A DICHOTOMY THEOREM FOR GRAPHS INDUCED BY COMMUTING FAMILIES OF BOREL INJECTIONS

BENJAMIN D. MILLER

Abstract

We prove a dichotomy theorem for oriented graphs induced by certain families of commuting partial injections.

An embedding of a graph \mathcal{G} on a Polish space X into a graph \mathcal{H} on a Polish space Y is an injective Borel function $\pi: X \rightarrow Y$ such that

$$
\forall x_{1}, x_{2} \in X\left(\left(x_{1}, x_{2}\right) \in \mathcal{G} \Leftrightarrow\left(\pi\left(x_{1}\right), \pi\left(x_{2}\right)\right) \in \mathcal{H}\right)
$$

So as to maintain consistency with the notation of Kechris-Solecki-Todorčević [1], we write $\mathcal{G} \sqsubseteq_{c}^{\leftrightarrow} \mathcal{H}$ to indicate the existence of a continuous embedding.

Given partial injections f and g on X, we use $f \circ g$ to denote the partial injection such that $\operatorname{dom}(f \circ g)=\operatorname{dom}(g) \cap g^{-1}(\operatorname{dom}(f))$ and $[f \circ g](x)=f(g(x))$, for all $x \in \operatorname{dom}(f \circ g)$. We say that a partial injection is Borel if its graph is Borel. (Our results here generalize to partial injections with $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ graphs; we make the stronger assumption so as to simplify some of the proofs.)

Suppose now that $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ is a sequence of Borel partial injections. Let g_{\emptyset} denote the empty partial injection, and for each $s \in 2^{n+1}$, set

$$
g_{s}=g_{0}^{s(0)} \circ \cdots \circ g_{n}^{s(n)}
$$

Let $\operatorname{supp}(s)=\{k<|s|: s(k)=1\}$. We say that a sequence $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ of commuting Borel partial injections is prismatic if for all $n \in \mathbb{N}, s, t \in 2^{n}$, and $k \in \mathbb{N}$ such that $\operatorname{supp}(t) \neq \operatorname{supp}(s) \amalg\{k\}$, the composition $g_{t}^{-1} \circ g_{k} \circ g_{s}$ is fixed-point free. We say that a directed graph \mathcal{G} on a Polish space is an oriented prism if there is a prismatic sequence $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ such that $\mathcal{G}=\bigcup_{n \in \mathbb{N}} \operatorname{graph}\left(g_{n}\right)$.

For each $n \in \mathbb{N}$, let g_{n}^{\square} be the partial injection of $2^{\mathbb{N}}$ such that $\operatorname{dom}\left(g_{n}^{\square}\right)=\{x \in$ $X: x(n)=0\}$ and $g_{n}^{\square}(s 0 x)=s 1 x$, for all $s \in 2^{n}$ and $x \in 2^{\mathbb{N}}$. It is clear that $\left\langle g_{0}^{\square}, g_{1}^{\square}, \ldots\right\rangle$ is a prismatic sequence whose induced equivalence relation is E_{0}, so that the directed graph $\mathcal{G}_{\square}=\bigcup_{n \in \mathbb{N}} \operatorname{graph}\left(g_{n}^{\square}\right)$ is an oriented prism whose symmetrization is a graphing of E_{0}. As $\mathcal{G}_{0} \subseteq \mathcal{G}_{\square}$, it follows that $\chi_{B}\left(\mathcal{G}_{\square}\right)=\mathfrak{c}$.

Theorem 1. Suppose that X is a Polish space and \mathcal{G} is an oriented prism on X. Then exactly one of the following holds:

1. $\chi_{B}(\mathcal{G}) \leq \aleph_{0}$.
2. $\mathcal{G} \rightarrow \sqsubseteq_{c}^{\leftrightarrow} \mathcal{G}$.

Proof. As $(1) \Rightarrow \neg(2)$ is straightforward, we shall prove only $\neg(1) \Rightarrow(2)$. Fix a prismatic sequence $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ such that $\mathcal{G}=\bigcup_{n \in \mathbb{N}} \operatorname{graph}\left(g_{n}\right)$, and let $E_{\mathcal{G}}$ denote the equivalence relation induced by the symmetrization of \mathcal{G}. It is sufficient to produce a continuous injection $\pi: 2^{\mathbb{N}} \rightarrow X$ such that:
(i) $\forall \alpha E_{0} \beta((\alpha, \beta) \in \mathcal{G} \vec{\square} \Leftrightarrow(\pi(\alpha), \pi(\beta)) \in \mathcal{G})$.
(ii) $\forall \alpha, \beta \in 2^{\mathbb{N}}\left(\pi(\alpha) E_{\mathcal{G}} \pi(\beta) \Rightarrow \alpha E_{0} \beta\right)$.

Towards this end, let \mathcal{I} denote the σ-ideal generated by \mathcal{G}-discrete Borel sets, and let H_{n} denote the finite set of Borel partial injections of the form $g_{i_{1}}^{ \pm 1} \circ \cdot \circ g_{i_{m}}^{ \pm 1}$, where $i_{1}, \ldots, i_{m}, m \leq n$. By standard change of topology results, we can assume that X is a zero-dimensional Polish space and each g_{n} is a partial homeomorphism with clopen domain and range. We will find clopen sets $A_{n} \subseteq X$ and natural numbers k_{n}, from which we define $h_{s}: X \rightarrow X$, for $s \in 2^{<\mathbb{N}}$, by $h_{\emptyset}=\mathrm{id}$ and

$$
h_{s}=g_{k_{0}}^{s(0)} \ldots g_{k_{n}}^{s(n)}
$$

for $s \in 2^{n+1}$. We will ensure that, for all $n \in \mathbb{N}$, the following conditions hold:
(a) $A_{n} \notin \mathcal{I}$.
(b) $A_{n+1} \subseteq A_{n} \cap g_{k_{n}}^{-1}\left(A_{n}\right)$.
(c) $\forall s, t \in 2^{n} \forall h \in H_{n}\left(h \circ h_{s}\left(A_{n+1}\right) \cap h_{t} \circ g_{k_{n}}\left(A_{n+1}\right)=\emptyset\right)$.
(d) $\forall s \in 2^{n+1}\left(\operatorname{diam}\left(h_{s}\left(A_{n+1}\right)\right) \leq 1 / n\right)$.

We begin by setting $A_{0}=X$. Suppose now that we have found $\left\langle A_{i}\right\rangle_{i \leq n}$ and $\left\langle k_{i}\right\rangle_{i<n}$, and for each $k \in \mathbb{N}$, define an open set $U_{k} \subseteq A_{n}$ by

$$
U_{k}=\left\{x \in A_{n} \cap g_{k}^{-1}\left(A_{n}\right): \forall s, t \in 2^{n} \forall h \in H_{n}\left(g_{k}(x) \neq h_{t}^{-1} \circ h \circ h_{s}(x)\right)\right\} .
$$

Lemma 2. There exists $k \in \mathbb{N}$ such that $U_{k} \notin \mathcal{I}$.
Proof. As $A_{n} \notin \mathcal{I}$, it is enough to show that the set $A=A_{n} \backslash \bigcup_{k \in \mathbb{N}} U_{k}$ is in \mathcal{I}. Towards this end, let $\mathcal{G} \mid A=\mathcal{G} \cap(A \times A)$, and note that if $(x, y) \in \mathcal{G} \mid A$, then there exists $s, t \in 2^{n}$ and $h \in H_{n}$ such that $y=h_{t}^{-1} \circ h \circ h_{s}(x)$. It follows that the symmetrization of $\mathcal{G} \mid A$ is of bounded vertex degree. Proposition 4.6 of Kechris-Solecki-Todorčević [1] then ensures that $\chi_{B}(\mathcal{G} \mid A)<\aleph_{0}$, thus $A \in \mathcal{I}$.

By Lemma 2, there exists $k \in \mathbb{N}$ such that $U_{k} \notin \mathcal{I}$. Set $k_{n}=k$. As each g_{n} is a partial homeomorphism with clopen domain and range, we can write U_{k} as the union of countably many clopen sets U such that:
$\left(\mathrm{c}^{\prime}\right) \forall s, t \in 2^{n} \forall h \in H_{n}\left(h \circ h_{s}(U) \cap h_{t} \circ g_{k_{n}}(U)=\emptyset\right)$.
$\left(\mathrm{d}^{\prime}\right) \forall s \in 2^{n+1}\left(\operatorname{diam}\left(h_{s}(U)\right) \leq 1 / n\right)$.
Fix such a U which is not in \mathcal{I}, and set $A_{n+1}=U$.
This completes the recursive construction. For each $s \in 2^{n}$, put $B_{s}=h_{s}\left(A_{n}\right)$. Conditions (b) and (d) ensure that, for each $\alpha \in 2^{\mathbb{N}}$, the sets $B_{\alpha \mid 0}, B_{\alpha \mid 1}, \ldots$ are decreasing, clopen, and of vanishing diameter, and therefore have singleton intersection. Define $\pi: 2^{\mathbb{N}} \rightarrow X$ by

$$
\pi(\alpha)=\text { the unique element of } \bigcap_{n \in \mathbb{N}} B_{\alpha \mid n}
$$

It follows from conditions (c) and (d) that π is a continuous injection, so it only remains to check conditions (i) and (ii). We note first the following lemma:

Lemma 3. Suppose that $n \in \mathbb{N}, s \in 2^{n}$, and $\alpha \in 2^{\mathbb{N}}$. Then $\pi(s \alpha)=h_{s} \circ \pi\left(0^{n} \alpha\right)$.
Proof. Simply observe that

$$
\begin{aligned}
\{\pi(s \alpha)\} & =\bigcap_{i \geq n} B_{(s \alpha) \mid i} \\
& =\bigcap_{i \geq 0} h_{s} h_{0^{n}(\alpha \mid i)}\left(A_{i+n}\right) \\
& =h_{s}\left(\bigcap_{i \geq 0} h_{0^{n}(\alpha \mid i)}\left(A_{i+n}\right)\right) \\
& =h_{s}\left(\bigcap_{i \geq n} B_{\left(0^{n} \alpha\right) \mid i}\right) \\
& =\left\{h_{s} \circ \pi\left(0^{n} \alpha\right)\right\},
\end{aligned}
$$

thus $\pi(s \alpha)=h_{s} \circ \pi\left(0^{n} \alpha\right)$.
To see (i), suppose first that $(\alpha, \beta) \in \mathcal{G}_{\square}$, fix $n \in \mathbb{N}$ maximal such that $\alpha(n) \neq$ $\beta(n)$, set $s=\alpha|n=\beta| n$, and fix $\gamma \in 2^{\mathbb{N}}$ such that $\alpha=s 0 \gamma$ and $\beta=s 1 \gamma$. Then Lemma 3 and the fact that $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ is prismatic ensure that

$$
\begin{aligned}
\pi(\beta) & =\pi(s 1 \gamma) \\
& =h_{s} \circ g_{k_{n}} \circ \pi\left(0^{n+1} \gamma\right) \\
& =g_{k_{n}} \circ h_{s} \circ \pi\left(0^{n+1} \gamma\right) \\
& =g_{k_{n}} \circ \pi(\alpha)
\end{aligned}
$$

thus $(\pi(\alpha), \pi(\beta)) \in \mathcal{G}$.
Suppose now that $\alpha E_{0} \beta$ and $(\pi(\alpha), \pi(\beta)) \in \mathcal{G}$. Fix $n \in \mathbb{N}, s, t \in 2^{n+1}$, and $\gamma \in 2^{\mathbb{N}}$ such that $\alpha=s \gamma$ and $\beta=t \gamma$. Then Lemma 3 ensures that $\pi(\alpha)=h_{s} \circ \pi\left(0^{n} \gamma\right)$ and $\pi(\beta)=h_{t} \circ \pi\left(0^{n} \gamma\right)$, so there exists $k \in \mathbb{N}$ such that $g_{k} \circ h_{s} \circ \pi\left(0^{n} \gamma\right)=h_{t} \circ \pi\left(0^{n} \gamma\right)$. Let $m=\max _{i \leq n} k_{i}$, and for each $u \in 2^{n+1}$, let u^{\prime} be the element of 2^{m+1} such that $\operatorname{supp}\left(u^{\prime}\right)=\left\{k_{i}: i \in \operatorname{supp}(u)\right\}$, so that $h_{u}=g_{u^{\prime}}$. Then $g_{k} \circ g_{s^{\prime}} \circ \pi\left(0^{n} \gamma\right)=g_{t^{\prime}} \circ \pi\left(0^{n} \gamma\right)$, and since $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ is prismatic, it follows that $\operatorname{supp}\left(t^{\prime}\right)=\operatorname{supp}\left(s^{\prime}\right) \amalg\{k\}$, thus $k=k_{i}$, for some $i \leq n$, and $\operatorname{supp}(t)=\operatorname{supp}(s) \amalg\left\{k_{i}\right\}$, so $g_{i}^{\square}(\alpha)=g_{i}^{\square}(s \gamma)=t \gamma=\beta$, so $(\alpha, \beta) \in \mathcal{G} \vec{\square}$.

To see (ii), it is enough to check that if $\alpha, \beta \in 2^{\mathbb{N}}$ and $\alpha(n) \neq \beta(n)$, then there is no $h \in H_{n}$ such that $h \circ \pi(\alpha)=\pi(\beta)$. Suppose, towards a contradiction, that there is such an $h \in H_{n}$. As H_{n} is symmetric, we can assume that $\alpha(n)=0$ and $\beta(n)=1$. Set $s=\alpha \mid n$ and $t=\beta \mid n$, and fix $\gamma, \delta \in 2^{\mathbb{N}}$ such that $\alpha=s 0 \gamma$ and $\beta=t 1 \delta$. Lemma 3 ensures that $\pi(\alpha)=h_{s} \circ \pi\left(0^{n+1} \gamma\right)$ and $\pi(\beta)=h_{t} \circ g_{k_{n}} \circ \pi\left(0^{n+1} \delta\right)$. As $\pi\left(0^{n+1} \gamma\right), \pi\left(0^{n+1} \delta\right) \in A_{n+1}$, it follows that $\pi(\beta) \in h \circ h_{s}\left(A_{n+1}\right) \cap h_{t} \circ g_{k_{n}}\left(A_{n+1}\right)$, which contradicts condition (c).

References

[1] A. Kechris, S. Solecki, and S. Todorčević. Borel chromatic numbers. Adv. Math., 141 (1), (1999), 1-44

