ANALYTIC FAMILIES OF ALMOST DISJOINT SETS

CLINTON T. CONLEY AND BENJAMIN D. MILLER

Abstract

We give a streamlined version of Törnquist's proof of Mathias's theorem that there are no infinite maximal analytic families of pairwise almost disjoint subsets of \mathbb{N}.

We say that sets A and B are almost disjoint if $|A \cap B|<\aleph_{0}$, and we write $A \subseteq^{*} B$ to indicate that $|A \backslash B|<\aleph_{0}$.

Let $[\mathbb{N}]^{\aleph_{0}}$ denote the set of all infinite subsets of \mathbb{N}, and for all countable sets $\mathscr{C} \subseteq[\mathbb{N}]^{\aleph_{0}}$, let $[\mathscr{C}]^{<\aleph_{0}}$ denote the set of all finite sets $\mathscr{F} \subseteq \mathscr{C}$.

Proposition 1. Suppose that $\mathscr{A} \subseteq[\mathbb{N}]^{\aleph_{0}}$ and $\mathscr{C} \subseteq[\mathbb{N}]^{\aleph_{0}}$ is a countable set with the following properties:
(1) $\forall A \in \mathscr{A} \exists \mathscr{F} \in[\mathscr{C}]^{<\aleph_{0}} A \subseteq \subseteq^{*} \bigcup \mathscr{F}$.
(2) $\forall \mathscr{F} \in[\mathscr{C}]^{<\aleph_{0}} \mathbb{N} \not \not^{*} \bigcup \mathscr{F}$.

Then some set in $[\mathbb{N}]^{\aleph_{0}}$ is almost disjoint from every set in \mathscr{A}.
Proof. If \mathscr{C} is finite, then $\mathbb{N} \backslash \bigcup \mathscr{C}$ is as desired. Otherwise, fix an enumeration $\left(C_{n}\right)_{n \in \mathbb{N}}$ of \mathscr{C}, and for all $n \in \mathbb{N}$, set $\mathscr{F}_{n}=\left\{C_{m} \mid m<n\right\}$ and fix $k_{n} \geq n$ in $\mathbb{N} \backslash \bigcup \mathscr{F}_{n}$. Then $\left\{k_{n} \mid n \in \mathbb{N}\right\}$ is as desired.

Endow $[\mathbb{N}]^{\aleph_{0}}$ with the topology it inherits via its natural identification with the set of sequences in $2^{\mathbb{N}}$ with infinite support.

Proposition 2 (Törnquist). Suppose that $\pi: \mathbb{N}^{\mathbb{N}} \rightarrow[\mathbb{N}]^{\aleph_{0}}$ is continuous and T is a tree on \mathbb{N} for which $\pi([T])$ is a set of pairwise almost disjoint sets and $|\pi([T])| \geq 2$. Then there exist $n \in \mathbb{N}$ and $s, t \in T$ such that

$$
\forall A \in \pi\left(\mathcal{N}_{s} \cap[T]\right) \forall B \in \pi\left(\mathcal{N}_{t} \cap[T]\right) A \cap B \subseteq n .
$$

Proof. Fix distinct $C, D \in \pi([T])$, as well as $j \in \mathbb{N}$ with $C \cap j \neq D \cap j$. Fix $c, d \in[T]$ with $C=\pi(c)$ and $D=\pi(d)$, as well as $i \in \mathbb{N}$ such that $\forall C^{\prime} \in \pi\left(\mathcal{N}_{c \mid i}\right) C \cap j=C^{\prime} \cap j$ and $\forall D^{\prime} \in \pi\left(\mathcal{N}_{d\lceil i}\right) D \cap j=D^{\prime} \cap j$.

Suppose, towards a contradiction, that for all $n \in \mathbb{N}$ and extensions s and t of $c \upharpoonright i$ and $d \upharpoonright i$ in T, there exist $A \in \pi\left(\mathcal{N}_{s} \cap[T]\right)$ and $B \in \pi\left(\mathcal{N}_{t} \cap[T]\right)$ such that $A \cap B \nsubseteq n$. Then there are extensions a and b of s and t in $[T]$ such that $A=\pi(a)$ and $B=\pi(b)$, in which case

[^0]$\forall A^{\prime} \in \pi\left([T] \cap \mathcal{N}_{s^{\prime}}\right) \forall B^{\prime} \in \pi\left([T] \cap \mathcal{N}_{t^{\prime}}\right) A^{\prime} \cap B^{\prime} \nsubseteq n$, where $s^{\prime}=a^{\prime} \upharpoonright k$ and $t^{\prime}=b^{\prime} \upharpoonright k$, for all sufficiently large $k \in \mathbb{N}$.

By recursively applying this observation, we obtain strictly increasing sequences $\left(s_{n}\right)_{n \in \mathbb{N}}$ and $\left(t_{n}\right)_{n \in \mathbb{N}}$ of extensions of $c \upharpoonright i$ and $d \upharpoonright i$ in T such that $\forall A \in \pi\left([T] \cap \mathcal{N}_{s_{n}}\right) \forall B \in \pi\left([T] \cap \mathcal{N}_{t_{n}}\right) A \cap B \nsubseteq n$. Then the sequences $a=\bigcup_{n \in \mathbb{N}} s_{n}$ and $b=\bigcup_{n \in \mathbb{N}} t_{n}$ are in $[T]$, but the sets $\pi(a)$ and $\pi(b)$ are neither equal nor almost disjoint, a contradiction.

We can now establish the promised result.
Theorem 3 (Mathias, Törnquist). Suppose that $\mathscr{A} \subseteq[\mathbb{N}]^{\aleph_{0}}$ is an infinite analytic set of pairwise almost disjoint sets. Then there is a countable set $\mathscr{C} \subseteq[\mathbb{N}]^{\aleph_{0}}$ with the following properties:
(1) $\forall A \in \mathscr{A} \exists \mathscr{F} \in[\mathscr{C}]^{<\aleph_{0}} A \subseteq \subseteq^{*} \bigcup \mathscr{F}$.
(2) $\forall \mathscr{F} \in[\mathscr{C}]^{<\aleph_{0}} \exists A \in \mathscr{A} A \not \Phi^{*} \bigcup \mathscr{F}$.

Thus \mathscr{A} is not a maximal set of pairwise almost disjoint sets.
Proof (essentially Törnquist). Fix a continuous surjection $\pi: \mathbb{N}^{\mathbb{N}} \rightarrow \mathscr{A}$. We will recursively construct trees T^{α} on $\mathbb{N}, n^{\alpha} \in \mathbb{N}$, and $s^{\alpha}, t^{\alpha} \in \mathbb{N}<\mathbb{N}$, from which we define $\mathscr{C}^{\alpha} \subseteq[\mathbb{N}]^{\aleph_{0}}, \mathscr{A}^{\alpha} \subseteq \mathscr{A}$, and $A^{\alpha} \in[\mathbb{N}]^{\aleph_{0}}$ by

$$
\begin{aligned}
& -\mathscr{C}^{\alpha}=\left\{A^{\beta} \mid \beta<\alpha\right\} . \\
& -\mathscr{A}^{\alpha}=\left\{A \in \mathscr{A} \mid \forall \mathscr{F} \in\left[\mathscr{C}^{\alpha}\right]<\aleph_{0} A \not \mathbb{*}^{*} \bigcup \mathscr{F}\right\} . \\
& -A^{\alpha}=\bigcup \pi\left(\mathcal{N}_{s^{\alpha}} \cap\left[T^{\alpha}\right]\right) .
\end{aligned}
$$

Note that the \mathscr{C}^{α} are increasing, so the \mathscr{A}^{α} are decreasing. We will ensure that the following conditions are satisfied:
(a) $\forall A \in \pi\left(\mathcal{N}_{s^{\alpha}} \cap\left[T^{\alpha}\right]\right) \forall B \in \pi\left(\mathcal{N}_{t^{\alpha}} \cap\left[T^{\alpha}\right]\right) A \cap B \subseteq n^{\alpha}$.
(b) $\mathscr{A}^{\alpha} \cap \pi\left(\mathcal{N}_{s^{\alpha}} \cap\left[T^{\alpha}\right]\right)$ and $\mathscr{A}^{\alpha} \cap \pi\left(\mathcal{N}_{t^{\alpha}} \cap\left[T^{\alpha}\right]\right)$ are uncountable.

Suppose that $\alpha<\omega_{1}$ and we have already constructed $T^{\beta}, n^{\beta}, s^{\beta}$, and t^{β}, for all $\beta<\alpha$. If \mathscr{A}^{α} is countable, then the construction terminates. Otherwise, define $T^{\alpha}=\left\{t \in \mathbb{N}^{<\mathbb{N}} \mid \mathscr{A}^{\alpha} \cap \pi\left(\mathcal{N}_{t}\right)\right.$ is uncountable $\}$. As $\pi\left(\left[T^{\alpha}\right]\right)$ is uncountable, we can apply Proposition 2 to π and T^{α} to obtain $n^{\alpha} \in \mathbb{N}$ and $s^{\alpha}, t^{\alpha} \in T^{\alpha}$ satisfying condition (a). Condition (b) then follows from the countability of $\mathscr{A}_{\alpha} \cap \pi\left(\mathbb{N}^{\mathbb{N}} \backslash\left[T^{\alpha}\right]\right)$.

As $s^{\alpha} \in T^{\alpha} \backslash T^{\alpha+1}$, the T^{α} are strictly decreasing, so the construction terminates at some $\alpha<\omega_{1}$. Then the set $\mathscr{C}=\mathscr{A}^{\alpha} \cup \mathscr{C}$ is countable and satisfies condition (1). To see that it satisfies condition (2), suppose that $\mathscr{F} \subseteq \mathscr{C}$ is finite. If $\mathscr{F} \subseteq \mathscr{A}^{\alpha}$, then almost disjointness ensures that $A \not \Phi^{*} \bigcup \mathscr{F}$ for all $A \in \mathscr{A} \backslash \mathscr{F}$. Otherwise, there is a maximal $\beta<\alpha$ with $A^{\beta} \in \mathscr{F}$, so $A \not \Phi^{*} \bigcup \mathscr{F}$ for all $A \in\left(\mathscr{A}^{\beta} \cap \pi\left(\mathcal{N}_{t^{\beta}} \cap\left[T^{\beta}\right]\right)\right) \backslash \mathscr{A}^{\alpha}$.

The non-maximality of \mathscr{A} now follows from Proposition 1.

Clinton T. Conley, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

E-mail address: clintonc@andrew.cmu.edu
URL: http://www.math.cmu.edu/math/faculty/Conley
Benjamin D. Miller, Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Strasse 25, 1090 Wien, AusTRIA

E-mail address: benjamin.miller@univie.ac.at
URL: http://www.logic.univie.ac.at/benjamin.miller

[^0]: 2010 Mathematics Subject Classification. Primary 03E15; secondary 28A05.
 Key words and phrases. Almost disjoint, analytic, eventually different.

