## A GENERALIZED MARKER LEMMA

BENJAMIN D. MILLER


#### Abstract

We generalize the marker lemma from aperiodic countable Borel equivalence relations to transitive Borel binary relations with countably infinite vertical sections.


We say that a set $B \subseteq X$ is a complete section for a binary relation $R$ on $X$ if it intersects every vertical section of $R$, i.e., if $\forall x \in X\left(B \cap R_{x} \neq \emptyset\right)$. This clearly agrees with the usual notion of complete section for equivalence relations. Beyond this case, the notion is useful when considering the relation of lying in the forward orbit of a point under an action of a countable semigroup of Borel functions. Here we establish the generalization of the standard marker lemma to such relations:

Theorem 1. Suppose that $X$ is a Polish space and $R$ is a transitive Borel binary relation on $X$ whose vertical sections are all countably infinite. Then there are Borel $R$-complete sections $A_{0} \supseteq A_{1} \supseteq \cdots$ such that $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$.

Proof. Fix an enumeration $B_{0}, B_{1}, \ldots$ of a countable family of Borel subsets of $X$ which separates points, and for each $s \in 2^{<\mathbb{N}}$, define $B_{s} \subseteq X$ by

$$
B_{s}=\left(\bigcap_{s(i)=0} X \backslash B_{i}\right) \cap\left(\bigcap_{s(i)=1} B_{i}\right) .
$$

For each $n \in \mathbb{N}$, define $S_{n}: X \rightarrow \mathcal{P}\left(2^{n}\right)$ by

$$
S_{n}(x)=\left\{s \in 2^{n}: \forall y \in R_{x}\left(\left|B_{s} \cap R_{y}\right|=\aleph_{0}\right)\right\} .
$$

Lemma 2. Suppose that $x, y \in X, n \in \mathbb{N}, s \in 2^{n}$, and $i \in\{0,1\}$. Then:

1. $(x, y) \in R \Rightarrow S_{n}(x) \subseteq S_{n}(y) ;$
2. $s i \in S_{n+1}(x) \Rightarrow s \in S_{n}(x)$.

Proof. The first claim is a consequence of the transitivity of $R$, and the second is a trivial consequence of the definition of $S_{n}$.

For each $s \in 2^{n}$, define $C_{s} \subseteq X$ by

$$
C_{s}=\left\{x \in X: \forall y \in R_{x}\left(s=\min _{\text {lex }} S_{n}(y)\right)\right\}
$$

and for each $n \in \mathbb{N}$, define $D_{n} \subseteq X$ by

$$
D_{n}=\bigcup_{s \in 2^{n}} B_{s} \cap C_{s}
$$

We will show that the sets $D_{0}, D_{1}, \ldots$ are nearly as desired.

Lemma 3. $\forall n \in \mathbb{N}\left(D_{n+1} \subseteq D_{n}\right)$.
Proof. Fix $n \in \mathbb{N}$ and suppose that $x \in D_{n+1}$. Then there exists $s \in 2^{n}$ and $i \in\{0,1\}$ such that $x \in B_{s i} \cap C_{s i}$. In particular, it follows that $x \in B_{s}$, so to see that $x \in D_{n}$, it is enough to show that $x \in C_{s}$. Suppose, towards a contradiction, that there exists $y \in R_{x}$ such that $s \neq t$, where $t=\min _{\text {lex }} S_{n}(y)$. As $x \in C_{s i}$, it follows that si $\in S_{n+1}(x)$. As (1) ensures that $S_{n}(x) \subseteq S_{n}(y)$ and (2) ensures that $s \in S_{n}(x)$, it follows that $s \in S_{n}(y)$, thus $t<_{\text {lex }} s$. As $t 0<_{\text {lex }}$ si and $s i=$ $\min _{\text {lex }} S_{n+1}(y)$, it follows that $t 0 \notin S_{n+1}(y)$, so there exists $z \in R_{y}$ such that $\left|B_{t 0} \cap R_{z}\right|<\aleph_{0}$. Similarly, since $t 1<_{\text {lex }} s i$ and $s i=\min _{\text {lex }} S_{n+1}(z)$, it follows that $t 1 \notin S_{n+1}(z)$, so there exists $w \in R_{z}$ such that $\left|B_{t 1} \cap R_{w}\right|<\aleph_{0}$. As the transitivity of $R$ ensures that $R_{w} \subseteq R_{z}$, this implies that $\left|B_{t} \cap R_{w}\right|<\aleph_{0}$. As the transitivity of $R$ implies also that $(y, w) \in R$, this contradicts our assumption that $t \in S_{n}(y)$.

While each $D_{n}$ is an $R$-complete section, we will show something stronger:
Lemma 4. $\forall x \in X \forall n \in \mathbb{N}\left(\left|D_{n} \cap R_{x}\right|=\aleph_{0}\right)$.
Proof. Fix an enumeration $\left\langle s_{i}\right\rangle_{i<2^{n}}$ of $\{0,1\}^{n}$. For each $x \in X$, set $x_{0}=x$, and given $x_{i}$, let $x_{i+1}$ be any element of $R_{x_{i}}$ such that $\min S_{n}\left(x_{i+1}\right) \neq \min S_{n}\left(x_{i}\right)$, if such an element exists. Otherwise, set $x_{i+1}=x_{i}$. Let $y=x_{2^{n}}$ and $s=\min S_{n}(y)$, and observe that $\forall z \in R_{y}\left(s=\min S_{n}(z)\right)$, thus $y \in C_{s}$. As $s \in S_{n}(y)$, it follows that $\left|B_{s} \cap R_{y}\right|=\aleph_{0}$, and since $y \in C_{s}$, it follows that $B_{s} \cap R_{y}=B_{s} \cap C_{s} \cap R_{y}$, thus $\left|B_{s} \cap C_{s} \cap R_{y}\right|=\aleph_{0}$. As $B_{s} \cap C_{s} \subseteq D_{n}$ and the transitivity of $R$ ensures that $R_{y} \subseteq R_{x}$, it follows that $\left|D_{n} \cap R_{x}\right|=\aleph_{0}$.

Unfortunately, it need not be the case that the set $D=\bigcap_{n \in \mathbb{N}} D_{n}$ is empty. However, this is not so far from the truth:

Lemma 5. $\forall x, y \in D(x \neq y \Rightarrow(x, y) \notin R)$.
Proof. Suppose, towards a contradiction, that there are distinct points $x, y \in D$ such that $(x, y) \in R$. Fix $n \in \mathbb{N}$ and $s \in 2^{n}$ such that $x \in B_{s}$ and $y \notin B_{s}$. As $x \in D_{n}$, it follows that $S_{n}(x)=S_{n}(y)=s$, so $y \notin D_{n}$, thus $y \notin D$, the desired contradiction.

Now define $A_{n}=D_{n} \backslash D$. Lemma 2 implies that these sets are decreasing, and they clearly have empty intersection, so it only remains to check that each $A_{n}$ is an $R$-complete section. Towards this end, fix $x \in X$, and observe that two applications of Lemma 4 ensure that there are distinct points $y \in D_{n} \cap R_{x}$ and $z \in D_{n} \cap R_{y}$. Lemma 5 then ensures that $y \notin A_{n} \Rightarrow y \in D \Rightarrow z \notin D \Rightarrow z \in A_{n}$, and the transitivity of $R$ then implies that $A_{n} \cap R_{x} \neq \emptyset$.

Remark 6. It is not difficult to produce examples which show that the assumption of transitivity in Theorem 1 is necessary.

