FORCELESS, INEFFECTIVE, POWERLESS PROOFS OF DESCRIPTIVE DICHOTOMY THEOREMS

LECTURE III: THE HARRINGTON-KECHRISLOUVEAU THEOREM

BENJAMIN MILLER

Abstract

We give a classical proof of a generalization of the Kechris-Solecki-Todorcevic dichotomy theorem [4] characterizing analytic graphs of uncountable Borel chromatic number. Using this, we give a classical proof of the Harrington-Kechris-Louveau theorem [2] characterizing non-smooth Borel equivalence relations.

In §1, we give two straightforward corollaries of the first separation theorem. In $\S 2$, we establish a local version of the Kechris-Solecki-Todorcevic theorem [4]. In $\S 3$, we use this to give a classical proof of the Harrington-Kechris-Louveau theorem [2]. In §4, we give as exercises several results that can be obtained in a similar fashion.

1. Corollaries of separation

Suppose that X is a set, $A \subseteq X$, and E is an equivalence relation on X. The E-saturation of A is given by $[A]_{E}=\{x \in X \mid \exists y \in A(x E y)\}$. The set A is E-invariant if $A=[A]_{E}$.

Proposition 1. Suppose that X is a Hausdorff space, E is an analytic equivalence relation on X, and $\left(A_{0}, A_{1}\right)$ is an E-discrete pair of analytic subsets of X. Then there is an E-discrete pair $\left(B_{0}, B_{1}\right)$ of E-invariant Borel subsets of X such that $A_{0} \subseteq B_{0}$ and $A_{1} \subseteq B_{1}$.

Proof. Set $A_{0,0}=A_{0}$ and $A_{1,0}=A_{1}$. Suppose now that we have an E-discrete pair ($A_{0, n}, A_{1, n}$) of analytic subsets of X. Then there is an E-discrete pair ($B_{0, n}, B_{1, n}$) of Borel subsets of X such that $A_{0, n} \subseteq B_{0, n}$ and $A_{1, n} \subseteq B_{1, n}$. Set $A_{0, n+1}=\left[B_{0, n}\right]_{E}$ and $A_{1, n+1}=\left[B_{1, n}\right]_{E}$. Clearly the sets $B_{0}=\bigcup_{n \in \omega} B_{0, n}$ and $B_{1}=\bigcup_{n \in \omega} B_{1, n}$ are as desired.

Proposition 2. Suppose that X is a Hausdorff space, E is a bi-analytic equivalence relation on X, F is an analytic equivalence relation on X, $E \subseteq F$, and $A \subseteq X$ is an $(F \backslash E)$-discrete analytic set. Then there is an E-invariant $(F \backslash E)$-discrete Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof. Set $A_{0}=A$. Suppose now that we have an $(F \backslash E)$-discrete analytic set $A_{n} \subseteq X$. Then there is an $(F \backslash E)$-discrete Borel set $B_{n} \subseteq X$ such that $A_{n} \subseteq B_{n}$. Set $A_{n+1}=\left[B_{n}\right]_{E}$. Clearly the set $B=\bigcup_{n \in \omega} B_{n}$ is as desired.

2. A local generalization of the Kechris-Solecki-Todorcevic theorem

For each set $J \subseteq \bigcup_{n \in \omega}{ }^{n} 2 \times{ }^{n} 2$, let \mathcal{H}_{J} denote the graph on ${ }^{\omega} 2$ consisting of all pairs of the form $\left(s(i)^{\wedge} i^{\wedge} x, s(\bar{\imath})^{\wedge} \bar{\imath}^{\wedge} x\right)$, where $i \in 2$, $s \in J$, and $x \in{ }^{\omega} 2$. We use E_{J} to denote the equivalence relation whose classes are the connected components of \mathcal{H}_{J}. We say that J is dense if $\forall s \in{ }^{<\omega} 2 \times{ }^{<\omega} 2 \exists t \in J \forall i \in 2(s(i) \sqsubseteq t(i))$.

Proposition 3. Suppose that $J \subseteq \bigcup_{n \in \omega}{ }^{n} 2 \times{ }^{n} 2$ is dense and $\varphi:{ }^{\omega} 2 \rightarrow$ ${ }^{\omega} 2$ is a Baire measurable homomorphism from E_{J} to $\Delta\left({ }^{\omega} 2\right)$. Then there exists $x \in{ }^{\omega} 2$ such that $\varphi^{-1}(\{x\})$ is comeager.

Proof. An equivalence relation is generically ergodic if every invariant set with the Baire property is meager or comeager.
Lemma 4. The equivalence relation E_{J} is generically ergodic.
Proof of lemma. Suppose, towards a contradiction, that $B \subseteq{ }^{\omega} 2$ is an E_{J}-invariant set with the Baire property which is neither meager nor comeager. Fix $s \in{ }^{<\omega} 2 \times{ }^{<\omega} 2$ such that B is comeager in $\mathcal{N}_{s(0)}$ and meager in $\mathcal{N}_{s(1)}$. Then there exists $t \in J$ with $s(0) \sqsubseteq t(0)$ and $s(1) \sqsubseteq$ $t(1)$, so the fact that B is comeager in $\mathcal{N}_{t(0)-0}$ ensures that it is also comeager in $\mathcal{N}_{t(1)-1}$, thus non-meager in $\mathcal{N}_{s(1)}$, a contradiction. \boxtimes

Lemma 4 ensures that for each $n \in \omega$, there is a unique sequence $s_{n} \in{ }^{n} 2$ such that $\varphi^{-1}\left(\mathcal{N}_{s_{n}}\right)$ is comeager. Setting $x=\lim _{n \rightarrow \omega} s_{n}$, it follows that $\varphi^{-1}(\{x\})$ is comeager.

Fix sequences $s_{2 n} \in{ }^{2 n} 2$ and pairs $s_{2 n+1} \in{ }^{2 n+1} 2 \times{ }^{2 n+1} 2$ for $n \in \omega$ such that the sets $I=\left\{s_{2 n} \mid n \in \omega\right\}$ and $J=\left\{s_{2 n+1} \mid n \in \omega\right\}$ are dense. Define $\mathcal{G}_{0}($ even $)=\mathcal{G}_{I}, \mathcal{H}_{0}($ odd $)=\mathcal{H}_{J}$, and $E_{0}($ odd $)=E_{J}$.

We say that E is smooth if there is a Borel reduction of E to $\Delta\left({ }^{\omega} 2\right)$.
Theorem 5. Suppose that X is a Hausdorff space, E is an analytic equivalence relation on X, and \mathcal{G} is an analytic graph on X. Then exactly one of the following holds:
(1) There is a Borel ω-coloring of $F \cap \mathcal{G}$, for some smooth equivalence relation $F \supseteq E$.
(2) There is a continuous homomorphism $\pi:{ }^{\omega} 2 \rightarrow X$ from the pair ($\mathcal{G}_{0}($ even $), E_{0}($ odd $\left.)\right)$ to the pair (\mathcal{G}, E).

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction, that $F \supseteq E$ is an equivalence relation, $\varphi: X \rightarrow{ }^{\omega} 2$ is an ω-universally Baire reduction of F to $\Delta\left({ }^{\omega} 2\right), c: X \rightarrow \omega$ is an ω universally Baire measurable ω-coloring of $F \cap \mathcal{G}$, and $\pi:{ }^{\omega} 2 \rightarrow X$ is a Baire measurable homomorphism from ($\mathcal{G}_{0}($ even $), E_{0}($ odd $\left.)\right)$ to (\mathcal{G}, E). Then $\varphi \circ \pi$ is a Baire measurable homomorphism from E_{0} (odd) to $\Delta\left({ }^{\omega} 2\right)$, so Proposition 3 ensures the existence of $x \in{ }^{\omega} 2$ such that the set $C=(\varphi \circ \pi)^{-1}(\{x\})$ is comeager. Note that $\pi(C)$ is a single F-class, so $c \upharpoonright \pi(C)$ is a coloring of $\mathcal{G} \upharpoonright \pi(C)$, thus $(c \circ \pi) \upharpoonright C$ is a coloring of $\mathcal{G}_{0}($ even $)$, the desired contradiction.

It remains to show that at least one of (1) and (2) holds. We can clearly assume that \mathcal{G} is non-empty, in which case there are continuous functions $\varphi_{\mathcal{G}}, \varphi_{E}:{ }^{\omega} \omega \rightarrow X \times X$ such that $\mathcal{G}=\varphi_{\mathcal{G}}\left({ }^{\omega} \omega\right)$ and $E=\varphi_{E}\left({ }^{\omega} \omega\right)$. Fix a continuous function $\varphi_{X}:{ }^{\omega} \omega \rightarrow X$ such that $\operatorname{dom}(\mathcal{G}) \subseteq \varphi_{X}\left({ }^{\omega} \omega\right)$.

A global (n-) approximation is a pair of the form $p=\left(u^{p}, v^{p}\right)$, where $u^{p}:{ }^{n} 2 \rightarrow{ }^{n} \omega$ and $v^{p}:{ }^{<n} 2 \rightarrow{ }^{n} \omega$. Fix an enumeration $\left(p_{n}\right)_{n \in \omega}$ of the set of all global approximations.

An extension of a global m-approximation p is a global n-approximation q with the property that $s_{p} \sqsubseteq s_{q} \Longrightarrow u^{p}\left(s_{p}\right) \sqsubseteq u^{q}\left(s_{q}\right)$ and $t_{p} \sqsubseteq$ $t_{q} \Longrightarrow v^{p}\left(t_{p}\right) \sqsubseteq v^{q}\left(t_{q}\right)$ for all $s_{p} \in{ }^{m} 2, s_{q} \in{ }^{n} 2, t_{p} \in{ }^{<m} 2$, and $t_{q} \in{ }^{<n} 2$ with $n-m=\left|t_{q}\right|-\left|t_{p}\right|$. When $n=m+1$, we say that q is a one-step extension of p.

A local (n-)approximation is a pair of the form $l=\left(f^{l}, g^{l}\right)$, where $f^{l}:{ }^{n} 2 \rightarrow{ }^{\omega} \omega$ and $g^{l}:{ }^{<n} 2 \rightarrow{ }^{\omega} \omega$, such that

$$
\varphi_{\mathcal{G}} \circ g^{l}(t)=\left(\varphi_{X} \circ f^{l}\left(s_{k} \sim 0 _t\right), \varphi_{X} \circ f^{l}\left(s_{k} \wedge 1 \vee t\right)\right)
$$

for all even $k \in n$ and $t \in^{n-k-1} 2$, and

$$
\varphi_{E} \circ g^{l}(t)=\left(\varphi_{X} \circ f^{l}\left(s_{k}(0)^{\wedge} 0^{\wedge} t\right), \varphi_{X} \circ f^{l}\left(s_{k}(1)^{\wedge} 1 \frown t\right)\right)
$$

for all odd $k \in n$ and $t \in{ }^{n-k-1} 2$. We say that l is compatible with a global n-approximation p if $u^{p}(s) \sqsubseteq f^{l}(s)$ and $v^{p}(t) \sqsubseteq g^{l}(t)$ for all $s \in{ }^{n} 2$ and $t \in{ }^{<n} 2$. We say that l is compatible with an equivalence relation F on X if $\varphi_{X} \circ f^{l}\left({ }^{n} 2\right)$ is contained in a single F-class. We say that l is compatible with a set $Y \subseteq X$ if $\varphi_{X} \circ f^{l}\left({ }^{n} 2\right) \subseteq Y$.

Suppose now that α is a countable ordinal, $F \supseteq E$ is a smooth Borel equivalence relation, $Y \subseteq X$ is a Borel set, and $c: Y^{c} \rightarrow \omega \cdot \alpha$ is a Borel coloring of $(F \cap \mathcal{G}) \upharpoonright Y^{c}$. Associated with each global n-approximation p is the set $L_{n}(p, F, Y)$ of local n-approximations which are compatible with p, F, and Y.

A global n-approximation p is (F, Y)-terminal if $L_{n+1}(q, F, Y)=\emptyset$ for all one-step extensions q of p. Let $T_{n}(F, Y)$ denote the set of all
such global n-approximations, and set $T_{\text {even }}(F, Y)=\bigcup_{n \in \omega} T_{2 n}(F, Y)$, $T_{\text {odd }}(F, Y)=\bigcup_{n \in \omega} T_{2 n+1}(F, Y)$, and $T(F, Y)=\bigcup_{n \in \omega} T_{n}(F, Y)$.

When n is even, we use $A(p, F, Y)$ to denote the set of points of the form $\varphi_{X} \circ f^{l}\left(s_{n}\right)$, where $l \in L_{n}(p, F, Y)$.

Lemma 6. Suppose that $n \in \omega$ is even, p is a global n-approximation, and the set $A(p, F, Y)$ is not $(F \cap \mathcal{G})$-discrete. Then $p \notin T_{n}(F, Y)$.

Proof of lemma. Fix local n-approximations $l_{0}, l_{1} \in L_{n}(p, F, Y)$ with $\left(\varphi_{X} \circ f^{l_{0}}\left(s_{n}\right), \varphi_{X} \circ f^{l_{1}}\left(s_{n}\right)\right) \in F \cap \mathcal{G}$. Then there exists $x \in{ }^{\omega} \omega$ such that $\varphi_{\mathcal{G}}(x)=\left(\varphi_{X} \circ f^{l_{0}}\left(s_{n}\right), \varphi_{X} \circ f^{l_{1}}\left(s_{n}\right)\right)$. Let l denote the local $(n+1)-$ approximation given by $f^{l}\left(s^{\wedge} i\right)=f^{l_{i}}(s), g^{l}(\emptyset)=x$, and $g^{l}\left(t^{\wedge} i\right)=g^{l_{i}}(t)$ for $i \in 2, s \in{ }^{n} 2$, and $t \in{ }^{<n} 2$. Then l is compatible with a one-step extension of p, thus p is not (F, Y)-terminal.

Lemma 6 ensures that for each $p \in T_{\text {even }}(F, Y)$, there is an $(F \cap \mathcal{G})$ discrete Borel set $B(p, F, Y) \subseteq X$ with $A(p, F, Y) \subseteq B(p, F, Y)$. Set $Y^{\prime}=Y \backslash \bigcup\left\{B(p, F, Y) \mid p \in T_{\text {even }}(F, Y)\right\}$. For each $y \in Y \backslash Y^{\prime}$, put $n(y)=\min \left\{n \in \omega \mid p_{n} \in T_{\text {even }}(F, Y)\right.$ and $\left.y \in B\left(p_{n}, F, Y\right)\right\}$. Define $c^{\prime}:\left(Y^{\prime}\right)^{c} \rightarrow \omega \cdot(\alpha+1)$ by

$$
c^{\prime}(y)= \begin{cases}c(y) & \text { if } y \in Y^{c} \text { and } \\ \omega \cdot \alpha+n(y) & \text { otherwise }\end{cases}
$$

Lemma 7. The function c^{\prime} is a coloring of $(F \cap \mathcal{G}) \upharpoonright\left(Y^{\prime}\right)^{c}$.
Proof of lemma. Note that if $\beta \in \omega \cdot \alpha$ then $\left(c^{\prime}\right)^{-1}(\{\beta\})=c^{-1}(\{\beta\})$, and if $\beta \in \omega \cdot(\alpha+1) \backslash \omega \cdot \alpha$ then there exists $n \in \omega$ with $\beta=\omega \cdot \alpha+n$, so $p_{n} \in T_{\text {even }}(F, Y)$ and $\left(c^{\prime}\right)^{-1}(\{\beta\}) \subseteq B\left(p_{n}, F, Y\right)$. Then $\left(c^{\prime}\right)^{-1}(\{\beta\})$ is $(F \cap \mathcal{G})$-discrete for all $\beta \in \omega \cdot(\alpha+1)$, thus c^{\prime} is a coloring of $(F \cap \mathcal{G}) \upharpoonright\left(Y^{\prime}\right)^{c}$.

When $i \in 2$ and n is odd, we use $A_{i}(p, F, Y)$ to denote the set of points of the form $\varphi_{X} \circ f^{l} \circ s_{n}(i)$, where $l \in L_{n}(p, F, Y)$.

Lemma 8. Suppose that $n \in \omega$ is odd, p is a global n-approximation, and $\left(A_{0}(p, F, Y), A_{1}(p, F, Y)\right)$ is not E-discrete. Then $p \notin T_{n}(F, Y)$.

Proof of lemma. Fix local n-approximations $l_{0}, l_{1} \in L(p, F, Y)$ with $\varphi_{X} \circ f^{l_{0}} \circ s_{n}(0) E \varphi_{X} \circ f^{l_{1}} \circ s_{n}(1)$. Then there exists $x \in{ }^{\omega} \omega$ such that $\varphi_{E}(x)=\left(\varphi_{X} \circ f^{l_{0}} \circ s_{n}(0), \varphi_{X} \circ f^{l_{1}} \circ s_{n}(1)\right)$. Let l denote the local $(n+1)$-approximation given by $f\left(s^{\wedge} i\right)=f^{l_{i}}(s), g(\emptyset)=x$, and $g\left(t^{\sim} i\right)=g^{l_{i}}(t)$ for $i \in 2, s \in{ }^{n} 2$, and $t \in{ }^{<n} 2$. Then l is compatible with a one-step extension of p, and it follows that $p \notin T_{n}(F, Y)$. 凹

Proposition 1 and Lemma 8 ensure that for each $p \in T_{\text {odd }}(F, Y)$, there is an E-discrete pair $\left(B_{0}(p, F, Y), B_{1}(p, F, Y)\right)$ of E-invariant Borel sets with $A_{0}(p, F, Y) \subseteq B_{0}(p, F, Y)$ and $A_{1}(p, F, Y) \subseteq B_{1}(p, F, Y)$. Define $\psi: X \rightarrow{ }^{\omega} 2$ by

$$
\psi(x)(n)= \begin{cases}\chi_{B_{0}\left(p_{n}, S, Y\right)}(x) & \text { if } p_{n} \in T_{n}(S, Y) \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Let F^{\prime} denote the smooth equivalence relation given by

$$
x F^{\prime} y \Longleftrightarrow x F y \text { and } \psi(x)=\psi(y) .
$$

Lemma 9. The equivalence relation F^{\prime} contains E.
Proof of lemma. This follows from the E-invariance of $B_{i}(p, F, Y)$ for $i \in 2$ and $p \in T_{\text {odd }}(F, Y)$, as well as the fact that $E \subseteq F$.

Lemma 10. Suppose that p is a global approximation whose one-step extensions are all (F, Y)-terminal. Then $p \in T\left(F^{\prime}, Y^{\prime}\right)$.

Proof of lemma. Fix $n \in \omega$ such that p is a global n-approximation. Suppose, towards a contradiction, that there is a one-step extension q of p for which there exists $l \in L_{n+1}\left(q, F^{\prime}, Y^{\prime}\right)$.

If n is odd, then $\varphi_{X} \circ f^{l}\left(s_{n+1}\right) \in B(q, F, Y)$ and $B(q, F, Y) \cap Y^{\prime}=\emptyset$, so $\varphi_{X} \circ f^{l}\left(s_{n+1}\right) \notin Y^{\prime}$, a contradiction.

If n is even, then $\varphi_{X} \circ f^{l} \circ s_{n+1}(0) \in B_{0}(p, F, Y)$ and $\varphi_{X} \circ f^{l} \circ s_{n+1}(1) \in$ $B_{1}(p, F, Y)$. As $\left(B_{0}(p, F, Y), B_{1}(p, F, Y)\right)$ is E-discrete, it follows that $\left(\varphi_{X} \circ f^{l} \circ s_{n+1}(0), \varphi_{X} \circ f^{l} \circ s_{n+1}(1)\right) \notin E$, a contradiction.

Recursively define smooth Borel equivalence relations F_{α}, Borel sets $Y_{\alpha} \subseteq X$, and Borel colorings $c_{\alpha}: Y_{\alpha}^{c} \rightarrow \omega \cdot \alpha$ of $\left(F_{\alpha} \cap \mathcal{G}\right) \upharpoonright Y_{\alpha}^{c}$ by

$$
\left(F_{\alpha}, Y_{\alpha}, c_{\alpha}\right)= \begin{cases}(X \times X, X, \emptyset) & \text { if } \alpha=0 \\ \left(F_{\beta}^{\prime}, Y_{\beta}^{\prime}, c_{\beta}^{\prime}\right) & \text { if } \alpha=\beta+1, \text { and } \\ \left(\bigcap_{\beta \in \alpha} F_{\beta}, \bigcap_{\beta \in \alpha} Y_{\beta}, \lim _{\beta \rightarrow \alpha} c_{\beta}\right) & \text { if } \alpha \text { is a limit ordinal. }\end{cases}
$$

As there are only countably many approximations, there exists $\alpha \in \omega_{1}$ such that $T\left(F_{\alpha}, Y_{\alpha}\right)=T\left(F_{\alpha+1}, Y_{\alpha+1}\right)$.

Let p^{0} denote the unique global 0-approximation. As $\operatorname{dom}(\mathcal{G}) \cap Y_{\alpha} \subseteq$ $A\left(p^{0}, F_{\alpha}, Y_{\alpha}\right)$, it follows that if p^{0} is $\left(F_{\alpha}, Y_{\alpha}\right)$-terminal, then c_{α} extends to a Borel $(\omega \cdot \alpha+1)$-coloring of $F_{\alpha} \cap \mathcal{G}$, thus there is a Borel ω-coloring of $F_{\alpha} \cap \mathcal{G}$.

Otherwise, by repeatedly applying Lemma 10 we obtain global n approximations $p^{n}=\left(u^{n}, v^{n}\right)$ with the property that p^{n+1} is a one-step extension of p^{n} for all $n \in \omega$. Define continuous functions π : ${ }^{\omega} 2 \rightarrow{ }^{\omega} \omega$
and $\pi_{k}:{ }^{\omega} 2 \rightarrow{ }^{\omega} \omega$ for $k \in \omega$ by

$$
\pi(x)=\lim _{n \rightarrow \omega} u^{n}(x \upharpoonright n) \text { and } \pi_{k}(x)=\lim _{n \rightarrow \omega} v^{k+n+1}(x \upharpoonright n) .
$$

To see that $\varphi_{X} \circ \pi$ is a homomorphism from $\mathcal{G}_{0}($ even $)$ to \mathcal{G}, it is enough to show that $\varphi_{\mathcal{G}} \circ \pi_{k}(x)=\left(\varphi_{X} \circ \pi\left(s_{k} 0^{\wedge} x\right), \varphi_{X} \circ \pi\left(s_{k} 1^{\wedge} x\right)\right)$ for all even $k \in \omega$ and $x \in{ }^{\omega} 2$. By continuity, it is enough to show that every open neighborhood $U \times V$ of $\left(\pi_{k}(x),\left(\pi\left(s_{k} 0^{\wedge} x\right), \pi\left(s_{k} 1^{\wedge} x\right)\right)\right)$ contains a point $\left(z,\left(z_{0}, z_{1}\right)\right)$ such that $\varphi_{\mathcal{G}}(z)=\left(\varphi_{X}\left(z_{0}\right), \varphi_{X}\left(z_{1}\right)\right)$. Towards this end, fix $n \in \omega$ sufficiently large that $\mathcal{N}_{v^{k+n+1}(x \mid n)} \subseteq U$ and

$$
\mathcal{N}_{\left.u^{k+n+1}\left(s_{k}\right\urcorner 0 \frown(x \mid n)\right)} \times \mathcal{N}_{\left.u^{k+n+1}\left(s_{k}\right\urcorner 1 \frown(x \mid n)\right)} \subseteq V
$$

Fix $l \in L_{k+n+1}\left(p^{k+n+1}, F_{\alpha}, Y_{\alpha}\right)$, and observe that $z=g^{l}(x \mid n), z_{0}=$ $f^{l}\left(s_{k} 0^{\wedge}(x \upharpoonright n)\right)$, and $z_{1}=f^{l}\left(s_{k} 1^{\wedge}(x \upharpoonright n)\right)$ are as desired.

To see that $\varphi_{X} \circ \pi$ is a homomorphism from E_{0} (odd) to E, it is enough to show that $\varphi_{E} \circ \pi_{k}(x)=\left(\varphi_{X} \circ \pi\left(s_{k}(0) \sim 0 \subset x\right), \varphi_{X} \circ \pi\left(s_{k}(1)^{\wedge} 1^{\wedge} x\right)\right)$ for all odd $k \in \omega$ and $x \in{ }^{\omega} 2$. By continuity, it is enough to show that every open neighborhood $U \times V$ of $\left.\left(\pi_{k}(x),\left(\pi\left(s_{k}(0)\right)^{\wedge} x\right), \pi\left(s_{k}(1)^{\wedge} 1^{\wedge} x\right)\right)\right)$ contains a point $\left(z,\left(z_{0}, z_{1}\right)\right)$ such that $\varphi_{E}(z)=\left(\varphi_{X}\left(z_{0}\right), \varphi_{X}\left(z_{1}\right)\right)$. Towards this end, fix $n \in \omega$ sufficiently large that $\mathcal{N}_{v^{k+n+1}(x \mid n)} \subseteq U$ and

$$
\mathcal{N}_{u^{k+n+1}\left(s_{k}(0) \smile 0 \curvearrowleft(x \mid n)\right)} \times \mathcal{N}_{u^{k+n+1}\left(s_{k}(1)-1 \frown(x \mid n)\right)} \subseteq V
$$

Fix $l \in L_{k+n+1}\left(p^{k+n+1}, F_{\alpha}, Y_{\alpha}\right)$, and observe that $z=g^{l}(x \upharpoonright n), z_{0}=$ $f^{l}\left(s_{k}(0)^{\wedge} 0^{\wedge}(x \upharpoonright n)\right)$, and $z_{1}=f^{l}\left(s_{k}(1)^{\wedge} 1^{\wedge}(x \upharpoonright n)\right)$ are as desired.

3. The Harrington-Kechris-Louveau theorem

We begin this section with a Mycielski-style theorem.
Proposition 11. Suppose that $J \subseteq \bigcup_{n \in \omega}{ }^{n} 2 \times{ }^{n} 2$ is dense, E is a meager equivalence relation on ${ }^{\omega} 2$ which contains \mathcal{H}_{J}, and $C \subseteq E$ is closed. Then there is a continuous homomorphism $\pi:{ }^{\omega} 2 \rightarrow{ }^{\omega} 2$ from $\left(\Delta\left({ }^{\omega} 2\right)^{c}, E_{0}^{c}, E_{0}\right)$ to $\left(C^{c}, E^{c}, E\right)$.

Proof. Fix a decreasing sequence $\left(U_{n}\right)_{n \in \omega}$ of dense open subsets of C^{c} such that $E \cap \bigcap_{n \in \omega} U_{n}=\emptyset$. An n-approximation is a pair (k, u), where $k: n+1 \rightarrow \omega$ and $u:{ }^{n} 2 \rightarrow{ }^{k(n)} 2$, such that

$$
s \upharpoonright[m, n)=t \upharpoonright[m, n) \Longrightarrow u(s) \upharpoonright[k(m), k(n))=u(t) \upharpoonright[k(m), k(n))
$$

for all $m \in n$ and $s, t \in{ }^{n} 2$. A refinement of (k, u) is an approximation $\left(k^{\prime}, u^{\prime}\right)$ such that $k \upharpoonright n=k^{\prime} \upharpoonright n$ and $u(s) \sqsubseteq u^{\prime}(s)$ for all $s \in{ }^{n} 2$.

Lemma 12. Suppose that $n \in \omega,(k, u)$ is an $(n+1)$-approximation, and $s \in{ }^{n} 2 \times{ }^{n} 2$. Then there is a refinement $\left(k^{\prime}, u^{\prime}\right)$ of (k, u) such that $\mathcal{N}_{u^{\prime}(s(0) \sim 0)} \times \mathcal{N}_{u^{\prime}(s(1) \wedge 1)} \subseteq U_{n+1}$.

Proof of lemma. Fix $l \in \omega \backslash k(n+1)$ and $t \in{ }^{l} 2 \times{ }^{l} 2$ with $u \circ s(0) \sqsubseteq t(0)$, $u \circ s(1) \sqsubseteq t(1)$, and $\mathcal{N}_{t(0)} \times \mathcal{N}_{t(1)} \subseteq U_{n+1}$. Then the refinement of (k, u) given by $k^{\prime}(n+1)=l, u^{\prime}\left(s(0)^{\wedge} 0\right)=t(0)$, and $u^{\prime}\left(s(1)^{\wedge} 1\right)=t(1)$ is clearly as desired.

Let $\left(k_{0}, u_{0}\right)$ denote the 0 -approximation given by $k_{0}(0)=0$ and $u_{0}=$ \emptyset. Given an n-approximation $\left(k_{n}, u_{n}\right)$, let (k, u) denote the $(n+1)$ approximation given by $k \upharpoonright(n+1)=k_{n}, k(n+1)=k_{n}(n)$, and $u\left(s^{\curvearrowright} i\right)=$ $u_{n}(s)$ for $i \in 2$ and $s \in{ }^{n} 2$. By applying Lemma 12 finitely many times, we obtain a refinement $\left(k^{\prime}, u^{\prime}\right)$ such that $\mathcal{N}_{u^{\prime}(s(0)-0)} \times \mathcal{N}_{u^{\prime}\left(s(1)^{-1)}\right.} \subseteq U_{n+1}$ for all $s \in{ }^{n} 2 \times{ }^{n} 2$. Fix $s \in J$ such that $u^{\prime}\left(1^{n} 0\right) \sqsubseteq s(0)$ and $u^{\prime}\left(0^{n} 1\right) \sqsubseteq$ $s(1)$, and let $\left(k_{n+1}, u_{n+1}\right)$ denote the refinement given by $k_{n+1}(n+1)=$ $|s(0)|+1=|s(1)|+1, u_{n+1}\left(1^{n \frown 0}\right)=s(0)^{\wedge} 0$, and $u_{n+1}\left(0^{n \wedge} 1\right)=s(1) \wedge 1$.

Define $\pi:{ }^{\omega} 2 \rightarrow{ }^{\omega} 2$ by $\pi(x)=\lim _{n \rightarrow \omega} u_{n}(x \mid n)$. Clearly π is continuous. Note now that if $n \in \omega, x, y \in{ }^{\omega} 2$, and $x(n) \neq y(n)$, then $(\pi(x), \pi(y)) \in \mathcal{N}_{u_{n+1}(x \backslash(n+1))} \times \mathcal{N}_{u_{n+1}(y \backslash(n+1))} \subseteq U_{n+1}$. In particular, it follows that π is a homomorphism from $\left(\Delta\left({ }^{\omega} 2\right)^{c}, E_{0}^{c}\right)$ to $\left(C^{c}, E^{c}\right)$.

Finally, observe that if $n \in \omega$ and $x \in{ }^{\omega} 2$, then there exist $s \in J$ and $y \in{ }^{\omega} 2$ with $\left(\pi\left(1^{n \wedge} 0^{\wedge} x\right), \pi\left(0^{n \wedge 1} x\right)\right)=\left(s(0)^{\wedge} 0^{\wedge} y, s(1)^{\wedge} 1^{\wedge} y\right) \in \mathcal{H}_{J} \subseteq$ E. As E_{0} is the smallest equivalence relation containing all pairs of the form $\left(1^{n \wedge} 0^{\wedge} x, 0^{n \wedge} 1^{\wedge} x\right)$ for $n \in \omega$ and $x \in{ }^{\omega} 2$, it follows that π is a homomorphism from E_{0} to E.

We are now ready for our main result.
Theorem 13 (Harrington-Kechris-Louveau). Suppose that X is a Hausdorff space and E is a bi-analytic equivalence relation on X. Then exactly one of the following holds:
(1) The equivalence relation E is smooth.
(2) There is a continuous embedding $\pi:{ }^{\omega} 2 \rightarrow X$ of E_{0} into E.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards a contradiction, that $\varphi: X \rightarrow{ }^{\omega} 2$ is an ω-universally Baire measurable reduction of E to $\Delta\left({ }^{\omega} 2\right)$ and $\pi:{ }^{\omega} 2 \rightarrow X$ is a Baire measurable embedding of E_{0} into E. Then $\varphi \circ \pi$ is a Baire measurable reduction of E_{0} to $\Delta\left({ }^{\omega} 2\right)$, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. Towards this end, set $\mathcal{G}=E^{c}$ and suppose that there is a Borel ω-coloring $c: X \rightarrow \omega$ of $F \cap \mathcal{G}$, for some smooth equivalence relation $F \supseteq E$. Proposition 2 ensures that for each $n \in \omega$, there is an E-invariant $(F \backslash E)$-discrete Borel set $B_{n} \subseteq X$ such that $c^{-1}(\{n\}) \subseteq B_{n}$. Define $f: X \rightarrow{ }^{\omega} 2$ by $f(x)(n)=\chi_{B_{n}}(x)$, and observe that

$$
x E y \Longleftrightarrow x F y \text { and } f(x)=f(y),
$$

thus E is smooth.
By Theorem 5, we can assume that there is a continuous homomorphism $\varphi:^{\omega} 2 \rightarrow X$ from (\mathcal{G}_{0} (even), $E_{0}($ odd $)$) to (\mathcal{G}, E). Set $C=$ $(\varphi \times \varphi)^{-1}(\Delta(X))$ and $F=(\varphi \times \varphi)^{-1}(E)$. Then C is closed and F is meager, so Proposition 11 ensures that there is a continuous homomorphism $\psi:{ }^{\omega} 2 \rightarrow{ }^{\omega} 2$ from $\left(\Delta\left({ }^{\omega} 2\right)^{c}, E_{0}^{c}, E_{0}\right)$ to $\left(C^{c}, F^{c}, F\right)$. Then the map $\pi=\varphi \circ \psi$ is the desired continuous embedding of E_{0} into E.

4. ExERCISES

Exercise 14. Show that if X and Y are Hausdorff spaces, $E \subseteq X \times$ $(Y \times Y)$ is an analytic set whose vertical sections are equivalence relations, and $\mathcal{G} \subseteq X \times(Y \times Y)$ is an analytic set whose vertical sections are graphs, then exactly one of the following holds:
(1) There is a set $F \supseteq E$, a Borel function $\varphi: X \times Y \rightarrow{ }^{\omega} 2$, and a Borel function $c: X \times Y \rightarrow \omega$ such that for all $x \in X$, the $\operatorname{map} \varphi_{x}(y)=\varphi(x, y)$ is a reduction of F_{x} to $\Delta\left({ }^{\omega} 2\right)$ and the map $c_{x}(y)=c(x, y)$ is a coloring of $F_{x} \cap \mathcal{G}_{x}$.
(2) For some $x \in X$, there is a continuous homomorphism from ($\mathcal{G}_{0}($ even $\left.), E_{0}(\mathrm{odd})\right)$ to $\left(\mathcal{G}_{x}, E_{x}\right)$.

Exercise 15. Show that if X is a Hausdorff space, E is a co-analytic equivalence relation on X, and F is an analytic subequivalence relation of E, then exactly one of the following holds:
(1) There is a smooth equivalence relation between F and E.
(2) There is a continuous embedding $\pi:{ }^{\omega} 2 \rightarrow X$ of the pair $\left(E_{0}, E_{0}\right)$ into the pair (E, F).

Exercise 16. State and prove a version of Exercise 15 for κ-Souslin ω-universally Baire structures.

Hint: To give a classical proof of a weak generalization, first establish a weak κ-Souslin analog of Theorem 5 by removing all uses of separation from the argument given in §2. Note that the resulting theorem is a true dichotomy in $\mathrm{ZF}+\mathrm{BP}$, and implies analogous results of Ditzen [1] and Foreman-Magidor (unpublished) under AD.

Hint: To give a strong generalization, adapt the techniques of Kanovei [3] to first establish a strong κ-Souslin analog of Theorem 5. Although the resulting proof is not classical, the resulting theorem has the advantage that it is a true generalization of Exercise 15.

References

[1] A. Ditzen. Definable equivalence relations on Polish spaces. Ph.D. Dissertation, Caltech, 1992.
[2] L. Harrington, A.S. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 903-928, 3 (4), 1990.
[3] V. Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. Fund. Math., 183-201, 154 (2), 1997.
[4] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. Adv. Math., 1-44, 141 (1), 1999.

