AN ANTI-BASIS THEOREM FOR ANALYTIC GRAPHS OF BOREL CHROMATIC NUMBER AT LEAST THREE

BENJAMIN D. MILLER

Abstract

We show that if \mathfrak{B} is a basis for the class of $\boldsymbol{\Sigma}_{\boldsymbol{1}}^{\boldsymbol{1}}$ directed graphs on Polish spaces which are of Borel chromatic number at least three, then the partial order $\left(\mathbb{R}^{<\mathbb{N}}, \supseteq\right)$ embeds into $\left(\mathfrak{B}, \leq_{B}\right)$.

0. Introduction

Suppose that X is a Polish space and \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ directed graph on X, i.e., an irreflexive subset of $X \times X$. A coloring of \mathcal{G} is a function $c: X \rightarrow I$ such that

$$
\forall x_{1}, x_{2} \in X\left(\left(x_{1}, x_{2}\right) \in \mathcal{G} \Rightarrow c\left(x_{1}\right) \neq c\left(x_{2}\right)\right)
$$

The chromatic number of \mathcal{G} is the least cardinal $\chi(\mathcal{G})$ of the form $|I|$, where I is a set for which there is a coloring $c: X \rightarrow I$ of \mathcal{G}. The Borel chromatic number of \mathcal{G} is the least cardinal $\chi_{B}(\mathcal{G})$ of the form $|I|$, where I is a Polish space for which there is a Borel coloring $c: X \rightarrow I$ of \mathcal{G}.

A homomorphism from \mathcal{G} to \mathcal{H} (on Y) is a function $\pi: X \rightarrow Y$ such that

$$
\forall x_{1}, x_{2} \in X\left(\left(x_{1}, x_{2}\right) \in \mathcal{G} \Rightarrow\left(\pi\left(x_{1}\right), \pi\left(x_{2}\right)\right) \in \mathcal{H}\right)
$$

We use $\mathcal{G} \leq{ }_{c} \mathcal{H}$ to indicate the existence of a continuous homomorphism, and we use $\mathcal{G} \leq{ }_{B} \mathcal{H}$ to indicate the existence of a Borel homomorphism. As has been noted by Louveau, the following remarkable fact is a corollary of the proof of its undirected analog, which is due to Kechris-Solecki-Todorcevic [1]:

Theorem (Kechris-Solecki-Todorcevic). Suppose that X is a Polish space and \mathcal{G} is a $\mathbf{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ directed graph on X. Then exactly one of the following holds:

1. $\chi_{B}(\mathcal{G}) \leq \aleph_{0} ;$
2. $\mathcal{G}_{0} \leq_{c} \mathcal{G}$.

Here, we use \mathcal{G}_{0} to denote the directed analog of the graph defined in $\S 6$ of Kechris-Solecki-Todorcevic [1]. It is natural to ask whether there is an analogous theorem for the class of $\boldsymbol{\Sigma}_{\mathbf{1}}^{1}$ directed graphs \mathcal{G} on Polish spaces for which $\chi_{B}(\mathcal{G}) \geq 3$. As the graphs of chromatic number at least three can be characterized as those whose symmetrizations contain an odd cycle, this must be understood as a question about the class \mathfrak{C} of $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ directed graphs \mathcal{G} on Polish spaces for which $\chi(\mathcal{G}) \leq 2$ and $\chi_{B}(\mathcal{G}) \geq 3$. More generally, we wish to understand the structure of bases for \mathfrak{C}, i.e.,
those classes $\mathfrak{B} \subseteq \mathfrak{C}$ with the property that, for every $\mathcal{G} \in \mathfrak{C}$, there exists $\mathcal{H} \in \mathfrak{B}$ such that $\mathcal{H} \leq_{B} \mathcal{G}$.

In $\S 1$, we study a particular sort of oriented graph for which Borel two-colorability can be described in terms of certain σ-ideals of $\boldsymbol{\Sigma}_{\mathbf{1}}^{1}$ sets. In $\S 2$, we describe a family of locally countable oriented graphs of this form whose Borel chromatic numbers are at least three. In $\S 3$, we use such graphs which satisfy an additional growth condition to produce continuum-sized families of pairwise incompatible oriented graphs. In $\S 4$, we combine our results with a pair of dichotomy theorems (one of which is due to Louveau) to show that bases for \mathfrak{C} are necessarily complicated:

Theorem. Suppose that X is a Polish space, $\mathcal{G} \in \mathfrak{C}$, and \mathfrak{B} is a basis for $\mathfrak{C}(\mathcal{G})$. Then the partial order $\left(\mathbb{R}^{<\mathbb{N}}, \supseteq\right)$ embeds into $\left(\mathfrak{B}, \leq_{B}\right)$.

1. Balanced graphs

Suppose that \mathcal{G} is an oriented graph on X, i.e, an irreflexive, asymmetric subset of $X \times X$. The symmetrization of \mathcal{G} is given by

$$
\mathcal{G}^{ \pm 1}=\left\{\left(x_{1}, x_{2}\right) \in X \times X:\left(x_{1}, x_{2}\right) \in \mathcal{G} \text { or }\left(x_{2}, x_{1}\right) \in \mathcal{G}\right\}
$$

A \mathcal{G}-path is a sequence $\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle$ such that $\forall i<n\left(\left(x_{i}, x_{i+1}\right) \in \mathcal{G}\right)$. Such a path is a \mathcal{G}-cycle if $x_{0}=x_{n}$. The weight of a $\mathcal{G}^{ \pm 1}$-path $\gamma=\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle$ is

$$
w_{\mathcal{G}}(\gamma)=\sum_{i<n}(-1)^{\mathbb{1}_{\mathcal{G}}\left(x_{i+1}, x_{i}\right)}
$$

where $\mathbb{1}_{\mathcal{G}}$ denotes the characteristic function of \mathcal{G}. We say that \mathcal{G} is a balanced graph if the weight of every $\mathcal{G}^{ \pm 1}$-cycle is zero. The weighted distance function associated with a balanced graph \mathcal{G} is given by

$$
d_{\mathcal{G}}(x, y)=\left\{\begin{array}{cl}
w_{\mathcal{G}}(\gamma) & \text { if } \gamma \text { is a } \mathcal{G}^{ \pm 1} \text {-path from } x \text { to } y \\
\infty & \text { if there is no such path. }
\end{array}\right.
$$

Proposition 1. Suppose that \mathcal{G} and \mathcal{H} are directed graphs.

1. If \mathcal{G} is oriented and has acyclic symmetrization, then \mathcal{G} is balanced;
2. If \mathcal{G} is balanced and $d_{\mathcal{G}}(x, y), d_{\mathcal{G}}(y, z)<\infty$, then $d_{\mathcal{G}}(x, z)=d_{\mathcal{G}}(x, y)+d_{\mathcal{G}}(y, z)$;
3. If π is a homomorphism from \mathcal{G} to \mathcal{H} and $\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle$ is a \mathcal{G}-path, then

$$
w_{\mathcal{H}}\left(\left\langle\pi\left(x_{0}\right), \pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right)\right\rangle\right)=w_{\mathcal{G}}\left(\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle\right)
$$

4. If $\mathcal{G} \leq \mathcal{H}$ and \mathcal{H} is balanced, then \mathcal{G} is balanced;
5. If \mathcal{G} is balanced, then $\chi(\mathcal{G})=2$.

Proof. To see (1), note that every $\mathcal{G}^{ \pm 1}$-cycle passes through (x, y) the same number of times as it passes through (y, x), for all $(x, y) \in \mathcal{G}$. To see (2), fix $\mathcal{G}^{ \pm 1}$-paths σ and τ from x to y and y to z, respectively, and observe that $\sigma \tau$ is a $\mathcal{G}^{ \pm 1}$-path from x to z, thus

$$
d_{\mathcal{G}}(x, z)=w_{\mathcal{G}}(\sigma \tau)=w_{\mathcal{G}}(\sigma)+w_{\mathcal{G}}(\tau)=d_{\mathcal{G}}(x, y)+d_{\mathcal{G}}(y, z)
$$

To see (3), note that $\left(x_{i+1}, x_{i}\right) \in \mathcal{G} \Leftrightarrow\left(\pi\left(x_{i}\right), \pi\left(x_{i+1}\right)\right) \in \mathcal{H}$, and appeal to the definition of weight. To see (4), note that the fact that \mathcal{H} is oriented immediately implies that \mathcal{G} is oriented, and since homomorphisms send $\mathcal{G}^{ \pm 1}$-cycles to $\mathcal{H}^{ \pm 1}$-cycles, the fact that \mathcal{H} is balanced coupled with (3) ensures that \mathcal{G} is balanced. To see (5), fix a set $B \subseteq \operatorname{dom}(\mathcal{G})$ which is maximal with the property that

$$
\forall x, y \in B\left(d_{\mathcal{G}}(x, y)<\infty \Rightarrow d_{\mathcal{G}}(x, y) \equiv 0(\bmod 2)\right)
$$

and observe that $\mathbb{1}_{B}$ is a two-coloring of \mathcal{G}.
Suppose that X is a Polish space and \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on X. For each set $S \subseteq \mathbb{Z}$, the (\mathcal{G}, S)-saturation of a set $A \subseteq X$ is given by

$$
[A]_{(\mathcal{G}, S)}=\left\{x \in X: \exists y \in A\left(d_{\mathcal{G}}(x, y) \in S\right)\right\}
$$

The distance set associated with A is given by

$$
\Delta_{\mathcal{G}}(A)=\left\{d_{\mathcal{G}}(x, y): x, y \in A \text { and } d_{\mathcal{G}}(x, y)<\infty\right\}
$$

Proposition 2. Suppose that X is a Polish space, \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on X, and $A \subseteq X$ is $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$. Then there is a set $B \supseteq A$ such that:

1. $\Delta_{\mathcal{G}}(B)=\Delta_{\mathcal{G}}(A)$;
2. $\forall S \subseteq \mathbb{Z}\left([B]_{(\mathcal{G}, S)}\right.$ is Borel).

Proof. Note first that for each $S \subseteq \mathbb{Z}$, the property of having $\Delta_{\mathcal{G}}(A) \subseteq S$ is Π_{1}^{1} on $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$, thus every $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ set is contained in a Borel set with the same distance set. Now fix a sequence $\left\langle k_{0}, k_{1}, \ldots\right\rangle$ of integers in which every integer appears infinitely often, and set $A_{0}=A$. Given A_{n}, fix a Borel set $B_{n} \supseteq\left[A_{n}\right]_{\left(\mathcal{G},\left\{k_{n}\right\}\right)}$ such that $\Delta_{\mathcal{G}}\left(B_{n}\right)=\Delta_{\mathcal{G}}\left(\left[A_{n}\right]_{\left(\mathcal{G},\left\{k_{n}\right\}\right)}\right)$, and set $A_{n+1}=A_{n} \cup\left[B_{n}\right]_{\left(\mathcal{G},\left\{-k_{n}\right\}\right)}$. We claim that the set $B=\bigcup_{n \in \mathbb{N}} A_{n}$ is as desired. To see (1), simply note that

$$
\Delta_{\mathcal{G}}(B)=\bigcup_{n \in \mathbb{N}} \Delta_{\mathcal{G}}\left(A_{n}\right)=\Delta_{\mathcal{G}}(A)
$$

To see (2), observe that the set $[B]_{(\mathcal{G},\{k\})}=\bigcup_{k_{n}=k} B_{n}$ is Borel, for each $k \in \mathbb{Z}$, thus the set $[B]_{(\mathcal{G}, S)}=\bigcup_{k \in S}[B]_{(\mathcal{G},\{k\})}$ is Borel, for each $S \subseteq \mathbb{Z}$.

For each set $S \subseteq \mathbb{Z}$, let $\mathcal{I}_{(\mathcal{G}, S)}$ denote the σ-ideal generated by the $\boldsymbol{\Sigma}_{1}^{\mathbf{1}}$ sets $A \subseteq X$ for which $\Delta_{\mathcal{G}}(A) \subseteq S$.

Proposition 3. Suppose that X is a Polish space and \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on X. Then $X \in \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})} \Leftrightarrow \chi_{B}(\mathcal{G}) \leq 2$.

Proof. To see (\Leftarrow), note first that by the obvious induction, if $c: X \rightarrow\{0,1\}$ is a two-coloring of \mathcal{G} and $d_{\mathcal{G}}(x, y) \equiv 1(\bmod 2)$, then $c(x) \neq c(y)$, thus $\Delta_{\mathcal{G}}\left(c^{-1}(\{0\})\right)$, $\Delta_{\mathcal{G}}\left(c^{-1}(\{1\})\right) \subseteq 2 \mathbb{Z}$. It follows that if c is Borel, then $X \in \mathcal{I}$.

To see (\Rightarrow), note that if $X \in \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$, then Proposition 2 ensures that there are sets $B_{0}, B_{1}, \ldots \subseteq X$ such that:

1. $X=\bigcup_{n \in \mathbb{N}} B_{n}$;
2. $\forall n \in \mathbb{N}\left(\Delta_{\mathcal{G}}\left(B_{n}\right) \subseteq 2 \mathbb{Z}\right)$;
3. $\forall S \subseteq \mathbb{Z}\left(\left[B_{n}\right]_{(\mathcal{G}, S)}\right.$ is Borel $)$.

Define $B \subseteq X$ by

$$
B=\bigcup_{n \in \mathbb{N}}\left[B_{n}\right]_{(\mathcal{G}, 2 \mathbb{Z})} \backslash \bigcup_{m<n}\left[B_{m}\right]_{(\mathcal{G}, \mathbb{Z})},
$$

and observe that $\mathbb{1}_{B}$ is a Borel two-coloring of \mathcal{G}.
Let $\mathcal{I}_{(\mathcal{G},<\mathbb{Z})}$ denote the σ-ideal generated by $\boldsymbol{\Sigma}_{1}^{1}$ sets $A \subseteq X$ with $\left|\Delta_{\mathcal{G}}(A)\right|<\aleph_{0}$.
Proposition 4. Suppose that X is a Polish space and \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on X. Then $\mathcal{I}_{(\mathcal{G},<\mathbb{Z})}=\mathcal{I}_{\{0\}}$.

Proof. It is enough to show that if $A \subseteq X$ is $\boldsymbol{\Sigma}_{1}^{1}$ and $\left|\Delta_{\mathcal{G}}(A)\right|<\aleph_{0}$, then $A \in$ $\mathcal{I}_{(\mathcal{G},\{0\})}$. Via the obvious induction, it is therefore enough to show that if $\Delta_{\mathcal{G}}(A)$ is non-trivial and finite, then there are Borel sets $B_{1}, B_{2} \subseteq A$ such that $A=B_{1} \cup B_{2}$ and $\left|\Delta_{\mathcal{G}}\left(B_{1}\right)\right|,\left|\Delta_{\mathcal{G}}\left(B_{2}\right)\right|<\left|\Delta_{\mathcal{G}}(A)\right|$. Towards this end, observe that by Proposition 2 , there is a set $B \supseteq A$ such that $\Delta_{\mathcal{G}}(B)=\Delta_{\mathcal{G}}(A)$ and $\forall S \subseteq \mathbb{Z}\left([B]_{(\mathcal{G}, S)}\right.$ is Borel). Then the sets $B_{1}=[B]_{(\mathcal{G},\{0\})} \cap[B]_{\left(\mathcal{G}, \mathbb{Z}^{+}\right)}$and $B_{2}=[B]_{(\mathcal{G},\{0\})} \backslash[B]_{\left(\mathcal{G}, \mathbb{Z}^{+}\right)}$are as desired.

As a corollary, we obtain a sufficient condition for Borel two-colorability:
Proposition 5. Suppose that X is a Polish space and \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on X. If $X \in \mathcal{I}_{(\mathcal{G},<\mathbb{Z})}$, then $\chi_{B}(\mathcal{G}) \leq 2$.

Proof. This follows directly from Propositions 3 and 4.
We obtain also the following fact, which will be useful later on:
Proposition 6. Suppose that X is a Polish space, \mathcal{G} is a $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$ balanced graph on $X, A \subseteq X$ is $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$, and $A \notin \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$. Then, for all $k \in \mathbb{N}$, there exist $x, y \in A$ such that $d_{\mathcal{G}}(x, y) \equiv 1(\bmod 2)$ and $k<d_{\mathcal{G}}(x, y)<\infty$.

Proof. Suppose, towards a contradiction, that there exists $k \in \mathbb{N}$ such that

$$
\forall x, y \in A\left(k<d_{\mathcal{G}}(x, y)<\infty \Rightarrow d_{\mathcal{G}}(x, y) \equiv 0(\bmod 2)\right)
$$

Set $B=\left\{x \in A: \exists y \in A\left(k<d_{\mathcal{G}}(x, y)<\infty\right)\right\}$, and observe that $\Delta_{\mathcal{G}}(B) \subseteq 2 \mathbb{Z}$. Proposition 2 ensures that by enlarging B, we can assume that it is Borel. As $\Delta_{\mathcal{G}}(A \backslash B)$ is finite, it follows from Proposition 5 that $A \in \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$.

2. Combinatorially simple examples

In this section, we describe a parameterized family of "combinatorially simple" oriented graphs with acyclic symmetrizations and Borel chromatic number at least three. For each set S, let $(S)_{\emptyset}=\{(s, \emptyset): s \in S\}$, and for each set S of pairs (v, s), where $s \in 2^{<\mathbb{N}}$, we use $(S)_{i}$ to denote the corresponding set of pairs of the form $(v, s i)$, where $i \in\{0,1\}$. Let \mathbb{P} denote the set of sequences $p=\left\langle T_{n}^{p}\right\rangle_{n \in \mathbb{N}}$ such that, for all $n \in \mathbb{N}$, the following conditions are satisfied:

1. T_{n}^{p} is an oriented graph with connected, acyclic symmetrization;
2. T_{n}^{p} has finite domain, which we denote by D_{n}^{p};
3. $D_{0}^{p}=\left(V_{0}^{p}\right)_{\emptyset}$, where V_{0}^{p} is a singleton whose unique element we denote by v^{p};
4. D_{n+1}^{p} is the disjoint union of $\left(D_{n}^{p}\right)_{0},\left(D_{n}^{p}\right)_{1}$, and $\left(V_{n+1}^{p}\right)_{\emptyset}$;
5. $V_{n}^{p} \cap \bigcup_{m<n} V_{m}^{p}=\emptyset$;
6. $T_{n+1}^{p} \mid\left(D_{n}^{p}\right)_{i}=\left\{((v, s i),(w, t i)):((v, s),(w, t)) \in T_{n}^{p}\right\}$, for each $i \in\{0,1\}$.

We associate with each $p \in \mathbb{P}$ the set $V^{p}=\bigcup_{n \in \mathbb{N}} V_{n}^{p}$ and $X^{p}=V^{p} \times 2^{\mathbb{N}}$, as well as the graph \mathcal{G}^{p} on X^{p} given by

$$
\mathcal{G}^{p}=\bigcup_{n \in \mathbb{N}}\left\{((v, s \alpha),(w, t \alpha)):((v, s),(w, t)) \in T_{n}^{p} \text { and } \alpha \in\{0,1\}\right\}
$$

Proposition 7. Each \mathcal{G}^{p} is oriented and has acyclic symmetrization.
Proof. It is clear that \mathcal{G}^{p} is oriented, since each T_{n}^{p} is oriented. Similarly, if \mathcal{G}^{p} does not have acyclic symmetrization, then there exists $n \in \mathbb{N}$ such that T_{n}^{p} does not have acyclic symmetrization, which contradicts the definition of \mathbb{P}.
Corollary 8. Each \mathcal{G}^{p} is a balanced graph.
Proof. This follows directly from Propositions 1 and 7.
For each $p \in \mathbb{P}$ and infinite set $S \subseteq \mathbb{N}$, define $B_{S}^{p} \subseteq X^{p}$ by

$$
B_{S}^{p}=\left\{\left(v^{p}, \alpha\right) \in X^{p}: \operatorname{supp}(\alpha) \subseteq S\right\}
$$

where $\operatorname{supp}(\alpha)=\{n \in \mathbb{N}: \alpha(n)=1\}$. Let $X_{S}^{p}=\left[B_{S}^{p}\right]_{\left(\mathcal{G}^{p}, \mathbb{Z}\right)}$ and $\mathcal{G}_{S}^{p}=\mathcal{G}^{p} \mid X_{S}^{p}$. It will later be important to have a large family of graphs of this form whose Borel chromatic number is at least three. Towards this end, set

$$
\mathbb{Q}=\left\{p \in \mathbb{P}: \forall n \in \mathbb{N}\left(d_{T_{n+1}^{p}}\left(\left(v^{p}, 0^{n} 0\right),\left(v^{p}, 0^{n} 1\right)\right) \equiv 1(\bmod 2)\right)\right\}
$$

Proposition 9. Suppose that $q \in \mathbb{Q}$ and $S \subseteq \mathbb{N}$ is infinite. Then $\chi_{B}\left(\mathcal{G}_{S}^{q}\right) \geq 3$.
Proof. Endow B_{S}^{q} with the topology it inherits as a closed subspace of $\left\{v^{q}\right\} \times 2^{\mathbb{N}}$. Proposition 3 ensures that to see that $\chi_{B}\left(\mathcal{G}_{S}^{q}\right) \geq 3$, it is enough to show that if $A \subseteq B_{S}^{q}$ is Baire measurable and non-meager in B_{S}^{q}, then $\Delta_{\mathcal{G}^{q}}(A) \nsubseteq 2 \mathbb{Z}$. Towards this end, suppose that $A \subseteq B_{S}^{q}$ is Baire measurable and non-meager in B_{S}^{q}, and fix $s \in 2^{<\mathbb{N}}$ such that $\operatorname{supp}(s) \subseteq S$ and A is comeager in $B_{S}^{q} \cap\left(\left\{v^{q}\right\} \times \mathcal{N}_{s}\right)$. Fix $\alpha \in 2^{\mathbb{N}}$ such that $s 0 \alpha, s 1 \alpha \in A$, set $n=|s|$, and observe that

$$
\begin{aligned}
d_{\mathcal{G}^{q}}(s 0 \alpha, s 1 \alpha)= & d_{T_{n+1}^{q}}\left(\left(v^{q}, s 0\right),\left(v^{q}, s 1\right)\right) \\
= & d_{T_{n+1}^{q}}\left(\left(v^{q}, s 0\right),\left(v^{q}, 0^{n} 0\right)\right)+d_{T_{n+1}^{q}}\left(\left(v^{q}, 0^{n} 0\right),\left(v^{q}, 0^{n} 1\right)\right)+ \\
& \left.d_{T_{n+1}^{q}}\left(v^{q}, 0^{n} 1\right),\left(v^{q}, s 1\right)\right) \\
= & d_{T_{n}^{q}}\left(\left(v^{q}, s\right),\left(v^{q}, 0^{n}\right)\right)+d_{T_{n+1}^{q}}\left(\left(v^{q}, 0^{n} 0\right),\left(v^{q}, 0^{n} 1\right)\right)+ \\
& d_{T_{n}^{q}}\left(\left(v^{q}, 0^{n}\right),\left(v^{q}, s\right)\right) \\
= & d_{T_{n+1}^{q}}\left(\left(v^{q}, 0^{n} 0\right),\left(v^{q}, 0^{n} 1\right)\right) .
\end{aligned}
$$

The definition of \mathbb{Q} implies that the latter quantity is odd, thus $\Delta_{\mathcal{G}^{q}}(A) \nsubseteq 2 \mathbb{Z}$.

3. Incompatible graphs

Associated with each $p \in \mathbb{P}$ are the integers k_{n}^{p} given by

$$
k_{n}^{p}=d_{T_{n+1}^{p}}\left(\left(v^{p}, 0^{n} 0\right),\left(v^{p}, 0^{n} 1\right)\right)
$$

as well as the integers i_{n}^{p}, j_{n}^{p} given by

$$
i_{n}^{p}=k_{n}^{p}-\sum_{m<n} 2^{n-m} k_{m}^{p} \text { and } j_{n}^{p}=k_{n}^{p}+\sum_{m<n} 2^{n-m} k_{m}^{p}
$$

Given a function $f: \mathbb{N}<\mathbb{N} \rightarrow \mathbb{N}$, we say that p is f-dominating if

$$
k_{0}^{p}>f(\emptyset) \text { and } \forall n \in \mathbb{Z}^{+}\left(k_{n}^{p}>f\left(\left\langle k_{0}^{p}, \ldots, k_{n-1}^{p}\right\rangle\right)\right)
$$

Define $f_{0}: \mathbb{N}<\mathbb{N} \rightarrow \mathbb{N}$ by putting $f_{0}(\emptyset)=0$ and

$$
f_{0}\left(\left\langle k_{0}, \ldots, k_{n-1}\right\rangle\right)=2 n+3 \sum_{m<n} 2^{n-m} k_{m}
$$

for all $n \in \mathbb{Z}^{+}$.
Proposition 10. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating. Then

$$
\forall m<n\left(j_{m}^{p}<i_{n}^{p}-2 n\right)
$$

Proof. As p is f_{0}-dominating, it is clear that each k_{n}^{p} is positive. Given natural numbers $m<n$, observe that

$$
\begin{aligned}
i_{n}^{p}-j_{m}^{p} & =k_{n}^{p}-\sum_{\ell<n} 2^{n-\ell} k_{\ell}^{p}-k_{m}^{p}-\sum_{\ell<m} 2^{m-\ell} k_{\ell}^{p} \\
& \geq k_{n}^{p}-2 \sum_{\ell<n} 2^{n-\ell} k_{\ell}^{p}
\end{aligned}
$$

and the definition of f_{0} ensures that this last term is strictly greater than $2 n$.
In particular, it follows that the intervals $\left[i_{0}^{p}, j_{0}^{p}\right],\left[i_{1}^{p}, j_{1}^{p}\right], \ldots$ are pairwise disjoint.
Proposition 11. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating, $n \in \mathbb{N}$, and $s, t \in 2^{n}$. Then

$$
i_{n}^{p} \leq d_{T_{n+1}^{p}}\left(\left(v^{p}, s 0\right),\left(v^{p}, t 1\right)\right) \leq j_{n}^{p}
$$

Proof. By induction on n. The case $n=0$ is a triviality (since $i_{0}^{p}=j_{0}^{p}=k_{0}^{p}$), so suppose that we have proven the proposition below some positive integer n, and fix $s, t \in 2^{n}$. Then

$$
\begin{aligned}
d_{T_{n+1}^{p}}\left(\left(v^{p}, s 0\right),\left(v^{p}, t 1\right)\right)= & d_{T_{n+1}^{p}}\left(\left(v^{p}, s 0\right),\left(v^{p}, 0^{n} 0\right)\right)+ \\
& d_{T_{n+1}^{p}}\left(\left(v^{p}, 0^{n} 0\right),\left(v^{p}, 0^{n} 1\right)\right)+ \\
& d_{T_{n+1}^{p}}\left(\left(v^{p}, 0^{n} 1\right),\left(v^{p}, t 1\right)\right) \\
= & d_{T_{n}^{p}}\left(\left(v^{p}, s\right),\left(v^{p}, 0^{n}\right)\right)+k_{n}^{p}+d_{T_{n}^{p}}\left(\left(v^{p}, 0^{n}\right),\left(v^{p}, t\right)\right) .
\end{aligned}
$$

Observe now that

$$
2 j_{n-1}^{p}=2 \sum_{m \leq n-1} 2^{(n-1)-m} k_{m}^{p}=\sum_{m<n} 2^{n-m} k_{m}^{p}
$$

As p is f_{0}-dominating, the induction hypothesis implies that

$$
k_{n}^{p}-2 j_{n-1}^{p} \leq\left|d_{T_{n+1}^{p}}\left(\left(v^{p}, s 0\right),\left(v^{p}, t 1\right)\right)\right| \leq k_{n}^{p}+2 j_{n-1}^{p}
$$

As the quantities on the left and right of this inequality are equal to i_{n}^{p} and j_{n}^{p}, respectively, the proposition follows.

For $\alpha E_{0} \beta$, let $n(\alpha, \beta)=\max \{n \in \mathbb{N}: \alpha(n) \neq \beta(n)\}$.
Proposition 12. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating and $\alpha E_{0} \beta$. Then

$$
i_{n(\alpha, \beta)}^{p} \leq\left|d_{\mathcal{G}^{p}}\left(\left(v^{p}, \alpha\right),\left(v^{p}, \beta\right)\right)\right| \leq j_{n(\alpha, \beta)}^{p}
$$

Proof. Let $n=n(\alpha, \beta)+1, s=\alpha \mid n$, and $t=\alpha \mid n$. As $d_{\mathcal{G}^{p}}\left(\left(v^{p}, \alpha\right),\left(v^{p}, \beta\right)\right)=$ $d_{T_{n}^{p}}\left(\left(v^{p}, s\right),\left(v^{p}, t\right)\right)$, the desired inequality follows from Proposition 11.

For each $S \subseteq \mathbb{N}$, let $[S]_{n}=\{i \in \mathbb{N}: \exists j \in S(|i-j| \leq n)\}$.
Proposition 13. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating, $S \subseteq \mathbb{N}$, and $\ell \in \mathbb{N}$. Then

$$
\forall n \geq \ell\left(n \in S \Leftrightarrow\left[i_{n}^{p}-\ell, j_{n}^{p}+\ell\right] \cap\left[\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)\right]_{\ell} \neq \emptyset\right)
$$

Proof. To see (\Rightarrow), note that if $n \in S$, then $k_{n}^{p}=d_{\mathcal{G}^{p}}\left(\left(v^{p}, 0^{n} 00^{\infty}\right),\left(v^{p}, 0^{n} 10^{\infty}\right)\right)$ is in $\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)$, and $i_{n} \leq k_{n} \leq j_{n}$.

To see (\Leftarrow), observe that if $\left[i_{n}^{p}-\ell, j_{n}^{p}+\ell\right] \cap\left[\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)\right]_{\ell} \neq \emptyset$, then there exists $(\alpha, \beta) \in E_{0}$ such that $\operatorname{supp}(\alpha), \operatorname{supp}(\beta) \subseteq S$ and

$$
i_{n}^{p}-2 \ell \leq d_{\mathcal{G}^{p}}\left(\left(v^{p}, \alpha\right),\left(v^{p}, \beta\right)\right) \leq j_{n}^{p}+2 \ell
$$

As Proposition 12 implies that

$$
i_{n(\alpha, \beta)}^{p} \leq d_{\mathcal{G}^{p}}\left(\left(v^{p}, \alpha\right),\left(v^{p}, \beta\right)\right) \leq j_{n(\alpha, \beta)}^{p}
$$

it follows that $i_{n}^{p}-2 n \leq i_{n}^{p}-2 \ell \leq j_{n(\alpha, \beta)}^{p}$ and $i_{n(\alpha, \beta)}^{p} \leq j_{n}^{p}+2 \ell \leq j_{n}^{p}+2 n$. The former inequality, in conjunction with Proposition 10, then implies that $n(\alpha, \beta) \geq n$. Coupled with the latter inequality, this implies that $i_{n(\alpha, \beta)}^{p}-2 n(\alpha, \beta) \leq i_{n(\alpha, \beta)}^{p}-$ $2 n \leq j_{n}^{p}$, and one more application of Proposition 10 then gives that $n \geq n(\alpha, \beta)$, so $n=n(\alpha, \beta)$, thus $n \in S$.

Recall that sets $S, T \subseteq \mathbb{N}$ are said to be almost disjoint if $|S \cap T|<\aleph_{0}$.
Proposition 14. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating and $S, T \subseteq \mathbb{N}$ are almost disjoint. Then $\forall n \in \mathbb{N}\left(\left[\Delta\left(B_{S}^{p}\right)\right]_{n},\left[\Delta\left(B_{T}^{p}\right)\right]_{n}\right.$ are almost disjoint $)$.

Proof. Fix $m \geq n$ with $S \cap T \subseteq m$. It is enough to show that $\left[\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)\right]_{n} \cap$ $\left[\Delta_{\mathcal{G}^{p}}\left(B_{T}^{p}\right)\right]_{n} \subseteq i_{m}^{p}$. Towards this end, suppose that $k \geq i_{m}^{p}$ is in $\left[\Delta_{\mathcal{G}^{p}}\left(B_{\mathbb{N}}^{p}\right)\right]_{n}$. By Proposition 12, there exists $\ell \in \mathbb{N}$ such that $i_{\ell}^{p} \leq k \leq j_{\ell}^{p}$. Then $\ell \geq m \geq n$, so Proposition 13 implies that if $k \in\left[\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)\right]_{n}$, then $\ell \in S$, thus $\ell \notin T$. One more application of Proposition 13 then gives that $k \notin\left[\Delta_{\mathcal{G}^{p}}\left(B_{T}^{p}\right)\right]_{n}$.

We are now able to construct incompatible balanced graphs:
Proposition 15. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating and $S, T \subseteq \mathbb{N}$ are almost disjoint. Then \mathcal{G}_{S}^{p} and \mathcal{G}_{T}^{p} are incompatible.

Proof. Suppose that \mathcal{G} is an analytic graph on X and there are Borel homomorphisms π_{U} of \mathcal{G} into \mathcal{G}_{U}^{p}, for $U \in\{S, T\}$. Then Proposition 1 implies that \mathcal{G} is balanced. For each $n \in \mathbb{N}$ and $U \in\{S, T\}$, let

$$
A_{n}^{U}=\pi_{U}^{-1}\left(\left[B_{U}^{p}\right]_{\mathcal{G}_{U}^{p}}^{\{-n, \ldots, n\}}\right),
$$

and set $A_{n}=A_{n}^{S} \cap A_{n}^{T}$.
Lemma 16. $\forall n \in \mathbb{N}\left(\Delta_{\mathcal{G}}\left(A_{n}\right)\right.$ is finite $)$.
Proof. It follows from Proposition 1 that

$$
\begin{aligned}
\Delta_{\mathcal{G}}\left(A_{n}\right) & \subseteq \Delta_{\mathcal{G}}\left(A_{n}^{S}\right) \cap \Delta\left(A_{n}^{T}\right) \\
& =\Delta_{\mathcal{G}^{p}}\left(\left[B_{S}^{p}\right]_{\mathcal{G}_{S}^{p}}^{n}\right) \cap \Delta_{\mathcal{G}^{p}}\left(\left[B_{T}^{p}\right]_{\mathcal{G}_{T}^{p}}^{n}\right) \\
& \subseteq\left[\Delta_{\mathcal{G}^{p}}\left(B_{S}^{p}\right)\right]_{2 n} \cap\left[\Delta_{\mathcal{G}^{p}}\left(B_{T}^{p}\right)\right]_{2 n},
\end{aligned}
$$

and Proposition 14 ensures that the latter set is finite.
As $X=\bigcup_{n \in \mathbb{N}} A_{n}$, Proposition 5 implies that $\chi_{B}(\mathcal{G}) \leq 2$, and it follows that $\mathcal{G}_{p}^{S}, \mathcal{G}_{p}^{T}$ are incompatible.

An embedding of \mathcal{G} into \mathcal{H} is an injection $\pi: X \rightarrow Y$ such that

$$
\forall x_{1}, x_{2} \in X\left(\left(x_{1}, x_{2}\right) \in \mathcal{G} \Rightarrow c\left(x_{1}\right) \neq c\left(x_{2}\right)\right)
$$

We use $\mathcal{G} \sqsubseteq_{c} \mathcal{H}$ to indicate the existence of a continuous embedding, and we use $\mathcal{G} \sqsubseteq_{B} \mathcal{H}$ to indicate the existence of a Borel embedding.
Proposition 17. Suppose that $p \in \mathbb{P}$ is f_{0}-dominating. Then there is a pairwise incompatible family $\left\langle\mathcal{G}_{\alpha}\right\rangle_{\alpha \in 2^{\mathbb{N}}}$ of Borel graphs such that $\forall \alpha \in 2^{\mathbb{N}}\left(\mathcal{G}_{\alpha} \sqsubseteq_{B} \mathcal{G}^{p}\right)$. Moreover, if $p \in \mathbb{Q}$, then such graphs can be found with Borel chromatic number at least three.

Proof. Fix an almost disjoint family $\left\langle S_{\alpha}\right\rangle_{\alpha \in 2^{\mathbb{N}}}$ of subsets of \mathbb{N}. Then Propositions 9 and 15 ensure that the graphs $\mathcal{G}_{\alpha}=\mathcal{G}_{S_{\alpha}}^{p}$ are as desired.

4. A BASIS THEOREM AND AN ANTI-BASIS THEOREM

A result of Louveau [2] implies the following basis theorem:
Theorem 18 (Louveau). Suppose that X is a Polish space, \mathcal{G} is an analytic directed graph on X, and $\chi(\mathcal{G}) \leq 2$. Then exactly one of the following holds:

1. $\chi_{B}(\mathcal{G}) \leq 2$;
2. There exists $q \in \mathbb{Q}$ such that $\mathcal{G}_{q} \leq{ }_{c} \mathcal{G}$.

We will strengthen this theorem by showing that q can be taken to be f_{0}-dominating. In the special case that \mathcal{G} is a locally countable Borel oriented graph, we actually obtain an analogous result for embeddability:

Theorem 19. Suppose that X is a Polish space, \mathcal{G} is a locally countable Borel oriented graph on X with acyclic symmetrization, and $f: \mathbb{N}<\mathbb{N} \rightarrow \mathbb{N}$. Then exactly one of the following holds:

1. $\chi_{B}(\mathcal{G}) \leq 2$;
2. There is an f-dominating $q \in \mathbb{Q}$ such that $\mathcal{G}_{q} \sqsubseteq_{c} \mathcal{G}$.

Proof. As $(1) \Rightarrow \neg(2)$ is straightforward, we shall prove only $\neg(1) \Rightarrow(2)$. For each $q \in \mathbb{Q}$, let E^{q} denote the equivalence relation on X^{q} given by

$$
(v, \alpha) E^{q}(w, \beta) \Leftrightarrow\left((v, \alpha),(w, \beta) \text { are } \mathcal{G}^{q} \text {-connected }\right)
$$

Similarly, define E on X by $x E y \Leftrightarrow(x, y$ are \mathcal{G}-connected). It is sufficient to find an f-dominating $q \in \mathbb{Q}$ and a continuous injection $\pi: X^{q} \rightarrow X$ such that:

1. $\forall(v, \alpha) E^{q}(w, \beta)\left(((v, \alpha),(w, \beta)) \in \mathcal{G}^{q} \Leftrightarrow(\pi(v, \alpha), \pi(w, \beta)) \in \mathcal{G}\right)$;
2. $\forall(v, \alpha),(w, \beta) \in X^{q}\left(\pi(v, \alpha) E \pi(w, \beta) \Rightarrow(v, \alpha) E^{q}(w, \beta)\right)$.

Towards this end, fix a countable group G of Borel automorphisms of X such that $E=\bigcup_{g \in G} \operatorname{graph}(g)$, and fix an increasing sequence of finite, symmetric sets $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq G$ such that $G=\bigcup_{n \in \mathbb{N}} H_{n}$. By standard change of topology results, we can assume that X is a zero-dimensional Polish space, G acts on X by homeomorphisms, and each of the sets $\{x \in X:(x, g \cdot x) \in \mathcal{G}\}$ is clopen.

We will find clopen sets $A_{n} \subseteq X$, finite sets $V_{n} \subseteq G$, finite oriented graphs T_{n} whose symmetrizations are trees, group elements $g_{n} \in G$, and natural numbers k_{n}, from which we define

$$
D_{n}=\bigcup_{m \leq n} V_{m} \times 2^{n-m} \text { and } h_{(v, s)} \cdot x=v g_{m}^{s(0)} \cdots g_{n-1}^{s(n-1-m)} \cdot x
$$

for each $n \in \mathbb{N}$ and $(v, s) \in V_{m} \times 2^{n-m}$. This will be done so as to ensure that the following conditions are satisfied:
(a) $A_{n} \notin \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$;
(b) $D_{n}=\operatorname{dom}\left(T_{n}\right)$;
(c) $T_{n}^{ \pm 1}$ is connected and acyclic;
(d) $k_{n}=d_{T_{n+1}}\left(\left(1_{G}, 0^{n} 0\right),\left(1_{G}, 0^{n} 1\right)\right)$;
(e) $k_{n} \equiv 1(\bmod 2) ;$
(f) $f\left(k_{n}\right)>f\left(\left\langle k_{0}, \ldots, k_{n-1}\right\rangle\right)$;
(g) $A_{n+1} \subseteq A_{n} \cap g_{n}^{-1}\left(A_{n}\right)$;
(h) $\forall x \in A_{n} \forall(v, s),(w, t) \in D_{n}\left(\left(h_{(v, s)} \cdot x, h_{(w, t)} \cdot x\right) \in \mathcal{G} \Leftrightarrow((v, s),(w, t)) \in T_{n}\right)$;
(i) $\forall(v, s),(w, t) \in D_{n} \forall h \in H_{n}\left(h h_{(v, s)}\left(A_{n+1}\right) \cap h_{(w, t)} g_{n}\left(A_{n+1}\right)=\emptyset\right)$;
(j) $\forall(v, s) \in D_{n+1}\left(\operatorname{diam}\left(h_{(v, s)}\left(A_{n+1}\right)\right) \leq 1 / n\right)$;

We begin by setting $A_{0}=X, V_{0}=\left\{1_{G}\right\}$, and $T_{0}=\emptyset$. Suppose now that we have found A_{i}, V_{i}, and T_{i}, for $i \leq n$, and g_{i} and k_{i}, for $i<n$. Let Λ denote the set of tuples $\lambda=\langle V, T, g, k\rangle$ such that $V \subseteq G$ is a finite set, T is an oriented graph on the set $D=\left(D_{n}\right)_{0} \cup\left(D_{n}\right)_{1} \cup(V)_{\emptyset}$ whose symmetrization is a tree, $g \in G, k \in \mathbb{N}$, and the following conditions are satisfied:
($\left.\mathrm{b}^{\prime}\right) V=\operatorname{dom}(T) ;$
(c') T is connected;
$\left(\mathrm{d}^{\prime}\right) k=d_{T}\left(\left(1_{G}, 0^{n} 0\right),\left(1_{G}, 0^{n} 1\right)\right) ;$
($\left.\mathrm{e}^{\prime}\right) k \equiv 1(\bmod 2) ;$
$\left(\mathrm{f}^{\prime}\right) f(k)>f\left(\left\langle k_{0}, \ldots, k_{n-1}\right\rangle\right)$.
For each $\lambda \in \Lambda$ and $(v, s) \in D$, set

$$
h_{(v, s)}^{\lambda}=\left\{\begin{array}{cl}
v & \text { if } s=\emptyset \\
h_{(v, s \mid m)} g_{\lambda}^{s(m)} & \text { if }|s|=m+1
\end{array}\right.
$$

Let A_{λ} denote the set of $x \in X$ which satisfy the following conditions:
$\left(\mathrm{g}^{\prime}\right) x \in A_{n} \cap g_{\lambda}^{-1}\left(A_{n}\right) ;$
$\left(\mathrm{h}^{\prime}\right) \forall(v, s),(w, t) \in D\left(\left(h_{(v, s)}^{\lambda} \cdot x, h_{(w, t)}^{\lambda} \cdot x\right) \in \mathcal{G} \Leftrightarrow((v, s),(w, t)) \in T\right) ;$
(i') $\forall(v, s),(w, t) \in D_{n} \forall h \in H_{n}\left(g_{\lambda} \cdot x \neq h_{(w, t)}^{-1} h h_{(v, s)} \cdot x\right)$.
As $\left(\mathrm{g}^{\prime}\right)$ and $\left(\mathrm{h}^{\prime}\right)$ are clopen and $\left(\mathrm{i}^{\prime}\right)$ is open, it follows that each A_{λ} is open.
Lemma 20. There exists $\lambda \in \Lambda$ such that $A_{\lambda} \notin \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$.
Proof. Set $A=A_{n} \backslash \bigcup_{\lambda \in \Lambda} A_{\lambda}$. It is clearly sufficient to show that $A \in \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$. Suppose, towards a contradiction, that this is not the case. By a standard argument, we can write A as a union of finitely many Borel sets $B \subseteq A$ such that

$$
\forall(v, s),(w, t) \in D_{n} \forall h \in H_{n}\left(h_{(w, t)} g_{\lambda}(B) \cap h h_{(v, s)}(B)=\emptyset\right)
$$

thus there is such a set $B \subseteq A$ with $B \notin \mathcal{I}_{(\mathcal{G}, 2 \mathbb{Z})}$. By Proposition 6 , there exist $x, y \in B$ such that

$$
d_{\mathcal{G}}(x, y) \equiv 1(\bmod 2) \text { and } d_{\mathcal{G}}(x, y)>f\left(\left\langle k_{0}, \ldots, k_{n-1}\right\rangle\right)
$$

Fix $g \in G$ such that $g \cdot x=y$, as well as a finite set $V \subseteq G$ such that $\forall v, w \in V(v \neq$ $w \Rightarrow v \cdot x \neq w \cdot x)$, the sets $\left\{h_{(v, s)} g^{i} \cdot x:(v, s) \in D_{n}\right.$ and $\left.i \in\{0,1\}\right\},\{v \cdot x: v \in V\}$ are pairwise disjoint, and the symmetrization of the restriction of \mathcal{G} to their union is connected. Define T on D by

$$
T=\left\{((v, s),(w, t)) \in D \times D:\left(\left(h_{(v, s)}^{\lambda}, h_{(w, t)}^{\lambda}\right)\right) \in \mathcal{G}\right\}
$$

and set $k=d_{T}\left(\left(1_{G}, 0^{n} 0\right),\left(1_{G}, 0^{n} 1\right)\right)$. It is now easily verified that $\lambda=\langle V, T, g, k\rangle$ is in Λ and $x \in A_{\lambda}$, and this contradicts the fact that $B \cap A_{\lambda}=\emptyset$.

Let λ be as in Lemma 20, and set $V_{n+1}=V, T_{n+1}=T, g_{n}=g$, and $k_{n}=k$. As G acts by homeomorphisms, we can write A_{λ} as the union of countably many clopen sets U such that:

$$
\begin{aligned}
& \left(\mathrm{d}^{\prime \prime}\right) \forall(v, s),(w, t) \in D_{n} \forall h \in H_{n}\left(h h_{(v, s)}(U) \cap h_{(w, t)} g_{n}(U)=\emptyset\right) \\
& \left(\mathrm{e}^{\prime \prime}\right) \forall(v, s) \in D_{n+1}\left(\operatorname{diam}\left(h_{(v, s)}(U)\right) \leq 1 / n\right)
\end{aligned}
$$

Fix such a U which is not in \mathcal{I}, and set $A_{n+1}=U$.
This completes the recursive construction. Set $q=\left\langle T_{n}\right\rangle_{n \in \mathbb{N}}$, and for each $n \in \mathbb{N}$ and $(v, s) \in D_{n}$, put $B_{(v, s)}=h_{(v, s)}\left(A_{n}\right)$. Conditions (g) and (j) ensure that, for each $\alpha \in 2^{\mathbb{N}}$, the sets $B_{\alpha \mid 0}, B_{\alpha \mid 1}, \ldots$ are decreasing and of vanishing diameter, and since they are clopen, they have singleton intersection. Define $\pi: 2^{\mathbb{N}} \rightarrow X$ by

$$
\pi(\alpha)=\text { the unique element of } \bigcap_{n \in \mathbb{N}} B_{\alpha \mid n}
$$

It follows from conditions (i) and (j) that π is a continuous injection, so it only remains to check conditions (1) and (2). We note first the following lemma:

Lemma 21. Suppose that $m \leq n$ are natural numbers, $(v, s) \in V_{m} \times 2^{n-m}$, and $\alpha \in 2^{\mathbb{N}}$. Then $\pi(v, s \alpha)=h_{(v, s)} \cdot \pi\left(v^{q}, 0^{n} \alpha\right)$.

Proof. Simply observe that

$$
\begin{aligned}
\{\pi(v, s \alpha)\} & =\bigcap_{i \geq n} B_{(v, s \alpha \mid i)} \\
& =\bigcap_{i \geq 0} h_{(v, s)} h_{\left(v^{q}, 0^{n-m}(\alpha \mid i)\right)}\left(A_{i+n}\right) \\
& =h_{(v, s)}\left(\bigcap_{i \geq 0} h_{\left(v^{q}, 0^{n}(\alpha \mid i)\right)}\left(A_{i+n}\right)\right) \\
& =h_{(v, s)}\left(\bigcap_{i \geq n} B_{\left(v^{q}, 0^{n} \alpha \mid i\right)}\right) \\
& =\left\{h_{(v, s)} \cdot \pi\left(v^{q}, 0^{n} \alpha\right)\right\},
\end{aligned}
$$

thus $\pi(v, s \alpha)=h_{(v, s)} \cdot \pi\left(v^{q}, 0^{n} \alpha\right)$.
To see (1), suppose that $(v, \alpha) E^{q}(w, \beta)$, and fix $n \in \mathbb{N}$ and $s, t \in 2^{<\mathbb{N}}$ such that $(v, s),(w, t) \in D_{n}$ and the sequences obtained from α, β by removing s, t are identical. Let γ denote this sequence. Lemma 21 implies that $\pi(v, \alpha)=h_{(v, s)}$. $\pi\left(v^{q}, 0^{n} \gamma\right)$ and $\pi(w, \beta)=h_{(w, t)} \cdot \pi\left(v^{q}, 0^{n} \gamma\right)$. As $x=\pi\left(v^{q}, 0^{n} \gamma\right)$ is in A_{n}, condition (h) ensures that

$$
\begin{aligned}
((v, \alpha),(w, \beta)) \in \mathcal{G}^{q} & \Leftrightarrow((v, s),(w, t)) \in T_{n}^{q} \\
& \Leftrightarrow\left(h_{(v, s)} \cdot x, h_{(w, t)} \cdot x\right) \in \mathcal{G} \\
& \Leftrightarrow(\pi(v, \alpha), \pi(w, \beta)) \in \mathcal{G}
\end{aligned}
$$

To see (2), it is enough to check that if $(v, s),(w, t) \in X_{n}$ and $\alpha, \beta \in 2^{\mathbb{N}}$, then there is no $h \in H_{n}$ such that $h \cdot \pi(v, s 0 \alpha)=\pi(w, t 1 \beta)$ (since H_{n} is symmetric). Suppose, towards a contradiction, that there is such an $h \in H_{n}$. Lemma 21 ensures that $\pi(v, s 0 \alpha)=h_{(v, s)} \cdot \pi\left(v^{q}, 0^{n+1} \alpha\right)$ and $\pi(w, t 1 \beta)=h_{(w, t)} g_{n} \cdot \pi\left(v^{q}, 0^{n+1} \beta\right)$. As $\pi\left(v^{q}, 0^{n+1} \alpha\right), \pi\left(v^{q}, 0^{n+1} \beta\right) \in A_{n+1}$, it follows that $\pi(w, t 1 \beta) \in h h_{(v, s)}\left(A_{n+1}\right) \cap$ $h_{t} g_{n}\left(A_{n+1}\right)$, which contradicts condition (i).

As a corollary, we obtain the desired strengthening of Theorem 18:
Theorem 22. Suppose that X is a Polish space, \mathcal{G} is an analytic graph on X, $\chi(\mathcal{G}) \leq 2$, and $f: \mathbb{N}^{<\mathbb{N}} \rightarrow \mathbb{N}$. Then exactly one of the following holds:

1. $\chi_{B}(\mathcal{G}) \leq 2$;
2. There is an f-dominating $q \in \mathbb{Q}$ such that $\mathcal{G}_{q} \leq{ }_{c} \mathcal{G}$.

Proof. This is a direct consequence of Theorems 18 and 19.
We are now ready to prove our main result:
Theorem 23. Suppose that X is a Polish space, $\mathcal{G} \in \mathfrak{C}$, and \mathfrak{B} is a basis for $\mathfrak{C}(\mathcal{G})$. Then the partial order $(\mathbb{R}<\mathbb{N}, \supseteq)$ embeds into $\left(\mathfrak{B}, \leq_{B}\right)$.

Proof. Theorem 22 ensures that for each $\mathcal{H} \in \mathfrak{C}(\mathcal{G})$, there is an f_{0}-dominating $q \in \mathbb{Q}$ such that $\mathcal{G}_{q} \leq_{c} \mathcal{G}$. Proposition 17 then implies that there is a pairwise incompatible family $\left\langle\mathcal{G}_{\alpha}\right\rangle_{\alpha \in 2^{\mathbb{N}}}$ of Borel graphs such that $\forall \alpha \in 2^{\mathbb{N}}\left(\mathcal{G}_{\alpha} \sqsubseteq_{B} \mathcal{G}^{q}\right)$, and it follows that there is a pairwise incompatible family $\left\langle\mathcal{H}_{\alpha}\right\rangle_{\alpha \in 2^{\mathbb{N}}}$ of elements of \mathfrak{B} such that $\forall \alpha \in 2^{\mathbb{N}}\left(\mathcal{H}_{\alpha} \leq_{B} \mathcal{H}\right)$. The theorem clearly follows from repeated application of this fact.

References

[1] A. Kechris, S. Solecki, and S. Todorčević. Borel chromatic numbers. Adv. Math., 141 (1), (1999), 1-44
[2] A. Louveau. Some dichotomy results for analytic graphs. Preprint.

