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FORCELESS, INEFFECTIVE, POWERLESS PROOFS
OF DESCRIPTIVE DICHOTOMY THEOREMS

AN INTRODUCTION

BENJAMIN MILLER

Abstract. We discuss some of the motivation behind work de-
scribed in lectures given at Université Paris 6 and 7 in July 2009.

Set theory was born in 1873 with Cantor’s realization that there is
no injection of the real numbers into the natural numbers [5]. He soon
became convinced that no set has cardinality strictly between. This
conjecture is now known as Cantor’s Continuum Hypothesis, or CH,
and the question of its truth appeared as Hilbert’s first problem [14].

Whereas set theory strives to determine the nature of sets in general,
work of Baire [2, 3], Borel [4], and Lebesgue [16, 17] at the turn of the
century focused on properties of definable sets, an area which has since
come to be known as descriptive set theory. The first theorem of the
subject was actually established somewhat earlier when Cantor showed
that closed subsets of Polish spaces are either countable or contain a
non-empty perfect subset, and therefore satisfy CH [6].

Cantor’s result was generalized by Alexandrov [1] and Hausdorff [13]
to Borel subsets of Polish spaces, and then by Souslin to analytic Haus-
dorff spaces [22]. Since then, the search for dichotomy theorems has
played a fundamental role in the development of the subject.

Over the next half century, the proofs of these theorems followed the
same basic outline. Roughly speaking, they used a derivative to reduce
the general theorem to a topologically simple special case which could
be handled in a straightforward manner. Of course, the crux of these
problems was to find the appropriate notion of derivative. Although
this was not always an easy task, one was nevertheless led to the belief
that the richness of the collection of derivatives in the mathematical
universe is the force underlying the great variety of dichotomy theorems
in descriptive set theory.

This point of view was dealt a serious blow in the early 1970s when
Silver [21], answering a question of Martin, showed that every co-
analytic equivalence relation on a Hausdorff space has either countably
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many equivalence classes or at least perfectly many. Unlike the proofs
of earlier dichotomy theorems, Silver’s argument was a technical tour
de force, relying on a number of techniques from mathematical logic, as
well as a much larger fragment of ZF than typical. In light of then-recent
results of H. Friedman [9] and Martin [20] on Borel determinacy, it was
natural to conjecture that this large fragment is necessary. Neverthe-
less, this conjecture was refuted a few years later with Harrington’s
proof [10] of Silver’s theorem, which while comparably simple, still re-
lied upon the recursion-theoretic refinement of descriptive set theory
known as effective descriptive set theory, as well as the method of forc-
ing, which was initially developed by Cohen [7, 8] in his proof of the
independence of CH. Harrington-Shelah [12] later discovered another
forcing proof which allowed one to generalize Silver’s theorem to co-κ-
Souslin equivalence relations satisfying a technical forcing hypothesis.

Over the next thirty years, the techniques of Harrington and Harring-
ton-Shelah were applied in the discovery of an astonishing number of
structural properties of definable sets. Although some of these were rel-
atively straightforward generalizations of Silver’s theorem, others used
progressively more sophisticated and technically difficult refinements
of the original arguments.

Despite the abundance of progress, a question remained lurking in
the background. Is the use of effective descriptive set theory and forcing
really necessary to derive these purely classical results? Could it be
that the old intuition was correct, and it is really this rich collection of
derivatives that underlies even the more recent dichotomy theorems?
Even if derivatives alone are insufficient to explain the abundance of
dichotomy theorems, is there another unifying explanation of these
results? Of course, the hope is that positive answers to these questions
might lead to simpler proofs and generalizations of known results, as
well as to entirely new theorems.

Our goal here is to describe recent research leading towards a positive
answer to these questions. This work is built on the backbone of a
natural family of dichotomy theorems for definable graphs generalizing
the Kechris-Solecki-Todorcevic characterization [15] of the family of
analytic graphs with uncountable Borel chromatic numbers. The Bor-
el instantiations of these theorems all have classical proofs using little
more than the sorts of derivatives that appeared in Cantor’s work,
and they can be combined with classical Baire category arguments to
obtain new proofs of many other descriptive set-theoretic dichotomy
theorems. In particular, this has led to the first classical proofs of the
theorems of Silver [21] and Harrington-Kechris-Louveau [11]. It has
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also led to classical proofs of analogs of these theorems for κ-Souslin
structures which are ω-universally Baire.

As the work described here is quite new and much of it remains
unfinished, one should take care to avoid making drastic conclusions.
For instance, it is far too soon (as it will most likely always be) to
assert that the new techniques make the old ones obsolete. In addition
to the glaring fact that several dichotomy theorems continue to resist
classical proofs, there are certain advantages to the old arguments. For
instance, in applying the effective theory, one needs only a sufficient
amount of faith that the effective arguments encompass all that they
should, and one can proceed to go about the business of establishing
new dichotomy theorems. In the new arguments, this faith is replaced
with a new belief that these graph-theoretic dichotomy theorems en-
compass all they should about the descriptive set-theoretic objects in
which we are interested. There is a new technical detail, however, in
that one must determine the graph-theoretic dichotomy which under-
lies the question at hand. In some sense, this points to a shortcoming
of the new techniques. On the other hand, the fact that one is forced
to understand more precisely the graph-theoretic underpinnings of de-
scriptive set-theoretic dichotomy theorems in order to prove them can
be viewed as a boon.

The following four lectures follow the same general setup. They
begin with a proof of a single graph-theoretic dichotomy theorem using
nothing more than a derivative and the first separation theorem. While
some of these graph-theoretic dichotomy theorems imply others, and
it is indeed possible to isolate a single (albeit somewhat unnatural)
theorem which implies them all, we have instead decided to isolate the
precise graph-theoretic theorems that are necessary to establish the
main result of each lecture, which is exactly what we do once our graph-
theoretic results have been established. Although for the most part we
confine our attention to analytic structures, we do spend some time
discussing κ-Souslin structures, especially in the first lecture. We close
each lecture with a number of exercises suggesting the great variety of
results to which similar arguments apply.

Acknowledgements. I would like to offer my sincere thanks to
the participants in the seminars at Paris 6 and 7 where I gave these
lectures. Their interest and patience during these marathon sessions
were very much appreciated, as were their many fine suggestions. I
also owe a special debt to Dominique Lecomte, who both arranged my
visit to Paris and provided many hours of fruitful discussion.



D
RAFT

4 BENJAMIN MILLER

References

[1] P. Alexandroff. Sur la puissance des ensembles measurables B. C.R. Acad. Sci.
Paris, 323–325, 162, 1916.

[2] R. Baire. Sur les fonctions discontinues qui se rattachent aux fonctions contin-
ues. C. R. Acad. Sci. Paris, 1621–1623, 129, 1898.

[3] R. Baire. Sur les fonctions de variables réelles. Ann. Mat. Pura Appl., 1–123,
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