ANALYTIC FAMILIES OF ALMOST DISJOINT SETS

CLINTON T. CONLEY AND BENJAMIN D. MILLER

ABSTRACT. We give a streamlined version of Törnquist's proof of Mathias's theorem that there are no infinite maximal analytic families of pairwise almost disjoint subsets of \mathbb{N} .

We say that sets A and B are almost disjoint if $|A \cap B| < \aleph_0$, and we write $A \subseteq^* B$ to indicate that $|A \setminus B| < \aleph_0$.

Let $[\mathbb{N}]^{\aleph_0}$ denote the set of all infinite subsets of \mathbb{N} , and for all countable sets $\mathscr{C} \subseteq [\mathbb{N}]^{\aleph_0}$, let $[\mathscr{C}]^{<\aleph_0}$ denote the set of all finite sets $\mathscr{F} \subseteq \mathscr{C}$.

Proposition 1. Suppose that $\mathscr{A} \subseteq [\mathbb{N}]^{\aleph_0}$ and $\mathscr{C} \subseteq [\mathbb{N}]^{\aleph_0}$ is a countable set with the following properties:

- (1) $\forall A \in \mathscr{A} \exists \mathscr{F} \in [\mathscr{C}]^{<\aleph_0} A \subseteq^* \bigcup \mathscr{F}.$ (2) $\forall \mathscr{F} \in [\mathscr{C}]^{<\aleph_0} \mathbb{N} \not\subseteq^* \bigcup \mathscr{F}.$

Then some set in $[\mathbb{N}]^{\aleph_0}$ is almost disjoint from every set in \mathscr{A} .

Proof. If $\mathscr C$ is finite, then $\mathbb{N} \setminus \bigcup \mathscr C$ is as desired. Otherwise, fix an enumeration $(C_n)_{n \in \mathbb{N}}$ of \mathscr{C} , and for all $n \in \mathbb{N}$, set $\mathscr{F}_n = \{C_m \mid m < n\}$ and fix $k_n \ge n$ in $\mathbb{N} \setminus \bigcup \mathscr{F}_n$. Then $\{k_n \mid n \in \mathbb{N}\}$ is as desired. \boxtimes

Endow $[\mathbb{N}]^{\aleph_0}$ with the topology it inherits via its natural identification with the set of sequences in $2^{\mathbb{N}}$ with infinite support.

Proposition 2 (Törnquist). Suppose that $\pi \colon \mathbb{N}^{\mathbb{N}} \to [\mathbb{N}]^{\aleph_0}$ is continuous and T is a tree on N for which $\pi([T])$ is a set of pairwise almost disjoint sets and $|\pi([T])| \geq 2$. Then there exist $n \in \mathbb{N}$ and $s, t \in T$ such that

$$\forall A \in \pi(\mathcal{N}_s \cap [T]) \forall B \in \pi(\mathcal{N}_t \cap [T]) \ A \cap B \subseteq n.$$

Proof. Fix distinct $C, D \in \pi([T])$, as well as $j \in \mathbb{N}$ with $C \cap j \neq D \cap j$. Fix $c, d \in [T]$ with $C = \pi(c)$ and $D = \pi(d)$, as well as $i \in \mathbb{N}$ such that $\forall C' \in \pi(\mathcal{N}_{c \mid i}) \ C \cap j = C' \cap j \text{ and } \forall D' \in \pi(\mathcal{N}_{d \mid i}) \ D \cap j = D' \cap j.$

Suppose, towards a contradiction, that for all $n \in \mathbb{N}$ and extensions s and t of $c \upharpoonright i$ and $d \upharpoonright i$ in T, there exist $A \in \pi(\mathcal{N}_s \cap [T])$ and $B \in \pi(\mathcal{N}_t \cap [T])$ such that $A \cap B \not\subseteq n$. Then there are extensions a and b of s and t in [T] such that $A = \pi(a)$ and $B = \pi(b)$, in which case

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15; secondary 28A05.

Key words and phrases. Almost disjoint, analytic, eventually different.

 $\forall A' \in \pi([T] \cap \mathcal{N}_{s'}) \forall B' \in \pi([T] \cap \mathcal{N}_{t'}) \ A' \cap B' \nsubseteq n$, where $s' = a' \upharpoonright k$ and $t' = b' \upharpoonright k$, for all sufficiently large $k \in \mathbb{N}$.

By recursively applying this observation, we obtain strictly increasing sequences $(s_n)_{n\in\mathbb{N}}$ and $(t_n)_{n\in\mathbb{N}}$ of extensions of $c \upharpoonright i$ and $d \upharpoonright i$ in Tsuch that $\forall A \in \pi([T] \cap \mathcal{N}_{s_n}) \forall B \in \pi([T] \cap \mathcal{N}_{t_n}) A \cap B \not\subseteq n$. Then the sequences $a = \bigcup_{n\in\mathbb{N}} s_n$ and $b = \bigcup_{n\in\mathbb{N}} t_n$ are in [T], but the sets $\pi(a)$ and $\pi(b)$ are neither equal nor almost disjoint, a contradiction.

We can now establish the promised result.

Theorem 3 (Mathias, Törnquist). Suppose that $\mathscr{A} \subseteq [\mathbb{N}]^{\aleph_0}$ is an infinite analytic set of pairwise almost disjoint sets. Then there is a countable set $\mathscr{C} \subseteq [\mathbb{N}]^{\aleph_0}$ with the following properties:

 $\begin{array}{ll} (1) \ \forall A \in \mathscr{A} \exists \mathscr{F} \in [\mathscr{C}]^{<\aleph_0} \ A \subseteq^* \bigcup \mathscr{F}. \\ (2) \ \forall \mathscr{F} \in [\mathscr{C}]^{<\aleph_0} \exists A \in \mathscr{A} \ A \nsubseteq^* \bigcup \mathscr{F}. \end{array}$

Thus \mathscr{A} is not a maximal set of pairwise almost disjoint sets.

Proof (essentially Törnquist). Fix a continuous surjection $\pi \colon \mathbb{N}^{\mathbb{N}} \to \mathscr{A}$. We will recursively construct trees T^{α} on \mathbb{N} , $n^{\alpha} \in \mathbb{N}$, and $s^{\alpha}, t^{\alpha} \in \mathbb{N}^{<\mathbb{N}}$, from which we define $\mathscr{C}^{\alpha} \subseteq [\mathbb{N}]^{\aleph_0}$, $\mathscr{A}^{\alpha} \subseteq \mathscr{A}$, and $A^{\alpha} \in [\mathbb{N}]^{\aleph_0}$ by

$$-\mathscr{C}^{\alpha} = \{A^{\beta} \mid \beta < \alpha\}. -\mathscr{A}^{\alpha} = \{A \in \mathscr{A} \mid \forall \mathscr{F} \in [\mathscr{C}^{\alpha}]^{<\aleph_{0}} A \not\subseteq^{*} \bigcup \mathscr{F}\}. -A^{\alpha} = \bigcup \pi(\mathcal{N}_{s^{\alpha}} \cap [T^{\alpha}]).$$

Note that the \mathscr{C}^{α} are increasing, so the \mathscr{A}^{α} are decreasing. We will ensure that the following conditions are satisfied:

(a)
$$\forall A \in \pi(\mathcal{N}_{s^{\alpha}} \cap [T^{\alpha}]) \forall B \in \pi(\mathcal{N}_{t^{\alpha}} \cap [T^{\alpha}]) A \cap B \subseteq n^{\alpha}.$$

(b) $\mathscr{A}^{\alpha} \cap \pi(\mathcal{N}_{s^{\alpha}} \cap [T^{\alpha}])$ and $\mathscr{A}^{\alpha} \cap \pi(\mathcal{N}_{t^{\alpha}} \cap [T^{\alpha}])$ are uncountable

Suppose that $\alpha < \omega_1$ and we have already constructed T^{β} , n^{β} , s^{β} , and t^{β} , for all $\beta < \alpha$. If \mathscr{A}^{α} is countable, then the construction terminates. Otherwise, define $T^{\alpha} = \{t \in \mathbb{N}^{<\mathbb{N}} \mid \mathscr{A}^{\alpha} \cap \pi(\mathcal{N}_t) \text{ is uncountable}\}$. As $\pi([T^{\alpha}])$ is uncountable, we can apply Proposition 2 to π and T^{α} to obtain $n^{\alpha} \in \mathbb{N}$ and $s^{\alpha}, t^{\alpha} \in T^{\alpha}$ satisfying condition (a). Condition (b) then follows from the countability of $\mathscr{A}_{\alpha} \cap \pi(\mathbb{N}^{\mathbb{N}} \setminus [T^{\alpha}])$.

As $s^{\alpha} \in T^{\alpha} \setminus T^{\alpha+1}$, the T^{α} are strictly decreasing, so the construction terminates at some $\alpha < \omega_1$. Then the set $\mathscr{C} = \mathscr{A}^{\alpha} \cup \mathscr{C}^{\alpha}$ is countable and satisfies condition (1). To see that it satisfies condition (2), suppose that $\mathscr{F} \subseteq \mathscr{C}$ is finite. If $\mathscr{F} \subseteq \mathscr{A}^{\alpha}$, then almost disjointness ensures that $A \not\subseteq^* \bigcup \mathscr{F}$ for all $A \in \mathscr{A} \setminus \mathscr{F}$. Otherwise, there is a maximal $\beta < \alpha$ with $A^{\beta} \in \mathscr{F}$, so $A \not\subseteq^* \bigcup \mathscr{F}$ for all $A \in (\mathscr{A}^{\beta} \cap \pi(\mathcal{N}_{t^{\beta}} \cap [T^{\beta}])) \setminus \mathscr{A}^{\alpha}$.

The non-maximality of \mathscr{A} now follows from Proposition 1.

 \boxtimes

CLINTON T. CONLEY, DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213, USA

E-mail address: clintonc@andrew.cmu.edu

URL: http://www.math.cmu.edu/math/faculty/Conley

BENJAMIN D. MILLER, KURT GÖDEL RESEARCH CENTER FOR MATHEMATI-CAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUS-TRIA

E-mail address: benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller