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Abstract

We show that the axiom of dependent choice holds if and only if ev-
ery Boolean algebra admits a complete embedding into the regular open
algebra of a Baire space.

The Stone representation theorem implies that every Boolean algebra is iso-
morphic to the clopen algebra of a compact, Hausdorff, zero-dimensional topo-
logical space. While this result is equivalent to the prime ideal theorem, no
choice is required to show the weaker fact that every Boolean algebra admits
a complete embedding into the regular open algebra of a topological space,
as can be seen by considering the usual completion of the Boolean algebra in
question. Here we describe the fragment of choice necessary to obtain a useful
intermediate fact:

Theorem. The following are equivalent:

1. For every Boolean algebra A, there is a Baire space (X, τ) and a complete
embedding of A into the regular open algebra of (X, τ).

2. The axiom of dependent choice.

3. For every topological space (X, τ), there is a Baire space (X̂, τ̂) such that
the regular open algebras of (X, τ) and (X̂, τ̂) are isomorphic.

Proof. To see (3)⇒ (1), suppose that A is a Boolean algebra, fix a topological
space (X, τ) for which there is a complete embedding of A into the regular open
algebra of (X, τ) (see, for example, the proof of Lemma 17.2 of [1]), and observe
that (3) yields a Baire space (X̂, τ̂) for which there is a complete embedding of
A into the regular open algebra of (X̂, τ̂).

To see (1) ⇒ (2), suppose that R is a binary relation on Y whose vertical
sections are non-empty. Set Pn = {〈yi〉 ∈ Y n : ∀i < n − 1 (yiRyi+1)}, and let
≤ denote extension on P =

⋃
n∈N Pn. Fix a Boolean algebra A for which there

is a complete embedding φ : P → A (see, for example, the proof of Lemma 17.2
of [1]). By (1), there is a Baire space (X, τ) and a complete embedding ψ of A
into the regular open algebra of (X, τ). Set π = ψ ◦φ, and observe that for each
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n ∈ N, the open set Un = π[Pn] is dense in π(∅), thus there exists x ∈
⋂
n∈N Un.

For each n ∈ N, let pn denote the unique element of Pn such that x ∈ π(pn),
set y = limn→∞ pn, and observe that ynRyn+1, for all n ∈ N.

To see (2)⇒ (3), suppose that (X, τ) is a topological space, let τ̂ denote the
topology on XN which is generated by the sets of the form

Û = {〈xn〉 ∈ XN : ∃n ∈ N∀m ≥ n (xm ∈ U)},

for U ∈ τ , and define π : τ → τ̂ by π(U) = Û .

Lemma 1. Suppose that U, V ∈ τ and 〈Ui〉 ∈ τ I .

1. π(U ∩ V ) = π(U) ∩ π(V ).

2. π(intτ (X \ U)) = intτ̂ (X̂ \ π(U)).

3. U is τ -dense in V ⇔ π(U) is τ̂ -dense in π(V ).

4. π(intτ (clτ (U))) = intτ̂ (clτ̂ (π(U))).

5.
⋃
i∈I π(Ui) is τ̂ -dense in π(

⋃
i∈I Ui).

6. π(intτ (clτ (
⋃
i∈I Ui))) = intτ̂ (clτ̂ (

⋃
i∈I π(Ui))).

Proof. To see (1), note that

π(U ∩ V ) = {〈xn〉 ∈ X̂ : ∃n ∈ N∀m ≥ n (xm ∈ U ∩ V )}
= {〈xn〉 ∈ X̂ : ∃n ∈ N∀m ≥ n (xm ∈ U)}∩
{〈xn〉 ∈ X̂ : ∃n ∈ N∀m ≥ n (xm ∈ V )}

= π(U) ∩ π(V ).

To see (2), observe that (1) implies that

π(intτ (X \ U)) = {〈xn〉 ∈ X̂ : ∃n ∈ N∀m ≥ n (xm ∈ intτ (X \ U))}
= {〈xn〉 ∈ X̂ : ∃V ∈ τ (π(U ∩ V ) = ∅ and

∃n ∈ N∀m ≥ n (xm ∈ V ))}
= {〈xn〉 ∈ X̂ : ∃V ∈ τ (π(U) ∩ π(V ) = ∅ and

〈xn〉 ∈ π(V ))}
= intτ̂ (X̂ \ π(U)).

To see (3), observe that (1) implies that

U is τ -dense in V ⇔ ∀W ∈ τ (V ∩W 6= ∅ ⇒ U ∩W 6= ∅)
⇔ ∀W ∈ τ (π(V ∩W ) 6= ∅ ⇒ π(U ∩W ) 6= ∅)
⇔ ∀W ∈ τ (π(V ) ∩ π(W ) 6= ∅ ⇒ π(U) ∩ π(W ) 6= ∅)
⇔ π(U) is τ̂ -dense in π(V ).

2



To see (4), observe that (3) implies that

π(intτ (clτ (U))) = {〈xn〉 ∈ X̂ : ∃n ∈ N∀m ≥ n (xm ∈ intτ (clτ (U)))}
= {〈xn〉 ∈ X̂ : ∃V ∈ τ (U is τ -dense in V and

∃n ∈ N∀m ≥ n (xm ∈ V ))}
= {〈xn〉 ∈ X̂ : ∃V ∈ τ (π(U) is τ̂ -dense in π(V ) and

〈xn〉 ∈ π(V ))}
= intτ̂ (clτ̂ (π(U))).

To see (5), we must show that if π(U) ∩ π(
⋃
i∈I Ui) is non-empty, then so

too is π(U)∩
⋃
i∈I π(Ui). Towards this end, note first that if π(U)∩ π(

⋃
i∈I Ui)

is non-empty, then so too is U ∩
⋃
i∈I Ui. Fix i ∈ I such that U ∩ Ui 6= ∅, as

well as x ∈ U ∩ Ui, and observe that the sequence with constant value x is in
π(U)∩π(Ui), thus π(U)∩

⋃
i∈I π(Ui) is non-empty. To see (6), observe that (4)

implies that π(intτ (clτ (
⋃
i∈I Ui))) = intτ̂ (clτ̂ (π(

⋃
i∈I Ui))), and (5) ensures that

intτ̂ (clτ̂ (π(
⋃
i∈I Ui))) = intτ̂ (clτ̂ (

⋃
i∈I π(Ui))).

As a corollary, we obtain the following:

Lemma 2. The regular open algebras of (X, τ) and (X̂, τ̂) are isomorphic.

Proof. We will show that π induces the desired isomorphism. To see that π
sends τ -regular open sets to τ̂ -regular open sets, simply observe that if U is
τ -regular open, then

π(U) = π(intτ (clτ (U))) = intτ̂ (clτ̂ (π(U))),

by (4) of Lemma 1. To see that every τ̂ -regular open set is the image of a
τ -regular open set, note that if

⋃
i∈I π(Ui) is τ̂ -regular open, then⋃

i∈I π(Ui) = intτ̂ (clτ̂ (
⋃
i∈I π(Ui))) = π(intτ (clτ (

⋃
i∈I Ui))),

by (6) of Lemma 1. It is clear that π is injective and π(∅) = ∅, thus the desired
result follows from (2) and (6) of Lemma 1.

While not necessary for our proof, it seems worth noting that if φ : X → X̂
is the function which sends x to the sequence with constant value x, then φ[U ] is
dense in π(U), for all U ∈ τ . In particular, it follows that if U is τ -regular open,
then π(U) = intτ (clτ (φ[U ])) is the smallest τ̂ -regular open set which contains
the natural copy of U sitting within X̂.

Lemma 3. Suppose that the axiom of dependent choice holds. Then (X̂, τ̂) is
a Baire space.

Proof. We must show that if U ∈ τ and 〈Vn〉 ∈ τ̂N is a decreasing sequence
of τ̂ -dense subsets of X̂, then Û ∩

⋂
n∈N Vn 6= ∅. Towards this end, appeal

to the axiom of dependent choice to find a decreasing sequence 〈Un〉 ∈ τN

of non-empty open subsets of U such that Ûn ⊆ Vn, for all n ∈ N. By the
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countable axiom of choice, there is a sequence 〈xn〉 ∈
∏
n∈N Un, and it follows

that 〈xn〉 ∈ Û ∩
⋂
n∈N Ûn ⊆ Û ∩

⋂
n∈N Vn.

Lemmas 2 and 3 clearly yield (2)⇒ (3).

As a final remark, we note that the same idea can be used to show that the
axiom of dependent choice holds if and only if every forcing notion is equivalent
to the Baire category forcing associated with a Baire space.
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