ISOMORPHISM VIA FULL GROUPS

BENJAMIN D. MILLER

Abstract

At the request of Medynets, we give a measure-theoretic characterization of the circumstances under which Borel subsets A, B of a Polish space X can be mapped to one another via an element of the full group of a countable Borel equivalence relation on X.

Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. The full group of E is the group $[E]$ of Borel automorphisms $f: X \rightarrow X$ such that $\operatorname{graph}(f) \subseteq E$. The full semigroup of E is the semigroup $\llbracket E \rrbracket$ of Borel isomorphisms $f: A \rightarrow B$, where $A, B \subseteq X$ are Borel, such that $\operatorname{graph}(f) \subseteq E$. We write $A \sim B$ to indicate that there exists $f \in \llbracket E \rrbracket$ such that $f(A)=B$.

Theorem 1. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $A, B \subseteq X$ are Borel. Then the following are equivalent:

1. $A \sim B$.
2. The following conditions are satisfied:
(a) $[A]_{E}=[B]_{E}$.
(b) Every $(E \mid A)$-invariant finite measure on A extends to an $(E \mid(A \cup B))$ invariant finite measure on $A \cup B$ such that $\mu(A)=\mu(B)$.
(c) Every $(E \mid B)$-invariant finite measure on B extends to an $(E \mid(A \cup B))$ invariant finite measure on $A \cup B$ such that $\mu(A)=\mu(B)$.

Proof. As the proof of $(1) \Rightarrow(2)$ is straightforward, we prove only (2) \Rightarrow (1). By Feldman-Moore [2], there is a countable group $\Gamma=\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$ of Borel automorphisms of X with $E=E_{\Gamma}^{X}$. Define recursively $A_{n} \subseteq A$ and $B_{n} \subseteq B$ by

$$
\begin{aligned}
& A_{n}=\left(A \backslash \bigcup_{m<n} A_{m}\right) \cap \gamma_{n}^{-1}\left(B \backslash \bigcup_{m<n} B_{m}\right) \\
& \text { and } \\
& B_{n}=\gamma_{n}\left(A \backslash \bigcup_{m<n} A_{m}\right) \cap\left(B \backslash \bigcup_{m<n} B_{m}\right) .
\end{aligned}
$$

Put $A_{\infty}=\bigcup_{n \in \mathbb{N}} A_{n}$ and $B_{\infty}=\bigcup_{n \in \mathbb{N}} B_{n}$. As $\left\langle A_{n}\right\rangle_{n \in \mathbb{N}}$ and $\left\langle B_{n}\right\rangle_{n \in \mathbb{N}}$ partition A_{∞} and B_{∞}, respectively, there is a Borel isomorphism $g: A_{\infty} \rightarrow B_{\infty}$ in $\llbracket E \rrbracket$ such that $\forall n \in \mathbb{N}\left(g\left|A_{n}=\gamma_{n}\right| A_{n}\right)$.

Lemma 2. $\forall x \in X\left(A \cap[x]_{E}=A_{\infty} \cap[x]_{E}\right.$ or $\left.B \cap[x]_{E}=B_{\infty} \cap[x]_{E}\right)$.

Proof. Suppose, towards a contradiction, that there exists $x \in X$ such that both $\left(A \backslash A_{\infty}\right) \cap[x]_{E}$ and $\left(B \backslash B_{\infty}\right) \cap[x]_{E}$ are non-empty. Fix $x_{A} \in\left(A \backslash A_{\infty}\right) \cap[x]_{E}$ and $x_{B} \in\left(B \backslash B_{\infty}\right) \cap[x]_{E}$, and find $n \in \mathbb{N}$ such that $\gamma_{n} \cdot x_{A}=x_{B}$. As $\bigcup_{m<n} A_{m} \subseteq A_{\infty}$ and $\bigcup_{m<n} B_{m} \subseteq B_{\infty}$, it follows that $x_{A} \in A_{n} \subseteq A_{\infty}$, the desired contradiction.

It follows from Lemma 2 that the sets $X_{A}=\left[A \backslash A_{\infty}\right]_{E}$ and $X_{B}=\left[B \backslash B_{\infty}\right]_{E}$ are disjoint. Set $Y=X \backslash\left(X_{A} \cup X_{B}\right)$, and observe that $f_{Y}=g \mid(A \cap Y)$ is a Borel isomorphism of $A \cap Y$ with $B \cap Y$ in $\llbracket E \mid Y \rrbracket$.

It remains to find Borel isomorphisms $f_{A} \in \llbracket E \mid X_{A} \rrbracket$ and $f_{B} \in \llbracket E \mid X_{B} \rrbracket$ of $A \cap X_{A}$ with $B \cap X_{A}$ and $A \cap X_{B}$ with $B \cap X_{B}$, respectively. We will describe only the construction of f_{A}, as the construction of f_{B} is essentially similar.

Following standard convention, we say that E is compressible if there is a Borel set $C \sim X$ such that $X \backslash C$ is an E-complete section. More generally, we say that a set $D \subseteq X$ is compressible if $E \mid D$ is compressible. We will require the following remarkable theorem of Nadkarni [3]:

Theorem 3 (Nadkarni). Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. Then exactly one of the following holds:
(i) There is an E-invariant probability measure on X.
(ii) E is compressible.

We verify next that the remaining sets under consideration are compressible:
Lemma 4. $A \cap X_{A}$ and $B \cap X_{A}$ are compressible.
Proof. To see that $B \cap X_{A}$ is compressible suppose, towards a contradiction, that it is not. By Theorem 3, there is an $E \mid\left(B \cap X_{A}\right)$-invariant probability measure μ on $B \cap X_{A}$. We can extend this to an $(E \mid B)$-invariant probability measure on B by insisting that $\mu\left(B \backslash X_{A}\right)=0$. It then follows from condition (2c) that μ extends to an $(E \mid(A \cup B))$-invariant finite measure ν on $A \cup B$ such that $\nu(A)=\nu(B)=1$. It follows from invariance that ν is supported on X_{A}. As the set $A \backslash g^{-1}(B)$ intersects every equivalence class of $E \mid X_{A}$, another appeal to invariance gives that $\nu\left(A \backslash g^{-1}(B)\right)>0$, thus $\nu(A)>\nu\left(g^{-1}(B)\right)$, and one final appeal to invariance implies that $\nu(A)>\nu(B)$, the desired contradiction.

It follows that $g^{-1}\left(B \cap X_{A}\right)$ is also compressible, thus so too is $A \cap X_{A}$.
A Borel set $C \subseteq X$ is countably paradoxical if it can be partitioned into Borel sets $C_{0}, C_{1}, \ldots \subseteq C$ such that $\forall i, j \in \mathbb{N}\left(C_{i} \sim C_{j}\right)$. We will need the following fact from Becker-Kechris [1]:

Proposition 5 (Becker-Kechris). Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. Then X is compressible $\Leftrightarrow X$ is countably paradoxical.

Using this, we can now establish the following general fact:
Lemma 6. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $C \subseteq X$ is a compressible Borel E-complete section. Then $C \sim X$.

Proof. By a straightforward Schröder-Bernstein argument, it is enough to find $f \in$ $\llbracket E \rrbracket$ such that $f(X) \subseteq C$. By Theorem 5 , there is a partition $C_{0}, C_{1}, \ldots \subseteq C$ of C into Borel sets as well as bijections $f_{n} \in \llbracket E \rrbracket$ of C_{0} with C_{n}, for each $n \in \mathbb{N}$. By Feldman-Moore [2], there is a countable group $\Gamma=\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$ of Borel automorphisms of X with $E=E_{\Gamma}^{X}$. For each $x \in X$, let $n(x)$ be the least natural number such that $\gamma_{n(x)} \cdot x \in C_{0}$, and observe that the function $f(x)=f_{n(x)}\left(\gamma_{n(x)} \cdot x\right)$ is an element of $\llbracket E \rrbracket$ such that $f(X) \subseteq C$.

By Lemmas 4 and 6 , there are Borel isomorphisms $g_{A}, g_{B} \in \llbracket E \rrbracket$ of $A \cap X_{A}$ with X_{A} and $B \cap X_{A}$ with X_{A}, respectively, and it follows that the function $g_{B}^{-1} \circ g_{A}$ is the desired element of $\llbracket E \rrbracket$ which sends $A \cap X_{A}$ to $B \cap X_{A}$.

As an immediate corollary, we now have the following:
Theorem 7. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $A, B \subseteq X$ are Borel, and set $A^{c}=X \backslash A$ and $B^{c}=X \backslash B$. The following are equivalent:

1. There exists $f \in[E]$ such that $f(A)=B$.
2. The following conditions are satisfied:
(a) $[A]_{E}=[B]_{E}$.
(b) Every $(E \mid A)$-invariant finite measure on A extends to an $(E \mid(A \cup B))$ invariant finite measure on $A \cup B$ such that $\mu(A)=\mu(B)$.
(c) Every $(E \mid B)$-invariant finite measure on B extends to an $(E \mid(A \cup B))$ invariant finite measure on $A \cup B$ such that $\mu(A)=\mu(B)$.
(d) $\left[A^{c}\right]_{E}=\left[B^{c}\right]_{E}$.
(e) Every $\left(E \mid A^{c}\right)$-invariant finite measure on A^{c} extends to an $\left(E \mid\left(A^{c} \cup B^{c}\right)\right.$)invariant finite measure on $A^{c} \cup B^{c}$ such that $\mu\left(A^{c}\right)=\mu\left(B^{c}\right)$.
(f) Every $\left(E \mid B^{c}\right)$-invariant finite measure on B^{c} extends to an $\left(E \mid\left(A^{c} \cup B^{c}\right)\right)$ invariant finite measure on $A^{c} \cup B^{c}$ such that $\mu\left(A^{c}\right)=\mu\left(B^{c}\right)$.

References

[1] H. Becker and A. Kechris. The descriptive set theory of Polish group actions, volume 232 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1996)
[2] J. Feldman and C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc., 234 (2), (1977), 289-324
[3] M. Nadkarni. On the existence of a finite invariant measure. Proc. Indian Acad. Sci. Math. Sci., 100 (3), (1990), 203-220

