DENSITY OF TOPOLOGICAL FULL GROUPS

BENJAMIN D. MILLER

ABSTRACT. At the request of Tsankov, we give a somewhat different proof of Medynets's result that topological full groups associated with countable groups of homeomorphisms of zero-dimensional Polish spaces are uniformly dense in their measure-theoretic counterparts.

We use $[\Gamma]_c$, $[\Gamma]_{\mu}$, and $[\Gamma]$ to denote the topological, measure-theoretic, and Borel full groups, respectively. Recall that $T: X \to X$ is *periodic* if $\forall x \in X$ ($|[x]_T| < \aleph_0$).

Theorem 1 (Medynets). Suppose that X is a zero-dimensional Polish space, μ is a Borel probability measure on X, and Γ is a countable group which acts on X by homeomorphisms. Then the periodic homeomorphisms in $[\Gamma]_c$ are uniformly dense in $[\Gamma]_{\mu}$.

Proof. Suppose that $T \in [\Gamma]$ and $\epsilon > 0$. We must find $S \in [\Gamma]_c$ such that $\mu(\Delta(S,T)) < \epsilon$, where $\Delta(S,T) = \{x \in X : S(x) \neq T(x)\}$. Set $\operatorname{Per}(T) = \{x \in X : |[x]_T| < \aleph_0\}$ and $\operatorname{Aper}(T) = X \setminus \operatorname{Per}(T)$. Define also

$$\operatorname{Per}_{< n}(T) = \{x \in X : |[x]_T| \le n\}$$
 and $\operatorname{Per}_{> n}(T) = \{x \in X : n < |[x]_T| < \aleph_0\}.$

Fix $N \in \mathbb{N}$ sufficiently large that $\mu(\operatorname{Per}_{>N}(T)) < \epsilon/8$. A set $B \subseteq X$ is a *complete* section if it intersects every orbit of T. By a standard argument, there is a Borel complete section $B \subseteq X$ and $N' \ge N$ such that:

- 1. $B \cap \operatorname{Per}_{\leq N}(T)$ is a transversal of $T | \operatorname{Per}_{\leq N}(T)$.
- 2. $\mu(B \cap \operatorname{Aper}(T)) < \epsilon/8.$
- 3. $\forall x \in \operatorname{Per}_{>N}(T) \cup \operatorname{Aper}(T) \exists 1 \le n \le N' \ (T^n(x) \in B).$

Let F be the gap equivalence relation associated with B, i.e., define $R \subseteq X \times X$ by

$$R = \{ (x, T^{i}(x)) : \forall j < i \ (T^{j}(x) \notin B) \},\$$

and set $F = R \cup R^{-1}$.

Lemma 2. For every Borel set $A \subseteq X$ and $\delta > 0$, there is a clopen set $C \subseteq X$ such that $\mu([A\Delta C]_F) < \delta$.

Proof. Set $\nu = T^{-(N'-1)} * \mu + \cdots + T^{N'-1} * \mu$. As every finite measure on a Polish space is regular, there is a clopen set $C \subseteq X$ such that $\nu(A\Delta C) < \delta$. Noting that $\forall x \in X ([x]_F \subseteq \{T^n(x)\}_{-N' < n < N'})$, it follows that

$$\mu([A\Delta C]_F) \leq \mu(T^{-(N'-1)}(A\Delta C)) + \dots + \mu(T^{N'-1}(A\Delta C))$$

$$\leq \nu(A\Delta C)$$

$$< \delta,$$

which completes the proof of the lemma.

By Lemma 2, there is a clopen set $C \subseteq X$ such that $\mu([B\Delta C]_F) < \epsilon/4$. Condition (2) then implies that

$$\mu(C \setminus \operatorname{Per}_{\leq N'}(T)) = \mu(C \cap \operatorname{Per}_{>N'}(T)) + \mu(C \cap \operatorname{Aper}(T))$$

$$\leq \mu(\operatorname{Per}_{>N'}(T)) + \mu(B \cap \operatorname{Aper}(T)) + \mu(C \setminus B)$$

$$< \epsilon/8 + \epsilon/8 + \epsilon/4$$

$$= \epsilon/2.$$

Fix an enumeration $\gamma_1, \gamma_2, \ldots$ of Γ and partitions X_1^i, X_2^i, \ldots of X, for $i = \pm 1$, such that $\forall n \in \mathbb{Z}^+$ $(T^i | X_n^i = \gamma_n | X_n^i)$. Fix $M \in \mathbb{N}$ such that the set

$$Y = \{x \in X \setminus (B\Delta C) : [x]_F \subseteq (X_1^{-1} \cup \dots \cup X_M^{-1}) \cap (X_1^1 \cup \dots \cup X_M^1)\}$$

is of μ -measure > 1 - $\epsilon/4$. For $i = \pm 1$ and $1 \le m \le M$, apply Lemma 2 so as to obtain a clopen set $C_m^i \subseteq X$ such that $\mu([X_m^i \Delta C_m^i]_F) < \epsilon/8M$. For $i = \pm 1$, define $Y_i \subseteq X$ by

$$Y_i = [X_1^i \Delta C_1^i]_F \cup \dots \cup [X_M^i \Delta C_M^i]_F$$

and observe that the set $Z = Y \setminus (Y_{-1} \cup Y_1)$ is of μ -measure at least $1 - \epsilon/2$.

For $i = \pm 1$, set $D_i = C_1^i \cup \cdots \cup C_M^i$ and define $T_i : D_i \to X$ by $T_i(x) = \gamma_m \cdot x$, where $m \ge 1$ is least such that $x \in C_m^i$. Define $n_i : X \to \mathbb{N} \cup \{\infty\}$ by

$$n_i(x) = \begin{cases} n & \text{if } 1 \le n \le N' \text{ is least such that } T_i^n(x) \in C \cup (X \setminus (D_{-1} \cup D_1)), \\ \infty & \text{if no such } n \text{ exists.} \end{cases}$$

Let D denote the set of $x \in X$ such that $T_{-1}^{n_{-1}(x)}(x), T_1^{n_1(x)}(x) \in D_{-1} \cup D_1$ and

$$\forall i \in \{-1, 1\} \,\forall n < n_i(x) \, (T_i^n(x) = T_{-i} \circ T_i^{n+1}(x)).$$

Finally, define $S:X\to X$ by

$$S(x) = \begin{cases} x & \text{if } x \notin D, \\ T_1(x) & \text{if } x \in D \setminus C, \text{ and} \\ T_{-1}^{n_{-1}(x)-1}(x) & \text{if } x \in C \cap D. \end{cases}$$

It is clear that $S \in [\Gamma]_c$. As $Z \subseteq D$ and $T_1|(Z \setminus C) = T|(Z \setminus C)$, it follows that

$$\begin{split} \mu(\Delta(S,T)) &\leq \quad \mu(X \setminus D) + \mu(D \setminus Z) + \mu(C \setminus \operatorname{Per}_{\leq N'}(T)) \\ &= \quad \mu(X \setminus Z) + \mu(C \setminus \operatorname{Per}_{\leq N'}(T)) \\ &< \quad \epsilon/2 + \epsilon/2 \\ &= \quad \epsilon, \end{split}$$

and this completes the proof of the theorem.

Remark 3. Theorem 1 easily yields its Borel counterpart, where $[\Gamma]_{\mu}$ is replaced with the Borel full group $[\Gamma]$, and the uniform topology on $[\Gamma]_{\mu}$ is replaced with the uniform topology of Bezuglyi-Dooley-Kwiatkowski [1].

References

[1] S. Bezuglyĭ, A. Dooley, and J. Kwiatkowski. Topologies on the group of Borel automorphisms of a standard Borel space (2004). Preprint