A BIREDUCIBILITY LEMMA

BENJAMIN D. MILLER

Abstract. At the request of Adams (via Kechris), we prove a technical lemma involved with reducibility.

If $E \sim_{B} F$ are aperiodic hyperfinite equivalence relations, then a result of Dougherty-Jackson-Kechris [1] implies that either E embeds onto a complete section of F, or F embeds onto a complete section of E. This is not true, however, if we drop the assumption of hyperfiniteness. Here we show the next best thing:

Proposition 1. Suppose that E_{1} and E_{2} are countable Borel equivalence relations on Polish spaces X_{1} and X_{2}. Then the following are equivalent:

1. $E_{1} \sim_{B} E_{2}$;
2. There are partitions of X_{i} into E_{i}-invariant Borel sets X_{i}^{1}, X_{i}^{2} such that:
(a) $E_{1} \mid X_{1}^{1}$ Borel embeds onto a complete section of $E_{2} \mid X_{2}^{1}$;
(b) $E_{2} \mid X_{2}^{2}$ Borel embeds onto a complete section of $E_{1} \mid X_{1}^{2}$.

Proof. As $(2) \Rightarrow(1)$ is a straightforward consequence of the Lusin-Novikov uniformization theorem, we shall only prove $(1) \Rightarrow(2)$. By a standard SchröderBernstein argument and the Lusin-Novikov uniformization theorem, there are Borel E_{i}-complete sections $A_{i} \subseteq X_{i}$ such that $E_{1}\left|A_{1} \cong_{B} E_{2}\right| A_{2}$. Fix a Borel isomorphism $\pi: A_{1} \rightarrow A_{2}$ of $E_{1} \mid A_{1}$ with $E_{2} \mid A_{2}$. Fix countable groups Γ_{i} of Borel automorphisms of X_{i} such that $E_{i}=E_{\Gamma_{i}}^{X_{i}}$, as well as an enumeration

$$
\left(\gamma_{1}^{1}, \gamma_{2}^{1}\right),\left(\gamma_{1}^{2}, \gamma_{2}^{2}\right),\left(\gamma_{1}^{3}, \gamma_{2}^{3}\right), \ldots
$$

of $\Gamma_{1} \times \Gamma_{2}$, and set $B_{1}^{1}=B_{2}^{1}=\emptyset$ and $\varphi_{1}=\emptyset$.
Suppose now that we have found pairwise disjoint Borel sets $B_{1}^{1}, \ldots, B_{1}^{n} \subseteq X_{1}$, pairwise disjoint Borel sets $B_{2}^{1}, \ldots, B_{2}^{n} \subseteq X_{2}$, and Borel isomorphisms $\varphi_{i}: B_{1}^{i} \rightarrow B_{2}^{i}$ of $E_{1} \mid B_{1}^{i}$ with $E_{2} \mid B_{2}^{i}$, for $1 \leq i \leq n$. Set $X_{i}^{n}=X \backslash \bigcup_{1 \leq j \leq n} B_{i}^{j}$, and define

$$
\begin{gathered}
B_{1}^{n+1}=X_{1}^{n} \cap\left[\gamma_{n}^{2} \circ \pi \circ \gamma_{n}^{1}\right]^{-1}\left(X_{2}^{n}\right) \\
\text { and } \\
B_{2}^{n+1}=X_{2}^{n} \cap\left[\left(\gamma_{n}^{1}\right)^{-1} \circ \pi^{-1} \circ\left(\gamma_{n}^{2}\right)^{-1}\right]^{-1}\left(X_{1}^{n}\right)
\end{gathered}
$$

It is clear that B_{i}^{n+1} is disjoint from $B_{i}^{1}, \ldots, B_{i}^{n}$, and the map $\varphi_{n+1}(x)=\gamma_{n}^{2} \circ \pi \circ$ $\gamma_{n}^{1}(x)$ is a Borel isomorphism of $E_{1} \mid B_{1}^{n+1}$ with $E_{2} \mid B_{2}^{n+1}$.

Set $B_{i}=\bigcup_{n \in \mathbb{Z}^{+}} B_{i}^{n}$ and $\varphi=\bigcup_{n \in \mathbb{Z}^{+}} \varphi_{n}$. It follows from the definition of B_{1}^{n}, B_{2}^{n}, and φ_{n} that φ is a Borel isomorphism of $E_{1} \mid B_{1}$ with $E_{2} \mid B_{2}$. To obtain (2), it
is therefore enough to show that for all $x \in A_{1}$, either $[x]_{E_{1}} \subseteq B_{1}$ or $[\varphi(x)]_{E_{2}} \subseteq B_{2}$. Suppose, towards a contradiction, that this is not the case. Then there exists $x_{1} \in[x]_{E_{1}} \backslash B_{1}$ and $x_{2} \in[\varphi(x)]_{E_{2}} \backslash B_{2}$. Fix $\gamma_{1} \in \Gamma_{1}$ such that $\gamma_{1}\left(x_{1}\right) \in A_{1}$, fix $\gamma_{2} \in \Gamma_{2}$ such that $x_{2}=\gamma_{2} \circ \pi \circ \gamma_{1}\left(x_{1}\right)$, and fix $n \in \mathbb{N}$ such that $\left(\gamma_{1}, \gamma_{2}\right)=\left(\gamma_{1}^{n}, \gamma_{2}^{n}\right)$. Then $x_{i} \in B_{i}^{n+1} \subseteq B_{i}$, the desired contradiction.

References

[1] R. Dougherty, S. Jackson, and A. Kechris. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc., 341 (1), (1994), 193-225

