∈ X (fn+1(x) 6= fn(x) ⇒ ρ(fn+1(x), fn(x)) = gH
n ).

Proof. Fix finite Borel equivalence relations F ′
0 ⊆ F ′

1 ⊆ · · · such that E =S
n∈N F

′
n, as well as a Borel linear ordering ≤ of X. We define Fn and fn recursively,

beginning with F0 = ∆(X) and f0 = id.
Suppose that we have already found F0, . . . , Fn and f0, . . . , fn. For each x ∈ X,

let kn(x) be the least natural number k such that [x]F ′
k
6⊆ [x]Fn

, and put

kn([x]Fn) = min{kn(y) : y ∈ [x]Fn}.

Let ϕn(x) be the ≤-least y ∈ [x]Fn
such that kn(y) = kn([x]Fn

), and let ψn(x) be
the ≤-least element of the F ′

kn([x]Fn )-class of ϕn(x) which is not in [x]Fn
. We say

that (x, y) ∈ X ×X is a good pair if the following conditions are satisfied:
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1. x = ϕn(x) = ψn(y);

2. y = ϕn(y) = ψn(x);

3. x < y;

4. ρ(x, y) = gH
n .

Define F ′′
n on X by

xF ′′
n y ⇔ x = y or ((x, y) is a good pair),

let Fn+1 be the equivalence relation generated by Fn and F ′′
n , set

f ′n+1(x) =
�
ψn(x) if x is the 2nd coordinate of a good pair,
x otherwise,

and define fn+1 = f ′n+1 ◦ fn.
It is clear that F0 ⊆ F1 ⊆ · · · are finite Borel equivalence relations and

S
n∈N Fn ⊆

E. Suppose, towards a contradiction, that E 6=
S

n∈N Fn, let k be the least natural
number such that F ′

k 6⊆
S

n∈N Fn, fix x ∈ X such that [x]F ′
k
6⊆
S

n∈N[x]Fn , and fix
` ≥ k sufficiently large that [y]F`

=
S

n∈N[y]Fn
, for all y ∈ [x]F ′

k
. Note that the

definition of F` ensures that each such [y]F`
is contained in [x]F ′

k
. Let y be the

≤-least element of [x]F ′
k
, let z be the ≤-least element of [x]F ′

k
\ [y]F`

, and fix m ≥ `

with ρ(y, z) = gH
m . Then yF ′′

mz, thus yFm+1z, the desired contradiction. 2

We are now ready for the main result of this section:

Theorem 7. Suppose that X is a Polish space, E is a hyperfinite equivalence

relation on X, H ≤ G are countable groups, and ρ : E → H is a Borel cocycle.

Then ρ vB ρG.

Proof. As in Proposition 6, fix finite Borel equivalence relations F0 ⊆ F1 ⊆ · · ·
and a coherent sequence 〈f0, f1, . . .〉 of Borel selectors such that E =

S
n∈N Fn. Fix

a separating family U0, U1, . . . for X. For each x ∈ X, let x|0 = ∅ and x|(n+ 1) =
χU0(x) . . . χUn

(x). For each n ∈ N and s ∈ 2n, define ϕs : X → 2n by

ϕs(x) =
�
y|n if xFny and ∀i < n (fi+1(y) = fi(y) ⇔ s(i) = 0),
0n if no such y exists.

Our embedding π : X → 2N will be of the form π(x) =
S
πn(x), where

πn(x) =
M
i<n

ui(x)vi(x)wi(x).

Here, the function un : X → (2n)2
n

is given by

un(x) =
M
s∈2n

ϕs(x)|n,
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and the function vn : X → 2 is given by

vn(x) =
�

0 if fn+1(x) = fn(x),
1 otherwise.

We define wn : X → 2kn+1−k′n by induction on n. We begin by setting k0 = 0.
Given kn, set k′n = kn + n · 2n + 1, put π′n(x) = πn(x)un(x)vn(x), and define

ψn(x) = (gπ′n(fn(x))
G )−1(gH

n )−1g
π′n(fn+1(x))
G .

As there are only finitely many possibilities for ψn(x), it follows that there exists
k ≥ k′n such that every g ∈ ψn[X] is of the form gG

i , for some k′n ≤ i < k. Let
kn+1 be the least such k. If fn+1(x) = fn(x), set wn(x) = 0kn+1−k′n . Otherwise, let
` ≥ k′n be least such that ψn(x) = gG

` , and put wn(x) = 0`−k′n10kn+1−`−1.
To see that π is injective, suppose that π(x) = π(y), and observe that for all

n ∈ N, if s =
L

i<n vi(x) =
L

i<n vi(y), then x|n = ϕs(x) = ϕs(y) = y|n, so x = y,
thus π is injective.

To see that xEy ⇒ π(x)E0π(y), simply note that if xEy, then there exists n ∈ N
such that xFny. It then follows that um(x)vm(x)wm(x) = um(y)vm(y)wm(y), for
all m ≥ n, thus π(x)E0π(y).

To see that π(x)E0π(y) ⇒ xEy, suppose that π(x)E0π(y), and fix n ∈ N such
that um(x)vm(x)wm(x) = um(y)vm(y)wm(y), for all m ≥ n. For each m ≥ n, set
sm =

L
i<m vi(fn(x)) =

L
i<m vi(fn(y)), and observe that fn(x)|m = ϕsm

(x) =
ϕsm

(y) = fn(y)|m, so fn(x) = fn(y), thus xEy.
To see that xEy ⇒ ρ(x, y) = ρG(π(x), π(y)), note that if xFn+1y, then

ρ(x, y) = ρ(f0(x), f1(x)) · · · ρ(fn(x), fn+1(x))ρ(fn+1(y), fn(y)) · · · ρ(f1(y), f0(y)),

so it is enough to show that

ρ(fn+1(x), fn(x)) = ρG(π(fn+1(x)), π(fn(x))),

for all x ∈ X and n ∈ N. Towards this end, observe that if fn+1(x) 6= fn(x), then

ρG(π(fn+1(x)), π(fn(x))) = g
πn+1(fn+1(x))
G (gπn+1(fn(x))

G )−1

= g
π′n(fn+1(x))
G (g0k′nwn(fn(x))

G )−1(gπ′n(fn(x))
G )−1

= g
π′n(fn+1(x))
G ψn(x)−1(gπ′n(fn(x))

G )−1

= g
π′n(fn+1(x))
G (gπ′n(fn+1(x))

G )−1gH
n

g
π′n(fn(x))
G (gπ′n(fn(x))

G )−1

= gH
n

= ρ(fn+1(x), fn(x)).

It now follows that π is the desired embedding of ρ into ρG. 2
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As a corollary, we obtain the following:

Theorem 8. Suppose that X1 and X2 are Polish spaces, E1 and E2 are countable

Borel equivalence relations on X1 and X2, G is a countable group, ρ1 : E1 → G1

and ρ2 : E2 → G2 are Borel cocycles, E1 is hyperfinite, and G1 is an essential value

of ρ2. Then ρ1 vB ρ2.

Proof. Simply note that Theorem 7 implies that ρ1 vB ρG1 , and Theorem 3 implies
that ρG1 vB ρ2. 2

4. Reducibility of Borel cocycles
In this section, we classify Borel cocycles from hyperfinite equivalence relations into
finite groups up to Borel reducibility. We need first several preliminaries.

We begin by noting that if H is an essential value of a Borel cocycle ρ : E → G,
then so too is the group 〈H〉 generated by H. This is a consequence of:

Proposition 9. Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X, G is a countable group, H ⊆ G is non-empty, and ρ : E → G

is a Borel cocycle. Then IH = I〈H〉.

Proof. It is enough to show that I〈H〉 ⊆ IH , or equivalently, that

∀B ⊆ X Borel (〈H〉 6⊆ Val(ρ,B) ⇒ B ∈ IH).

We will show that if B ⊆ X is a Borel set which is not in IH , then 〈H〉 ⊆ Val(ρ,B).
As Val(ρ,B) contains H and is therefore non-empty, it is enough to show that if
h1, . . . , hn ∈ H and ε1, . . . , εn ∈ {±1}, then g = hε1

1 · · ·hεn
n is in Val(ρ,B). Towards

this end, fix a countable group Γ of Borel automorphisms of X which generates E.

Lemma 10. There are Borel sets B0, B1, . . . , Bn ⊆ B and γ1, . . . , γn ∈ Γ such that:

1. ∀i ≤ n (Bi 6∈ IH);

2. ∀i < n∀x ∈ Bi+1 (ρ(γi+1 · x, x) = h
εi+1
i+1 );

3. ∀i < n (Bi+1, γi+1[Bi+1] ⊆ Bi);

4. ∀i < n (Bi+1 ∩ γi+1[Bi+1] = ∅).

Proof. We begin by setting B0 = B. Suppose now that i < n and we have found
B0, . . . , Bi and γ1, . . . , γi. Define Ai+1 ⊆ Bi by

Ai+1 = {x ∈ Bi : h−εi+1
i+1 ∈ Val(ρ,Bi, x)}.

As hi+1 6∈ Val(ρ,Bi \Ai+1), it follows that Ai+1 6∈ IH . For each γ ∈ Γ, set

Aγ
i+1 = {x ∈ Ai+1 : γ · x ∈ Bi and x 6= γ · x and ρ(γ · x, x) = h

εi+1
i+1 },

and note that Ai+1 =
S

γ∈ΓA
γ
i+1, so there exists γi+1 ∈ Γ such that Aγi+1

i+1 6∈ IH .
As this latter set is the union of countably many Borel sets A with the property
that A ∩ γi+1[A] = ∅, it follows that there is a Borel set Bi+1 ⊆ A

γi+1
i+1 , outside of

IH , such that Bi+1 ∩ γi+1[Bi+1] = ∅. 2
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Fix B = B0 ⊇ · · · ⊇ Bn and γ1, . . . , γn ∈ Γ as in Lemma 10. As Bn 6∈ IH , it is
non-empty, so we can fix some xn ∈ Bn. For each i < n, set xi = γi+1 · · · γn ·xn, so
that xi ∈ Bi \Bi+1, thus x0, . . . , xn are pairwise distinct. Finally, observe that

ρ(x0, xn) = ρ(x0, x1) · · · ρ(xn−1, xn)

= hε1
1 · · ·hεn

n

= g,

thus g ∈ Val(ρ,B). 2

We will use the following fact to organize the domains of our reductions:

Proposition 11. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, G is a finite group, and ρ : E → G is a Borel cocycle. Then

there is a countable family B of Borel subsets of X such that:

1. The sets [B]E , for B ∈ B, partition X;

2. For each B ∈ B, the set Val(ρ,B) is an essential value of ρ|(E|B).

Proof. We begin by defining a family BB corresponding to each Borel set B ⊆ X.
If Val(ρ,B) is an essential value of ρ|(E|B), then we set BB = {B}. Otherwise,
there are Borel sets B0, B1, . . . such that B =

S
n∈N Bn and Val(ρ,Bn) ( Val(ρ,B),

for all n ∈ N. In this case, we set BB = {Bn \
S

m<n[Bm]E : n ∈ N}.
Now set B0 = {X}, and recursively define Bi+1 =

S
B∈Bi

BB . Letting n = |G|,
we claim that Bn is as desired. To see this suppose, towards a contradiction, that
there exists B ∈ Bn such that Val(ρ,B) is not an essential value of ρ|(E|B). Then
there exist Bi ∈ Bi such that B = Bn ⊆ · · · ⊆ B1 ⊆ B0 = X and Val(ρ,Bn) (
· · · ( Val(ρ,B1) ( Val(ρ,B0), thus Val(ρ,Bn) = ∅, the desired contradiction. 2

We will use the following fact to organize the ranges of our reductions:

Proposition 12. Suppose that X is an uncountable Polish space, E is a countable

Borel equivalence relation on X, G is a finite group, and ρ : E → G is a Borel

cocycle. Then there are uncountable Borel sets BH ⊆ X, for each H ∈ Ess(ρ), such

that:

1. The sets of the form [BH ]E , for H ∈ Ess(ρ), are pairwise disjoint;

2. For each H ∈ Ess(ρ), the set H is an essential value of ρ|(E|BH).

Proof. By a straightforward induction, it is enough to show that if H ∈ Ess(ρ),
then there are uncountable Borel sets B0, B1 ⊆ X, with [B0]E ∩ [B1]E = ∅, such
that H is an essential value of both ρ|(E|B0) and ρ|(E|B1). By Proposition 9, it
is enough to show this in the special case that H is a subgroup of G. In light of
Theorem 3, it is enough to show this for the cocycle ρH . Fix disjoint infinite sets
S0, S1 ⊆ N such that N = S0 ∪ S1 and each h ∈ H is of the form gH

n , for infinitely
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many n ∈ S0 and infinitely many n ∈ S1. The support of α ∈ 2N is given by
supp(α) = {n ∈ N : α(n) 6= 0}. For each i ∈ {0, 1}, define Bi ⊆ 2N by

Bi = {α ∈ 2N : supp(α) ⊆ Si}.

Then [B0]E0 ∩ [B1]E0 is the E0-class of the eventually constant sequence. As throw-
ing out a countable set has no effect on essential values, it only remains to prove
that H is an essential value of ρH |(E0|Bi), for each i ∈ {0, 1}. For this, it is enough
to produce a continuous embedding of ρH into ρH |(E0|Bi). Towards this end, fix a
strictly increasing sequence of natural numbers k0, k1, . . . ∈ Si such that gH

n = gH
kn

,
and observe that the map πi : 2N → 2N, given by

π(α) = 0k0α(0)0k1−k0−1α(1)0k2−k1−1α(2) . . . ,

is as desired. 2

The following fact will allow us to paste together reductions:

Proposition 13. Suppose that X1 and X2 are Polish spaces, E1 and E2 are count-

able Borel equivalence relations on X1 and X2, G is a countable group, ρ1 : E1 → G

and ρ2 : E2 → G are Borel cocycles with everywhere full ranges, and Bi
1, B

i
2, . . . ⊆

Xi, for i ∈ {1, 2}, are Borel sets such that:

1.
S

n∈Z+ B1
n is an E1-complete section;

2. [B2
1 ]E2 , [B

2
2 ]E2 , . . . are pairwise disjoint;

3. ρ1|(E1|B1
n) ≤B ρ2|(E2|B2

n), for all n ∈ N.

Then ρ1 ≤B ρ2.

Proof. Fix Borel reductions πn : B1
n → B2

n of ρ1|(E1|B1
n) to ρ2|(E2|B2

n). Set
A1

n = B1
n \
S

m<n[B1
m]E1 and A2

n = πn[A1
n]. For each i ∈ {1, 2}, put Ai =

S
n∈N A

i
n.

For each x ∈ X1, let n(x) denote the unique n ∈ N such that x ∈ [A1
n]E1 . Fix

a Borel function ϕ : X1 → A1 such that graph(ϕ) ⊆ E, and for each g ∈ G, fix
a Borel function ψg : A2 → X2 such that graph(ψg) ⊆ E2 and ∀x ∈ A2 ∀g ∈
G (ρ2(x, ψg(x)) = g). Define π : X1 → X2 by

π(x) = ψρ1(ϕ(x),x) ◦ πn(x) ◦ ϕ(x).

It is clear that π is a reduction of E1 into E2, and if xE1y, then

ρ2(π(x), π(y)) = ρ2(π(x), πn(x) ◦ ϕ(x))ρ2(πn(x) ◦ ϕ(x), πn(y) ◦ ϕ(y))

ρ2(πn(y) ◦ ϕ(y), π(y))

= ρ1(ϕ(x), x)−1ρ1(ϕ(x), ϕ(y))ρ1(ϕ(y), y)

= ρ1(x, y),

thus π is a Borel reduction of ρ1 into ρ2. 2
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We our now ready for the main result of this section:

Theorem 14. Suppose that X1 and X2 are uncountable Polish spaces, E1 and

E2 are hyperfinite equivalence relations on X1 and X2, G is a finite group, and

ρ1 : E1 → G and ρ2 : E2 → G are Borel cocycles with everywhere full ranges. Then

ρ1 ≤B ρ2 ⇔ Ess(ρ1) ⊆ Ess(ρ2).

Proof. To see (⇒), suppose that π : X1 → X2 is a Borel reduction of ρ1 to ρ2,
fix H ∈ Ess(ρ1), and fix a Borel set Y ⊆ X1 such that H is an essential value
of ρ1|(E1|Y ) and π|Y is injective. If B is a countable family of Borel sets which
cover X2, then π−1[B] is a countable family of Borel sets which cover Y . As H ∈
Ess(ρ1, Y ), it follows that there existsB ∈ B such thatH ⊆ Val(ρ1, π

−1[B]∩Y ), thus
H ⊆ Val(ρ2, B). As H ∈ Ess(ρ1) was arbitrary, it follows that Ess(ρ1) ⊆ Ess(ρ2).

To see (⇐), note first that Proposition 11 implies that there is a countable family
B of Borel subsets of X1 such that:

1. The sets [B]E1 , for B ∈ B, partition X1;

2. For each B ∈ B, the set Val(ρ1, B) is an essential value of ρ1|(E1|B).

For each H ∈ Ess(ρ1), let BH
1 =

S
{B : B ∈ B and Val(ρ1, B) ⊆ H}. By Propo-

sition 12, there are uncountable Borel sets BH
2 ⊆ X2, for each H ∈ Ess(ρ2), such

that:

1. The sets of the form [BH
2 ]E2 , for H ∈ Ess(ρ2), are pairwise disjoint;

2. For each H ∈ Ess(ρ2), the group H is an essential value of ρ|(E2|BH
2 ).

Theorem 8 implies that ρ1|(E1|BH
1 ) vB ρ2|(E2|BH

2 ), for each H ≤ G in Ess(ρ1)
such that BH

1 6= ∅, and Proposition 13 therefore implies that ρ1 ≤B ρ2. 2

We close this section by noting which subsets of a finite group G can occur as the
set of essential values of a Borel cocycle from a non-smooth (hyperfinite) equivalence
relation into G.

Proposition 15. Suppose that G is a finite group and F is a family of subsets of

G. Then the following are equivalent:

1. There is a Polish space X, a non-smooth hyperfinite equivalence relation E

on X, and a Borel cocycle ρ : E → G such that F = Ess(ρ);

2. F satisfies the following conditions:

(a) The trivial group is in F ;

(b) If K ⊆ H and H ∈ F , then K ∈ F ;

(c) If H ∈ F , then 〈H〉 ∈ F ;

(d) If H ∈ F and g ∈ G, then gHg−1 ∈ F .
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Proof. To see (1) ⇒ (2), note first that (a) follows from the non-smoothness of
E, (b) holds trivially, and (c) follows from Proposition 9. To see (d), suppose that
H ∈ Ess(ρ) and g ∈ G. For each set B ⊆ X, let

g[B] = {x ∈ X : ∃y ∈ B (ρ(x, y) = g)},

and observe that if B is a cover of X by countably many Borel sets, then the family
g−1[B] also covers X. Fix B ∈ B such that H ⊆ Val(ρ, g−1[B]), and observe that
for each h ∈ H, there exist x, y ∈ g−1[B] such that ρ(x, y) = h. Fixing x′, y′ ∈ B

such that ρ(x, x′) = ρ(y, y′) = g−1, it follows that

ρ(x′, y′) = ρ(x′, x)ρ(x, y)ρ(y, y′) = ghg−1,

so gHg−1 ⊆ Val(ρ,B), thus gHg−1 ∈ Ess(ρ).
To see (2) ⇒ (1), let F ′ = {H ∈ F : H ≤ G}, define

X = {(H, g, α) : H ∈ F and g ∈ G and α ∈ 2N},

define an equivalence relation E on X by

(H1, g1, α1)E(H2, g2, α2) ⇔ H1 = H2 and α1E0α2,

and define a cocycle ρ : E → G by

ρ((H, g1, α1), (H, g2, α2)) = g1ρH(α1, α2)g−1
2 .

For each H ∈ F , let XH = {(H, g, α) : g ∈ G and α ∈ 2N} and YH = {(H, 1G, α) :
α ∈ 2N}. To see that F = Ess(ρ), it is enough to show that Ess(ρ,XH) = {K ⊆
G : ∃g ∈ G (K ⊆ gHg−1)}. For this, it is enough to check that Ess(ρ, YH) is the
powerset of H, and this follows from Proposition 1. 2

5. Finite Borel equivalence relations on 2N/E0

In this section, we classify finite Borel equivalence relations on the non-smooth
hyperfinite quotient space up to Borel isomorphism.

We say that F1/E1 is invariantly embeddable into F2/E2, or F1/E1 vi
B F2/E2,

if there is a Borel injection π : X1/E1 → X2/E2, for which π[X1/E1] is (F2/E2)-
invariant, such that

∀x1, y1 ∈ X1/E1 (x1(F1/E1)y1 ⇔ π(x1)(F2/E2)π(y1)).

Theorem 16. Suppose that X1 and X2 are uncountable Polish spaces, E1 ⊆ F1

and E2 ⊆ F2 are hyperfinite equivalence relations on X1 and X2, and [F1 : E1] =
[F2 : E2] = n, for some n ∈ N. Then the following are equivalent:

1. Ess(E1, F1) ⊆ Ess(E2, F2);

2. F1/E1 vi
B F2/E2.
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Proof. In light of Theorem 14, it is enough to show that

ρ(E1,F1) ≤B ρ(E2,F2) ⇔ F1/E1 vi
B F2/E2.

To see (⇒), simply note that if π : Enum(E1, F1) → Enum(E2, F2) is a Borel
reduction of ρ(E1,F1) to ρ(E2,F2), then π is a reduction of E∗

1 to E∗
2 and of F ∗

1 to
F ∗

2 , and therefore induces a Borel embedding of F ∗
1 /E

∗
1 into F ∗

2 /E
∗
2 . As Fi/Ei

∼=B

F ∗
i /E

∗
i and every equivalence class of these equivalence relations is of cardinality n,

it follows that F1/E1 vi
B F2/E2.

To see (⇐), suppose that π : X1/E1 → X2/E2 is a Borel embedding of F1/E1

into F2/E2, and fix a Borel lifting π̃ : X1 → X2 of π. Then π̃ is a reduction of E1 to
E2 and of F1 to F2, and it follows that the map (x1, . . . , xn) 7→ (π̃(x1), . . . , π̃(xn))
is a Borel reduction of ρ(E1,F1) to ρ(E2,F2). 2

As a corollary, we obtain the main result of the paper:

Theorem 17. Suppose that X1 and X2 are uncountable Polish spaces, E1 ⊆ F1

and E2 ⊆ F2 are hyperfinite equivalence relations on X1 and X2, and [F1 : E1] =
[F2 : E2] = n, for some n ∈ N. Then

F1/E1
∼=B F2/E2 ⇔ Ess(E1, F1) = Ess(E2, F2).

Proof. In light of Theorem 16, it is enough to show that if F1/E1 vi
B F2/E2 and

F2/E2 vi
B F1/E1, then F1/E1

∼=B F2/E2, and this follows from a straightforward
Schröder-Bernstein argument. 2

6. Measures
A (Borel) probability measure µ on X is E-ergodic if every E-invariant Borel set
is µ-null or µ-conull, and E-quasi-invariant if the family of µ-null sets is closed
under E-saturation. The following well known consequence of the Glimm-Effros
dichotomy characterizes the circumstances under which E admits such a measure:

Theorem 18 (Glimm, Effros, Shelah-Weiss). Suppose thatX is a Polish space

and E is a countable Borel equivalence relation on X. Then exactly one of the fol-

lowing holds:

1. There is a Borel transversal of E;

2. There is an atomless, E-ergodic, E-quasi-invariant probability measure on X.

Here we prove an analogous theorem for pairs of equivalence relations:

Theorem 19. Suppose that X is a Polish space, E ⊆ F are countable Borel equiv-

alence relations on X, and [F : E] = n, for some natural number n ≥ 2. Then the

following are equivalent.

1. There is no E-invariant Borel set B ⊆ X such that both B and X \ B are

F -complete sections;
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2. There is a group G ∈ Ess(E,F ) which acts transitively on {1, . . . , n};

3. There is an atomless, E-ergodic, F -quasi-invariant probability measure on X.

Proof. To see (3) ⇒ (1), fix an E-ergodic, F -quasi-invariant probability measure
µ on X, and suppose that B ⊆ X is an E-invariant Borel set. Then, by reversing
the roles of B and X \B if necessary, we can assume that µ(B) = 0, so µ([B]F ) = 0,
thus B is not an F -complete section.

To see ¬(2) ⇒ ¬(1), appeal to Proposition 11 to find a countable family B of
Borel subsets of Enum(E,F ) such that:

1. The sets [B]F∗ , for B ∈ B, partition Enum(E,F );

2. For each B ∈ B, the set Val(ρ(E,F ), B) is an essential value of ρ(E,F )|(F ∗|B).

For each B ∈ B, observe that because the group Ess(ρ(E,F ), B) does not act tran-
sitively on {1, . . . , n}, the sets [B]E∗ and [B]F∗ \ [B]E∗ are (F ∗|[B]F∗)-complete
sections. Letting B0, B1, . . . be an enumeration of the elements of B, it follows that

B =
[
n∈N

 
[Bn]E∗ \

[
m<n

[Bm]F∗

!

is an E∗-invariant Borel set such that both B and Enum(E,F )\B are F ∗-complete
sections, and since F/E ∼=B F ∗/E∗, it follows that there is an E-invariant Borel set
B ⊆ X such that both B and X \B are F -complete sections.

To see (2) ⇒ (3), suppose that G ∈ Ess(E,F ) acts transitively on {1, . . . , n}.
The idea of the proof is to push the product measure on 2N through to X via the
(continuous) embedding of ρG into ρ(E,F ) given by Theorem 3. However, it will be
a bit simpler to use a slightly different cocycle.

Let E0(G) denote the equivalence relation on GN given by

αE0(G)β ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)),

and define ρ′G : E0(G) → G by

ρ′G(sα, tβ) = (s(0) · · · s(n))(t(0) · · · t(n))−1,

where n ∈ N, s, t ∈ Gn+1, and α ∈ GN. As E0(G) is obviously hyperfinite, Theorem
8 implies that there is a Borel embedding ϕ : GN → Enum(E,F ) of ρ′G into ρ(E,F ).

Define a subequivalence relation E′
0(G) of E0(G) by

αE′
0(G)β ⇔ αE0(G)β and [ρ′G(α, β)](1) = 1,

and let µ denote the product measure on GN obtained from the the uniform prob-
ability measure on G.

Lemma 20. The measure µ is E′
0(G)-ergodic.
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Proof. We must show that if B ⊆ X is a non-null, E′
0(G)-invariant Borel set and

ε > 0, then µ(B) ≥ 1 − ε. By the ultrametric analog of the Lebesgue density
theorem, there exists s ∈ G<N such that µ(Ns \B)/µ(Ns) < ε/|G|. Let A = {shα ∈
B : ∃g ∈ G (sgα ∈ B)}, and observe that

µ(Ns \A) ≤
X
g∈G

|G|µ(Nsg \B)

= |G|µ(Ns \B)

≤ εµ(Ns),

thus µ(A)/µ(Ns) ≥ 1 − ε. As B is E′
0(G)-invariant, it follows that [A]E0(G) ⊆ B,

thus µ(B ∩Nt)/µ(Nt) ≥ 1− ε, for all t ∈ 2|s|, so µ(B) ≥ 1− ε. 2

Note that ϕ is a reduction of E′
0(G) into E∗ and of E0(G) into F ∗. By composing

ϕ with the function (x1, . . . , xn) 7→ x1, we therefore obtain a continuous function
ϕ : 2N → X which reduces E′

0(G) to E and E0(G) to F . Fix a group Γ = {γn}n∈N
of Borel automorphisms of X which generates E, and define ν on X by

ν(B) =
X
n∈N

µ(γ−1
n [B])/2n+1.

It is easily verified that ν is the desired probability measure. 2
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