FORCELESS, INEFFECTIVE, POWERLESS PROOFS OF DESCRIPTIVE DICHOTOMY THEOREMS

LECTURE II: HJORTH'S THEOREM

BENJAMIN MILLER

ABSTRACT. We give a classical proof of a generalization of the Kechris-Solecki-Todorcevic dichotomy theorem [4] characterizing analytic graphs of uncountable Borel chromatic number. Using this, we give a classical proof of a generalization of Hjorth's theorem [2] characterizing smooth treeable equivalence relations.

In $\S1$, we give two straightforward corollaries of the first separation theorem. In $\S2$, we give the promised classical proof of a generalization of the Kechris-Solecki-Todorcevic [4] theorem. In \$3, we use this to establish a dichotomy theorem for metrized equivalence relations, and derive from this Hjorth's theorem [2]. In \$4, we give as exercises several results that can be obtained in a similar fashion.

1. COROLLARIES OF SEPARATION

Suppose that X_0 and X_1 are sets and $(R_n)_{n \in \omega}$ is a sequence of subsets of $X_0 \times X_1$. A pair (A_0, A_1) is eventually $(R_n)_{n \in \omega}$ -discrete if $A_0 \subseteq X_0$, $A_1 \subseteq X_1$, and $(A_0 \times A_1) \cap R_n = \emptyset$ for all but finitely many $n \in \omega$.

Proposition 1. Suppose that X_0 and X_1 are Hausdorff spaces, $(R_n)_{n \in \omega}$ is a sequence of analytic subsets of $X_0 \times X_1$, and (A_0, A_1) is an eventually $(R_n)_{n \in \omega}$ -discrete pair of analytic sets. Then there is an eventually $(R_n)_{n \in \omega}$ -discrete pair (B_0, B_1) of Borel sets with the property that $A_0 \subseteq B_0$ and $A_1 \subseteq B_1$.

Proof. Fix $m \in \omega$ such that (A_0, A_1) is R_n -discrete for all $n \in \omega \setminus m$. For each such n, fix an R_n -discrete pair $(B_{0,n}, B_{1,n})$ of Borel sets such that $A_0 \subseteq B_{0,n}$ and $A_1 \subseteq B_{1,n}$. Clearly the sets $B_0 = \bigcap_{n \in \omega \setminus m} B_{0,n}$ and $B_1 = \bigcap_{n \in \omega \setminus m} B_{1,n}$ are as desired.

Suppose that X is a set and $(\mathcal{G}_n)_{n\in\omega}$ is a sequence of graphs on X. A set $A \subseteq X$ is *eventually* $(\mathcal{G}_n)_{n\in\omega}$ -discrete if it is \mathcal{G}_n -discrete for all but finitely many $n \in \omega$.

BENJAMIN MILLER

Proposition 2. Suppose that X is a Hausdorff space, $(\mathcal{G}_n)_{n\in\omega}$ is a sequence of analytic graphs on X, and $A \subseteq X$ is an eventually $(\mathcal{G}_n)_{n\in\omega}$ -discrete analytic set. Then there is an eventually $(\mathcal{G}_n)_{n\in\omega}$ -discrete Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof. By Proposition 1, there is an eventually $(\mathcal{G}_n)_{n\in\omega}$ -discrete pair (B_0, B_1) of Borel subsets of X such that $A \subseteq B_0$ and $A \subseteq B_1$. It is easily verified that the set $B = B_0 \cap B_1$ is as desired.

2. A GENERALIZATION OF THE KECHRIS-SOLECKI-TODORCEVIC THEOREM

For each set $I \subseteq {}^{<\omega}2$, let $\mathcal{G}_{I,n}$ denote the graph on ${}^{\omega}2$ consisting of all pairs $(s^{\hat{i}}x, s^{\hat{i}}x)$, where $i \in 2, s \in I \cap {}^{n}2$, and $x \in {}^{\omega}2$.

Proposition 3. Suppose that $I \subseteq {}^{<\omega}2$ is dense and $A \subseteq {}^{\omega}2$ is nonmeager and has the Baire property. Then the set A is not eventually $(\mathcal{G}_{I,n})_{n\in\omega}$ -discrete.

Proof. Fix $s \in {}^{<\omega}2$ such that A is comeager in \mathcal{N}_s . Given any $m \in \omega$, there exists $n \in \omega \setminus m$ and $t \in I \cap {}^n2$ such that $s \sqsubseteq t$. Then there exists $x \in {}^{\omega}2$ such that $t \cap {}^{\circ}x, t \cap {}^{\circ}x \in A$. As $(t \cap {}^{\circ}x, t \cap {}^{\circ}x) \in \mathcal{G}_{I,n}$, it follows that A is not eventually $(\mathcal{G}_{I,n})_{n \in \omega}$ -discrete.

Fix sequences $s_n \in {}^n 2$ such that the set $I = \{s_n \mid n \in \omega\}$ is dense. Define $\mathcal{G}_{0,n} = \mathcal{G}_{I,n}$. A $(\kappa$ -)coloring of $(\mathcal{G}_n)_{n \in \omega}$ is a function $c \colon X \to \kappa$ such that $c^{-1}(\{\alpha\})$ is eventually $(\mathcal{G}_n)_{n \in \omega}$ -discrete for all $\alpha \in \kappa$.

Suppose that $\zeta \in {}^{\omega}\omega$ and $\eta \in {}^{\leq\omega}\omega$. We say that η is ζ -fast if $\eta(n) > \max_{m \in n} \zeta \circ \eta(m)$ for all $n \in \omega$. For $\eta \in {}^{\omega}\omega$, an η -homomorphism from $(\mathcal{G}_n)_{n \in \omega}$ to $(\mathcal{H}_n)_{n \in \omega}$ is a homomorphism from $(\mathcal{G}_n)_{n \in \omega}$ to $(\mathcal{H}_{\eta(n)})_{n \in \omega}$. A ζ -fast homomorphism from $(\mathcal{G}_n)_{n \in \omega}$ to $(\mathcal{H}_n)_{n \in \omega}$ is an η -homomorphism from $(\mathcal{G}_n)_{n \in \omega}$ to $(\mathcal{H}_n)_{n \in \omega}$ to $(\mathcal{H}_n)_{n \in \omega}$, where η is ζ -fast.

Theorem 4. Suppose that $\zeta \in {}^{\omega}\omega$, X is a Hausdorff space and $(\mathcal{G}_n)_{n \in \omega}$ is a sequence of analytic graphs on X. Then exactly one of the following holds:

- (1) There is a Borel ω -coloring of $(\mathcal{G}_n)_{n \in \omega}$.
- (2) There is a continuous ζ -fast homomorphism from the sequence $(\mathcal{G}_{0,n})_{n\in\omega}$ to the sequence $(\mathcal{G}_n)_{n\in\omega}$.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction, that $c: X \to \omega$ is an ω -universally Baire coloring of $(\mathcal{G}_n)_{n\in\omega}, \eta \in {}^{\omega}\omega$, and $\pi: {}^{\omega}2 \to X$ is a Baire measurable η homomorphism from $(\mathcal{G}_{0,n})_{n\in\omega}$ to $(\mathcal{G}_n)_{n\in\omega}$. Then $c \circ \pi$ is a Baire measurable coloring of $(\mathcal{G}_{0,n})_{n\in\omega}$, so there exists $k \in \omega$ such that the set

$\mathbf{2}$

 $(c \circ \pi)^{-1}(\{k\})$ is non-meager and eventually $(\mathcal{G}_{0,n})_{n \in \omega}$ -discrete, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can clearly assume that each \mathcal{G}_n is non-empty. Fix continuous functions $\varphi_{\mathcal{G}_n} \colon {}^{\omega}\omega \to X \times X$ such that $\mathcal{G}_n = \varphi_{\mathcal{G}_n}({}^{\omega}\omega)$ for all $n \in \omega$, as well as a continuous function $\varphi_X \colon {}^{\omega}\omega \to X$ such that $\bigcup_{n \in \omega} \operatorname{dom}(\mathcal{G}_n) \subseteq \varphi_X({}^{\omega}\omega)$.

A global (n-)approximation is a triple of the form $p = (e^p, u^p, v^p)$, where $e^p \in {}^n\omega$ is ζ -fast, $u^p : {}^n2 \to {}^n\omega$, and $v^p : {}^{<n}2 \to {}^n\omega$. Fix an enumeration $(p_n)_{n\in\omega}$ of the set of all global approximations.

An extension of a global *m*-approximation *p* is a global *n*-approximation *q* with the property that $e^p \sqsubseteq e^q$, $s_p \sqsubseteq s_q \Longrightarrow u^p(s_p) \sqsubseteq u^q(s_q)$, and $t_p \sqsubseteq t_q \Longrightarrow v^p(t_p) \sqsubseteq v^q(t_q)$ for all $s_p \in {}^{m_2}$, $s_q \in {}^{n_2}$, $t_p \in {}^{<m_2}$, and $t_q \in {}^{<n_2}$ with $n - m = |t_q| - |t_p|$. When n = m + 1, we say that *q* is a one-step extension of *p*.

A local (n-) approximation is a triple of the form $l = (e^l, f^l, g^l)$, where $e^l \in {}^n\omega$ is ζ -fast, $f^l : {}^n2 \to {}^\omega\omega$, and $g^l : {}^{< n}2 \to {}^\omega\omega$, such that

$$\varphi_{\mathcal{G}_{e^l(k)}} \circ g^l(t) = (\varphi_X \circ f^l(s_k \circ 0 t), \varphi_X \circ f^l(s_k \circ 1 t))$$

for all $k \in n$ and $t \in {}^{n-(k+1)}2$. We say that l is *compatible* with a global n-approximation p if $e^p = e^l$, $u^p(s) \sqsubseteq f^l(s)$, and $v^p(t) \sqsubseteq g^l(t)$ for all $s \in {}^n2$ and $t \in {}^{<n}2$. We say that l is *compatible* with a set $Y \subseteq X$ if $\varphi_X \circ f^l({}^n2) \subseteq Y$.

Suppose now that α is a countable ordinal, $Y \subseteq X$ is a Borel set, and $c: Y^c \to \omega \cdot \alpha$ is a Borel coloring of $(\mathcal{G}_n)_{n \in \omega} \upharpoonright Y^c$. Associated with each global *n*-approximation *p* is the set $L_n(p, Y)$ of local *n*-approximations which are compatible with both *p* and *Y*.

A global *n*-approximation p is Y-terminal if $L_{n+1}(q, Y) = \emptyset$ for all one-step extensions q of p. Let T(Y) denote the set of such approximations. Set $A(p, Y) = \bigcup_{n \in \omega} \{\varphi_X \circ f^l(s_n) \mid l \in L_n(p, Y)\}.$

Lemma 5. Suppose that p is a global approximation and A(p, Y) is not eventually $(\mathcal{G}_n)_{n \in \omega}$ -discrete. Then $p \notin T(Y)$.

Proof of lemma. Fix $n \in \omega$ such that p is a global n-approximation, as well as $e > \max_{m \in n} \zeta \circ e^p(m)$ and local n-approximations $l_0, l_1 \in L_n(p, Y)$ with $(\varphi_X \circ f^{l_0}(s_n), \varphi_X \circ f^{l_1}(s_n)) \in \mathcal{G}_e$. Then there exists $x \in {}^{\omega}\omega$ such that $\varphi_{\mathcal{G}_e}(x) = (\varphi_X \circ f^{l_0}(s_n), \varphi_X \circ f^{l_1}(s_n))$. Let l denote the local (n+1)-approximation given by $e^l \upharpoonright n = e^p$, $e^l(n) = e$, $f^l(s \cap i) = f^{l_i}(s)$, $g^l(\emptyset) = x$, and $g^l(t \cap i) = g^{l_i}(t)$ for $i \in 2, s \in {}^n2$, and $t \in {}^{<n}2$. Then l is compatible with a one-step extension of p, thus p is not Y-terminal.

Proposition 2 and Lemma 5 ensure that for each $p \in T(Y)$, there is an eventually $(\mathcal{G}_n)_{n \in \omega}$ -discrete Borel set $B(p, Y) \subseteq X$ with $A(p, Y) \subseteq$ B(p, Y). Set $Y' = Y \setminus \bigcup \{B(p, Y) \mid p \in T(Y)\}$. For each $y \in Y \setminus Y'$, put $n(y) = \min\{n \in \omega \mid p_n \in T(Y) \text{ and } y \in B(p_n, Y)\}$. Define $c' \colon (Y')^c \to \omega \cdot (\alpha + 1)$ by

$$c'(y) = \begin{cases} c(y) & \text{if } y \in Y^c \text{ and} \\ \omega \cdot \alpha + n(y) & \text{otherwise.} \end{cases}$$

Lemma 6. The function c' is a coloring of $(\mathcal{G}_n)_{n \in \omega} \upharpoonright (Y')^c$.

Proof of lemma. Note that if $\beta \in \omega \cdot \alpha$ then $(c')^{-1}(\{\beta\}) = c^{-1}(\{\beta\})$, and if $\beta \in \omega \cdot (\alpha+1) \setminus \omega \cdot \alpha$ then there exists $n \in \omega$ with $\beta = \omega \cdot \alpha + n$, so $p_n \in T(Y)$ and $(c')^{-1}(\{\beta\}) \subseteq B(p_n, Y)$. Then $(c')^{-1}(\{\beta\})$ is eventually $(\mathcal{G}_n)_{n \in \omega}$ -discrete for all $\beta \in \omega \cdot (\alpha + 1)$, thus c' is a coloring of the sequence $(\mathcal{G}_n)_{n \in \omega} \upharpoonright (Y')^c$.

Lemma 7. Suppose that p is a global approximation whose one-step extensions are all Y-terminal. Then p is Y'-terminal.

Proof of lemma. Fix $n \in \omega$ such that p is a global n-approximation. Suppose, towards a contradiction, that there is a one-step extension q of p for which there exists $l \in L_{n+1}(q, Y')$. Then $\varphi_X \circ f^l(s_{n+1}) \in B(q, Y)$ and $B(q, Y) \cap Y' = \emptyset$, thus $\varphi_X \circ f^l(s_{n+1}) \notin Y'$, a contradiction.

Recursively define Borel sets $Y_{\alpha} \subseteq X$ and Borel colorings $c_{\alpha} \colon Y_{\alpha}^c \to \omega \cdot \alpha$ of $(\mathcal{G}_n)_{n \in \omega} \upharpoonright Y_{\alpha}^c$ by

$$(Y_{\alpha}, c_{\alpha}) = \begin{cases} (X, \emptyset) & \text{if } \alpha = 0, \\ (Y'_{\beta}, c'_{\beta}) & \text{if } \alpha = \beta + 1, \text{ and} \\ (\bigcap_{\beta \in \alpha} Y_{\beta}, \lim_{\beta \to \alpha} c_{\beta}) & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

As there are only countably many approximations, there exists $\alpha \in \omega_1$ such that $T(Y_{\alpha}) = T(Y_{\alpha+1})$.

Let p^0 denote the unique global 0-approximation. As $\operatorname{dom}(\mathcal{G}) \cap Y_{\alpha} \subseteq A(p^0, Y_{\alpha})$, it follows that if p^0 is Y_{α} -terminal, then c_{α} extends to a Borel $(\omega \cdot \alpha + 1)$ -coloring of $(\mathcal{G}_n)_{n \in \omega}$, thus there is a Borel ω -coloring of $(\mathcal{G}_n)_{n \in \omega}$.

Otherwise, by repeatedly applying Lemma 7 we obtain global *n*-approximations $p^n = (e^n, u^n, v^n)$ with the property that p^{n+1} is a one-step extension of p^n for all $n \in \omega$. Note that the sequence $\eta = \lim_{n \to \infty} e^n$ is ζ -fast, and define continuous functions $\pi \colon {}^{\omega}2 \to {}^{\omega}\omega$ and $\pi_k \colon {}^{\omega}2 \to {}^{\omega}\omega$ for $k \in \omega$ by

$$\pi(x) = \lim_{n \to \omega} u^n(x \upharpoonright n) \text{ and } \pi_k(x) = \lim_{n \to \omega} v^{k+n+1}(x \upharpoonright n).$$

To see that $\varphi_X \circ \pi$ is an η -homomorphism from $(\mathcal{G}_{0,n})_{n \in \omega}$ to $(\mathcal{G}_n)_{n \in \omega}$, it is enough to show that

$$\varphi_{\mathcal{G}_{n(k)}} \circ \pi_k(x) = (\varphi_X \circ \pi(s_k \cap 0 \cap x), \varphi_X \circ \pi(s_k \cap 1 \cap x))$$

for all $k \in \omega$ and $x \in \omega^2$. By continuity, it is enough to show that every open neighborhood $U \times V$ of $(\pi_k(x), (\pi(s_k \cap 0 \cap x), \pi(s_k \cap 1 \cap x)))$ contains a point $(z, (z_0, z_1))$ such that $\varphi_{\mathcal{G}_{\eta(k)}}(z) = (\varphi_X(z_0), \varphi_X(z_1))$. Towards this end, fix $n \in \omega$ sufficiently large that $\mathcal{N}_{v^{k+n+1}(x \cap n)} \subseteq U$ and

$$\mathcal{N}_{u^{k+n+1}(s_k \cap 0^{\frown}(x \restriction n))} \times \mathcal{N}_{u^{k+n+1}(s_k \cap 1^{\frown}(x \restriction n))} \subseteq V.$$

Fix $l \in L_{k+n+1}(p^{k+n+1}, Y_{\alpha})$, and observe that $z = g^{l}(x \upharpoonright n)$, $z_{0} = f^{l}(s_{k} \cap 0 \cap (x \upharpoonright n))$, and $z_{1} = f^{l}(s_{k} \cap 1 \cap (x \upharpoonright n))$ are as desired.

3. HJORTH'S THEOREM

Suppose that X is a set and E is an equivalence relation on X. An E-quasi-metric is a function $d: E \to [0, \infty)$ such that:

- (1) $\forall x \in X \ (d(x,x)=0).$
- (2) $\forall x, y \in X \ (d(x, y) = d(y, x)).$
- (3) $\forall x, y, z \in X \ (xEyEz \Longrightarrow d(x, z) \le d(x, y) + d(y, z)).$

We say that d is an *E-metric* if $\forall x, y \in X$ $(x = y \iff d(x, y) = 0)$.

We say that a set $A \subseteq X$ is *d*-bounded if $d(E \upharpoonright A) \subseteq n$ for some $n \in \omega$. Let d_0 denote the E_0 -metric given by

$$d_0(x,y) = \min\{n \in \omega \mid \forall m \in \omega \setminus n \ (x(m) = y(m))\}.$$

Proposition 8. Suppose that $A \subseteq {}^{\omega}2$ is d_0 -bounded and has the Baire property. Then A is meager.

Proof. Fix $n \in \omega$ such that $d_0(E \upharpoonright A) \subseteq n$, and note that for each $s \in {}^n 2$, the set $A_s = A \cap \mathcal{N}_s$ is a partial transversal of E_0 . As any such set is meager, so too is A.

We say that a homomorphism $\pi: {}^{\omega}2 \to X$ from E_0 to E is *d*-expansive if $d_0(x, y) \leq d(\pi(x), \pi(y))$ for all $(x, y) \in E_0$.

Theorem 9. Suppose that X is a Hausdorff space, E is an analytic equivalence relation on X, and d is an E-quasi-metric such that $d^{-1}(n, \infty)$ is analytic for all $n \in \omega$. Then exactly one of the following holds:

- (1) There is a cover of X by countably many d-bounded Borel sets.
- (2) There is a continuous d-expansive embedding of E_0 into E.

BENJAMIN MILLER

Proof. Proposition 8 easily implies that (1) and (2) are mutually exclusive. For each $n \in \omega$, set $\mathcal{G}_n = \{(x, y) \in X \times X \mid x \neq y \text{ and } d(x, y) = n\}$. As every eventually $(\mathcal{G}_n)_{n \in \omega}$ -discrete set is *d*-bounded, it follows that if there is a Borel ω -coloring of \mathcal{G} , then X is the union of countably many *d*-bounded Borel sets.

Define $\zeta \in {}^{\omega}\omega$ by $\zeta(n) = 8n$. By Theorem 4, we can assume that there is a ζ -fast sequence $\eta \in {}^{\omega}\omega$ for which there exists a continuous η -homomorphism φ from $(\mathcal{G}_{0,n})_{n\in\omega}$ to $(\mathcal{G}_n)_{n\in\omega}$.

Lemma 10. Suppose that
$$(x, y) \in E_0 \setminus \Delta(X)$$
. Then
 $d(\varphi(x), \varphi(y)) \leq 2\eta(d_0(x, y) - 1).$

Proof of lemma. By induction on $n = d_0(x, y)$. To handle the case n = 1, observe that if $d_0(x, y) = 1$, then $(x, y) \in \mathcal{G}_{0,0}$, so it follows that $d(\varphi(x), \varphi(y)) = \eta(0)$. Suppose now that $n \in \omega \setminus 1$ and we have established the lemma for $d_0(x, y) \leq n$. Given $u, v \in {}^n 2$ and $z \in {}^{\omega} 2$, set $x = u^{-0} z$ and $y = v^{-1} z$. The triangle inequality and two applications of the induction hypothesis ensure that

$$d(\varphi(x),\varphi(y)) \leq d(\varphi(u^{0} c^{2}),\varphi(s_{n} c^{2})) + d(\varphi(s_{n} c^{2}),\varphi(s_{n} c^{2})) + d(\varphi(s_{n} c^{2}),\varphi(v c^{2})) + d(\varphi(s_{n} c^{2}),\varphi(v c^{2})) \leq 2\eta(n-1) + \eta(n) + 2\eta(n-1) \leq 2\eta(n),$$

which completes the proof.

 \boxtimes

It is clear that φ is a homomorphism from E_0 to E.

Lemma 11. The homomorphism φ is d-expansive.

Proof of lemma. Suppose that $(x, y) \in E_0 \setminus \Delta({}^{\omega}2)$ and set $n = d_0(x, y)$. Clearly we can assume that $n \ge 2$. After reversing the roles of x and y if necessary, we can assume that there exist $u, v \in {}^n2$ and $z \in {}^{\omega}2$ with $x = u^{-0}z$ and $y = v^{-1}z$. The triangle inequality and two applications of Lemma 10 ensure that

$$\begin{split} \eta(n) &= d(\varphi(s_n \cap 0^{-}z), \varphi(s_n \cap 1^{-}z)) \\ &\leq d(\varphi(s_n \cap 0^{-}z), \varphi(u \cap 0^{-}z)) + \\ &\quad d(\varphi(u \cap 0^{-}z), \varphi(v \cap 1^{-}z)) + \\ &\quad d(\varphi(v \cap 1^{-}z), \varphi(s_n \cap 1^{-}z)) \\ &\leq 2\eta(n-1) + d(\varphi(x), \varphi(y)) + 2\eta(n-1), \\ &\text{so } d(\varphi(x), \varphi(y)) \geq \eta(n)/2, \text{ thus } \varphi \text{ is } d\text{-expansive.} \end{split}$$

 \boxtimes

Set
$$F = (\varphi \times \varphi)^{-1}(E)$$
 and $e(x, y) = d(\varphi(x), \varphi(y))$.

Lemma 12. The equivalence relation F is meager.

Proof of lemma. By the Kuratowski-Ulam theorem, it suffices to show that every F-class is meager. Suppose, towards a contradiction, that there exists $x \in {}^{\omega}2$ such that $[x]_F$ is non-meager. Then there exists $n \in \omega$ such that the set

$$A = \{ y \in [x]_F \mid e(x, y) = n \}$$

is non-meage, so there exists $(y, z) \in \mathcal{G}_{0,m} \upharpoonright A$ for some $m \in \omega \setminus (2n+1)$. Then e(y, z) > 2n, so the triangle inequality implies that e(x, y) > n or e(x, z) > n, the desired contradiction.

Lemma 12 easily implies that there is a continuous d_0 -expansive homomorphism ψ from (E_0, E_0^c) into (E_0, F^c) , and it follows that $\varphi \circ \psi$ is a continuous d-expansive embedding of E_0 into E.

Suppose that \mathcal{G} is a graph on X and $n \in \omega$. A \mathcal{G} -path of length n is a sequence $(x_i)_{i \in n+1} \in {}^{n+1}X$ such that $(x_i, x_{i+1}) \in \mathcal{G}$ for all $i \in n$. We say that \mathcal{G} is *acyclic* if there is no \mathcal{G} -path of length at least three whose initial and terminal points are the same. We use $E_{\mathcal{G}}$ to denote the equivalence relation consisting of those pairs which are the initial and terminal points of a \mathcal{G} -path.

We say that E is analytic treeable if there is an acyclic analytic graph \mathcal{T} such that $E = E_{\mathcal{T}}$. A transversal of E is a set which intersects every E-class in exactly one point.

Theorem 13. Suppose that X is a Hausdorff space and E is an analytic treeable analytic equivalence relation on X. Then at least one of the following holds:

- (1) There is a co-analytic transversal of E.
- (2) There is a continuous embedding of E_0 into E.

Proof. Fix an analytic treeing \mathcal{T} of E, and let d denote the E-metric obtained by putting d(x, y) = n whenever there is an injective \mathcal{T} -path from x to y of length n.

Lemma 14. Suppose that $B \subseteq X$ is a d-bounded Borel set. Then there is an *E*-invariant analytic set $A \subseteq X$ such that $B \subseteq A$ and $E \upharpoonright A$ has a co-analytic transversal.

Proof of lemma. We say that a set $A \subseteq X$ is (d, n)-bounded if $d(E \upharpoonright A) \subseteq n$. Fix $n \in \omega$ such that B is (d, 2n)-bounded.

Set $B_0 = B$. Given a 2(n - i)-bounded Borel set $B_i \subseteq X$, let A_{i+1} denote the set of points which lie strictly \mathcal{T} -between two points of B_i , and observe that the set

$$A'_{i+1} = \{ x \in A_{i+1} \mid |A_{i+1} \cap \mathcal{T}_x| \ge 2 \}$$

is 2(n - (i + 1))-bounded. Fix a 2(n - (i + 1))-bounded Borel set $B_{i+1} \subseteq X$ such that $A'_{i+1} \subseteq B_{i+1}$.

Fix a Borel linear ordering \leq of X, and for $i \in n$ define $C_i \subseteq B_i$ by

$$C_i = \{ x \in B_i \setminus \bigcup_{j \in \omega \setminus (i+1)} [B_j]_E \mid \forall y \in B_i \ (x E y \Longrightarrow x \le y) \}$$

 \boxtimes

It is clear that the set $C = \bigcup_{i \in n} C_i$ is the desired transversal.

By Theorem 9, it is enough to show that if X is the union of countably many *d*-bounded Borel sets, then there is a co-analytic partial transversal of E, which follows from Lemma 14.

We say that E is Borel treeable if there is an acyclic Borel graph \mathcal{T} such that $E = E_{\mathcal{T}}$.

Theorem 15 (Hjorth). Suppose that X is a Polish space and E is a Borel-treeable equivalence relation on X. Then exactly one of the following holds:

- (1) There is a Borel transversal of E.
- (2) There is a continuous embedding of E_0 into E.

Proof. It is clear that (1) and (2) are mutually exclusive. Fix an acyclic Borel graph \mathcal{T} such that $E = E_{\mathcal{T}}$, and let d denote the E-metric obtained by putting d(x, y) = n whenever there is an injective \mathcal{T} -path from x to y. By Theorem 9, it is enough to show that if B is a bounded Borel set, then there is a Borel transversal of $E \upharpoonright [B]_E$.

Towards this end, suppose that $B \subseteq X$ is a Borel set which is 2nbounded, i.e., the distance between any two *E*-related elements of *B* is strictly less than 2n. Set $B_0 = B$. Given a 2(n - i)-bounded Borel set $B_i \subseteq X$, let A_{i+1} denote the set of points which lie \mathcal{T} -between two points of B_i , and observe that the set $A'_{i+1} = \{x \in A_{i+1} \mid |A_{i+1} \cap \mathcal{T}_x| \geq 2\}$ is 2(n - (i + 1))-bounded. By the first reflection theorem, there is a 2(n - (i + 1))-bounded Borel set $B_{i+1} \supseteq A'_{i+1}$.

Set $C_i = B_i \setminus \bigcup_{j \in (n+1) \setminus (i+1)} [C_j]_E$. It is clear that C_i intersects every *E*-class in at most two points, thus the Borel treeability of *E* ensures that C_i is Borel. It follows that $C = \bigcup_{i \in n+1} C_i$ is a Borel set which intersects every *E*-class in at most two points. As $B \subseteq [C]_E$, it follows that there is a Borel partial transversal of $E \upharpoonright [B]_E$.

8

4. Exercises

Exercise 16. Show that if X and Y are Hausdorff spaces and $(\mathcal{G}_n)_{n \in \omega}$ is a sequence of analytic subsets of $X \times (Y \times Y)$ whose vertical sections are graphs, then exactly one of the following holds:

- (1) There is a Borel function $c: X \times Y \to \omega$ such that for all $x \in X$, the map $c_x(y) = c(x, y)$ is a coloring of $((\mathcal{G}_n)_x)_{n \in \omega}$.
- (2) For some $x \in X$, there is a continuous homomorphism from $(\mathcal{G}_{0,n})_{n \in \omega}$ to $((\mathcal{G}_n)_x)_{n \in \omega}$.

We say that E is *smooth* if there is a Borel reduction of E to $\Delta(^{\omega}2)$. We say that E is *hypersmooth* if it is of the form $\bigcup_{n \in \omega} F_n$, where $(F_n)_{n \in \omega}$ is an increasing sequence of smooth equivalence relations.

Exercise 17 (a special case of Harrington-Kechris-Louveau [1]). Show that if X is a Hausdorff space and E is a hypersmooth analytic equivalence relation on X, then exactly one of the following hold:

- (1) The equivalence relation E is smooth.
- (2) There is a continuous embedding of E_0 into E.

Exercise 18. State and prove generalizations of all of the results mentioned thus far to κ -Souslin ω -universally Baire structures.

Hint: The proofs are virtually identical!

References

- L. Harrington, A.S. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 903–928, 3 (4), 1990.
- [2] G. Hjorth. Selection theorems and treeability. Proc. Amer. Math. Soc., 3647– 3653, 136 (10), 2008.
- [3] V. Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. Fund. Math., 183–201, 154 (2), 1997.
- [4] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. Adv. Math., 1–44, 141 (1), 1999.