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Abstract. We generalize the marker lemma from aperiodic count-
able Borel equivalence relations to transitive Borel binary relations with
countably infinite vertical sections.

We say that a set B ⊆ X is a complete section for a binary relation R on X if
it intersects every vertical section of R, i.e., if ∀x ∈ X (B ∩ Rx 6= ∅). This clearly
agrees with the usual notion of complete section for equivalence relations. Beyond
this case, the notion is useful when considering the relation of lying in the forward
orbit of a point under an action of a countable semigroup of Borel functions. Here
we establish the generalization of the standard marker lemma to such relations:

Theorem 1. Suppose that X is a Polish space and R is a transitive Borel binary
relation on X whose vertical sections are all countably infinite. Then there are
Borel R-complete sections A0 ⊇ A1 ⊇ · · · such that

T
n∈N An = ∅.

Proof. Fix an enumeration B0, B1, . . . of a countable family of Borel subsets of X
which separates points, and for each s ∈ 2<N, define Bs ⊆ X by

Bs =

� \
s(i)=0

X \Bi

�
∩

� \
s(i)=1

Bi

�
.

For each n ∈ N, define Sn : X → P(2n) by

Sn(x) = {s ∈ 2n : ∀y ∈ Rx (|Bs ∩Ry| = ℵ0)}.

Lemma 2. Suppose that x, y ∈ X, n ∈ N, s ∈ 2n, and i ∈ {0, 1}. Then:

1. (x, y) ∈ R ⇒ Sn(x) ⊆ Sn(y);

2. si ∈ Sn+1(x) ⇒ s ∈ Sn(x).

Proof. The first claim is a consequence of the transitivity of R, and the second is a
trivial consequence of the definition of Sn. 2

For each s ∈ 2n, define Cs ⊆ X by

Cs = {x ∈ X : ∀y ∈ Rx (s = min
lex

Sn(y))},

and for each n ∈ N, define Dn ⊆ X by

Dn =
[

s∈2n

Bs ∩ Cs.

We will show that the sets D0, D1, . . . are nearly as desired.
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Lemma 3. ∀n ∈ N (Dn+1 ⊆ Dn).

Proof. Fix n ∈ N and suppose that x ∈ Dn+1. Then there exists s ∈ 2n and
i ∈ {0, 1} such that x ∈ Bsi ∩ Csi. In particular, it follows that x ∈ Bs, so to see
that x ∈ Dn, it is enough to show that x ∈ Cs. Suppose, towards a contradiction,
that there exists y ∈ Rx such that s 6= t, where t = minlex Sn(y). As x ∈ Csi,
it follows that si ∈ Sn+1(x). As (1) ensures that Sn(x) ⊆ Sn(y) and (2) ensures
that s ∈ Sn(x), it follows that s ∈ Sn(y), thus t <lex s. As t0 <lex si and si =
minlex Sn+1(y), it follows that t0 /∈ Sn+1(y), so there exists z ∈ Ry such that
|Bt0 ∩Rz| < ℵ0. Similarly, since t1 <lex si and si = minlex Sn+1(z), it follows that
t1 /∈ Sn+1(z), so there exists w ∈ Rz such that |Bt1 ∩Rw| < ℵ0. As the transitivity
of R ensures that Rw ⊆ Rz, this implies that |Bt ∩Rw| < ℵ0. As the transitivity of
R implies also that (y, w) ∈ R, this contradicts our assumption that t ∈ Sn(y). 2

While each Dn is an R-complete section, we will show something stronger:

Lemma 4. ∀x ∈ X ∀n ∈ N (|Dn ∩Rx| = ℵ0).

Proof. Fix an enumeration 〈si〉i<2n of {0, 1}n. For each x ∈ X, set x0 = x, and
given xi, let xi+1 be any element of Rxi

such that minSn(xi+1) 6= minSn(xi), if
such an element exists. Otherwise, set xi+1 = xi. Let y = x2n and s = minSn(y),
and observe that ∀z ∈ Ry (s = min Sn(z)), thus y ∈ Cs. As s ∈ Sn(y), it follows
that |Bs ∩ Ry| = ℵ0, and since y ∈ Cs, it follows that Bs ∩ Ry = Bs ∩ Cs ∩ Ry,
thus |Bs ∩ Cs ∩Ry| = ℵ0. As Bs ∩ Cs ⊆ Dn and the transitivity of R ensures that
Ry ⊆ Rx, it follows that |Dn ∩Rx| = ℵ0. 2

Unfortunately, it need not be the case that the set D =
T

n∈N Dn is empty.
However, this is not so far from the truth:

Lemma 5. ∀x, y ∈ D (x 6= y ⇒ (x, y) /∈ R).

Proof. Suppose, towards a contradiction, that there are distinct points x, y ∈ D
such that (x, y) ∈ R. Fix n ∈ N and s ∈ 2n such that x ∈ Bs and y /∈ Bs. As
x ∈ Dn, it follows that Sn(x) = Sn(y) = s, so y /∈ Dn, thus y /∈ D, the desired
contradiction. 2

Now define An = Dn \D. Lemma 2 implies that these sets are decreasing, and
they clearly have empty intersection, so it only remains to check that each An is an
R-complete section. Towards this end, fix x ∈ X, and observe that two applications
of Lemma 4 ensure that there are distinct points y ∈ Dn ∩ Rx and z ∈ Dn ∩ Ry.
Lemma 5 then ensures that y /∈ An ⇒ y ∈ D ⇒ z /∈ D ⇒ z ∈ An, and the
transitivity of R then implies that An ∩Rx 6= ∅. 2

Remark 6. It is not difficult to produce examples which show that the assumption
of transitivity in Theorem 1 is necessary.


