ISOMORPHISM VIA FULL GROUPS

BENJAMIN D. MILLER

ABSTRACT. At the request of Medynets, we give a measure-theoretic characterization of the circumstances under which Borel subsets A, B of a Polish space X can be mapped to one another via an element of the full group of a countable Borel equivalence relation on X.

Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. The *full group* of E is the group [E] of Borel automorphisms $f: X \to X$ such that graph $(f) \subseteq E$. The *full semigroup* of E is the semigroup $\llbracket E \rrbracket$ of Borel isomorphisms $f: A \to B$, where $A, B \subseteq X$ are Borel, such that graph $(f) \subseteq E$. We write $A \sim B$ to indicate that there exists $f \in \llbracket E \rrbracket$ such that f(A) = B.

Theorem 1. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $A, B \subseteq X$ are Borel. Then the following are equivalent:

- 1. $A \sim B$.
- 2. The following conditions are satisfied:
 - (a) $[A]_E = [B]_E$.
 - (b) Every (E|A)-invariant finite measure on A extends to an $(E|(A \cup B))$ -invariant finite measure on $A \cup B$ such that $\mu(A) = \mu(B)$.
 - (c) Every (E|B)-invariant finite measure on B extends to an $(E|(A \cup B))$ -invariant finite measure on $A \cup B$ such that $\mu(A) = \mu(B)$.

Proof. As the proof of $(1) \Rightarrow (2)$ is straightforward, we prove only $(2) \Rightarrow (1)$. By Feldman-Moore [2], there is a countable group $\Gamma = \{\gamma_n\}_{n \in \mathbb{N}}$ of Borel automorphisms of X with $E = E_{\Gamma}^X$. Define recursively $A_n \subseteq A$ and $B_n \subseteq B$ by

$$A_n = \left(A \setminus \bigcup_{m < n} A_m\right) \cap \gamma_n^{-1} \left(B \setminus \bigcup_{m < n} B_m\right)$$

and

$$B_n = \gamma_n \Big(A \setminus \bigcup_{m < n} A_m \Big) \cap \Big(B \setminus \bigcup_{m < n} B_m \Big).$$

Put $A_{\infty} = \bigcup_{n \in \mathbb{N}} A_n$ and $B_{\infty} = \bigcup_{n \in \mathbb{N}} B_n$. As $\langle A_n \rangle_{n \in \mathbb{N}}$ and $\langle B_n \rangle_{n \in \mathbb{N}}$ partition A_{∞} and B_{∞} , respectively, there is a Borel isomorphism $g : A_{\infty} \to B_{\infty}$ in $\llbracket E \rrbracket$ such that $\forall n \in \mathbb{N} \ (g | A_n = \gamma_n | A_n)$.

Lemma 2. $\forall x \in X \ (A \cap [x]_E = A_\infty \cap [x]_E \ or \ B \cap [x]_E = B_\infty \cap [x]_E).$

Proof. Suppose, towards a contradiction, that there exists $x \in X$ such that both $(A \setminus A_{\infty}) \cap [x]_E$ and $(B \setminus B_{\infty}) \cap [x]_E$ are non-empty. Fix $x_A \in (A \setminus A_{\infty}) \cap [x]_E$ and $x_B \in (B \setminus B_{\infty}) \cap [x]_E$, and find $n \in \mathbb{N}$ such that $\gamma_n \cdot x_A = x_B$. As $\bigcup_{m < n} A_m \subseteq A_{\infty}$ and $\bigcup_{m < n} B_m \subseteq B_{\infty}$, it follows that $x_A \in A_n \subseteq A_{\infty}$, the desired contradiction. \Box

It follows from Lemma 2 that the sets $X_A = [A \setminus A_\infty]_E$ and $X_B = [B \setminus B_\infty]_E$ are disjoint. Set $Y = X \setminus (X_A \cup X_B)$, and observe that $f_Y = g|(A \cap Y)$ is a Borel isomorphism of $A \cap Y$ with $B \cap Y$ in $[\![E|Y]\!]$.

It remains to find Borel isomorphisms $f_A \in \llbracket E|X_A \rrbracket$ and $f_B \in \llbracket E|X_B \rrbracket$ of $A \cap X_A$ with $B \cap X_A$ and $A \cap X_B$ with $B \cap X_B$, respectively. We will describe only the construction of f_A , as the construction of f_B is essentially similar.

Following standard convention, we say that E is *compressible* if there is a Borel set $C \sim X$ such that $X \setminus C$ is an E-complete section. More generally, we say that a set $D \subseteq X$ is *compressible* if E|D is compressible. We will require the following remarkable theorem of Nadkarni [3]:

Theorem 3 (Nadkarni). Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. Then exactly one of the following holds:

- (i) There is an E-invariant probability measure on X.
- (ii) E is compressible.

We verify next that the remaining sets under consideration are compressible:

Lemma 4. $A \cap X_A$ and $B \cap X_A$ are compressible.

Proof. To see that $B \cap X_A$ is compressible suppose, towards a contradiction, that it is not. By Theorem 3, there is an $E|(B \cap X_A)$ -invariant probability measure μ on $B \cap X_A$. We can extend this to an (E|B)-invariant probability measure on Bby insisting that $\mu(B \setminus X_A) = 0$. It then follows from condition (2c) that μ extends to an $(E|(A \cup B))$ -invariant finite measure ν on $A \cup B$ such that $\nu(A) = \nu(B) = 1$. It follows from invariance that ν is supported on X_A . As the set $A \setminus g^{-1}(B)$ intersects every equivalence class of $E|X_A$, another appeal to invariance gives that $\nu(A \setminus g^{-1}(B)) > 0$, thus $\nu(A) > \nu(g^{-1}(B))$, and one final appeal to invariance implies that $\nu(A) > \nu(B)$, the desired contradiction.

It follows that $g^{-1}(B \cap X_A)$ is also compressible, thus so too is $A \cap X_A$. \Box

A Borel set $C \subseteq X$ is *countably paradoxical* if it can be partitioned into Borel sets $C_0, C_1, \ldots \subseteq C$ such that $\forall i, j \in \mathbb{N}$ $(C_i \sim C_j)$. We will need the following fact from Becker-Kechris [1]:

Proposition 5 (Becker-Kechris). Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. Then X is compressible \Leftrightarrow X is countably paradoxical.

Using this, we can now establish the following general fact:

Lemma 6. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $C \subseteq X$ is a compressible Borel E-complete section. Then $C \sim X$.

Proof. By a straightforward Schröder-Bernstein argument, it is enough to find $f \in \llbracket E \rrbracket$ such that $f(X) \subseteq C$. By Theorem 5, there is a partition $C_0, C_1, \ldots \subseteq C$ of C into Borel sets as well as bijections $f_n \in \llbracket E \rrbracket$ of C_0 with C_n , for each $n \in \mathbb{N}$. By Feldman-Moore [2], there is a countable group $\Gamma = \{\gamma_n\}_{n \in \mathbb{N}}$ of Borel automorphisms of X with $E = E_{\Gamma}^X$. For each $x \in X$, let n(x) be the least natural number such that $\gamma_{n(x)} \cdot x \in C_0$, and observe that the function $f(x) = f_{n(x)}(\gamma_{n(x)} \cdot x)$ is an element of $\llbracket E \rrbracket$ such that $f(X) \subseteq C$.

By Lemmas 4 and 6, there are Borel isomorphisms $g_A, g_B \in \llbracket E \rrbracket$ of $A \cap X_A$ with X_A and $B \cap X_A$ with X_A , respectively, and it follows that the function $g_B^{-1} \circ g_A$ is the desired element of $\llbracket E \rrbracket$ which sends $A \cap X_A$ to $B \cap X_A$.

As an immediate corollary, we now have the following:

Theorem 7. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $A, B \subseteq X$ are Borel, and set $A^c = X \setminus A$ and $B^c = X \setminus B$. The following are equivalent:

- 1. There exists $f \in [E]$ such that f(A) = B.
- 2. The following conditions are satisfied:
 - (a) $[A]_E = [B]_E$.
 - (b) Every (E|A)-invariant finite measure on A extends to an $(E|(A \cup B))$ -invariant finite measure on $A \cup B$ such that $\mu(A) = \mu(B)$.
 - (c) Every (E|B)-invariant finite measure on B extends to an $(E|(A \cup B))$ -invariant finite measure on $A \cup B$ such that $\mu(A) = \mu(B)$.
 - (d) $[A^c]_E = [B^c]_E$.
 - (e) Every $(E|A^c)$ -invariant finite measure on A^c extends to an $(E|(A^c \cup B^c))$ invariant finite measure on $A^c \cup B^c$ such that $\mu(A^c) = \mu(B^c)$.
 - (f) Every $(E|B^c)$ -invariant finite measure on B^c extends to an $(E|(A^c \cup B^c))$ invariant finite measure on $A^c \cup B^c$ such that $\mu(A^c) = \mu(B^c)$.

References

- H. Becker and A. Kechris. The descriptive set theory of Polish group actions, volume 232 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1996)
- [2] J. Feldman and C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc., 234 (2), (1977), 289–324
- [3] M. Nadkarni. On the existence of a finite invariant measure. Proc. Indian Acad. Sci. Math. Sci., 100 (3), (1990), 203–220