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FORCELESS, INEFFECTIVE, POWERLESS PROOFS
OF DESCRIPTIVE DICHOTOMY THEOREMS

LECTURE IV: THE KANOVEI-LOUVEAU THEOREM

BENJAMIN MILLER

Abstract. We give a classical proof of a generalization of the
Kechris-Solecki-Todorcevic dichotomy theorem [5] characterizing
analytic graphs of uncountable Borel chromatic number. Using
this, we give a classical proof of a result of Kanovei-Louveau [4]
which simultaneously generalizes results of Harrington-Kechris-Lou-
veau [1] and Harrington-Marker-Shelah [2].

In §1, we give two straightforward corollaries of the first separation
theorem. In §2, we establish a directed local version of the Kechris-
Solecki-Todorcevic theorem [5]. In §3, we use this to give a classical
proof of the Kanovei-Louveau characterization [4] of linearizable Borel
quasi-orders which simultaneously generalizes the Harrington-Kechris-
Louveau characterization [1] of smooth Borel equivalence relations and
the Harrington-Marker-Shelah characterization [2] of linear Borel quasi-
orders. In §4, we give as exercises several results that can be obtained
in a similar fashion.

1. Corollaries of separation

Suppose that X is a set. A quasi-order on X is a reflexive transitive
set R ⊆ X×X. The equivalence relation associated with R is given by
x ≡R y ⇐⇒ (xRy and yRx). The strict quasi-order associated with R
is given by x <R y ⇐⇒ (xRy and x 6≡R y).

Suppose that A ⊆ X. The upward R-saturation of A is given by
[A]R = {x ∈ X | ∃y ∈ A ((y, x) ∈ R)}. The set A is upward R-
invariant if A = [A]R. The downward R-saturation of A is given by
[A]R = {x ∈ X | ∃y ∈ A ((x, y) ∈ R)}. The set A is downward
R-invariant if A = [A]R.

Proposition 1. Suppose that X is a Hausdorff space, R is an analytic
quasi-order on X, and (A0, A1) is an R-discrete pair of analytic subsets
of X. Then there is an R-discrete pair (B0, B1) of Borel subsets of X
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such that A0 ⊆ B0, A1 ⊆ B1, B0 is upward R-invariant, and B1 is
downward R-invariant.

Proof. Set A0,0 = A0 and A1,0 = A1. Suppose now that we have an
R-discrete pair (A0,n, A1,n) of analytic subsets of X. Then there is an
R-discrete pair (B0,n, B1,n) of Borel subsets of X such that A0,n ⊆ B0,n

and A1,n ⊆ B1,n. Set A0,n+1 = [B0,n]R and A1,n+1 = [B1,n]R. The sets
B0 =

⋃
n∈ω B0,n and B1 =

⋃
n∈ω B1,n are as desired.

Proposition 2. Suppose that X is a Hausdorff space, E is an analytic
equivalence relation on X, R is a bi-analytic quasi-order on X, and
(A0, A1) is an (E \ R)-discrete pair of analytic sets. Then there is an
(E\R)-discrete pair (B0, B1) of Borel sets such that A0 ⊆ B0, A1 ⊆ B1,
B0 is downward (E∩R)-invariant, and B1 is upward (E∩R)-invariant.

Proof. Set A0,0 = A0 and A1,0 = A1. Suppose now that we have an (E\
R)-discrete pair (A0,n, A1,n) of analytic subsets of X. Then there is an
(E \R)-discrete pair (B0,n, B1,n) of Borel subsets of X such that A0,n ⊆
B0,n and A1,n ⊆ B1,n. Set A0,n+1 = [B0,n]E∩R and A1,n+1 = [B1,n]E∩R.
The sets B0 =

⋃
n∈ω B0,n and B1 =

⋃
n∈ω B1,n are as desired.

2. A directed local generalization of the
Kechris-Solecki-Todorcevic theorem

For each set I ⊆ <ω2, let GI denote the digraph on ω2 consisting of
all pairs of the form (sa0ax, sa1ax), where s ∈ I and x ∈ ω2. We say
that I is dense if ∀s ∈ <ω2∃t ∈ I (s v t).

Proposition 3. Suppose that I ⊆ <ω2 is dense and A ⊆ ω2 is non-
meager and has the Baire property. Then A is not GI-discrete.

Proof. Fix s ∈ <ω2 such that A is comeager in Ns. Fix t ∈ I such
that s v t. Then there exists x ∈ ω2 such that ta0ax, ta1ax ∈ A. As
(ta0ax, ta1ax) ∈ GI , it follows that A is not GI-discrete.

For each set J ⊆
⋃
n∈ω

n2 × n2, let HJ denote the digraph on ω2
consisting of all pairs of the form (s(0)a0ax, s(1)a1ax), where s ∈ J
and x ∈ ω2. Let RJ denote the smallest quasi-order containing HJ .
We say that J is dense if ∀s ∈ <ω2× <ω2∃t ∈ J∀i ∈ 2 (s(i) v t(i)).

Proposition 4. Suppose that J ⊆
⋃
n∈ω

n2 × n2 is dense and R ⊆
ω2 × ω2 is a transitive set with the Baire property which contains HJ .
Then R is meager or comeager.

Proof. Suppose, towards a contradiction, that there exist u, v ∈ <ω2×
<ω2 with R comeager in Nu(1)×Nv(0) and meager in Nu(0)×Nv(1). Fix
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s, t ∈ J such that u(i) v s(i) and v(i) v t(i) for all i ∈ 2. Then

∀∗x, y ∈ ω2 (s(0)a0axRs(1)a1axRt(0)a0ayRt(1)a1ay).

As u(0) v s(0) and v(1) v t(1), this contradicts our assumption that
R is meager in Nu(0) ×Nv(1).

Proposition 5. Suppose that J ⊆
⋃
n∈ω

n2×n2 is dense, X is a Haus-
dorff space, R is an ω-universally Baire linear quasi-order on X, and
ϕ : ω2→ X is a Baire measurable homomorphism from RJ to R. Then
there exists x ∈ X such that ϕ−1([x]≡R) is comeager.

Proof. Set S = (ϕ × ϕ)−1(R). As S is linear, it is necessarily non-
meager, so Proposition 4 ensures that it is comeager. Then ≡S is
comeager and therefore has a comeager equivalence class.

Fix sequences s2n ∈ 2n2 and pairs s2n+1 ∈ 2n+12 × 2n+12 for n ∈ ω
such that the sets I = {s2n | n ∈ ω} and J = {s2n+1 | n ∈ ω} are
dense. Define G0(even) = GI , H0(odd) = HJ , and R0(odd) = RJ .

For each ordinal α, the lexicographic ordering of α2 is given by

x <Rlex(α) y ⇐⇒ ∃β ∈ α (x � (0, β) = y � (0, β) and x(β) < y(β)).

We say that a quasi-order R is lexicographically reducible if it is Borel
reducible to Rlex(α) for some countable ordinal α.

Theorem 6. Suppose that X is a Hausdorff space, G is an analytic
digraph on X, and R is an analytic quasi-order on X. Then exactly
one of the following holds:

(1) There is a Borel ω-coloring of ≡S∩G, for some lexicographically
reducible quasi-order S ⊇ R.

(2) There is a continuous homomorphism π : ω2→ X from the pair
(G0(even), R0(odd)) to the pair (G, R).

Proof. To see that (1) and (2) are mutually exclusive suppose, towards
a contradiction, that α is a countable ordinal, S ⊇ R is a quasi-order,
ϕ : X → α2 is an ω-universally Baire measurable reduction of S to
Rlex(α), c : X → ω is an ω-universally Baire measurable ω-coloring
of ≡S ∩ G, and π : ω2 → X is a Baire measurable homomorphism
from (G0(even), R0(odd)) to (G, R). Then ϕ ◦ π is a Baire measurable
homomorphism from R0(odd) to Rlex(α), so Proposition 5 ensures the
existence of x ∈ ω2 such that the set C = (ϕ ◦ π)−1({x}) is comeager.
Note that π(C) is a single≡S-class, so c � π(C) is a coloring of G � π(C),
thus (c ◦ π) � C is a coloring of G0(even). Then there exists n ∈ ω such
that c−1({n}) is non-meager, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can
clearly assume that G is non-empty, in which case there are continuous



D
RA
FT

4 BENJAMIN MILLER

functions ϕG, ϕR : ωω → X×X such that G = ϕG(
ωω) and R = ϕR(ωω).

Fix a continuous function ϕX : ωω → X such that dom(G) ⊆ ϕX(ωω).
A global (n-)approximation is a pair of the form p = (up, vp), where

up : n2→ nω and vp : <n2→ nω. Fix an enumeration (pn)n∈ω of the set
of all global approximations.

An extension of a global m-approximation p is a global n-approxim-
ation q with the property that sp v sq =⇒ up(sp) v uq(sq) and tp v
tq =⇒ vp(tp) v vq(tq) for all sp ∈ m2, sq ∈ n2, tp ∈ <m2, and tq ∈ <n2
with n−m = |tq| − |tp|. When n = m+ 1, we say that q is a one-step
extension of p.

A local (n-)approximation is a pair of the form l = (f l, gl), where
f l : n2→ ωω and gl : <n2→ ωω, such that

ϕG ◦ gl(t) = (ϕX ◦ f l(ska0at), ϕX ◦ f l(ska1at))

for all even k ∈ n and t ∈ n−k−12, and

ϕR ◦ gl(t) = (ϕX ◦ f l(sk(0)a0at), ϕX ◦ f l(sk(1)a1at))

for all odd k ∈ n and t ∈ n−k−12. We say that l is compatible with
a global n-approximation p if up(s) v f l(s) and vp(t) v gl(t) for all
s ∈ n2 and t ∈ <n2. We say that l is compatible with a quasi-order S
on X if ϕX ◦ f l(n2) is contained in a single ≡S-class. We say that l is
compatible with a set Y ⊆ X if ϕX ◦ f l(n2) ⊆ Y .

Suppose now that α is a countable ordinal, S ⊇ R is a lexicograph-
ically reducible quasi-order, Y ⊆ X is a Borel set, and c : Y c → ω · α
is a Borel coloring of (≡S ∩ G) � Y c. Associated with each global n-
approximation p is the set Ln(p, S, Y ) of local n-approximations which
are compatible with p, S, and Y .

A global n-approximation p is (S, Y )-terminal if Ln+1(q, S, Y ) = ∅
for all one-step extensions q of p. Let Tn(S, Y ) denote the set of all
such global n-approximations, and set Teven(S, Y ) =

⋃
n∈ω T2n(S, Y ),

Todd(S, Y ) =
⋃
n∈ω T2n+1(S, Y ), and T (S, Y ) =

⋃
n∈ω Tn(S, Y ).

When n is even, we use A(p, S, Y ) to denote the set of points of the
form ϕX ◦ f l(sn), where l ∈ Ln(p, S, Y ).

Lemma 7. Suppose that n ∈ ω is even, p is a global n-approximation,
and the set A(p, S, Y ) is not (≡S ∩ G)-discrete. Then p /∈ Tn(S, Y ).

Proof of lemma. Fix local n-approximations l0, l1 ∈ Ln(p, S, Y ) with
(ϕX ◦ f l0(sn), ϕX ◦ f l1(sn)) ∈ ≡S ∩ G. Then there exists x ∈ ωω such
that ϕG(x) = (ϕX ◦f l0(sn), ϕX ◦f l1(sn)). Let l denote the local (n+1)-
approximation given by f l(sai) = f li(s), gl(∅) = x, and gl(tai) = gli(t)
for i ∈ 2, s ∈ n2, and t ∈ <n2. Then l is compatible with a one-step
extension of p, thus p is not (S, Y )-terminal.
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Lemma 7 ensures that for each p ∈ Teven(S, Y ), there is an (≡S ∩G)-
discrete Borel set B(p, S, Y ) ⊆ X with A(p, S, Y ) ⊆ B(p, S, Y ). Set
Y ′ = Y \

⋃
{B(p, S, Y ) | p ∈ Teven(S, Y )}. For each y ∈ Y \ Y ′, put

n(y) = min{n ∈ ω | pn ∈ Teven(S, Y ) and y ∈ B(pn, S, Y )}. Define
c′ : (Y ′)c → ω · (α + 1) by

c′(y) =

{
c(y) if y ∈ Y c and

ω · α + n(y) otherwise.

Lemma 8. The function c′ is a coloring of (≡S ∩ G) � (Y ′)c.

Proof of lemma. Note that if β ∈ ω · α then (c′)−1({β}) = c−1({β}),
and if β ∈ ω · (α+ 1) \ω ·α then there exists n ∈ ω with β = ω ·α+n,
so pn ∈ Teven(S, Y ) and (c′)−1({β}) ⊆ B(pn, S, Y ). Then (c′)−1({β})
is (≡S ∩ G)-discrete for all β ∈ ω · (α + 1), thus c′ is a coloring of
(≡S ∩ G) � (Y ′)c.

When i ∈ 2 and n is odd, we use Ai(p, S, Y ) to denote the set of
points of the form ϕX ◦ f l ◦ sn(i), where l ∈ Ln(p, S, Y ).

Lemma 9. Suppose that n ∈ ω is odd, p is a global n-approxima-
tion, and (A0(p, S, Y ), A1(p, S, Y )) is not (≡S ∩R)-discrete. Then p /∈
Tn(S, Y ).

Proof of lemma. Fix local n-approximations l0, l1 ∈ L(p, S, Y ) with
(ϕX ◦ f l0 ◦ sn(0), ϕX ◦ f l1 ◦ sn(1)) ∈ ≡S ∩R. Then there exists x ∈ ωω
such that ϕR(x) = (ϕX ◦ f l0 ◦ sn(0), ϕX ◦ f l1 ◦ sn(1)). Let l denote the
local (n + 1)-approximation given by f(sai) = f li(s), g(∅) = x, and
g(tai) = gli(t) for i ∈ 2, s ∈ n2, and t ∈ <n2. Then l is compatible
with a one-step extension of p, and it follows that p /∈ Tn(S, Y ).

Proposition 1 and Lemma 9 ensure that for each p ∈ Todd(S, Y ),
there is an (≡S ∩ R)-discrete pair (B0(p, S, Y ), B1(p, S, Y )) of Borel
sets such that A0(p, S, Y ) ⊆ B0(p, S, Y ), A1(p, S, Y ) ⊆ B1(p, S, Y ),
B0(p, S, Y ) is upward (≡S ∩R)-invariant, and B1(p, S, Y ) is downward
(≡S ∩R)-invariant. Define ψ : X → ω2 by

ψ(x)(n) =

{
χB0(pn,S,Y )(x) if pn ∈ Todd(S, Y ) and

0 otherwise.

Let S ′ denote the lexicographically reducible quasi-order given by

xS ′y ⇐⇒ x <S y or (x ≡S y and ψ(x)Rlexψ(y)).

Lemma 10. The quasi-order S ′ contains R.

Proof of lemma. This follows from the upward (≡S ∩ R)-invariance of
the sets of the form B0(p, S, Y ) and the fact that R ⊆ S.
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Lemma 11. Suppose that p is a global approximation whose one-step
extensions are all (S, Y )-terminal. Then p ∈ T (S ′, Y ′).

Proof of lemma. Fix n ∈ ω such that p is a global n-approximation.
Suppose, towards a contradiction, that there is a one-step extension q
of p for which there exists l ∈ Ln+1(q, S

′, Y ′).
If n is odd, then ϕX ◦ f l(sn+1) ∈ A(q, S, Y ) and A(q, S, Y )∩ Y ′ = ∅,

so ϕX ◦ f l(sn+1) /∈ Y ′, a contradiction.
If n is even, then ϕX◦f l◦sn+1(0) ∈ A0(p, S, Y ) and ϕX◦f l◦sn+1(1) ∈

A1(p, S, Y ). As (A0(p, S, Y ), A1(p, S, Y )) is (≡S∩R)-discrete, it follows
that (ϕX ◦ f l ◦ sn+1(0), ϕX ◦ f l ◦ sn+1(1)) /∈ ≡S ∩R, a contradiction.

Recursively define lexicographically reducible quasi-orders Sα, Borel
sets Yα, and Borel colorings cα : Y c

α → ω · α of (≡Sα ∩ G) � Y c
α by

(Sα, Yα, cα) =


(X ×X,X, ∅) if α = 0,

(S ′β, Y
′
β, c
′
β) if α = β + 1, and

(
⋂
β∈α Sβ,

⋂
β∈α Yβ, limβ→α cβ) if α is a limit ordinal.

As there are only countably many approximations, there exists α ∈ ω1

such that T (Sα, Yα) = T (Sα+1, Yα+1).
Let p0 denote the unique global 0-approximation. As dom(G)∩Yα ⊆

A(p0, Sα, Yα), it follows that if p0 is (Sα, Yα)-terminal, then cα extends
to a Borel (ω ·α+1)-coloring of ≡Sα∩G, thus there is a Borel ω-coloring
of ≡Sα ∩ G.

Otherwise, by repeatedly applying Lemma 11 we obtain global n-
approximations pn = (un, vn) with the property that pn+1 is a one-step
extension of pn for all n ∈ ω. Define continuous functions π : ω2→ ωω
and πk : ω2→ ωω for k ∈ ω by

π(x) = lim
n→ω

un(x � n) and πk(x) = lim
n→ω

vk+n+1(x � n).

To see that ϕX◦π is a homomorphism from G0(even) to G, it is enough
to show that ϕG ◦ πk(x) = (ϕX ◦ π(sk

a0ax), ϕX ◦ π(sk
a1ax)) for all

even k ∈ ω and x ∈ ω2. By continuity, it is enough to show that every
open neighborhood U × V of (πk(x), (π(sk

a0ax), π(sk
a1ax))) contains

a point (z, (z0, z1)) such that ϕG(z) = (ϕX(z0), ϕX(z1)). Towards this
end, fix n ∈ ω sufficiently large that Nvk+n+1(x�n) ⊆ U and

Nuk+n+1(ska0a(x�n)) ×Nuk+n+1(ska1a(x�n)) ⊆ V.

Fix l ∈ Lk+n+1(p
k+n+1, Sα, Yα), and observe that z = gl(x � n), z0 =

f l(sk
a0a(x � n)), and z1 = f l(sk

a1a(x � n)) are as desired.
To see that ϕX◦π is a homomorphism fromR0(odd) toR, it is enough

to show that ϕR ◦ πk(x) = (ϕX ◦ π(sk(0)a0ax), ϕX ◦ π(sk(1)a1ax)) for
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all odd k ∈ ω and x ∈ ω2. By continuity, it is enough to show that ev-
ery open neighborhood U×V of (πk(x), (π(sk(0)a0ax), π(sk(1)a1ax)))
contains a point (z, (z0, z1)) such that ϕR(z) = (ϕX(z0), ϕX(z1)). To-
wards this end, fix n ∈ ω sufficiently large that Nvk+n+1(x�n) ⊆ U and

Nuk+n+1(sk(0)a0a(x�n)) ×Nuk+n+1(sk(1)a1a(x�n)) ⊆ V.

Fix l ∈ Lk+n+1(p
k+n+1, Sα, Yα), and observe that z = gl(x � n), z0 =

f l(sk(0)a0a(x � n)), and z1 = f l(sk(1)a1a(x � n)) are as desired.

3. The Kanovei-Louveau theorem

Let R0 denote the partial order on ω2 given by

x <R0 y ⇐⇒ ∃n ∈ ω (x(n) < y(n) and x � (n, ω) = y � (n, ω)).

A straightforward induction shows that the E0-class of every non-
eventually constant sequence is Z-ordered by R0.

Proposition 12. Suppose that X is a Hausdorff space, R is an ω-
universally Baire linear quasi-order on X, and ϕ : ω2 → X is a Baire
measurable homomorphism from R0 to R. Then there exists x ∈ X
such that ϕ−1([x]≡R) is comeager.

Proof. Set S = (ϕ × ϕ)−1(R). Fix s ∈ <ω2 such that the set {x ∈
ω2 | ∀∗y ∈ Ns (xSy)} is non-meager. Then the set {x ∈ ω2 | ∀y ∈
[x]E0∀∗z ∈ Ns (ySz)} is also non-meager, so comeager, thus ≡S has an
equivalence class which is comeager in Ns, and therefore comeager.

Proposition 13. Suppose that J ⊆
⋃
n∈ω

n2× n2 is dense, R ⊇ RJ is
a meager quasi-order, and C ⊆ R is closed. Then there is a continuous
homomorphism π : ω2→ ω2 from (∆(ω2)c, Ec

0, R0) to (Cc, Rc, R).

Proof. Fix a decreasing sequence (Un)n∈ω of dense open subsets of Cc

such that R∩
⋂
n∈ω Un = ∅. An n-approximation is a pair (k, u), where

k : n+ 1→ ω and u : n2→ k(n)2, such that

s � [m,n) = t � [m,n) =⇒ u(s) � [k(m), k(n)) = u(t) � [k(m), k(n))

for all m ∈ n and s, t ∈ n2. A refinement of (k, u) is an approximation
(k′, u′) such that k � n = k′ � n and u(s) v u′(s) for all s ∈ n2.

Lemma 14. Suppose that n ∈ ω, (k, u) is an (n + 1)-approximation,
and s ∈ n2× n2. Then there is a refinement (k′, u′) of (k, u) such that
Nu′(s(0)a0) ×Nu′(s(1)a1) ⊆ Un+1.

Proof of lemma. Fix l ∈ ω\k(n+1) and t ∈ l2× l2 with u◦s(0) v t(0),
u ◦ s(1) v t(1), and Nt(0)×Nt(1) ⊆ Un+1. Then the refinement of (k, u)
given by k′(n + 1) = l, u′(s(0)a0) = t(0), and u′(s(1)a1) = t(1) is
clearly as desired.
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Let (k0, u0) denote the 0-approximation given by k0(0) = 0 and u0 =
∅. Given an n-approximation (kn, un), let (k, u) denote the (n + 1)-
approximation given by k � (n+1) = kn, k(n+1) = kn(n), and u(sai) =
un(s) for i ∈ 2 and s ∈ n2. By applying Lemma 14 finitely many times,
we obtain a refinement (k′, u′) such that Nu′(s(0)a0)×Nu′(s(1)a1) ⊆ Un+1

for all s ∈ n2×n2. Fix s ∈ J such that u′(1na0) v s(0) and u′(0na1) v
s(1), and let (kn+1, un+1) denote the refinement given by kn+1(n+ 1) =
|s(0)|+ 1 = |s(1)|+ 1, un+1(1

na0) = s(0)a0, and un+1(0
na1) = s(1)a1.

Define π : ω2 → ω2 by π(x) = limn→ω un(x � n). Clearly π is con-
tinuous. Note now that if n ∈ ω, x, y ∈ ω2, and x(n) 6= y(n), then
(π(x), π(y)) ∈ Nun+1(x�(n+1)) × Nun+1(y�(n+1)) ⊆ Un+1. In particular, it
follows that π is a homomorphism from (∆(ω2)c, Ec

0) to (Cc, Rc).
Finally, observe that if n ∈ ω and x ∈ ω2, then there exist s ∈ J

and y ∈ ω2 with (π(1na0ax), π(0na1ax)) = (s(0)a0ay, s(1)a1ay) ∈
HJ ⊆ R. As R0 is the smallest quasi-order containing all pairs of the
form (1na0ax, 0na1ax) for n ∈ ω and x ∈ ω2, it follows that π is a
homomorphism from R0 to R.

Proposition 15. Suppose that C ⊆ ω2 is a non-meager Gδ set. Then
there is a continuous embedding of R0 into R0 � C.

Proof. Fix s0 ∈ <ω2 such that C is comeager in Ns0 , as well as a
decreasing sequence of dense open sets Un ⊆ Ns0 such that

⋂
n∈ω Un ⊆

C. An n-approximation is a pair (k, u), where k : n + 1 → ω and
u : n2 → {s ∈ k(n)2 | s0 v s}, such that s � [m,n) = t � [m,n) =⇒
u(s) � [k(m), k(n)) = u(t) � [k(m), k(n)) for all m ∈ n and s, t ∈ n2. A
refinement of (k, u) is an approximation (k′, u′) such that k � n = k′ � n
and u(s) v u′(s) for all s ∈ n2.

Lemma 16. Suppose that n ∈ ω, (k, u) is an (n + 1)-approximation,
and s ∈ n+12. Then there is a refinement (k′, u′) of (k, u) such that
Nu′(s) ⊆ Un+1.

Proof of lemma. As Un+1 is dense and open, there exist l ∈ ω \k(n+1)
and an extension t ∈ l2 of u(s) with Nt ⊆ Un+1. Then any refinement
of (k, u) for which k′(n+ 1) = l and u′(s) = t is as desired.

Let (k0, u0) denote the 0-approximation given by k0(0) = |s0| and
u0(∅) = s0. Given an n-approximation (kn, un), let (k, u) denote the
(n+ 1)-approximation given by k � (n+ 1) = kn, k(n+ 1) = kn(n) + 1,
and u(sai) = un(s)ai for i ∈ 2 and s ∈ n2. By applying Lemma
16 finitely many times, we obtain a refinement (kn+1, un+1) with the
property that Nun+1(s) ⊆ Un+1 for all s ∈ n+12.
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Define π : ω2→ ω2 by π(x) = limn→∞ un(x � n). Clearly π is contin-
uous. Moreover, if x ∈ ω2, then π(x) ∈

⋂
n∈ωNun(x�n) ⊆

⋂
n∈ω Un ⊆ C,

thus π(ω2) ⊆ C.
To see that π is an injective homomorphism from Ec

0 to Ec
0, sim-

ply observe that if x, y ∈ ω2 and x(n) < y(n), then π(x)(kn(n)) <
π(y)(kn(n)). Note also that if x � (n, ω) = y � (n, ω), then π(x) �
(kn(n), ω) = π(y) � (kn(n), ω), thus π is a homomorphism from (R0, E0\
R0) to (R0, E0 \R0), and therefore an embedding of R0 into R0 � C.

Proposition 17. Suppose that J ⊆
⋃
n∈ω

n2× n2 is dense, R ⊇ RJ is
a meager quasi-order, and C ⊆ R is closed. Then there is a continuous
function π : ω2 → ω2 which is a homomorphism from (∆(ω2)c, Ec

0, E0)
or (∆(ω2)c, Rc

0, R0) to (Cc, Rc, R).

Proof. By Proposition 13, there is a continuous homomorphism ϕ : ω2→
ω2 from (∆(ω2)c, Ec

0, R0) to (Cc, Rc, R). Set S = (ϕ× ϕ)−1(R), noting
that R0 ⊆ S ⊆ E0.

For each x ∈ ω2 \ {1ω}, let σ(x) denote the immediate successor of
x under R0. Define B = {x ∈ ω2 \ {1ω} | x <S σ(x)}, noting that
S � B = R0 � B and S � [B]cE0

= E0 � [B]cE0
.

If B is meager, then there is a dense Gδ set D ⊆ [B]cE0
. Otherwise,

there is a non-meager Gδ set D ⊆ B. By Proposition 15, there is a
continuous embedding ψ : ω2→ D from R0 to R0 � D. Set π = ϕ◦ψ. If
D ⊆ [B]cE0

, then π is a continuous embedding of E0 into R. If D ⊆ B,
then π is a continuous embedding of R0 into R.

We are now ready for our main results.

Theorem 18 (Kanovei-Louveau). Suppose that X is a Hausdorff space
and R is a bi-analytic quasi-order on X. Then exactly one of the
following holds:

(1) There is a lexicographically reducible quasi-order S ⊇ R with
the property that ≡R = ≡S.

(2) There is a continuous embedding π : ω2→ X of either E0 or R0

into R.

Proof. To see that (1) and (2) are mutually exclusive suppose, towards
a contradiction, that α is a countable ordinal, S ⊇ R is a quasi-order
with ≡R = ≡S, ϕ : X → α2 is an ω-universally Baire reduction of S to
Rlex(α), and ψ : ω2 → X is a Baire measurable reduction of E0 or R0

to R. In particular, it follows that ψ is a homomorphism from R0 to
R, so ϕ ◦ ψ is a Baire measurable homomorphism from R0 to Rlex(α),
thus Proposition 12 ensures the existence of x ∈ α2 such that the set
C = (ϕ◦ψ)−1({x}) is comeager. As π(C) is a single ≡S-class, it is also
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a single ≡R-class, thus ψ sends comeagerly many E0-classes to a single
≡R-class, the desired contradiction.

It remains to show that at least one of (1) and (2) holds. Towards
this end, set G = Rc and suppose that there is a Borel ω-coloring
c : X → ω of ≡S ∩ G, for some lexicographically reducible quasi-order
S ⊇ R. Proposition 2 ensures that for each n ∈ ω, there is an (≡S \R)-
discrete pair (Bn,0, Bn,1) of Borel sets such that c−1({n}) ⊆ Bn,0∩Bn,1,
Bn,0 is downward (≡S ∩ R)-invariant, and Bn,1 is upward (≡S ∩ R)-
invariant. Define ψ : X → ω2 by ψ(x)(n) = χBn,1(x), let T denote the
lexicographically reducible quasi-order on X given by

xTy ⇐⇒ x <S y or (x ≡S y and ψ(x)Rlexψ(y)),

and observe that R ⊆ T and ≡R = ≡T .
By Theorem 6, we can assume that there is a continuous homo-

morphism ϕ : ω2 → X from (G0(even), R0(odd)) to (G, R). Set C =
(ϕ×ϕ)−1(∆(X)) and S = (ϕ×ϕ)−1(R). If S is comeager, then so too
is ≡S, which contradicts the fact that G0(even) ∩ S = ∅. Proposition
4 therefore implies that S is meager. Proposition 17 now ensures that
there is a continuous function ψ : ω2 → ω2 which is a homomorphism
of either (∆(ω2)c, Ec

0, E0) or (∆(ω2)c, Rc
0, R0) to (Cc, Sc, S), so the map

π = ϕ ◦ ψ is a continuous embedding of E0 or R0 into R.

Theorem 19 (Harrington-Kechris-Louveau). Suppose that X is a Haus-
dorff space and E is a bi-analytic equivalence relation on X. Then
exactly one of the following holds:

(1) The equivalence relation E is smooth.
(2) There is a continuous embedding π : ω2→ X of E0 into E.

Proof. Note first that if S is a quasi-order and ϕ : X → Y is a reduction
of S to a partial order on Y , then ϕ is also a Borel reduction of ≡S to
∆(Y ). Note also that no non-trivial partial order can be embedded into
an equivalence relation. It follows that (1) of Theorem 18 is equivalent
to our (1), and (2) of Theorem 18 is equivalent to our (2), thus the
desired result follows from Theorem 18.

Theorem 20 (Harrington-Marker-Shelah). Every bi-analytic linear qu-
asi-order on a Hausdorff space is lexicographically reducible.

Proof. Suppose that X is a Hausdorff space and R is a bi-analytic
linear quasi-order on X. By Theorem 18, we can assume that there is
a continuous embedding ϕ : ω2→ X from E0 or R0 to R. In particular,
it follows that ϕ is a homomorphism from R0 to R, so Proposition
12 ensures the existence of x ∈ X such that ϕ−1([x]≡R) is comeager.
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It follows that ϕ sends comeagerly many E0-classes to a single point,
which contradicts the fact that ϕ is an embedding.

4. Exercises

Exercise 21. Show that if X and Y are Hausdorff spaces, R ⊆ X ×
(Y ×Y ) is an analytic set whose vertical sections are quasi-orders, and
G ⊆ X×(Y ×Y ) is an analytic set whose vertical sections are digraphs,
then exactly one of the following holds:

(1) There is a countable ordinal α, a set S ⊇ R, a Borel function
ϕ : X × Y → α2, and a Borel function c : X × Y → ω such that
for all x ∈ X, the map ϕx(y) = ϕ(x, y) is a reduction of Sx to
Rlex(α) and the map cx(y) = c(x, y) is a coloring of ≡Sx ∩ Gx.

(2) For some x ∈ X, there is a continuous homomorphism from
(G0(even), R0(odd)) to (Gx, Rx).

Exercise 22. Show that if X is a Hausdorff space, R is an analytic
quasi-order on X, and T ⊇ R is a co-analytic quasi-order on X, then
exactly one of the following holds:

(1) There is a lexicographically reducible quasi-order T ⊇ R such
that ≡R ⊆ ≡S ⊆ ≡T .

(2) There is a continuous embedding π : ω2→ X of either (E0, E0),
(R0, E0), or (R0, R0) into (R, T ).

Exercise 23. Show that if X is a Hausdorff space, G is an analytic
graph on X, and R is a bi-analytic quasi-order on X, then exactly one
of the following holds:

(1) There is a Borel ω-coloring of ≡S∩G, for some lexicographically
reducible quasi-order S on X with <S ⊆ <R.

(2) There is a continuous homomorphism π : ω2→ X from the pair
(G0(even),H0(odd)) to the pair (G, <c

R).

Exercise 24 (Harrington-Marker-Shelah). Show that if X is a Haus-
dorff space and R is a bi-analytic quasi-order on X, then exactly one
of the following holds:

(1) The set X is the union of countably many Borel chains.
(2) There is a perfect antichain.

Hint : First apply Exercise 23 with G = Rc. In the case that one obtains
the continuous homomorphism π, show that ⊥R is non-meager in every
non-empty basic open square (this takes some effort!), and use this to
build the perfect antichain.

Exercise 25 (Harrington-Marker-Shelah). Show that if X is a Haus-
dorff space and R is a bi-analytic linear quasi-order on X, then there
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exists α ∈ ω1 such that R is Borel reducible to the lexicographic order-
ing on α2, and as a result R does not have a chain of length ω1.

Exercise 26. State and prove versions of the above exercises for κ-
Souslin ω-universally Baire structures.

Hint : To give a classical proof of a weak generalization, first establish
a weak κ-Souslin analog of Theorem 6 by removing all uses of separation
from the argument given in §2. Note that the resulting theorem is a
true dichotomy in ZF + BP.

Hint : To give a strong generalization, adapt the techniques of Kan-
ovei [3] to first establish a strong κ-Souslin analog of Theorem 6. Al-
though the resulting proof is not classical, the resulting theorem is a
true generalization of the Borel version.
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