# FORCELESS, INEFFECTIVE, POWERLESS PROOFS OF DESCRIPTIVE DICHOTOMY THEOREMS 

## LECTURE II: HJORTH'S THEOREM

BENJAMIN MILLER


#### Abstract

We give a classical proof of a generalization of the Kechris-Solecki-Todorcevic dichotomy theorem [4] characterizing analytic graphs of uncountable Borel chromatic number. Using this, we give a classical proof of a generalization of Hjorth's theorem [2] characterizing smooth treeable equivalence relations.


In §1, we give two straightforward corollaries of the first separation theorem. In $\S 2$, we give the promised classical proof of a generalization of the Kechris-Solecki-Todorcevic [4] theorem. In §3, we use this to establish a dichotomy theorem for metrized equivalence relations, and derive from this Hjorth's theorem [2]. In $\S 4$, we give as exercises several results that can be obtained in a similar fashion.

## 1. Corollaries of separation

Suppose that $X_{0}$ and $X_{1}$ are sets and $\left(R_{n}\right)_{n \in \omega}$ is a sequence of subsets of $X_{0} \times X_{1}$. A pair $\left(A_{0}, A_{1}\right)$ is eventually $\left(R_{n}\right)_{n \in \omega}$-discrete if $A_{0} \subseteq X_{0}$, $A_{1} \subseteq X_{1}$, and $\left(A_{0} \times A_{1}\right) \cap R_{n}=\emptyset$ for all but finitely many $n \in \omega$.

Proposition 1. Suppose that $X_{0}$ and $X_{1}$ are Hausdorff spaces, $\left(R_{n}\right)_{n \in \omega}$ is a sequence of analytic subsets of $X_{0} \times X_{1}$, and $\left(A_{0}, A_{1}\right)$ is an eventually $\left(R_{n}\right)_{n \in \omega}$-discrete pair of analytic sets. Then there is an eventually $\left(R_{n}\right)_{n \in \omega^{-}}$discrete pair $\left(B_{0}, B_{1}\right)$ of Borel sets with the property that $A_{0} \subseteq B_{0}$ and $A_{1} \subseteq B_{1}$.

Proof. Fix $m \in \omega$ such that $\left(A_{0}, A_{1}\right)$ is $R_{n}$-discrete for all $n \in \omega \backslash m$. For each such $n$, fix an $R_{n}$-discrete pair ( $B_{0, n}, B_{1, n}$ ) of Borel sets such that $A_{0} \subseteq B_{0, n}$ and $A_{1} \subseteq B_{1, n}$. Clearly the sets $B_{0}=\bigcap_{n \in \omega \backslash m} B_{0, n}$ and $B_{1}=\bigcap_{n \in \omega \backslash m} B_{1, n}$ are as desired.

Suppose that $X$ is a set and $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ is a sequence of graphs on $X$. A set $A \subseteq X$ is eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega^{-}}$discrete if it is $\mathcal{G}_{n}$-discrete for all but finitely many $n \in \omega$.

Proposition 2. Suppose that $X$ is a Hausdorff space, $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ is a sequence of analytic graphs on $X$, and $A \subseteq X$ is an eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega^{-}}$ discrete analytic set. Then there is an eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof. By Proposition 1, there is an eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete pair ( $B_{0}, B_{1}$ ) of Borel subsets of $X$ such that $A \subseteq B_{0}$ and $A \subseteq B_{1}$. It is easily verified that the set $B=B_{0} \cap B_{1}$ is as desired.

## 2. A generalization of the Kechris-Solecki-Todorcevic THEOREM

For each set $I \subseteq{ }^{<\omega} 2$, let $\mathcal{G}_{I, n}$ denote the graph on ${ }^{\omega} 2$ consisting of all pairs ( $s^{\wedge} i^{\wedge} x, s^{\wedge} \bar{\imath}^{\wedge} x$ ), where $i \in 2, s \in I \cap^{n} 2$, and $x \in{ }^{\omega} 2$.

Proposition 3. Suppose that $I \subseteq{ }^{<\omega} 2$ is dense and $A \subseteq{ }^{\omega} 2$ is nonmeager and has the Baire property. Then the set $A$ is not eventually $\left(\mathcal{G}_{I, n}\right)_{n \in \omega}$-discrete.
Proof. Fix $s \in{ }^{<\omega} 2$ such that $A$ is comeager in $\mathcal{N}_{s}$. Given any $m \in \omega$, there exists $n \in \omega \backslash m$ and $t \in I \cap{ }^{n} 2$ such that $s \sqsubseteq t$. Then there exists $x \in{ }^{\omega} 2$ such that $t^{\wedge} 0^{\wedge} x, t^{\wedge} 1^{\wedge} x \in A$. As $\left(t^{\wedge} 0^{\wedge} x, t^{\wedge} 1^{\wedge} x\right) \in \mathcal{G}_{I, n}$, it follows that $A$ is not eventually $\left(\mathcal{G}_{I, n}\right)_{n \in \omega}$-discrete.

Fix sequences $s_{n} \in{ }^{n} 2$ such that the set $I=\left\{s_{n} \mid n \in \omega\right\}$ is dense. Define $\mathcal{G}_{0, n}=\mathcal{G}_{I, n}$. A $\left(\kappa\right.$ - ) coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ is a function $c: X \rightarrow \kappa$ such that $c^{-1}(\{\alpha\})$ is eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete for all $\alpha \in \kappa$.

Suppose that $\zeta \in{ }^{\omega} \omega$ and $\eta \in{ }^{\leq \omega} \omega$. We say that $\eta$ is $\zeta$-fast if $\eta(n)>$ $\max _{m \in n} \zeta \circ \eta(m)$ for all $n \in \omega$. For $\eta \in{ }^{\omega} \omega$, an $\eta$-homomorphism from $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ to $\left(\mathcal{H}_{n}\right)_{n \in \omega}$ is a homomorphism from $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ to $\left(\mathcal{H}_{\eta(n)}\right)_{n \in \omega}$. A $\zeta$-fast homomorphism from $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ to $\left(\mathcal{H}_{n}\right)_{n \in \omega}$ is an $\eta$-homomorphism from $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ to $\left(\mathcal{H}_{n}\right)_{n \in \omega}$, where $\eta$ is $\zeta$-fast.

Theorem 4. Suppose that $\zeta \in{ }^{\omega} \omega$, $X$ is a Hausdorff space and $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ is a sequence of analytic graphs on $X$. Then exactly one of the following holds:
(1) There is a Borel $\omega$-coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega}$.
(2) There is a continuous $\zeta$-fast homomorphism from the sequence $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$ to the sequence $\left(\mathcal{G}_{n}\right)_{n \in \omega}$.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction, that $c: X \rightarrow \omega$ is an $\omega$-universally Baire coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega}, \eta \in{ }^{\omega} \omega$, and $\pi:{ }^{\omega} 2 \rightarrow X$ is a Baire measurable $\eta$ homomorphism from $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$ to $\left(\mathcal{G}_{n}\right)_{n \in \omega}$. Then $c \circ \pi$ is a Baire measurable coloring of $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$, so there exists $k \in \omega$ such that the set
$(c \circ \pi)^{-1}(\{k\})$ is non-meager and eventually $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$-discrete, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can clearly assume that each $\mathcal{G}_{n}$ is non-empty. Fix continuous functions $\varphi_{\mathcal{G}_{n}}:{ }^{\omega} \omega \rightarrow X \times X$ such that $\mathcal{G}_{n}=\varphi_{\mathcal{G}_{n}}\left({ }^{\omega} \omega\right)$ for all $n \in \omega$, as well as a continuous function $\varphi_{X}:{ }^{\omega} \omega \rightarrow X$ such that $\bigcup_{n \in \omega} \operatorname{dom}\left(\mathcal{G}_{n}\right) \subseteq \varphi_{X}\left({ }^{\omega} \omega\right)$.

A global ( $n$-) approximation is a triple of the form $p=\left(e^{p}, u^{p}, v^{p}\right)$, where $e^{p} \in{ }^{n} \omega$ is $\zeta$-fast, $u^{p}:{ }^{n} 2 \rightarrow{ }^{n} \omega$, and $v^{p}:{ }^{<n} 2 \rightarrow{ }^{n} \omega$. Fix an enumeration $\left(p_{n}\right)_{n \in \omega}$ of the set of all global approximations.

An extension of a global $m$-approximation $p$ is a global $n$-approximation $q$ with the property that $e^{p} \sqsubseteq e^{q}, s_{p} \sqsubseteq s_{q} \Longrightarrow u^{p}\left(s_{p}\right) \sqsubseteq u^{q}\left(s_{q}\right)$, and $t_{p} \sqsubseteq t_{q} \Longrightarrow v^{p}\left(t_{p}\right) \sqsubseteq v^{q}\left(t_{q}\right)$ for all $s_{p} \in{ }^{m} 2, s_{q} \in{ }^{n} 2, t_{p} \in{ }^{<m} 2$, and $t_{q} \in{ }^{<n} 2$ with $n-m=\left|t_{q}\right|-\left|t_{p}\right|$. When $n=m+1$, we say that $q$ is a one-step extension of $p$.

A local ( $n$-) approximation is a triple of the form $l=\left(e^{l}, f^{l}, g^{l}\right)$, where $e^{l} \in{ }^{n} \omega$ is $\zeta$-fast, $f^{l}:{ }^{n} 2 \rightarrow{ }^{\omega} \omega$, and $g^{l}:{ }^{<n} 2 \rightarrow{ }^{\omega} \omega$, such that

$$
\varphi_{\mathcal{G}_{e^{l}(k)}} \circ g^{l}(t)=\left(\varphi_{X} \circ f^{l}\left(s_{k} \smile 0^{\complement} t\right), \varphi_{X} \circ f^{l}\left(s_{k} \frown 1 \frown t\right)\right)
$$

for all $k \in n$ and $t \in{ }^{n-(k+1)} 2$. We say that $l$ is compatible with a global $n$-approximation $p$ if $e^{p}=e^{l}, u^{p}(s) \sqsubseteq f^{l}(s)$, and $v^{p}(t) \sqsubseteq g^{l}(t)$ for all $s \in{ }^{n} 2$ and $t \in{ }^{<n} 2$. We say that $l$ is compatible with a set $Y \subseteq X$ if $\varphi_{X} \circ f^{l}\left({ }^{n} 2\right) \subseteq Y$.

Suppose now that $\alpha$ is a countable ordinal, $Y \subseteq X$ is a Borel set, and $c: Y^{c} \rightarrow \omega \cdot \alpha$ is a Borel coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega} \upharpoonright Y^{c}$. Associated with each global $n$-approximation $p$ is the set $L_{n}(p, Y)$ of local $n$-approximations which are compatible with both $p$ and $Y$.

A global $n$-approximation $p$ is $Y$-terminal if $L_{n+1}(q, Y)=\emptyset$ for all one-step extensions $q$ of $p$. Let $T(Y)$ denote the set of such approximations. Set $A(p, Y)=\bigcup_{n \in \omega}\left\{\varphi_{X} \circ f^{l}\left(s_{n}\right) \mid l \in L_{n}(p, Y)\right\}$.

Lemma 5. Suppose that $p$ is a global approximation and $A(p, Y)$ is not eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete. Then $p \notin T(Y)$.

Proof of lemma. Fix $n \in \omega$ such that $p$ is a global $n$-approximation, as well as $e>\max _{m \in n} \zeta \circ e^{p}(m)$ and local $n$-approximations $l_{0}, l_{1} \in$ $L_{n}(p, Y)$ with $\left(\varphi_{X} \circ f^{l_{0}}\left(s_{n}\right), \varphi_{X} \circ f^{l_{1}}\left(s_{n}\right)\right) \in \mathcal{G}_{e}$. Then there exists $x \in{ }^{\omega} \omega$ such that $\varphi_{\mathcal{G}_{e}}(x)=\left(\varphi_{X} \circ f^{l_{0}}\left(s_{n}\right), \varphi_{X} \circ f^{l_{1}}\left(s_{n}\right)\right)$. Let $l$ denote the local $(n+1)$-approximation given by $e^{l} \upharpoonright n=e^{p}, e^{l}(n)=e, f^{l}\left(s^{\wedge} i\right)=f^{l_{i}}(s)$, $g^{l}(\emptyset)=x$, and $g^{l}\left(t^{\wedge} i\right)=g^{l_{i}}(t)$ for $i \in 2, s \in{ }^{n} 2$, and $t \in{ }^{<n} 2$. Then $l$ is compatible with a one-step extension of $p$, thus $p$ is not $Y$-terminal. $\boxtimes$

Proposition 2 and Lemma 5 ensure that for each $p \in T(Y)$, there is an eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete Borel set $B(p, Y) \subseteq X$ with $A(p, Y) \subseteq$
$B(p, Y)$. Set $Y^{\prime}=Y \backslash \bigcup\{B(p, Y) \mid p \in T(Y)\}$. For each $y \in Y \backslash Y^{\prime}$, put $n(y)=\min \left\{n \in \omega \mid p_{n} \in T(Y)\right.$ and $\left.y \in B\left(p_{n}, Y\right)\right\}$. Define $c^{\prime}:\left(Y^{\prime}\right)^{c} \rightarrow$ $\omega \cdot(\alpha+1)$ by

$$
c^{\prime}(y)= \begin{cases}c(y) & \text { if } y \in Y^{c} \text { and } \\ \omega \cdot \alpha+n(y) & \text { otherwise }\end{cases}
$$

Lemma 6. The function $c^{\prime}$ is a coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega} \upharpoonright\left(Y^{\prime}\right)^{c}$.
Proof of lemma. Note that if $\beta \in \omega \cdot \alpha$ then $\left(c^{\prime}\right)^{-1}(\{\beta\})=c^{-1}(\{\beta\})$, and if $\beta \in \omega \cdot(\alpha+1) \backslash \omega \cdot \alpha$ then there exists $n \in \omega$ with $\beta=\omega \cdot \alpha+n$, so $p_{n} \in T(Y)$ and $\left(c^{\prime}\right)^{-1}(\{\beta\}) \subseteq B\left(p_{n}, Y\right)$. Then $\left(c^{\prime}\right)^{-1}(\{\beta\})$ is eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete for all $\beta \in \omega \cdot(\alpha+1)$, thus $c^{\prime}$ is a coloring of the sequence $\left(\mathcal{G}_{n}\right)_{n \in \omega} \upharpoonright\left(Y^{\prime}\right)^{c}$.

Lemma 7. Suppose that $p$ is a global approximation whose one-step extensions are all $Y$-terminal. Then $p$ is $Y^{\prime}$-terminal.

Proof of lemma. Fix $n \in \omega$ such that $p$ is a global $n$-approximation. Suppose, towards a contradiction, that there is a one-step extension $q$ of $p$ for which there exists $l \in L_{n+1}\left(q, Y^{\prime}\right)$. Then $\varphi_{X} \circ f^{l}\left(s_{n+1}\right) \in B(q, Y)$ and $B(q, Y) \cap Y^{\prime}=\emptyset$, thus $\varphi_{X} \circ f^{l}\left(s_{n+1}\right) \notin Y^{\prime}$, a contradiction.

Recursively define Borel sets $Y_{\alpha} \subseteq X$ and Borel colorings $c_{\alpha}: Y_{\alpha}^{c} \rightarrow$ $\omega \cdot \alpha$ of $\left(\mathcal{G}_{n}\right)_{n \in \omega} \uparrow Y_{\alpha}^{c}$ by

$$
\left(Y_{\alpha}, c_{\alpha}\right)= \begin{cases}(X, \emptyset) & \text { if } \alpha=0, \\ \left(Y_{\beta}^{\prime}, c_{\beta}^{\prime}\right) & \text { if } \alpha=\beta+1, \text { and } \\ \left(\bigcap_{\beta \in \alpha} Y_{\beta}, \lim _{\beta \rightarrow \alpha} c_{\beta}\right) & \text { if } \alpha \text { is a limit ordinal. }\end{cases}
$$

As there are only countably many approximations, there exists $\alpha \in \omega_{1}$ such that $T\left(Y_{\alpha}\right)=T\left(Y_{\alpha+1}\right)$.

Let $p^{0}$ denote the unique global 0-approximation. As $\operatorname{dom}(\mathcal{G}) \cap Y_{\alpha} \subseteq$ $A\left(p^{0}, Y_{\alpha}\right)$, it follows that if $p^{0}$ is $Y_{\alpha}$-terminal, then $c_{\alpha}$ extends to a Borel $(\omega \cdot \alpha+1)$-coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega}$, thus there is a Borel $\omega$-coloring of $\left(\mathcal{G}_{n}\right)_{n \in \omega}$.

Otherwise, by repeatedly applying Lemma 7 we obtain global $n$ approximations $p^{n}=\left(e^{n}, u^{n}, v^{n}\right)$ with the property that $p^{n+1}$ is a one-step extension of $p^{n}$ for all $n \in \omega$. Note that the sequence $\eta=$ $\lim _{n \rightarrow \infty} e^{n}$ is $\zeta$-fast, and define continuous functions $\pi:{ }^{\omega} 2 \rightarrow{ }^{\omega} \omega$ and $\pi_{k}:{ }^{\omega} 2 \rightarrow{ }^{\omega} \omega$ for $k \in \omega$ by

$$
\pi(x)=\lim _{n \rightarrow \omega} u^{n}(x \upharpoonright n) \text { and } \pi_{k}(x)=\lim _{n \rightarrow \omega} v^{k+n+1}(x \upharpoonright n) .
$$

To see that $\varphi_{X} \circ \pi$ is an $\eta$-homomorphism from $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$ to $\left(\mathcal{G}_{n}\right)_{n \in \omega}$, it is enough to show that

$$
\varphi_{\mathcal{G}_{\eta(k)}} \circ \pi_{k}(x)=\left(\varphi_{X} \circ \pi\left(s_{k} 0^{\wedge} x\right), \varphi_{X} \circ \pi\left(s_{k}{ }^{\wedge} 1^{\wedge} x\right)\right)
$$

for all $k \in \omega$ and $x \in{ }^{\omega} 2$. By continuity, it is enough to show that every open neighborhood $U \times V$ of $\left(\pi_{k}(x),\left(\pi\left(s_{k} 0^{\wedge} x\right), \pi\left(s_{k}{ }^{\wedge} 1^{\wedge} x\right)\right)\right)$ contains a point $\left(z,\left(z_{0}, z_{1}\right)\right)$ such that $\varphi_{\mathcal{G}_{\eta(k)}}(z)=\left(\varphi_{X}\left(z_{0}\right), \varphi_{X}\left(z_{1}\right)\right)$. Towards this end, fix $n \in \omega$ sufficiently large that $\mathcal{N}_{v^{k+n+1}(x \mid n)} \subseteq U$ and

$$
\mathcal{N}_{u^{k+n+1}\left(s_{k} \sim 0 \smile(x \upharpoonright n)\right)} \times \mathcal{N}_{u^{k+n+1}\left(s_{k} \sim 1 \sim(x \upharpoonright n)\right)} \subseteq V .
$$

Fix $l \in L_{k+n+1}\left(p^{k+n+1}, Y_{\alpha}\right)$, and observe that $z=g^{l}(x \mid n), z_{0}=$ $\left.f^{l}\left(s_{k}\right)^{\wedge}(x \upharpoonright n)\right)$, and $z_{1}=f^{l}\left(s_{k} \wedge 1^{\wedge}(x \upharpoonright n)\right)$ are as desired.

## 3. Hjorth's theorem

Suppose that $X$ is a set and $E$ is an equivalence relation on $X$. An $E$-quasi-metric is a function $d: E \rightarrow[0, \infty)$ such that:
(1) $\forall x \in X(d(x, x)=0)$.
(2) $\forall x, y \in X(d(x, y)=d(y, x))$.
(3) $\forall x, y, z \in X(x E y E z \Longrightarrow d(x, z) \leq d(x, y)+d(y, z))$.

We say that $d$ is an E-metric if $\forall x, y \in X(x=y \Longleftrightarrow d(x, y)=0)$.
We say that a set $A \subseteq X$ is $d$-bounded if $d(E \upharpoonright A) \subseteq n$ for some $n \in \omega$. Let $d_{0}$ denote the $E_{0}$-metric given by

$$
d_{0}(x, y)=\min \{n \in \omega \mid \forall m \in \omega \backslash n(x(m)=y(m))\}
$$

Proposition 8. Suppose that $A \subseteq{ }^{\omega} 2$ is $d_{0}$-bounded and has the Baire property. Then $A$ is meager.

Proof. Fix $n \in \omega$ such that $d_{0}(E \upharpoonright A) \subseteq n$, and note that for each $s \in{ }^{n} 2$, the set $A_{s}=A \cap \mathcal{N}_{s}$ is a partial transversal of $E_{0}$. As any such set is meager, so too is $A$.

We say that a homomorphism $\pi:{ }^{\omega} 2 \rightarrow X$ from $E_{0}$ to $E$ is $d$ expansive if $d_{0}(x, y) \leq d(\pi(x), \pi(y))$ for all $(x, y) \in E_{0}$.

Theorem 9. Suppose that $X$ is a Hausdorff space, $E$ is an analytic equivalence relation on $X$, and $d$ is an $E$-quasi-metric such that $d^{-1}(n, \infty)$ is analytic for all $n \in \omega$. Then exactly one of the following holds:
(1) There is a cover of $X$ by countably many d-bounded Borel sets.
(2) There is a continuous d-expansive embedding of $E_{0}$ into $E$.

Proof. Proposition 8 easily implies that (1) and (2) are mutually exclusive. For each $n \in \omega$, set $\mathcal{G}_{n}=\{(x, y) \in X \times X \mid x \neq y$ and $d(x, y)=$ $n\}$. As every eventually $\left(\mathcal{G}_{n}\right)_{n \in \omega}$-discrete set is $d$-bounded, it follows that if there is a Borel $\omega$-coloring of $\mathcal{G}$, then $X$ is the union of countably many $d$-bounded Borel sets.

Define $\zeta \in{ }^{\omega} \omega$ by $\zeta(n)=8 n$. By Theorem 4, we can assume that there is a $\zeta$-fast sequence $\eta \in{ }^{\omega} \omega$ for which there exists a continuous $\eta$-homomorphism $\varphi$ from $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$ to $\left(\mathcal{G}_{n}\right)_{n \in \omega}$.
Lemma 10. Suppose that $(x, y) \in E_{0} \backslash \Delta(X)$. Then

$$
d(\varphi(x), \varphi(y)) \leq 2 \eta\left(d_{0}(x, y)-1\right)
$$

Proof of lemma. By induction on $n=d_{0}(x, y)$. To handle the case $n=1$, observe that if $d_{0}(x, y)=1$, then $(x, y) \in \mathcal{G}_{0,0}$, so it follows that $d(\varphi(x), \varphi(y))=\eta(0)$. Suppose now that $n \in \omega \backslash 1$ and we have established the lemma for $d_{0}(x, y) \leq n$. Given $u, v \in{ }^{n} 2$ and $z \in$ ${ }^{\omega} 2$, set $x=u^{\wedge} 0^{\wedge} z$ and $y=v^{\wedge} 1^{\wedge} z$. The triangle inequality and two applications of the induction hypothesis ensure that

$$
\begin{aligned}
d(\varphi(x), \varphi(y)) \leq & d\left(\varphi\left(u^{\wedge} 0^{\wedge} z\right), \varphi\left(s_{n} 0^{\wedge} z\right)\right)+ \\
& d\left(\varphi\left(s_{n} 0^{\wedge} z\right), \varphi\left(s_{n} \frown 1^{\wedge} z\right)\right)+ \\
& d\left(\varphi\left(s_{n} 1^{\wedge} z\right), \varphi\left(v^{\wedge} 1^{\wedge} z\right)\right) \\
\leq & 2 \eta(n-1)+\eta(n)+2 \eta(n-1) \\
\leq & 2 \eta(n),
\end{aligned}
$$

which completes the proof.
It is clear that $\varphi$ is a homomorphism from $E_{0}$ to $E$.
Lemma 11. The homomorphism $\varphi$ is d-expansive.
Proof of lemma. Suppose that $(x, y) \in E_{0} \backslash \Delta\left({ }^{\omega} 2\right)$ and set $n=d_{0}(x, y)$. Clearly we can assume that $n \geq 2$. After reversing the roles of $x$ and $y$ if necessary, we can assume that there exist $u, v \in{ }^{n} 2$ and $z \in{ }^{\omega} 2$ with $x=u^{\wedge} 0^{\wedge} z$ and $y=v^{\wedge} 1^{\wedge} z$. The triangle inequality and two applications of Lemma 10 ensure that

$$
\begin{aligned}
\eta(n)= & d\left(\varphi\left(s_{n}{ }^{\wedge} 0^{\wedge} z\right), \varphi\left(s_{n}{ }^{\wedge} 1^{\wedge} z\right)\right) \\
\leq & d\left(\varphi\left(s_{n}{ }^{\wedge} 0^{\wedge} z\right), \varphi\left(u^{\wedge} 0^{\wedge} z\right)\right)+ \\
& d\left(\varphi\left(u^{\wedge} 0^{\wedge} z\right), \varphi\left(v^{\wedge} 1^{\wedge} z\right)\right)+ \\
& d\left(\varphi\left(v^{\wedge} 1^{\wedge} z\right), \varphi\left(s_{n} 1^{\wedge} z\right)\right) \\
\leq & 2 \eta(n-1)+d(\varphi(x), \varphi(y))+2 \eta(n-1),
\end{aligned}
$$

so $d(\varphi(x), \varphi(y)) \geq \eta(n) / 2$, thus $\varphi$ is $d$-expansive.

Set $F=(\varphi \times \varphi)^{-1}(E)$ and $e(x, y)=d(\varphi(x), \varphi(y))$.
Lemma 12. The equivalence relation $F$ is meager.
Proof of lemma. By the Kuratowski-Ulam theorem, it suffices to show that every $F$-class is meager. Suppose, towards a contradiction, that there exists $x \in{ }^{\omega} 2$ such that $[x]_{F}$ is non-meager. Then there exists $n \in \omega$ such that the set

$$
A=\left\{y \in[x]_{F} \mid e(x, y)=n\right\}
$$

is non-meage, so there exists $(y, z) \in \mathcal{G}_{0, m} \upharpoonright A$ for some $m \in \omega \backslash(2 n+1)$. Then $e(y, z)>2 n$, so the triangle inequality implies that $e(x, y)>n$ or $e(x, z)>n$, the desired contradiction.

Lemma 12 easily implies that there is a continuous $d_{0}$-expansive homomorphism $\psi$ from $\left(E_{0}, E_{0}^{c}\right)$ into $\left(E_{0}, F^{c}\right)$, and it follows that $\varphi \circ \psi$ is a continuous $d$-expansive embedding of $E_{0}$ into $E$.

Suppose that $\mathcal{G}$ is a graph on $X$ and $n \in \omega$. A $\mathcal{G}$-path of length $n$ is a sequence $\left(x_{i}\right)_{i \in n+1} \in{ }^{n+1} X$ such that $\left(x_{i}, x_{i+1}\right) \in \mathcal{G}$ for all $i \in n$. We say that $\mathcal{G}$ is acyclic if there is no $\mathcal{G}$-path of length at least three whose initial and terminal points are the same. We use $E_{\mathcal{G}}$ to denote the equivalence relation consisting of those pairs which are the initial and terminal points of a $\mathcal{G}$-path.

We say that $E$ is analytic treeable if there is an acyclic analytic graph $\mathcal{T}$ such that $E=E_{\mathcal{T}}$. A transversal of $E$ is a set which intersects every $E$-class in exactly one point.

Theorem 13. Suppose that $X$ is a Hausdorff space and $E$ is an analytic treeable analytic equivalence relation on $X$. Then at least one of the following holds:
(1) There is a co-analytic transversal of $E$.
(2) There is a continuous embedding of $E_{0}$ into $E$.

Proof. Fix an analytic treeing $\mathcal{T}$ of $E$, and let $d$ denote the $E$-metric obtained by putting $d(x, y)=n$ whenever there is an injective $\mathcal{T}$-path from $x$ to $y$ of length $n$.

Lemma 14. Suppose that $B \subseteq X$ is a d-bounded Borel set. Then there is an $E$-invariant analytic set $A \subseteq X$ such that $B \subseteq A$ and $E \upharpoonright A$ has a co-analytic transversal.

Proof of lemma. We say that a set $A \subseteq X$ is $(d, n)$-bounded if $d(E \upharpoonright$ $A) \subseteq n$. Fix $n \in \omega$ such that $B$ is $(d, 2 n)$-bounded.

Set $B_{0}=B$. Given a $2(n-i)$-bounded Borel set $B_{i} \subseteq X$, let $A_{i+1}$ denote the set of points which lie strictly $\mathcal{T}$-between two points of $B_{i}$, and observe that the set

$$
A_{i+1}^{\prime}=\left\{x \in A_{i+1}| | A_{i+1} \cap \mathcal{T}_{x} \mid \geq 2\right\}
$$

is $2(n-(i+1)$ )-bounded. Fix a $2(n-(i+1))$-bounded Borel set $B_{i+1} \subseteq X$ such that $A_{i+1}^{\prime} \subseteq B_{i+1}$.

Fix a Borel linear ordering $\leq$ of $X$, and for $i \in n$ define $C_{i} \subseteq B_{i}$ by

$$
C_{i}=\left\{x \in B_{i} \backslash \bigcup_{j \in \omega \backslash(i+1)}\left[B_{j}\right]_{E} \mid \forall y \in B_{i}(x E y \Longrightarrow x \leq y)\right\}
$$

It is clear that the set $C=\bigcup_{i \in n} C_{i}$ is the desired transversal.
By Theorem 9, it is enough to show that if $X$ is the union of countably many $d$-bounded Borel sets, then there is a co-analytic partial transversal of $E$, which follows from Lemma 14.

We say that $E$ is Borel treeable if there is an acyclic Borel graph $\mathcal{T}$ such that $E=E_{\mathcal{T}}$.

Theorem 15 (Hjorth). Suppose that $X$ is a Polish space and $E$ is a Borel-treeable equivalence relation on $X$. Then exactly one of the following holds:
(1) There is a Borel transversal of E.
(2) There is a continuous embedding of $E_{0}$ into $E$.

Proof. It is clear that (1) and (2) are mutually exclusive. Fix an acyclic Borel graph $\mathcal{T}$ such that $E=E_{\mathcal{T}}$, and let d denote the $E$-metric obtained by putting $d(x, y)=n$ whenever there is an injective $\mathcal{T}$-path from $x$ to $y$. By Theorem 9 , it is enough to show that if $B$ is a bounded Borel set, then there is a Borel transversal of $E \upharpoonright[B]_{E}$.

Towards this end, suppose that $B \subseteq X$ is a Borel set which is $2 n$ bounded, i.e., the distance between any two $E$-related elements of $B$ is strictly less than $2 n$. Set $B_{0}=B$. Given a $2(n-i)$-bounded Borel set $B_{i} \subseteq X$, let $A_{i+1}$ denote the set of points which lie $\mathcal{T}$-between two points of $B_{i}$, and observe that the set $A_{i+1}^{\prime}=\left\{x \in A_{i+1}| | A_{i+1} \cap \mathcal{T}_{x} \mid \geq\right.$ $2\}$ is $2(n-(i+1)$ )-bounded. By the first reflection theorem, there is a $2(n-(i+1))$-bounded Borel set $B_{i+1} \supseteq A_{i+1}^{\prime}$.

Set $C_{i}=B_{i} \backslash \bigcup_{j \in(n+1) \backslash(i+1)}\left[C_{j}\right]_{E}$. It is clear that $C_{i}$ intersects every $E$-class in at most two points, thus the Borel treeability of $E$ ensures that $C_{i}$ is Borel. It follows that $C=\bigcup_{i \in n+1} C_{i}$ is a Borel set which intersects every $E$-class in at most two points. As $B \subseteq[C]_{E}$, it follows that there is a Borel partial transversal of $E \upharpoonright[B]_{E}$.

## 4. ExERCISES

Exercise 16. Show that if $X$ and $Y$ are Hausdorff spaces and $\left(\mathcal{G}_{n}\right)_{n \in \omega}$ is a sequence of analytic subsets of $X \times(Y \times Y)$ whose vertical sections are graphs, then exactly one of the following holds:
(1) There is a Borel function $c: X \times Y \rightarrow \omega$ such that for all $x \in X$, the map $c_{x}(y)=c(x, y)$ is a coloring of $\left(\left(\mathcal{G}_{n}\right)_{x}\right)_{n \in \omega}$.
(2) For some $x \in X$, there is a continuous homomorphism from $\left(\mathcal{G}_{0, n}\right)_{n \in \omega}$ to $\left(\left(\mathcal{G}_{n}\right)_{x}\right)_{n \in \omega}$.

We say that $E$ is smooth if there is a Borel reduction of $E$ to $\Delta\left({ }^{\omega} 2\right)$. We say that $E$ is hypersmooth if it is of the form $\bigcup_{n \in \omega} F_{n}$, where $\left(F_{n}\right)_{n \in \omega}$ is an increasing sequence of smooth equivalence relations.
Exercise 17 (a special case of Harrington-Kechris-Louveau [1]). Show that if $X$ is a Hausdorff space and $E$ is a hypersmooth analytic equivalence relation on $X$, then exactly one of the following hold:
(1) The equivalence relation $E$ is smooth.
(2) There is a continuous embedding of $E_{0}$ into $E$.

Exercise 18. State and prove generalizations of all of the results mentioned thus far to $\kappa$-Souslin $\omega$-universally Baire structures.

Hint: The proofs are virtually identical!

## References

[1] L. Harrington, A.S. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 903-928, 3 (4), 1990.
[2] G. Hjorth. Selection theorems and treeability. Proc. Amer. Math. Soc., 36473653, 136 (10), 2008.
[3] V. Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. Fund. Math., 183-201, 154 (2), 1997.
[4] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. Adv. Math., 1-44, 141 (1), 1999.

