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FORCELESS, INEFFECTIVE, POWERLESS PROOFS
OF DESCRIPTIVE DICHOTOMY THEOREMS

LECTURE I: SILVER’S THEOREM

BENJAMIN MILLER

Abstract. We give a classical proof of the Kechris-Solecki-To-
dorcevic dichotomy theorem [9] characterizing analytic graphs of
uncountable Borel chromatic number. Using this, we give a classi-
cal proof of a generalization of Silver’s theorem [16] characterizing
co-analytic equivalence relations which admit perfect sets of in-
equivalent elements.

In §1, we briefly review the definitions of several pointclasses that
will be used throughout, and we also mention without proof some of
their basic properties. In §2, we give two straightforward corollaries
of the first separation theorem. In §3, we give the promised classical
proof of the Kechris-Solecki-Todorcevic [9] theorem. In §4, we sketch
a simplification of our argument that yields a weak form of Kanovei’s
generalization [6] of the Kechris-Solecki-Todorcevic theorem [9] to κ-
Souslin graphs. In §5, we use this weak generalization to give a classical
proof of a generalization of the theorems of Burgess [1] and Silver [16] to
co-κ-Souslin, ω-universally Baire equivalence relations. In §6, we give
as exercises several results that can be obtained in a similar fashion.

1. Preliminaries

Suppose that X is a Hausdorff space. A set A ⊆ X is κ-Souslin if it
is the continuous image of a closed subset of ωκ. It is easy to see that
non-empty κ-Souslin sets are in fact continuous images of ωκ itself. A
set is analytic if it is ω-Souslin. A set B ⊆ X is κ+-Borel if it is in the
closure of the topology of X under complements and intersections of
length κ. A set is Borel if it is ω1-Borel.

We will use two basic facts concerning the connection between these
two types of sets, both due to Souslin [17]. One is that every Borel
subset of a κ-Souslin Hausdorff space is κ-Souslin. The other, typically
referred to as the first separation theorem, is that any two disjoint κ-
Souslin subsets A0, A1 of a Hausdorff space X can be separated by a
κ+-Borel set B ⊆ X, meaning that A0 ⊆ B and A1 ∩ B = ∅. While
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the reader might have encountered these facts in a somewhat different
context (most likely in Polish spaces as in [7] or [18]), he is assured
that the proofs he knows and loves easily go through in this generality.

A set B ⊆ X is ω-universally Baire if for every continuous function
ϕ : ωω → X, the set ϕ−1(B) has the Baire property. For our arguments,
we actually need only the weaker assertion that for every continuous
function ϕ : ω2 → X, the set ϕ−1(B) has the Baire property, but the
former notion is somewhat more pleasant to work with, as the com-
position of an ω-universally Baire measurable function with a Baire
measurable function on a Polish space is always Baire measurable.

Of course, the sets in the σ-algebra generated by the analytic subsets
of a Hausdorff space are ω-universally Baire, as are the C-measurable
sets. While strong hypotheses such as AD ensure that every set is ω-
universally Baire, one should recall Shelah’s result [14] that the con-
sistency of the latter statement follows from that of ZF. When dealing
with ω-universally Baire sets, we will invoke the basic results on Baire
category such as the Kuratowski-Ulam theorem and Mycielski’s theo-
rem as needed (see [7] or [18]).

2. Corollaries of separation

Suppose that X0 and X1 are sets and R ⊆ X0×X1. A pair (A0, A1)
is R-discrete if A0 ⊆ X0, A1 ⊆ X1, and (A0 × A1) ∩R = ∅.

Proposition 1. Suppose that X0 and X1 are Hausdorff spaces, R ⊆
X0×X1 is analytic, and (A0, A1) is an R-discrete pair of analytic sets.
Then there is an R-discrete pair (B0, B1) of Borel sets with the property
that A0 ⊆ B0 and A1 ⊆ B1.

Proof. Set A′0 = {x0 ∈ X0 | ∃x1 ∈ A1 ((x0, x1) ∈ R)}. Then A′0 is
analytic and A0 ∩A′0 = ∅, so the first separation theorem ensures that
there is a Borel set B0 ⊆ X0 which separates A0 from A′0.

Now set A′1 = {x1 ∈ X1 | ∃x0 ∈ B0 ((x0, x1) ∈ R)}. One must take
slight care here in declaring that A′1 is analytic, since the existential
quantifier runs over elements of B0, and Borel subsets of arbitrary
Hausdorff spaces need not be analytic. Fortunately, it follows that
A′1 = {x1 ∈ X1 | ∃x0 ∈ B0 ∩projX0

(R) ((x0, x1) ∈ R)}, and since Borel
subsets of analytic Hausdorff spaces are analytic, it follows that A′1 is
analytic. As A1 ∩ A′1 = ∅, another application of the first separation
theorem yields a Borel set B1 ⊆ X1 which separates A1 from A′1. It is
easily verified that the pair (B0, B1) is as desired.
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A graph on X is an irreflexive symmetric set G ⊆ X × X. The
restriction of G to a set A ⊆ X is the graph on A given by G � A =
G ∩ (A× A). A set A ⊆ X is G-discrete if G � A = ∅.

Proposition 2. Suppose that X is a Hausdorff space, G is an analytic
graph on X, and A ⊆ X is a G-discrete analytic set. Then there is a
G-discrete Borel set B ⊆ X such that A ⊆ B.

Proof. By Proposition 1, there is a G-discrete pair (B0, B1) of Borel
subsets of X such that A ⊆ B0 and A ⊆ B1. It is easily verified that
the set B = B0 ∩B1 is as desired.

3. The Kechris-Solecki-Todorcevic theorem

Define ı = 1− i. For each set I ⊆ <ω2, let GI denote the graph on ω2
consisting of all pairs of the form (saiax, saıax), where i ∈ 2, s ∈ I,
and x ∈ ω2. We say that I is dense if ∀s ∈ <ω2∃t ∈ I (s v t).

Proposition 3. Suppose that I ⊆ <ω2 is dense and A ⊆ ω2 is non-
meager and has the Baire property. Then A is not GI-discrete.

Proof. Fix s ∈ <ω2 such that A is comeager in Ns. Fix t ∈ I such
that s v t. Then there exists x ∈ ω2 such that ta0ax, ta1ax ∈ A. As
(ta0ax, ta1ax) ∈ GI , it follows that A is not GI-discrete.

Fix sequences sn ∈ n2 such that the set I = {sn | n ∈ ω} is dense.
Note that I contains exactly one sequence of each finite length. Define
G0 = GI . A (κ-)coloring of G is a function c : X → κ with the property
that c−1({α}) is G-discrete for all α ∈ κ.

Theorem 4 (Kechris-Solecki-Todorcevic). Suppose that X is a Haus-
dorff space and G is an analytic graph on X. Then exactly one of the
following holds:

(1) There is a Borel ω-coloring of G.
(2) There is a continuous homomorphism from G0 to G.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards
a contradiction, that c : X → ω is an ω-universally Baire measurable
coloring of G and π : ω2 → X is a Baire measurable homomorphism
from G0 to G. Then c ◦ π is a Baire measurable coloring of G0, so
there exists k ∈ ω such that the set (c ◦ π)−1({k}) is non-meager and
G0-discrete, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can
clearly assume that G is non-empty. The domain of G, or dom(G),
is the union of the two projections of G. Fix a continuous function
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ϕG : ωω → X × X such that G = ϕG(
ωω), as well as a continuous

function ϕX : ωω → X such that dom(G) ⊆ ϕX(ωω).
We will next describe a pair of ways of approximating the desired ho-

momorphism from G0 to G. These two different types of approximations
will work hand-in-hand throughout the proof. One will work globally,
in the sense that it deals with large analytic subsets of the space, while
the other will work locally, in the sense that it deals with individual
points of the space. The reader is cautioned that our terminology does
not indicate any form of homogeneity or lack thereof.

A global (n-)approximation is a pair of the form p = (up, vp), where
up : n2→ nω and vp : <n2→ nω. Fix an enumeration (pn)n∈ω of the set
of all global approximations.

An extension of a global m-approximation p is a global n-approxim-
ation q with the property that sp v sq =⇒ up(sp) v uq(sq) and tp v
tq =⇒ vp(tp) v vq(tq) for all sp ∈ m2, sq ∈ n2, tp ∈ <m2, and tq ∈ <n2
with n−m = |tq| − |tp|. When n = m+ 1, we say that q is a one-step
extension of p.

A local (n-)approximation is a pair of the form l = (f l, gl), where
f l : n2 → ωω and gl : <n2 → ωω, with the property that ϕG ◦ gl(t) =
(ϕX ◦ f l(ska0at), ϕX ◦ f l(ska1at)) for all k ∈ n and t ∈ n−(k+1)2. We
say that l is compatible with a global n-approximation p if up(s) v f l(s)
and vp(t) v gl(t) for all s ∈ n2 and t ∈ <n2. We say that l is compatible
with a set Y ⊆ X if ϕX ◦ f l(n2) ⊆ Y .

Suppose now that α is a countable ordinal, Y ⊆ X is a Borel set,
and c : Y c → ω · α is a Borel coloring of G � Y c. Associated with each
global n-approximation p is the set Ln(p, Y ) of local n-approximations
which are compatible with both p and Y .

A global n-approximation p is Y -terminal if Ln+1(q, Y ) = ∅ for all
one-step extensions q of p. Let T (Y ) denote the set of such approxi-
mations. Set A(p, Y ) =

⋃
n∈ω{ϕX ◦ f l(sn) | l ∈ Ln(p, Y )}.

Lemma 5. Suppose that p is a global approximation and A(p, Y ) is
not G-discrete. Then p /∈ T (Y ).

Proof of lemma. Fix n ∈ ω such that p is a global n-approximation, as
well as local n-approximations l0, l1 ∈ Ln(p, Y ) with (ϕX ◦f l0(sn), ϕX ◦
f l1(sn)) ∈ G. Then there exists x ∈ ωω such that ϕG(x) = (ϕX ◦
f l0(sn), ϕX ◦ f l1(sn)). Let l denote the local (n + 1)-approximation
given by f l(sai) = f li(s), gl(∅) = x, and gl(tai) = gli(t) for i ∈ 2,
s ∈ n2, and t ∈ <n2. Then l is compatible with a one-step extension of
p, thus p is not Y -terminal.
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Proposition 2 and Lemma 5 ensure that for each p ∈ T (Y ), there is
a G-discrete Borel set B(p, Y ) ⊆ X with A(p, Y ) ⊆ B(p, Y ). Set Y ′ =
Y \

⋃
{B(p, Y ) | p ∈ T (Y )}. For each y ∈ Y \ Y ′, put n(y) = min{n ∈

ω | pn ∈ T (Y ) and y ∈ B(pn, Y )}. Define c′ : (Y ′)c → ω · (α + 1) by

c′(y) =

{
c(y) if y ∈ Y c and

ω · α + n(y) otherwise.

Lemma 6. The function c′ is a coloring of G � (Y ′)c.

Proof of lemma. Note that if β ∈ ω · α then (c′)−1({β}) = c−1({β}),
and if β ∈ ω ·(α+1)\ω ·α then there exists n ∈ ω with β = ω ·α+n, so
pn ∈ T (Y ) and (c′)−1({β}) ⊆ B(pn, Y ). Then (c′)−1({β}) is G-discrete
for all β ∈ ω · (α + 1), thus c′ is a coloring of G � (Y ′)c.

Lemma 7. Suppose that p is a global approximation whose one-step
extensions are all Y -terminal. Then p is Y ′-terminal.

Proof of lemma. Fix n ∈ ω such that p is a global n-approximation.
Suppose, towards a contradiction, that there is a one-step extension q
of p for which there exists l ∈ Ln+1(q, Y

′). Then ϕX◦f l(sn+1) ∈ B(q, Y )
and B(q, Y ) ∩ Y ′ = ∅, thus ϕX ◦ f l(sn+1) /∈ Y ′, a contradiction.

Recursively define Borel sets Yα ⊆ X and Borel colorings cα : Y c
α →

ω · α of G � Y c
α by

(Yα, cα) =


(X, ∅) if α = 0,

(Y ′β, c
′
β) if α = β + 1, and

(
⋂
β∈α Yβ, limβ→α cβ) if α is a limit ordinal.

As there are only countably many approximations, there exists α ∈ ω1

such that T (Yα) = T (Yα+1).
Let p0 denote the unique global 0-approximation. As dom(G)∩Yα ⊆

A(p0, Yα), it follows that if p0 is Yα-terminal, then cα extends to a Borel
(ω · α + 1)-coloring of G, thus there is a Borel ω-coloring of G.

Otherwise, by repeatedly applying Lemma 7 we obtain global n-
approximations pn = (un, vn) with the property that pn+1 is a one-step
extension of pn for all n ∈ ω. Define continuous functions π : ω2→ ωω
and πk : ω2→ ωω for k ∈ ω by

π(x) = lim
n→ω

un(x � n) and πk(x) = lim
n→ω

vk+n+1(x � n).

To see that ϕX ◦ π is a homomorphism from G0 to G, it is enough
to show that ϕG ◦ πk(x) = (ϕX ◦ π(sk

a0ax), ϕX ◦ π(sk
a1ax)) for all

k ∈ ω and x ∈ ω2. By continuity, it is enough to show that every
open neighborhood U × V of (πk(x), (π(sk

a0ax), π(sk
a1ax))) contains
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a point (z, (z0, z1)) such that ϕG(z) = (ϕX(z0), ϕX(z1)). Towards this
end, fix n ∈ ω sufficiently large that Nvk+n+1(x�n) ⊆ U and

Nuk+n+1(sk
a0a(x�n)) ×Nuk+n+1(sk

a1a(x�n)) ⊆ V.

Fix l ∈ Lk+n+1(p
k+n+1, Yα), and observe that z = gl(x � n), z0 =

f l(sk
a0a(x � n)), and z1 = f l(sk

a1a(x � n)) are as desired.

4. Kanovei’s generalization

Kanovei [6] has established the natural generalization of the Kech-
ris-Solecki-Todorcevic theorem [9] to κ-Souslin graphs:

Theorem 8 (Kanovei). Suppose that κ is an infinite aleph, X is a
Hausdorff space, and G is a κ-Souslin graph on X. Then at least one
of the following holds:

(1) There is a κ+-Borel κ-coloring of G.
(2) There is a continuous homomorphism from G0 to G.

We say that a set A ⊆ X is weakly κ+-Souslin if it is the continuous
image of a κ+-Borel subset of ωκ. Of course, it is tempting to simply
plug in κ in place of ω in our previous argument to give a proof of the
generalization as well. Unfortunately, this approach does not seem to
work, as one is quickly faced with the need to apply the first separation
theorem to weakly κ+-Souslin sets.

Question 9. Can two disjoint weakly κ+-Souslin subsets of a Hausdorff
space always be separated by a κ+-Borel set?

Of course, it just so happens that when κ = ω the classes of κ-Sous-
lin sets and weakly κ-Souslin sets coincide. Under AD, this holds more
generally at odd projective(-like) ordinals. In such cases, the classical
proof does indeed go through. Unfortunately, the question of whether
there is a classical proof of Kanovei’s full theorem remains open.

On the bright side, for many applications one needs only the follow-
ing weak form of Kanovei’s result:

Theorem 10. Suppose that κ is an infinite aleph, X is a Hausdorff
space, and G is a κ-Souslin graph on X. Then at least one of the
following holds:

(1) There is a κ-coloring of G.
(2) There is a continuous homomorphism from G0 to G.

Proof. Proceed exactly as in the proof of Theorem 4, but replace every
occurrence of ω with κ, and avoid the separation results altogether by
replacing B(p, Y ) with A(p, Y ) in the definition of Y ′.
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5. Silver’s theorem

Suppose that E is an equivalence relation on X and F is an equiva-
lence relation on Y . A reduction of E to F is a function π : X → Y such
that x0Ex1 ⇐⇒ π(x0)Fπ(x1) for all (x0, x1) ∈ X ×X. An embedding
is an injective reduction.

Theorem 11. Suppose that X is a Hausdorff space and E is a co-κ-
Souslin, ω-universally Baire equivalence relation on X. Then at least
one of the following holds:

(1) The equivalence relation E has at most κ-many classes.
(2) There is a perfect set of pairwise E-inequivalent points.

Proof. It is clear that (1) and (2) are mutually exclusive. Set G = Ec,
and observe that if there is a κ-coloring of G, then the pre-image of
each singleton is contained in a single E-class, so E has at most κ-
many equivalence classes.

By Theorem 10 it is enough to show that if there is a continuous
homomorphism ϕ : ω2 → X from G0 to G, then (2) holds. Note that
the equivalence relation F = (ϕ× ϕ)−1(E) has the Baire property.

Lemma 12. The equivalence relation F is meager.

Proof of lemma. By the Kuratowski-Ulam Theorem, it suffices to show
that every equivalence class of F with the Baire property is meager.
Suppose, towards a contradiction, that there exists x ∈ ω2 such that
[x]F has the Baire property and is non-meager. Proposition 3 then
ensures that there exists (y, z) ∈ G0 � [x]F , in which case (ϕ(y), ϕ(z)) ∈
G ∩ E, the desired contradiction.

Lemma 12 and Mycielski’s Theorem imply that there is a continuous
embedding ψ : ω2 → ω2 of the diagonal ∆(ω2) into F , and it follows
that the perfect set ϕ ◦ ψ(ω2) is as desired.

Remark 13. By using Theorem 8 in place of Theorem 10, we can ob-
tain the strengthening of Theorem 11 in which condition (1) is strength-
ened to the existence of a κ+-Borel reduction of E to ∆(κ). Of course,
the downside is that the proof is no longer classical.

Theorem 11 implies the theorems of Burgess [1] and Silver [16], as
well as the generalization of the former to ω-universally Baire Π1

2 equiv-
alence relations. This latter family includes all equivalence relations
which are σ(Σ1

1), C-measurable, or even absolutely ∆1
2. Under ZF+BP,

it includes every equivalence relation on an analytic Hausdorff space.
In particular, it follows that the consistency of the full generalization
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of Silver’s theorem to co-κ-Souslin equivalence relations follows from
that of ZF. However, the following remains open:

Question 14. What is the relationship between our assumption that
E is ω-universally Baire and the Harrington-Shelah [5] assumption that
E remains an equivalence relation after Cohen forcing?

6. Exercises

Exercise 15. Show that at the expensive of invoking ACω, one can
eliminate the derivative in the proof of Theorem 4.

Exercise 16 (Souslin). Show that if X is an analytic Hausdorff space,
then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection of ω2 into X.

Hint : Do not give the usual proof! Use Theorem 4.

For each n ∈ ω, we use n[X] to denote the family of n-element subsets
of X equipped with the topology it inherits from nX.

Exercise 17 (Feng [3]). Show that if X is an analytic Hausdorff space,
c : 2[X] → 2, and c−1({1}) is open, then exactly one of the following
holds:

(1) The set X is the union of countably many 0-homogeneous Borel
sets.

(2) There is a continuous injection of ω2 into a 1-homogenous set.

Exercise 18. Show that if X and Y are Hausdorff spaces and G ⊆
X × (Y ×Y ) is an analytic set whose vertical sections are graphs, then
exactly one of the following holds:

(1) There is a Borel function c : X×Y → ω such that for all x ∈ X,
the map cx(y) = c(x, y) is a coloring of Gx.

(2) For some x ∈ X, there is a continuous homomorphism from G0

to Gx.
Hint : Do not given a parametrized version of the proof of the Kech-

ris-Solecki-Todorcevic [9] theorem. This is a straightforward corollary.

A partial uniformization of a set R ⊆ X × Y is a subset of R all of
whose vertical sections have at most one element.

Exercise 19 (Lusin-Novikov [12]). Show that if X and Y are Haus-
dorff spaces, R ⊆ X × Y is analytic, and no vertical section of R has a
perfect subset, then R is the union of countably many relatively Borel
partial uniformizations.
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Hint : This is really a parametrized version of Exercise 16. Whenever
Theorem 4 can be used to obtain dichotomy theorems, Exercise 18 can
be used to obtain its parametrized counterpart.

A transversal of an equivalence relation E is a set which intersects
every E-class in exactly one point. Let E0 denote the equivalence
relation on ω2 given by xE0y ⇐⇒ ∃n ∈ ω (x � [n, ω) = y � [n, ω)).

Exercise 20 (Dougherty-Jackson-Kechris [2]). Show that if X is a
Hausdorff space, E is an analytic equivalence relation on X, and no
equivalence class of E has a perfect subset, then exactly one of the
following holds:

(1) There is a Borel transversal of E.
(2) There is a continuous embedding of E0 into E.

Let F0 denote the equivalence relation on ω2 given by xF0y ⇐⇒
∃n ∈ ω (x � [n, ω) = y � [n, ω) and

∑
i∈n x(i) ≡

∑
i∈n y(i) (mod 2)).

A set B ⊆ X/E is Borel if {x ∈ X | [x]E ∈ B} is Borel.

Exercise 21 (Louveau). Show that if X is a Hausdorff space, E is
an analytic equivalence relation on X, F is a relatively co-analytic
subequivalence relation of E, and every E-class is the the disjoint union
of two F -classes, then exactly one of the following holds:

(1) There is a Borel transversal of E/F .
(2) There is a continuous embedding of (E0, F0) into (E,F ).

A quasi-metric is a function which satisfies the requirements for being
a metric except that distinct points can be of distance zero apart.

Exercise 22 (Friedman-Harrington-Kechris [4, 8]). Show that if X is
a Hausdorff space, d is a quasi-metric on X, and for all ε > 0 the set
d−1([0, ε)) is co-analytic, then exactly one of the following holds:

(1) There is a countable dense set.
(2) There is a continuous embedding of ω2 into an ε-discrete sub-

space of (X, d), for some ε > 0.

Hint: First establish a similar dichotomy theorem in ZF, and then
check that the two theorems are equivalent under ACω.

Exercise 23 (Louveau [10]). State and prove generalizations of The-
orem 4 to digraphs and finite-dimensional hypergraphs.

A quasi-order on X is a reflexive transitive set R ⊆ X × X. The
equivalence relation associated with such a quasi-order is given by

x ≡R y ⇐⇒ (x, y) ∈ R and (y, x) ∈ R.
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An antichain is a set in which no two points are R-related. The lexi-
cographic ordering of ω2 is given by

(x, y) ∈ Rlex ⇐⇒ x = y or ∃n ∈ ω (x � n = y � n and x(n) < y(n)).

Exercise 24 (Louveau [11]). Show that if X is a Hausdorff space and
R is a co-analytic quasi-order on X, then exactly one of the following
holds:

(1) The equivalence relation≡R has at most countably many classes.
(2) At least one of the following holds:

(a) There is a continuous injection of ω2 into an antichain.
(b) There is a continuous embedding of Rlex into R.

Exercise 25. Show that ifX is a Hausdorff space andR is a co-analytic
quasi-order on X, then the following are equivalent:

(1) The set X is the union of countably many Borel chains.
(2) The set X is the union of countably many ω-universally Baire

measurable chains.

A quasi-order is linear if any two points are comparable.

Exercise 26 (Friedman-Shelah [15]). Show that if X is a Hausdorff
space and R is a co-analytic linear quasi-order on X, then exactly one
of the following holds:

(1) There is a countable dense set.
(2) There is a continuous injection of ω2 into a pairwise disjoint

family of non-empty open intervals.

Hint: First establish a similar dichotomy theorem in ZF, and then
check that the two theorems are equivalent under DCω. Under no cir-
cumstances should you use DCω1 .

Suppose that D : P(X) → ω ∪ {∞}. The span of a set A ⊆ X is
given by spanD A = {x ∈ X | D(A) = D(A ∪ {x})}. We say that D is
a notion of dimension if it satisfies the following conditions:

(1) ∀x ∈ X (D({x}) ≤ 1).
(2) ∀A ⊆ B ⊆ X (D(A) ≤ D(B)).
(3) ∀A ⊆ X (D(A) = D(spanD A)).

We refer to D(A) as the dimension of A.

Exercise 27 (van Engelen-Kunen-Miller [19] in several special cases).
Show that if d ∈ ω \ 2, X is a Hausdorff space, and D is a notion of
dimension on X with the property that D−1(k)∩ k[X] is ω-universally
Baire for all k ∈ d and co-analytic for k = d, then exactly one of the
following holds:
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(1) The set X is the union of countably many Borel sets of dimen-
sion strictly less than d.

(2) There is a continuous injection of ω2 into a subset of X whose
d-element subsets are all of dimension at least d.

Exercise 28. Show that if X is a Hausdorff space and D is a notion
of dimension on X with the property that D−1(k)∩ k[X] is co-analytic
for all k ∈ ω, then exactly one of the following holds:

(1) The set X is the union of countably many finite-dimensional
Borel sets.

(2) There is a continuous injection of ω2 into a subset of X whose
d-element subsets are all of dimension at least d for all d ∈ ω.

What does this tell us about suitably definable vector spaces?

Exercise 29. State and prove generalizations of all of the results men-
tioned thus far to κ-Souslin ω-universally Baire structures.

Hint : The proofs are virtually identical!
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