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Abstract. We show that if B is a basis for the class of Σ1
1 directed

graphs on Polish spaces which are of Borel chromatic number at least
three, then the partial order (R<N,⊇) embeds into (B,≤B).

0. Introduction

Suppose that X is a Polish space and G is a Σ1
1 directed graph on X, i.e., an

irreflexive subset of X ×X. A coloring of G is a function c : X → I such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇒ c(x1) 6= c(x2)).

The chromatic number of G is the least cardinal χ(G) of the form |I|, where I is a
set for which there is a coloring c : X → I of G. The Borel chromatic number of G
is the least cardinal χB(G) of the form |I|, where I is a Polish space for which there
is a Borel coloring c : X → I of G.

A homomorphism from G to H (on Y ) is a function π : X → Y such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇒ (π(x1), π(x2)) ∈ H).

We use G ≤c H to indicate the existence of a continuous homomorphism, and we use
G ≤B H to indicate the existence of a Borel homomorphism. As has been noted by
Louveau, the following remarkable fact is a corollary of the proof of its undirected
analog, which is due to Kechris-Solecki-Todorcevic [1]:

Theorem (Kechris-Solecki-Todorcevic). Suppose that X is a Polish space and
G is a Σ1

1 directed graph on X. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;

2. G0 ≤c G.

Here, we use G0 to denote the directed analog of the graph defined in §6 of
Kechris-Solecki-Todorcevic [1]. It is natural to ask whether there is an analogous
theorem for the class of Σ1

1 directed graphs G on Polish spaces for which χB(G) ≥ 3.
As the graphs of chromatic number at least three can be characterized as those
whose symmetrizations contain an odd cycle, this must be understood as a question
about the class C of Σ1

1 directed graphs G on Polish spaces for which χ(G) ≤ 2 and
χB(G) ≥ 3. More generally, we wish to understand the structure of bases for C, i.e.,
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those classes B ⊆ C with the property that, for every G ∈ C, there exists H ∈ B
such that H ≤B G.

In §1, we study a particular sort of oriented graph for which Borel two-colorability
can be described in terms of certain σ-ideals of Σ1

1 sets. In §2, we describe a family
of locally countable oriented graphs of this form whose Borel chromatic numbers are
at least three. In §3, we use such graphs which satisfy an additional growth condi-
tion to produce continuum-sized families of pairwise incompatible oriented graphs.
In §4, we combine our results with a pair of dichotomy theorems (one of which is
due to Louveau) to show that bases for C are necessarily complicated:

Theorem. Suppose that X is a Polish space, G ∈ C, and B is a basis for C(G).
Then the partial order (R<N,⊇) embeds into (B,≤B).

1. Balanced graphs

Suppose that G is an oriented graph on X, i.e, an irreflexive, asymmetric subset of
X ×X. The symmetrization of G is given by

G±1 = {(x1, x2) ∈ X ×X : (x1, x2) ∈ G or (x2, x1) ∈ G}.

A G-path is a sequence 〈x0, x1, . . . , xn〉 such that ∀i < n ((xi, xi+1) ∈ G). Such a
path is a G-cycle if x0 = xn. The weight of a G±1-path γ = 〈x0, x1, . . . , xn〉 is

wG(γ) =
X
i<n

(−1)1G(xi+1,xi),

where 1G denotes the characteristic function of G. We say that G is a balanced graph
if the weight of every G±1-cycle is zero. The weighted distance function associated
with a balanced graph G is given by

dG(x, y) =
§

wG(γ) if γ is a G±1-path from x to y,
∞ if there is no such path.

Proposition 1. Suppose that G and H are directed graphs.

1. If G is oriented and has acyclic symmetrization, then G is balanced;

2. If G is balanced and dG(x, y), dG(y, z) < ∞, then dG(x, z) = dG(x, y)+dG(y, z);

3. If π is a homomorphism from G to H and 〈x0, x1, . . . , xn〉 is a G-path, then

wH(〈π(x0), π(x1), . . . , π(xn)〉) = wG(〈x0, x1, . . . , xn〉);

4. If G ≤ H and H is balanced, then G is balanced;

5. If G is balanced, then χ(G) = 2.

Proof. To see (1), note that every G±1-cycle passes through (x, y) the same number
of times as it passes through (y, x), for all (x, y) ∈ G. To see (2), fix G±1-paths σ
and τ from x to y and y to z, respectively, and observe that στ is a G±1-path from
x to z, thus

dG(x, z) = wG(στ) = wG(σ) + wG(τ) = dG(x, y) + dG(y, z).
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To see (3), note that (xi+1, xi) ∈ G ⇔ (π(xi), π(xi+1)) ∈ H, and appeal to the
definition of weight. To see (4), note that the fact that H is oriented immediately
implies that G is oriented, and since homomorphisms send G±1-cycles toH±1-cycles,
the fact that H is balanced coupled with (3) ensures that G is balanced. To see (5),
fix a set B ⊆ dom(G) which is maximal with the property that

∀x, y ∈ B (dG(x, y) < ∞⇒ dG(x, y) ≡ 0 (mod 2)),

and observe that 1B is a two-coloring of G. 2

Suppose that X is a Polish space and G is a Σ1
1 balanced graph on X. For each

set S ⊆ Z, the (G, S)-saturation of a set A ⊆ X is given by

[A](G,S) = {x ∈ X : ∃y ∈ A (dG(x, y) ∈ S)}.

The distance set associated with A is given by

∆G(A) = {dG(x, y) : x, y ∈ A and dG(x, y) < ∞}.

Proposition 2. Suppose that X is a Polish space, G is a Σ1
1 balanced graph on

X, and A ⊆ X is Σ1
1. Then there is a set B ⊇ A such that:

1. ∆G(B) = ∆G(A);

2. ∀S ⊆ Z ([B](G,S) is Borel).

Proof. Note first that for each S ⊆ Z, the property of having ∆G(A) ⊆ S is Π1
1

on Σ1
1, thus every Σ1

1 set is contained in a Borel set with the same distance set.
Now fix a sequence 〈k0, k1, . . .〉 of integers in which every integer appears infinitely
often, and set A0 = A. Given An, fix a Borel set Bn ⊇ [An](G,{kn}) such that
∆G(Bn) = ∆G([An](G,{kn})), and set An+1 = An∪ [Bn](G,{−kn}). We claim that the
set B =

S
n∈N An is as desired. To see (1), simply note that

∆G(B) =
[
n∈N

∆G(An) = ∆G(A).

To see (2), observe that the set [B](G,{k}) =
S

kn=k Bn is Borel, for each k ∈ Z, thus
the set [B](G,S) =

S
k∈S [B](G,{k}) is Borel, for each S ⊆ Z. 2

For each set S ⊆ Z, let I(G,S) denote the σ-ideal generated by the Σ1
1 sets A ⊆ X

for which ∆G(A) ⊆ S.

Proposition 3. Suppose that X is a Polish space and G is a Σ1
1 balanced graph

on X. Then X ∈ I(G,2Z) ⇔ χB(G) ≤ 2.

Proof. To see (⇐), note first that by the obvious induction, if c : X → {0, 1} is a
two-coloring of G and dG(x, y) ≡ 1 (mod 2), then c(x) 6= c(y), thus ∆G(c−1({0})),
∆G(c−1({1})) ⊆ 2Z. It follows that if c is Borel, then X ∈ I.

To see (⇒), note that if X ∈ I(G,2Z), then Proposition 2 ensures that there are
sets B0, B1, . . . ⊆ X such that:

1. X =
S

n∈N Bn;
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2. ∀n ∈ N (∆G(Bn) ⊆ 2Z);

3. ∀S ⊆ Z ([Bn](G,S) is Borel).

Define B ⊆ X by
B =

[
n∈N

[Bn](G,2Z) \
[

m<n

[Bm](G,Z),

and observe that 1B is a Borel two-coloring of G. 2

Let I(G,<Z) denote the σ-ideal generated by Σ1
1 sets A ⊆ X with |∆G(A)| < ℵ0.

Proposition 4. Suppose that X is a Polish space and G is a Σ1
1 balanced graph

on X. Then I(G,<Z) = I{0}.

Proof. It is enough to show that if A ⊆ X is Σ1
1 and |∆G(A)| < ℵ0, then A ∈

I(G,{0}). Via the obvious induction, it is therefore enough to show that if ∆G(A) is
non-trivial and finite, then there are Borel sets B1, B2 ⊆ A such that A = B1 ∪B2

and |∆G(B1)|, |∆G(B2)| < |∆G(A)|. Towards this end, observe that by Proposition
2, there is a set B ⊇ A such that ∆G(B) = ∆G(A) and ∀S ⊆ Z ([B](G,S) is Borel).
Then the sets B1 = [B](G,{0}) ∩ [B](G,Z+) and B2 = [B](G,{0}) \ [B](G,Z+) are as
desired. 2

As a corollary, we obtain a sufficient condition for Borel two-colorability:

Proposition 5. Suppose that X is a Polish space and G is a Σ1
1 balanced graph

on X. If X ∈ I(G,<Z), then χB(G) ≤ 2.

Proof. This follows directly from Propositions 3 and 4. 2

We obtain also the following fact, which will be useful later on:

Proposition 6. Suppose that X is a Polish space, G is a Σ1
1 balanced graph on

X, A ⊆ X is Σ1
1, and A /∈ I(G,2Z). Then, for all k ∈ N, there exist x, y ∈ A such

that dG(x, y) ≡ 1 (mod 2) and k < dG(x, y) < ∞.

Proof. Suppose, towards a contradiction, that there exists k ∈ N such that

∀x, y ∈ A (k < dG(x, y) < ∞⇒ dG(x, y) ≡ 0 (mod 2)).

Set B = {x ∈ A : ∃y ∈ A (k < dG(x, y) < ∞)}, and observe that ∆G(B) ⊆ 2Z.
Proposition 2 ensures that by enlarging B, we can assume that it is Borel. As
∆G(A \B) is finite, it follows from Proposition 5 that A ∈ I(G,2Z). 2

2. Combinatorially simple examples

In this section, we describe a parameterized family of “combinatorially simple”
oriented graphs with acyclic symmetrizations and Borel chromatic number at least
three. For each set S, let (S)∅ = {(s, ∅) : s ∈ S}, and for each set S of pairs (v, s),
where s ∈ 2<N, we use (S)i to denote the corresponding set of pairs of the form
(v, si), where i ∈ {0, 1}. Let P denote the set of sequences p = 〈T p

n〉n∈N such that,
for all n ∈ N, the following conditions are satisfied:
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1. T p
n is an oriented graph with connected, acyclic symmetrization;

2. T p
n has finite domain, which we denote by Dp

n;

3. Dp
0 = (V p

0 )∅, where V p
0 is a singleton whose unique element we denote by vp;

4. Dp
n+1 is the disjoint union of (Dp

n)0, (Dp
n)1, and (V p

n+1)∅;

5. V p
n ∩
S

m<n V p
m = ∅;

6. T p
n+1|(Dp

n)i = {((v, si), (w, ti)) : ((v, s), (w, t)) ∈ T p
n}, for each i ∈ {0, 1}.

We associate with each p ∈ P the set V p =
S

n∈N V p
n and Xp = V p × 2N, as well

as the graph Gp on Xp given by

Gp =
[
n∈N

{((v, sα), (w, tα)) : ((v, s), (w, t)) ∈ T p
n and α ∈ {0, 1}}.

Proposition 7. Each Gp is oriented and has acyclic symmetrization.

Proof. It is clear that Gp is oriented, since each T p
n is oriented. Similarly, if Gp does

not have acyclic symmetrization, then there exists n ∈ N such that T p
n does not

have acyclic symmetrization, which contradicts the definition of P. 2

Corollary 8. Each Gp is a balanced graph.

Proof. This follows directly from Propositions 1 and 7. 2

For each p ∈ P and infinite set S ⊆ N, define Bp
S ⊆ Xp by

Bp
S = {(vp, α) ∈ Xp : supp(α) ⊆ S},

where supp(α) = {n ∈ N : α(n) = 1}. Let Xp
S = [Bp

S ](Gp,Z) and Gp
S = Gp|Xp

S . It
will later be important to have a large family of graphs of this form whose Borel
chromatic number is at least three. Towards this end, set

Q = {p ∈ P : ∀n ∈ N (dT p
n+1

((vp, 0n0), (vp, 0n1)) ≡ 1 (mod 2))}.

Proposition 9. Suppose that q ∈ Q and S ⊆ N is infinite. Then χB(Gq
S) ≥ 3.

Proof. Endow Bq
S with the topology it inherits as a closed subspace of {vq} × 2N.

Proposition 3 ensures that to see that χB(Gq
S) ≥ 3, it is enough to show that if

A ⊆ Bq
S is Baire measurable and non-meager in Bq

S , then ∆Gq (A) * 2Z. Towards
this end, suppose that A ⊆ Bq

S is Baire measurable and non-meager in Bq
S , and fix

s ∈ 2<N such that supp(s) ⊆ S and A is comeager in Bq
S ∩ ({vq}×Ns). Fix α ∈ 2N

such that s0α, s1α ∈ A, set n = |s|, and observe that

dGq (s0α, s1α) = dT q
n+1

((vq, s0), (vq, s1))

= dT q
n+1

((vq, s0), (vq, 0n0)) + dT q
n+1

((vq, 0n0), (vq, 0n1)) +

dT q
n+1

(vq, 0n1), (vq, s1))

= dT q
n
((vq, s), (vq, 0n)) + dT q

n+1
((vq, 0n0), (vq, 0n1)) +

dT q
n
((vq, 0n), (vq, s))

= dT q
n+1

((vq, 0n0), (vq, 0n1)).

The definition of Q implies that the latter quantity is odd, thus ∆Gq (A) * 2Z. 2
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3. Incompatible graphs

Associated with each p ∈ P are the integers kp
n given by

kp
n = dT p

n+1
((vp, 0n0), (vp, 0n1)),

as well as the integers ipn, jp
n given by

ipn = kp
n −
X
m<n

2n−mkp
m and jp

n = kp
n +
X
m<n

2n−mkp
m.

Given a function f : N<N → N, we say that p is f-dominating if

kp
0 > f(∅) and ∀n ∈ Z+ (kp

n > f(〈kp
0 , . . . , kp

n−1〉)).

Define f0 : N<N → N by putting f0(∅) = 0 and

f0(〈k0, . . . , kn−1〉) = 2n + 3
X
m<n

2n−mkm,

for all n ∈ Z+.

Proposition 10. Suppose that p ∈ P is f0-dominating. Then

∀m < n (jp
m < ipn − 2n).

Proof. As p is f0-dominating, it is clear that each kp
n is positive. Given natural

numbers m < n, observe that

ipn − jp
m = kp

n −
X
`<n

2n−`kp
` − kp

m −
X
`<m

2m−`kp
`

≥ kp
n − 2

X
`<n

2n−`kp
` ,

and the definition of f0 ensures that this last term is strictly greater than 2n. 2

In particular, it follows that the intervals [ip0, j
p
0 ], [ip1, j

p
1 ], . . . are pairwise disjoint.

Proposition 11. Suppose that p ∈ P is f0-dominating, n ∈ N, and s, t ∈ 2n. Then

ipn ≤ dT p
n+1

((vp, s0), (vp, t1)) ≤ jp
n.

Proof. By induction on n. The case n = 0 is a triviality (since ip0 = jp
0 = kp

0), so
suppose that we have proven the proposition below some positive integer n, and fix
s, t ∈ 2n. Then

dT p
n+1

((vp, s0), (vp, t1)) = dT p
n+1

((vp, s0), (vp, 0n0)) +

dT p
n+1

((vp, 0n0), (vp, 0n1)) +

dT p
n+1

((vp, 0n1), (vp, t1))

= dT p
n
((vp, s), (vp, 0n)) + kp

n + dT p
n
((vp, 0n), (vp, t)).
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Observe now that

2jp
n−1 = 2

X
m≤n−1

2(n−1)−mkp
m =

X
m<n

2n−mkp
m.

As p is f0-dominating, the induction hypothesis implies that

kp
n − 2jp

n−1 ≤ |dT p
n+1

((vp, s0), (vp, t1))| ≤ kp
n + 2jp

n−1.

As the quantities on the left and right of this inequality are equal to ipn and jp
n,

respectively, the proposition follows. 2

For αE0β, let n(α, β) = max{n ∈ N : α(n) 6= β(n)}.

Proposition 12. Suppose that p ∈ P is f0-dominating and αE0β. Then

ipn(α,β) ≤ |dGp((vp, α), (vp, β))| ≤ jp
n(α,β).

Proof. Let n = n(α, β) + 1, s = α|n, and t = α|n. As dGp((vp, α), (vp, β)) =
dT p

n
((vp, s), (vp, t)), the desired inequality follows from Proposition 11. 2

For each S ⊆ N, let [S]n = {i ∈ N : ∃j ∈ S (|i− j| ≤ n)}.

Proposition 13. Suppose that p ∈ P is f0-dominating, S ⊆ N, and ` ∈ N. Then

∀n ≥ ` (n ∈ S ⇔ [ipn − `, jp
n + `] ∩ [∆Gp(Bp

S)]` 6= ∅).

Proof. To see (⇒), note that if n ∈ S, then kp
n = dGp((vp, 0n00∞), (vp, 0n10∞)) is

in ∆Gp(Bp
S), and in ≤ kn ≤ jn.

To see (⇐), observe that if [ipn − `, jp
n + `] ∩ [∆Gp(Bp

S)]` 6= ∅, then there exists
(α, β) ∈ E0 such that supp(α), supp(β) ⊆ S and

ipn − 2` ≤ dGp((vp, α), (vp, β)) ≤ jp
n + 2`.

As Proposition 12 implies that

ipn(α,β) ≤ dGp((vp, α), (vp, β)) ≤ jp
n(α,β),

it follows that ipn − 2n ≤ ipn − 2` ≤ jp
n(α,β) and ipn(α,β) ≤ jp

n + 2` ≤ jp
n + 2n. The

former inequality, in conjunction with Proposition 10, then implies that n(α, β) ≥ n.
Coupled with the latter inequality, this implies that ipn(α,β) − 2n(α, β) ≤ ipn(α,β) −
2n ≤ jp

n, and one more application of Proposition 10 then gives that n ≥ n(α, β),
so n = n(α, β), thus n ∈ S. 2

Recall that sets S, T ⊆ N are said to be almost disjoint if |S ∩ T | < ℵ0.

Proposition 14. Suppose that p ∈ P is f0-dominating and S, T ⊆ N are almost
disjoint. Then ∀n ∈ N ([∆(Bp

S)]n, [∆(Bp
T )]n are almost disjoint).

Proof. Fix m ≥ n with S ∩ T ⊆ m. It is enough to show that [∆Gp(Bp
S)]n ∩

[∆Gp(Bp
T )]n ⊆ ipm. Towards this end, suppose that k ≥ ipm is in [∆Gp(Bp

N)]n. By
Proposition 12, there exists ` ∈ N such that ip` ≤ k ≤ jp

` . Then ` ≥ m ≥ n, so
Proposition 13 implies that if k ∈ [∆Gp(Bp

S)]n, then ` ∈ S, thus ` /∈ T . One more
application of Proposition 13 then gives that k /∈ [∆Gp(Bp

T )]n. 2
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We are now able to construct incompatible balanced graphs:

Proposition 15. Suppose that p ∈ P is f0-dominating and S, T ⊆ N are almost
disjoint. Then Gp

S and Gp
T are incompatible.

Proof. Suppose that G is an analytic graph on X and there are Borel homomor-
phisms πU of G into Gp

U , for U ∈ {S, T}. Then Proposition 1 implies that G is
balanced. For each n ∈ N and U ∈ {S, T}, let

AU
n = π−1

U ([Bp
U ]{−n,...,n}
Gp

U

),

and set An = AS
n ∩AT

n .

Lemma 16. ∀n ∈ N (∆G(An) is finite).

Proof. It follows from Proposition 1 that

∆G(An) ⊆ ∆G(AS
n) ∩∆(AT

n )
= ∆Gp([Bp

S ]nGp
S
) ∩∆Gp([Bp

T ]nGp
T
)

⊆ [∆Gp(Bp
S)]2n ∩ [∆Gp(Bp

T )]2n,

and Proposition 14 ensures that the latter set is finite. 2

As X =
S

n∈N An, Proposition 5 implies that χB(G) ≤ 2, and it follows that
GS

p ,GT
p are incompatible. 2

An embedding of G into H is an injection π : X → Y such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇒ c(x1) 6= c(x2)).

We use G vc H to indicate the existence of a continuous embedding, and we use
G vB H to indicate the existence of a Borel embedding.

Proposition 17. Suppose that p ∈ P is f0-dominating. Then there is a pairwise
incompatible family 〈Gα〉α∈2N of Borel graphs such that ∀α ∈ 2N (Gα vB Gp).
Moreover, if p ∈ Q, then such graphs can be found with Borel chromatic number at
least three.

Proof. Fix an almost disjoint family 〈Sα〉α∈2N of subsets of N. Then Propositions
9 and 15 ensure that the graphs Gα = Gp

Sα
are as desired. 2

4. A basis theorem and an anti-basis theorem

A result of Louveau [2] implies the following basis theorem:

Theorem 18 (Louveau). Suppose that X is a Polish space, G is an analytic di-
rected graph on X, and χ(G) ≤ 2. Then exactly one of the following holds:

1. χB(G) ≤ 2;

2. There exists q ∈ Q such that Gq ≤c G.
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We will strengthen this theorem by showing that q can be taken to be f0-dominating.
In the special case that G is a locally countable Borel oriented graph, we actually
obtain an analogous result for embeddability:

Theorem 19. Suppose that X is a Polish space, G is a locally countable Borel
oriented graph on X with acyclic symmetrization, and f : N<N → N. Then exactly
one of the following holds:

1. χB(G) ≤ 2;

2. There is an f -dominating q ∈ Q such that Gq vc G.

Proof. As (1) ⇒ ¬(2) is straightforward, we shall prove only ¬(1) ⇒ (2). For each
q ∈ Q, let Eq denote the equivalence relation on Xq given by

(v, α)Eq(w, β) ⇔ ((v, α), (w, β) are Gq-connected).

Similarly, define E on X by xEy ⇔ (x, y are G-connected). It is sufficient to find
an f -dominating q ∈ Q and a continuous injection π : Xq → X such that:

1. ∀(v, α)Eq(w, β) (((v, α), (w, β)) ∈ Gq ⇔ (π(v, α), π(w, β)) ∈ G);

2. ∀(v, α), (w, β) ∈ Xq (π(v, α)Eπ(w, β) ⇒ (v, α)Eq(w, β)).

Towards this end, fix a countable group G of Borel automorphisms of X such
that E =

S
g∈G graph(g), and fix an increasing sequence of finite, symmetric sets

H0 ⊆ H1 ⊆ · · · ⊆ G such that G =
S

n∈N Hn. By standard change of topology
results, we can assume that X is a zero-dimensional Polish space, G acts on X by
homeomorphisms, and each of the sets {x ∈ X : (x, g · x) ∈ G} is clopen.

We will find clopen sets An ⊆ X, finite sets Vn ⊆ G, finite oriented graphs Tn

whose symmetrizations are trees, group elements gn ∈ G, and natural numbers kn,
from which we define

Dn =
[

m≤n

Vm × 2n−m and h(v,s) · x = vgs(0)
m · · · gs(n−1−m)

n−1 · x,

for each n ∈ N and (v, s) ∈ Vm × 2n−m. This will be done so as to ensure that the
following conditions are satisfied:

(a) An 6∈ I(G,2Z);

(b) Dn = dom(Tn);

(c) T±1
n is connected and acyclic;

(d) kn = dTn+1((1G, 0n0), (1G, 0n1));

(e) kn ≡ 1 (mod 2);

(f) f(kn) > f(〈k0, . . . , kn−1〉);

(g) An+1 ⊆ An ∩ g−1
n (An);

(h) ∀x ∈ An ∀(v, s), (w, t) ∈ Dn ((h(v,s) · x, h(w,t) · x) ∈ G ⇔ ((v, s), (w, t)) ∈ Tn);
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(i) ∀(v, s), (w, t) ∈ Dn ∀h ∈ Hn (hh(v,s)(An+1) ∩ h(w,t)gn(An+1) = ∅);

(j) ∀(v, s) ∈ Dn+1 (diam(h(v,s)(An+1)) ≤ 1/n);

We begin by setting A0 = X, V0 = {1G}, and T0 = ∅. Suppose now that we
have found Ai, Vi, and Ti, for i ≤ n, and gi and ki, for i < n. Let Λ denote the set
of tuples λ = 〈V, T, g, k〉 such that V ⊆ G is a finite set, T is an oriented graph on
the set D = (Dn)0 ∪ (Dn)1 ∪ (V )∅ whose symmetrization is a tree, g ∈ G, k ∈ N,
and the following conditions are satisfied:

(b′) V = dom(T );

(c′) T is connected;

(d′) k = dT ((1G, 0n0), (1G, 0n1));

(e′) k ≡ 1 (mod 2);

(f′) f(k) > f(〈k0, . . . , kn−1〉).

For each λ ∈ Λ and (v, s) ∈ D, set

hλ
(v,s) =

�
v if s = ∅,

h(v,s|m)g
s(m)
λ if |s| = m + 1.

Let Aλ denote the set of x ∈ X which satisfy the following conditions:

(g′) x ∈ An ∩ g−1
λ (An);

(h′) ∀(v, s), (w, t) ∈ D ((hλ
(v,s) · x, hλ

(w,t) · x) ∈ G ⇔ ((v, s), (w, t)) ∈ T );

(i′) ∀(v, s), (w, t) ∈ Dn ∀h ∈ Hn (gλ · x 6= h−1
(w,t)hh(v,s) · x).

As (g′) and (h′) are clopen and (i′) is open, it follows that each Aλ is open.

Lemma 20. There exists λ ∈ Λ such that Aλ /∈ I(G,2Z).

Proof. Set A = An \
S

λ∈Λ Aλ. It is clearly sufficient to show that A ∈ I(G,2Z).
Suppose, towards a contradiction, that this is not the case. By a standard argument,
we can write A as a union of finitely many Borel sets B ⊆ A such that

∀(v, s), (w, t) ∈ Dn ∀h ∈ Hn (h(w,t)gλ(B) ∩ hh(v,s)(B) = ∅),

thus there is such a set B ⊆ A with B /∈ I(G,2Z). By Proposition 6, there exist
x, y ∈ B such that

dG(x, y) ≡ 1 (mod 2) and dG(x, y) > f(〈k0, . . . , kn−1〉).

Fix g ∈ G such that g ·x = y, as well as a finite set V ⊆ G such that ∀v, w ∈ V (v 6=
w ⇒ v · x 6= w · x), the sets {h(v,s)g

i · x : (v, s) ∈ Dn and i ∈ {0, 1}}, {v · x : v ∈ V }
are pairwise disjoint, and the symmetrization of the restriction of G to their union
is connected. Define T on D by

T = {((v, s), (w, t)) ∈ D ×D : ((hλ
(v,s), h

λ
(w,t))) ∈ G},

and set k = dT ((1G, 0n0), (1G, 0n1)). It is now easily verified that λ = 〈V, T, g, k〉 is
in Λ and x ∈ Aλ, and this contradicts the fact that B ∩Aλ = ∅. 2
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Let λ be as in Lemma 20, and set Vn+1 = V , Tn+1 = T , gn = g, and kn = k.
As G acts by homeomorphisms, we can write Aλ as the union of countably many
clopen sets U such that:

(d′′) ∀(v, s), (w, t) ∈ Dn ∀h ∈ Hn (hh(v,s)(U) ∩ h(w,t)gn(U) = ∅).

(e′′) ∀(v, s) ∈ Dn+1 (diam(h(v,s)(U)) ≤ 1/n).

Fix such a U which is not in I, and set An+1 = U .
This completes the recursive construction. Set q = 〈Tn〉n∈N, and for each n ∈ N

and (v, s) ∈ Dn, put B(v,s) = h(v,s)(An). Conditions (g) and (j) ensure that, for
each α ∈ 2N, the sets Bα|0, Bα|1, . . . are decreasing and of vanishing diameter, and
since they are clopen, they have singleton intersection. Define π : 2N → X by

π(α) = the unique element of
\
n∈N

Bα|n.

It follows from conditions (i) and (j) that π is a continuous injection, so it only
remains to check conditions (1) and (2). We note first the following lemma:

Lemma 21. Suppose that m ≤ n are natural numbers, (v, s) ∈ Vm × 2n−m, and
α ∈ 2N. Then π(v, sα) = h(v,s) · π(vq, 0nα).

Proof. Simply observe that

{π(v, sα)} =
\
i≥n

B(v,sα|i)

=
\
i≥0

h(v,s)h(vq,0n−m(α|i))(Ai+n)

= h(v,s)

�\
i≥0

h(vq,0n(α|i))(Ai+n)

�

= h(v,s)

�\
i≥n

B(vq,0nα|i)

�

= {h(v,s) · π(vq, 0nα)},

thus π(v, sα) = h(v,s) · π(vq, 0nα). 2

To see (1), suppose that (v, α)Eq(w, β), and fix n ∈ N and s, t ∈ 2<N such
that (v, s), (w, t) ∈ Dn and the sequences obtained from α, β by removing s, t are
identical. Let γ denote this sequence. Lemma 21 implies that π(v, α) = h(v,s) ·
π(vq, 0nγ) and π(w, β) = h(w,t) · π(vq, 0nγ). As x = π(vq, 0nγ) is in An, condition
(h) ensures that

((v, α), (w, β)) ∈ Gq ⇔ ((v, s), (w, t)) ∈ T q
n

⇔ (h(v,s) · x, h(w,t) · x) ∈ G
⇔ (π(v, α), π(w, β)) ∈ G.
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To see (2), it is enough to check that if (v, s), (w, t) ∈ Xn and α, β ∈ 2N, then
there is no h ∈ Hn such that h · π(v, s0α) = π(w, t1β) (since Hn is symmetric).
Suppose, towards a contradiction, that there is such an h ∈ Hn. Lemma 21 en-
sures that π(v, s0α) = h(v,s) · π(vq, 0n+1α) and π(w, t1β) = h(w,t)gn · π(vq, 0n+1β).
As π(vq, 0n+1α), π(vq, 0n+1β) ∈ An+1, it follows that π(w, t1β) ∈ hh(v,s)(An+1) ∩
htgn(An+1), which contradicts condition (i). 2

As a corollary, we obtain the desired strengthening of Theorem 18:

Theorem 22. Suppose that X is a Polish space, G is an analytic graph on X,
χ(G) ≤ 2, and f : N<N → N. Then exactly one of the following holds:

1. χB(G) ≤ 2;

2. There is an f -dominating q ∈ Q such that Gq ≤c G.

Proof. This is a direct consequence of Theorems 18 and 19. 2

We are now ready to prove our main result:

Theorem 23. Suppose that X is a Polish space, G ∈ C, and B is a basis for C(G).
Then the partial order (R<N,⊇) embeds into (B,≤B).

Proof. Theorem 22 ensures that for each H ∈ C(G), there is an f0-dominating
q ∈ Q such that Gq ≤c G. Proposition 17 then implies that there is a pairwise
incompatible family 〈Gα〉α∈2N of Borel graphs such that ∀α ∈ 2N (Gα vB Gq), and it
follows that there is a pairwise incompatible family 〈Hα〉α∈2N of elements of B such
that ∀α ∈ 2N (Hα ≤B H). The theorem clearly follows from repeated application
of this fact. 2
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