Structural dichotomy theorems in descriptive set theory

Benjamin Miller
Universität Wien

Winter Semester, 2019

Introduction

The goal of these notes is to provide a succinct introduction to the primary structural dichotomy theorems of descriptive set theory. The only prerequisites are a rudimentary knowledge of point-set topology and set theory. Working in the base theory ZF + DC, we first discuss trees, the corresponding representations of closed, Borel, and Souslin sets, and Baire category. We then consider consequences of the open dihypergraph dichotomy and variants of the \mathbb{G}_{0} dichotomy. While primarily focused upon Borel structures, we also note that minimal modifications of our arguments can be combined with well-known structural consequences of determinacy (which we take as a black box) to yield generalizations into the projective hierarchy and beyond.

Contents

Introduction iii
Chapter 1. Preliminaries 1

1. Closed sets 1
2. Ranks 2
3. Borel sets 3
4. Souslin sets 4
5. Baire category 9
6. Canonical objects 13
Chapter 2. The box-open dihypergraph dichotomy 27
7. Colorings of box-open dihypergraphs 27
8. Partial compactifications 31
9. Separation by unions of closed hyperrectangles 34
Chapter 3. The \mathbb{G}_{0} dichotomy, I: Abstract colorings 39
10. Colorings within cliques 39
11. Discrete perfect sets within cliques 42
12. Scrambled sets 45
Chapter 4. The \mathbb{G}_{0} dichotomy, II: Borel colorings 49
13. Borel colorings 49
14. Index two subequivalence relations 52
15. Perfect antichains 54
16. Parametrization and uniformization 56
Chapter 5. The $\left(\mathbb{G}_{0}, \mathbb{H}_{0}\right)$ dichotomy 61
17. Borel local colorings 61
18. Linearizability of quasi-orders 67
Bibliography 71
Index 73

CHAPTER 1

Preliminaries

1. Closed sets

Given a set I, define $I^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}} I^{n}$ and $I^{\leq \mathbb{N}}=I^{<\mathbb{N}} \cup I^{\mathbb{N}}$. The length of a sequence $t \in I^{\leq \mathbb{N}}$ is given by $|t|=n$ if $t \in I^{n}$, and $|t|=\infty$ if $t \in I^{\mathbb{N}}$. Given sequences $s, t \in I^{\leq \mathbb{N}}$, we say that s is an initial segment of t, or t is an extension of s, if $|s| \leq|t|$ and $s=t \upharpoonright|s|$, in which case we write $s \sqsubseteq t$. In the special case that $s \neq t$, we say that s is a proper initial segment of t, or t is a proper extension of s, in which case we write $s \sqsubset t$. A tree on I is a set $T \subseteq I^{<\mathbb{N}}$ that is closed under initial segments, in the sense that $\forall t \in T \forall n<|t| t \upharpoonright n \in T$. A subtree of T is a tree $S \subseteq T$ on I. A branch through T is a sequence $x \in I^{\mathbb{N}}$ such that $\forall n \in \mathbb{N} x \upharpoonright n \in T$. We use $[T]$ to denote the set of all branches through T, and we say that T is well-founded if $[T]=\emptyset$.

Suppose now that I is a discrete topological space. For each sequence $s \in I^{<\mathbb{N}}$, let \mathcal{N}_{s} denote the set of extensions of s in $I^{\mathbb{N}}$. These sets form a basis for the product topology on $I^{\mathbb{N}}$.

Proposition 1.1.1. Suppose that I is discrete space and T is a tree on I. Then $[T]$ is closed.

Proof. Observe that if $x \in \overline{[T]}$, then $\mathcal{N}_{x \mid n} \cap[T] \neq \emptyset$ for all $n \in \mathbb{N}$, so $x \upharpoonright n \in T$ for all $n \in \mathbb{N}$, thus $x \in[T]$.

Given a set $X \subseteq I^{\mathbb{N}}$, we use T_{X} to denote the set of proper initial segments of elements of X.

Proposition 1.1.2. Suppose that I is a discrete space and $X \subseteq I^{\mathbb{N}}$. Then $\bar{X}=\left[T_{X}\right]$.

Proof. Clearly $X \subseteq\left[T_{X}\right]$, so $\bar{X} \subseteq\left[T_{X}\right]$ by Proposition 1.1.1. Conversely, if $x \in\left[T_{X}\right]$, then $x \upharpoonright n \in T_{X}$ for all $n \in \mathbb{N}$, so $\mathcal{N}_{x \mid n} \cap X \neq \emptyset$ for all $n \in \mathbb{N}$, thus $x \in \bar{X}$.

We use (i) to denote the singleton sequence given by $s(0)=i$. The concatenation of sequences $s, t \in I^{<\mathbb{N}}$ is the extension $s \frown t$ of s given by $(s \frown t)(|s|+n)=t(n)$ for all $n<|t|$.

Proposition 1.1.3. Suppose that I is a well-orderable discrete space and $C \subseteq I^{\mathbb{N}}$ is a non-empty closed set. Then there is a function $\beta: T_{C} \rightarrow C$ with the property that $\forall t \in T_{C} t \sqsubseteq \beta(t)$.

Proof. Fix a well-ordering \preceq of I, and define $\iota: T_{C} \rightarrow I$ by letting $\iota(t)$ be the \preceq-minimal element of I for which $t \frown(\iota(t)) \in T_{C}$. Define $\beta^{n}: T_{C} \rightarrow T_{C}$ by $\beta^{0}(t)=t$ and $\beta^{n+1}(t)=\beta^{n}(t) \frown\left(\left(\iota \circ \beta^{n}\right)(t)\right)$, and set $\beta(t)=\bigcup_{n \in \mathbb{N}} \beta^{n}(t)$.

A retraction from a set X onto a subset Y is a surjection $\phi: X \rightarrow Y$ whose restriction to Y is the identity.

Proposition 1.1.4. Suppose that I is a well-orderable discrete space and $C \subseteq I^{\mathbb{N}}$ is a non-empty closed set. Then there is a continuous retraction $\phi: I^{\mathbb{N}} \rightarrow C$.

Proof. Proposition 1.1.2 ensures that for all sequences $x \in \sim C$, there is a maximal proper initial segment $\iota(x)$ of x in T_{C}, and Proposition 1.1.3 yields a function $\beta: T_{C} \rightarrow C$ such that $\forall t \in T_{C} t \sqsubseteq \beta(t)$. Let $\phi: I^{\mathbb{N}} \rightarrow C$ be the retraction agreeing with $\beta \circ \iota$ off of C. To see that ϕ is continuous, it is enough to show that if $n \in \mathbb{N}$ and $x \in I^{\mathbb{N}}$, then $\phi\left(\mathcal{N}_{x\lceil n}\right) \subseteq \mathcal{N}_{\phi(x)\lceil n}$. But if $x \upharpoonright n \in T_{C}$ then $\phi\left(\mathcal{N}_{x \mid n}\right) \subseteq \mathcal{N}_{x \mid n}=\mathcal{N}_{\phi(x) \mid n}$, and if $x \upharpoonright n \notin T_{C}$ then $\phi\left(\mathcal{N}_{x \mid n}\right)=\{\phi(x)\} \subseteq \mathcal{N}_{\phi(x) \mid n}$.

Now that we have explicitly proven and applied a particular instance of the axiom of choice, it should be noted that the axiom of determinacy rules out simply assuming the latter:

Theorem 1.1.5 (Solovay). Suppose that AD holds. Then there is no injective ω_{1}-sequence of elements of $\mathbb{N}^{\mathbb{N}}$.

2. Ranks

Suppose that R is a binary relation on X. For all $Y \subseteq X$, define $Y_{R}^{\prime}=\{y \in Y \mid \exists x \in Y x R y\}, Y_{R}^{(0)}=Y, Y_{R}^{(\alpha+1)}=\left(Y_{R}^{\overline{(\alpha)}}\right)_{R}^{\prime}$ for all ordinals α, and $Y_{R}^{(\lambda)}=\bigcap_{\alpha<\lambda} Y_{R}^{(\alpha)}$ for all limit ordinals λ. The rank of R is the least ordinal $\rho(R)$ for which $X_{R}^{(\rho(R))}=X_{R}^{(\rho(R)+1)}$.

The relation R is well-founded if $Y \neq Y_{R}^{\prime}$ for all non-empty sets $Y \subseteq X$. By DC, this is equivalent to the inexistence of a sequence $x \in X^{\mathbb{N}}$ with the property that $\forall n \in \mathbb{N} x(n+1) R x(n)$.

Proposition 1.2.1. A binary relation R on a set X is well-founded if and only if $X_{R}^{(\rho(R))}=\emptyset$.

Proof. It is clear that if R is well-founded, then $X_{R}^{(\rho(R))}=\emptyset$. Conversely, if there is a non-empty set $Y \subseteq X$ for which $Y=Y^{\prime}$, then a straightforward transfinite induction shows that $Y \subseteq X_{R}^{(\rho(R))}$.

The rank of a point $x \in X$ with respect to R is the largest ordinal $\rho_{R}(x)$ for which $x \in X_{R}^{\left(\rho_{R}(x)\right)}$, or ∞ if no such ordinal exists. We adopt the conventions that $\infty=\infty+1$ and $\alpha<\infty$ for all ordinals α.

Proposition 1.2.2. Suppose that R is a binary relation on a set X. Then $\forall x \in X \rho_{R}(x)=\sup \left\{\rho_{R}(w)+1 \mid w R x\right\}$.

Proof. Note that if α is an ordinal, $w R x$, and $w, x \in X_{R}^{(\alpha)}$, then $x \in X_{R}^{(\alpha+1)}$, so $\rho_{R}(x) \geq \rho_{R}(w)+1$. But if $\alpha \geq \sup \left\{\rho_{R}(w)+1 \mid w R x\right\}$ is an ordinal, then $x \notin X_{R}^{(\alpha+1)}$, so $\rho_{R}(x) \leq \alpha$.

The horizontal sections of a set $R \subseteq X \times Y$ are the sets of the form $R^{y}=\{x \in X \mid x R y\}$, where $y \in Y$. The vertical sections are the sets of the form $R_{x}=\{y \in Y \mid x R y\}$, where $x \in X$.

Proposition 1.2.3. Suppose that X and Y are sets, R and S are binary relations on X and Y, and $\phi: X \rightarrow Y$ is a function.
(1) If $\forall x \in X \quad \phi\left(R^{x}\right) \subseteq S^{\phi(x)}$, then $\forall x \in X \quad \rho_{R}(x) \leq \rho_{S}(\phi(x))$.
(2) If $\forall x \in X S^{\phi(x)} \subseteq \phi\left(R^{x}\right)$, then $\forall x \in X \quad \rho_{R}(x) \geq \rho_{S}(\phi(x))$.

Proof. To see (1), note that if α is an ordinal for which $\rho_{R}(x) \leq$ $\left.\rho_{S}(\phi(x))\right)$ whenever $\rho_{R}(x)<\alpha$, then Proposition 1.2.2 ensures that

$$
\begin{aligned}
\rho_{R}(x) & =\sup \left\{\rho_{R}(w)+1 \mid w \in R^{x}\right\} \\
& \leq \sup \left\{\rho_{S}(\phi(w))+1 \mid w \in R^{x}\right\} \\
& \leq \rho_{S}(\phi(x))
\end{aligned}
$$

whenever $\rho_{R}(x)=\alpha$. Moreover, if $\rho_{R}(x)=\infty$, then $x \in X_{R}^{(\rho(R))}$, and since $\phi\left(X_{R}^{(\rho(R))}\right) \subseteq Y_{S}^{(\rho(S))}$, if follows that $\rho_{S}(\phi(x))=\infty$.

To see (2), note that if α is an ordinal for which $\left.\rho_{R}(x) \geq \rho_{S}(\phi(x))\right)$ whenever $\rho_{R}(x)<\alpha$, then Proposition 1.2.2 ensures that

$$
\begin{aligned}
\rho_{R}(x) & =\sup \left\{\rho_{R}(w)+1 \mid w \in R^{x}\right\} \\
& \geq \sup \left\{\rho_{S}(\phi(w))+1 \mid w \in R^{x}\right\} \\
& \geq \rho_{S}(\phi(x))
\end{aligned}
$$

whenever $\rho_{R}(x)=\alpha$.

3. Borel sets

Suppose that κ is an ordinal. A family of sets is a κ-complete algebra if it is closed under complements and unions of length strictly less than κ. An algebra is an \aleph_{0}-complete algebra, whereas a σ-algebra is an \aleph_{1}-complete algebra. A subset of a topological space is κ-Borel if it is in the smallest κ-complete algebra containing the open sets. A subset of a topological space is Borel if it is \aleph_{1}-Borel.

Proposition 1.3.1. Suppose that κ is an ordinal, X is set, and \mathcal{X} is a family of subsets of X that is closed under complements. Then the closure of \mathcal{X} under disjoint unions of length strictly less than κ and intersections of length strictly less than κ is a κ-complete algebra.

Proof. Let \mathcal{Y} denote the family of sets $Y \subseteq X$ for which both Y and $\sim Y$ are in the desired closure. Clearly $\mathcal{X} \subseteq \mathcal{Y}$ and \mathcal{Y} is closed under complements, so it is sufficient to show that \mathcal{Y} is closed under unions of length strictly less than κ. Towards this end, suppose that $\lambda<\kappa$ and $\left(Y_{\alpha}\right)_{\alpha<\lambda}$ is a sequence of sets in \mathcal{Y}. Then the set $Z_{\alpha}=$ $Y_{\alpha} \backslash \bigcup_{\beta<\alpha} Y_{\beta}=Y_{\alpha} \cap \bigcap_{\beta<\alpha} \sim Y_{\beta}$ is in the desired closure for all $\alpha<\lambda$, so the sets $\bigcup_{\alpha<\lambda} Y_{\alpha}=\bigcup_{\alpha<\lambda} Z_{\alpha}$ and $\sim \bigcup_{\alpha<\lambda} Y_{\alpha}=\bigcap_{\alpha<\lambda} \sim Y_{\alpha}$ are in the desired closure, and therefore in \mathcal{Y}.

A code for a $(\kappa+1)$-Borel subset of X is a pair (f, T), where T is a well-founded tree on $\kappa \times \kappa$ and f is a function associating to each sequence $t \in \sim T$ a subset of X that is closed or open. Given such a code, we recursively define $f^{(\alpha)}$ on $\sim T_{\sqsupset}^{(\alpha)}$ by setting $f^{(0)}=f$, letting $f^{(\alpha+1)}$ be the extension of $f^{(\alpha)}$ given by $f^{(\alpha+1)}(t)=\bigcup_{\beta<\kappa} \bigcap_{\gamma<\kappa} f^{(\alpha)}(t \frown((\beta, \gamma)))$ whenever $\rho_{\sqsupset \mid T}(t)=\alpha$ for all ordinals α, and defining $f^{(\lambda)}=\bigcup_{\alpha<\lambda} f^{(\alpha)}$ for all limit ordinals λ. Set $\bar{f}=f^{(\rho(\sqsupset \mid T))}$. The $(\kappa+1)$-Borel set coded by (f, T) is $\bar{f}(\emptyset)$. While AC_{κ} and Proposition 1.3.1 ensure that every $(\kappa+1)$-Borel set is of this form, merely being $(\kappa+1)$-Borel is not a reasonable notion of definability in the absence of AC_{κ}. Although it is easy to modify our arguments to produce sets which have $(\kappa+1)$-Borel codes, we will focus on $(\kappa+1)$-Borel sets for the sake of clarity.

4. Souslin sets

A topological space is κ-Souslin if it is a continuous image of a closed subset of $\kappa^{\mathbb{N}}$, where κ is endowed with the discrete topology. A topological space is analytic if it is \aleph_{0}-Souslin.

Proposition 1.4.1. Suppose that κ is an aleph and X is non-empty and κ-Souslin. Then there is a continuous surjection $\phi: \kappa^{\mathbb{N}} \rightarrow X$.

Proof. Fix a closed set $C \subseteq \kappa^{\mathbb{N}}$ for which there is a continuous surjection $\phi^{\prime}: C \rightarrow X$, appeal to Proposition 1.1.4 to obtain a continuous retraction $\phi^{\prime \prime}: \kappa^{\mathbb{N}} \rightarrow C$, and define $\phi=\phi^{\prime} \circ \phi^{\prime \prime}$.

Proposition 1.4.2. Suppose that κ is an aleph, X is a κ-Souslin space, Y is a topological space, and $\phi: X \rightarrow Y$ is continuous. Then:
(1) The set $\phi(X)$ is κ-Souslin.
(2) If Y is Hausdorff and $A \subseteq Y$ is κ-Souslin, then $\phi^{-1}(A)$ is κ-Souslin.

Proof. Clearly we can assume that A and X are non-empty, in which case Proposition 1.4.1 yields continuous surjections $\phi_{A}: \kappa^{\mathbb{N}} \rightarrow A$ and $\phi_{X}: \kappa^{\mathbb{N}} \rightarrow X$. To see (1), note that $\left(\phi \circ \phi_{X}\right)\left(\kappa^{\mathbb{N}}\right)=\phi(X)$. To see (2), let $\pi: \kappa^{\mathbb{N}} \times \kappa^{\mathbb{N}} \rightarrow \kappa^{\mathbb{N}}$ be the projection onto the left coordinate, and note that the set $C=\left\{(a, b) \in \kappa^{\mathbb{N}} \times \kappa^{\mathbb{N}} \mid\left(\phi \circ \phi_{X}\right)(a)=\phi_{A}(b)\right\}$ is closed and $\left(\phi_{X} \circ \pi\right)(C)=\phi^{-1}(A)$.

Proposition 1.4.3. Suppose that κ is an aleph, X is a topological space, $\phi_{\alpha}: \kappa^{\mathbb{N}} \rightarrow X$ is continuous for all $\alpha<\kappa$, and $A_{\alpha}=\phi_{\alpha}\left(\kappa^{\mathbb{N}}\right)$ for all $\alpha<\kappa$. Then:
(1) The set $\bigcup_{\alpha<\kappa} A_{\alpha}$ is κ-Souslin.
(2) The set $\prod_{n \in \mathbb{N}} A_{n}$ is κ-Souslin.
(3) If X is Hausdorff, then $\bigcap_{n \in \mathbb{N}} A_{n}$ is κ-Souslin.

Proof. To see (1), note that the function $(\alpha) \frown b \mapsto \phi_{\alpha}(b)$ is a continuous surjection from $\kappa^{\mathbb{N}}$ onto $\bigcup_{\alpha<\kappa} A_{\alpha}$.

To see (2), note that the function $\left(b_{n}\right)_{n \in \mathbb{N}} \mapsto\left(\phi_{n}\left(b_{n}\right)\right)_{n \in \mathbb{N}}$ is a continuous surjection from $\left(\kappa^{\mathbb{N}}\right)^{\mathbb{N}}$ onto $\prod_{n \in \mathbb{N}} A_{n}$.

To see (3), obtain a continuous surjection $\phi: \kappa^{\mathbb{N}} \rightarrow \prod_{n \in \mathbb{N}} A_{n}$ as above, let $\pi: X^{\mathbb{N}} \rightarrow X$ be the projection onto the $0^{\text {th }}$ coordinate, and note that the set $C=\phi^{-1}\left(\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} A_{n} \mid \forall n \in \mathbb{N} x_{m}=x_{n}\right\}\right)$ is closed and $(\pi \circ \phi)(C)=\bigcap_{n \in \mathbb{N}} A_{n}$.

Given a pointclass Γ of subsets of topological spaces, we say that a subset of a topological space is co- Γ if its complement is Γ, and $b i-\Gamma$ if it is both Γ and co- Γ.

Proposition 1.4.4. Suppose that κ is an aleph, X is a κ-Souslin space, and $C \subseteq X$ is closed. Then C is bi- κ-Souslin.

Proof. By Proposition 1.4.1, we can assume that there is a continuous surjection $\phi: \kappa^{\mathbb{N}} \rightarrow X$. To see that C is κ-Souslin, note that the set $D=\phi^{-1}(C)$ is closed and $\phi(D)=C$. To see that C is co- κ-Souslin, note that $\sim D$ is open, set $S=\left\{s \in \kappa^{<\mathbb{N}} \mid \mathcal{N}_{s} \subseteq \sim D\right\}$, and observe that $\sim C=\bigcup_{s \in S} \phi\left(\mathcal{N}_{s}\right)$, so $\sim C$ is κ-Souslin by Proposition 1.4.3.

Proposition 1.4.5. Suppose that κ is an aleph and X is a κ-Souslin Hausdorff space. Then every Borel subset of X is bi- κ-Souslin.

Proof. By Propositions 1.3.1, 1.4.3, and 1.4.4.
\boxtimes
In order to establish a natural strengthening of the converse, we will need the following simple observation:

Proposition 1.4.6. Suppose that κ is an aleph, X is a Hausdorff space, and $\phi, \psi: \kappa^{\mathbb{N}} \rightarrow X$ are continuous. Then for all $c, d \in \kappa^{\mathbb{N}}$ such that $\phi(c) \neq \psi(d)$, there exists $n \in \mathbb{N}$ for which $\overline{\phi\left(\mathcal{N}_{c \mid n}\right)} \cap \psi\left(\mathcal{N}_{d \mid n}\right)=\emptyset$.

Proof. As X is Hausdorff, there are disjoint open neighborhoods U and V of $\phi(c)$ and $\psi(d)$. As ϕ and ψ are continuous, there exists $n \in \mathbb{N}$ sufficiently large that $\phi\left(\mathcal{N}_{c \mid n}\right) \subseteq U$ and $\psi\left(\mathcal{N}_{d \mid n}\right) \subseteq V$. But then $\overline{\phi\left(\mathcal{N}_{c \mid n}\right)}$ is contained in $\sim V$, and therefore disjoint from $\psi\left(\mathcal{N}_{d \mid n}\right)$.

We say that sets A and B are separated by a set C if $A \subseteq C$ and $B \cap C=\emptyset$.

Theorem 1.4.7 (Lusin). Suppose that κ is an aleph, X is a Hausdorff space, and $A, B \subseteq X$ are disjoint κ-Souslin sets. Then there is a $(\kappa+1)$-Borel set $C \subseteq X$ separating A from B.

Proof. By Proposition 1.4.1, we can assume that there are continuous surjections $\phi: \kappa^{\mathbb{N}} \rightarrow A$ and $\psi: \kappa^{\mathbb{N}} \rightarrow B$. Set $A_{t}=\phi\left(\mathcal{N}_{t}\right)$ and $B_{t}=\psi\left(\mathcal{N}_{t}\right)$ for all $t \in \kappa^{<\mathbb{N}}$, define $\pi_{i}:(\kappa \times \kappa)^{<\mathbb{N}} \rightarrow \kappa^{<\mathbb{N}}$ by $\pi_{i}(t)(n)=t(n)(i)$ for all $i<2$, and let T be the tree on $\kappa \times \kappa$ of all sequences $t \in(\kappa \times \kappa)^{<\mathbb{N}}$ for which $\overline{A_{\pi_{0}(t)}} \cap B_{\pi_{1}(t)} \neq \emptyset$. Proposition 1.4.6 ensures that T is well-founded. Define f on $\sim T$ by $f(t)=\overline{A_{\pi_{0}(t)}}$, noting that (f, T) is a code for a $(\kappa+1)$-Borel subset of X.

Lemma 1.4.8. Suppose that $t \in(\kappa \times \kappa)^{<\mathbb{N}}$. Then $\bar{f}(t)$ separates $A_{\pi_{0}(t)}$ from $B_{\pi_{1}(t)}$.

Proof. The definition of T ensures that $\bar{f}(t)$ separates $A_{\pi_{0}(t)}$ from $B_{\pi_{1}(t)}$ for all $t \in \sim T$. But if $\bar{f}(t \frown((\alpha, \beta)))$ separates $A_{\pi_{0}(t) \wedge(\alpha)}$ from $B_{\pi_{1}(t) \wedge(\beta)}$ for all $\alpha, \beta<\kappa$, then $\bigcap_{\beta<\kappa} \bar{f}(t \frown((\alpha, \beta)))$ separates $A_{\pi_{0}(t) \wedge(\alpha)}$ from $B_{\pi_{1}(t)}$ for all $\alpha<\kappa$, so $\bigcup_{\alpha<\kappa} \bigcap_{\beta<\kappa} \bar{f}(t \frown((\alpha, \beta)))$ separates $A_{\pi_{0}(t)}$ from $B_{\pi_{1}(t)}$, thus the obvious induction yields the desired result.

The special case of Lemma 1.4 .8 where $t=\emptyset$ ensures that the $(\kappa+1)$-Borel set coded by (f, T) separates A from B.

Theorem 1.4.9 (Souslin). Suppose that X is a Hausdorff space. Then every bi- κ-Souslin subset of X is $(\kappa+1)$-Borel.

Proof. By the special case of Theorem 1.4.7 where $A=\sim B$.
Theorem 1.4.10 (Souslin). Suppose that X is an analytic Hausdorff space. Then the families of bi-analytic and Borel subsets of X coincide.

Proof. By Proposition 1.4.5 and Theorem 1.4.9
Proposition 1.4.11. Suppose that X is an \aleph_{1}-Souslin Hausdorff space and $C \subseteq X$ is co-analytic. Then C is \aleph_{1}-Souslin.

Proof. By Proposition 1.4.1, we can assume that there is a continuous surjection $\phi: \mathbb{N}^{\mathbb{N}} \rightarrow \sim C$. Set $T_{x}=\left\{t \in \mathbb{N}^{<\mathbb{N}} \mid x \in \overline{\phi\left(\mathcal{N}_{t}\right)}\right\}$ for all $x \in X$, and observe that the set B of all $(f, x) \in \omega_{1}^{\mathbb{N}^{<\mathbb{N}}} \times X$ such that $\forall n \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}}\left(t \frown(n) \notin T_{x}\right.$ or $\left.f(t \frown(n))<f(t)\right)$ is Borel. As Proposition 1.4.3 ensures that $\omega_{1}^{\mathbb{N}<\mathbb{N}} \times X$ is \aleph_{1}-Souslin, Proposition 1.4.5 implies that so too is B.

Lemma 1.4.12. The sets C and $\operatorname{proj}_{X}(B)$ coincide.
Proof. If $x \in \sim C$, then T_{x} is not well-founded, so $x \notin \operatorname{proj}_{X}(B)$. If $x \in C$, then the special case of Proposition 1.4.6 in which ψ is constant ensures that T_{x} is well-founded, so Propositions 1.2.1 and 1.2.2 imply that $(f, x) \in B$ if $\forall t \in T_{x} f(t)=\rho_{\sqsupset \mid T_{x}}(t)$, thus $x \in \operatorname{proj}_{X}(B)$.

As Proposition 1.4.2 ensures that $\operatorname{proj}_{X}(B)$ is \aleph_{1}-Souslin, Lemma 1.4.12 implies that so too is C.

A subset of an analytic Hausdorff space is $\boldsymbol{\Sigma}_{1}^{1}$ if it is analytic. More generally, for each natural number $n>0$, a subset of an analytic Hausdorff space is $\boldsymbol{\Pi}_{n}^{1}$ if its complement is $\boldsymbol{\Sigma}_{n}^{1}$, and $\boldsymbol{\Sigma}_{n+1}^{1}$ if it is a continuous image of a Π_{n}^{1} subset of an analytic Hausdorff space. A subset of an analytic Hausdorff space is $\boldsymbol{\Delta}_{n}^{1}$ if it is both $\boldsymbol{\Sigma}_{n}^{1}$ and $\boldsymbol{\Pi}_{n}^{1}$.

A quasi-order on a set X is a reflexive transitive binary relation R on X. The equivalence relation associated with such a quasi-order is the binary relation \equiv_{R} on X for which $x \equiv_{R} y$ if and only if $x R y$ and $y R x$. A partial order is a quasi-order for which the corresponding equivalence relation is equality. For all $n>0$, let $\boldsymbol{\delta}_{n}^{1}$ denote the supremum of the lengths of well-orderings of the form R / \equiv_{R}, where R is a $\boldsymbol{\Delta}_{n}^{1}$ quasi-order on an analytic Hausdorff space.

As strict embeddability of well-orderings of \mathbb{N} is an analytic binary relation on a co-analytic subset of $\mathcal{P}(\mathbb{N} \times \mathbb{N})$, it follows that $\boldsymbol{\delta}_{2}^{1}>\omega_{1}$. The following theorem ensures that $\boldsymbol{\delta}_{1}^{1}=\omega_{1}$, and when combined with Propositions 1.4.3 and 1.4.11, it also implies that $\boldsymbol{\delta}_{2}^{1} \leq \omega_{2}$:

Theorem 1.4.13 (Kunen-Martin). Suppose that κ is an aleph, X is a Hausdorff space, and R is a well-founded κ-Souslin binary relation on X. Then $\rho(R)<\kappa^{+}$.

Proof. By Proposition 1.4.1, we can assume that there is a continuous surjection $(\phi, \psi): \kappa^{\mathbb{N}} \rightarrow R$. Let S be the set of non-empty sequences $s \in\left(\kappa^{\mathbb{N}}\right)^{<\mathbb{N}}$ such that $\forall n<|s|-1 \phi(s(n))=\psi(s(n+1))$. The well-foundedness of R yields that of $\sqsupset \upharpoonright S$. Define $\pi: S \rightarrow X$ by $\pi(s)=\phi(s(|s|-1))$, and observe that $\forall s \in S R^{\pi(s)} \subseteq \pi\left((\sqsupset \upharpoonright S)^{s}\right)$ and
$\pi(S)=\left\{x \in X \mid R_{x} \neq \emptyset\right\}$, so Propositions 1.2.1-1.2.3 ensure that

$$
\begin{aligned}
\rho(\sqsupset \upharpoonright S)+1 & =\sup \left\{\rho_{\sqsupset\lceil S}(s)+1 \mid s \in S\right\}+1 \\
& \geq \sup \left\{\rho_{R}(\pi(s))+1 \mid s \in S\right\}+1 \\
& \geq \sup \left\{\rho_{R}(x) \mid x \in X\right\}+1 \\
& \geq \sup \left\{\rho_{R}(x)+1 \mid x \in X\right\} \\
& =\rho(R),
\end{aligned}
$$

thus it is sufficient to show that $\rho(\sqsupset \upharpoonright S)<\kappa^{+}$.
Let T be the set of sequences $t \in \bigcup_{n>0}\left(\kappa^{n}\right)^{n}$ with the property that $\forall n<|t|-1 \phi\left(\mathcal{N}_{t(n)}\right) \cap \psi\left(\mathcal{N}_{t(n+1)}\right) \neq \emptyset$, and let \preceq be the partial order on T given by $s \preceq t \Longleftrightarrow \forall n<|s| s(n) \sqsubseteq t(n)$. By Proposition 1.4.6, the well-foundedness of $\sqsupset \upharpoonright S$ yields that of \succ. Define $\pi^{\prime}: S \rightarrow T$ by $\pi^{\prime}(s)(n)=s(n) \upharpoonright|s|$ for all $n<|s|$. As $\forall s \in S \pi^{\prime}\left((\sqsupset \upharpoonright S)^{s}\right) \subseteq \succ^{\pi^{\prime}(s)}$, Propositions 1.2.1 and 1.2.3 ensure that

$$
\begin{aligned}
\rho(\sqsupset \upharpoonright S) & =\sup \left\{\rho_{\sqsupset\lceil S}(s)+1 \mid s \in S\right\} \\
& \leq \sup \left\{\rho_{\succ}\left(\pi^{\prime}(s)\right)+1 \mid s \in S\right\} \\
& \leq \sup \left\{\rho_{\succ}(t)+1 \mid t \in T\right\} \\
& =\rho(\succ),
\end{aligned}
$$

so it is sufficient to show that $\rho(\succ)<\kappa^{+}$. But this follows from the fact that $|T| \leq \kappa$.

The axiom of determinacy provides the primary motivation for studying κ^{+}-Borel and κ-Souslin sets when $\kappa>\aleph_{1}$:

Theorem 1.4.14 (Kechris, Martin, Moschovakis). Suppose that AD holds and $n \in \mathbb{N}$. Then there is an aleph $\boldsymbol{\kappa}_{2 n+1}^{1}$ with the property that $\boldsymbol{\delta}_{2 n+1}^{1}=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$. Moreover:
(1) The $\boldsymbol{\Delta}_{2 n+1}^{1}$ and $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-Borel subsets of analytic Hausdorff spaces coincide.
(2) The $\boldsymbol{\Sigma}_{2 n+1}^{1}$ and $\boldsymbol{\kappa}_{2 n+1}^{1}$-Souslin subsets of analytic Hausdorff spaces coincide.
(3) The $\boldsymbol{\Sigma}_{2 n+2}^{1}$ and $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-Souslin subsets of analytic Hausdorff spaces coincide.

Theorem 1.4.15 (Woodin). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and $Y \subseteq X$. Then there is an aleph κ for which Y is κ-Souslin.

5. Baire category

A subset of a topological space is meager if it is a union of countablymany nowhere dense sets. A subset of a topological space is comeager if its complement is meager, or equivalently, if it contains an intersection of countably-many dense open sets. A Baire space is a topological space all of whose comeager subsets are dense.

Theorem 1.5.1 (Baire). Every complete metric space X is a Baire space.

Proof. Suppose that $C \subseteq X$ is comeager and $U \subseteq X$ is non-empty and open, and fix positive real numbers $\epsilon_{n} \rightarrow 0$ and dense open sets $U_{n} \subseteq X$ for which $\bigcap_{n \in \mathbb{N}} U_{n} \subseteq C$. By DC, there is a sequence $\left(V_{n}\right)_{n \in \mathbb{N}}$ of non-empty open subsets of U with the property that $\operatorname{diam}\left(V_{n}\right) \leq \epsilon_{n}$, $V_{n} \subseteq U_{n}$, and $\overline{V_{n+1}} \subseteq V_{n}$ for all $n \in \mathbb{N}$. Then the unique point of $\bigcap_{n \in \mathbb{N}} V_{n}$ is in $C \cap U$.

Proposition 1.5.2. Suppose that X is a Baire space. Then every non-empty open set $U \subseteq X$ is a Baire space.

Proof. Suppose that $\left(U_{n}\right)_{n \in \mathbb{N}}$ is a sequence of dense open subsets of U, let V be the interior of $\sim U$, and observe that $U_{n} \cup V$ is a dense subset of X for all $n \in \mathbb{N}$, so $\bigcap_{n \in \mathbb{N}} U_{n} \cup V$ is also a dense subset of X, thus $\bigcap_{n \in \mathbb{N}} U_{n}$ is a dense subset of U.

Proposition 1.5.3. Suppose that X is a topological space, $U \subseteq X$ is a non-empty open set, and $Y \subseteq U$. Then Y is meager in U if and only if Y is meager in X.

Proof. It is sufficient to show that Y is nowhere dense in U if and only if Y is nowhere dense in X. As the closure of Y within U is the intersection of U with the closure of Y within X, it follows that if Y is somewhere dense in U then it is somewhere dense in X. Conversely, if Y is somewhere dense in X, then there is a non-empty open set $V \subseteq X$ contained in the closure of Y within X, and since any such set is contained in the closure of U within X, it follows that $U \cap V \neq \emptyset$, thus Y is somewhere dense in U.

The symmetric difference of sets X and Y is the set $X \triangle Y$ of points appearing in exactly one of them. A subset of a topological space has the Baire property if its symmetric difference with some open subset of the space is meager.

Proposition 1.5.4. Suppose that X is a topological space and $B \subseteq$ X has the Baire property. Then at least one of the following holds:
(1) The set B is meager.
(2) There is a non-empty open set $U \subseteq X$ with the property that $B \cap U$ is comeager in U.
Moreover, if X is a Baire space, then exactly one of these holds.
Proof. Fix an open set $U \subseteq X$ such that $B \triangle U$ is meager. If U is empty, then B is meager. Otherwise, since $U \backslash B$ is meager in X, Proposition 1.5.3 ensures that it is meager in U, in which case $B \cap U$ is comeager in U.

To see that conditions (1) and (2) are mutually exclusive when X is a Baire space, suppose that there is a non-empty open set $U \subseteq X$ with the property that $B \cap U$ is comeager in U. If B is meager, then $B \cap U$ is meager in U by Proposition 1.5.3, so $(B \cap U) \cap(U \backslash B)$ is comeager in U, contradicting Proposition 1.5.2.

Proposition 1.5.5. Suppose that X and Y are topological spaces, $\phi: X \rightarrow Y$ is a continuous open surjection, and $D \subseteq Y$. Then D is comeager if and only if the set $C=\phi^{-1}(D)$ is comeager.

Proof. Suppose first that D is comeager. Then there are dense open sets $V_{n} \subseteq Y$ such that $\bigcap_{n \in \mathbb{N}} V_{n} \subseteq D$. The fact that ϕ is continuous ensures that the sets $U_{n}=\phi^{-1}\left(V_{n}\right)$ are open, and the fact that ϕ is open implies that they are dense, thus C is comeager.

Conversely, suppose that C is comeager. Then there are dense open sets $U_{n} \subseteq X$ such that $\bigcap_{n \in \mathbb{N}} U_{n} \subseteq C$. The fact that ϕ is open ensures that the sets $V_{n}=\phi\left(U_{n}\right)$ are open, and the fact that ϕ is a continuous surjection implies that they are dense, thus D is comeager.

Proposition 1.5.6. Suppose that X is a second-countable Baire space and $Y \subseteq X$. Then there is a maximal open set $U \subseteq X$ for which $U \backslash Y$ is meager. Moreover, every set $B \subseteq X$ with the Baire property contained in $Y \backslash U$ is meager.

Proof. Fix a countable basis \mathcal{U} for X, and define $\mathcal{V}=\{U \in \mathcal{U} \mid$ $U \backslash Y$ is meager $\}$ and $U=\bigcup \mathcal{V}$. Then $U \backslash Y=\bigcup_{V \in \mathcal{V}} V \backslash Y$ is meager. To see that U is the maximal such open set, note that if $U^{\prime} \subseteq X$ is an open set not contained in U, then it contains a non-empty set $U^{\prime \prime} \in \mathcal{U}$ not contained in U, so $U^{\prime \prime} \notin \mathcal{V}$, thus $U^{\prime \prime} \backslash Y$ is not meager, hence $U^{\prime} \backslash Y$ is not meager.

Suppose, towards a contradiction, that there is a non-meager set $B \subseteq X$ with the Baire property contained in $Y \backslash U$. Proposition 1.5.4 yields a non-empty open set $W \subseteq X$ in which $B \cap W$ is comeager. Fix a non-empty set $V \subseteq W$ in \mathcal{U}. Proposition 1.5.3 ensures that $V \backslash B$ is meager, so $V \backslash Y$ is meager, thus $V \in \mathcal{V}$, hence $V \subseteq U$, in which
case B is disjoint from V. But Proposition 1.5.3 implies that $B \cap V$ is comeager in V, contradicting Proposition 1.5.2.

Let BP_{X} denote the family of subsets of X with the Baire property, and \mathcal{M}_{X} the family of all meager subsets of X. The additivity of a family \mathcal{F} of sets is the least aleph $\operatorname{add}(\mathcal{F})$ with the property that there is a sequence $\left(F_{\alpha}\right)_{\alpha<\operatorname{add}(\mathcal{F})}$ of sets in \mathcal{F} whose union is not in \mathcal{F}, or ∞ if no such aleph exists.

Proposition 1.5.7. Suppose that X is a second-countable Baire space. Then BP_{X} contains every open subset of X and is closed under complements, and $\operatorname{add}\left(\mathrm{BP}_{X}\right) \geq \operatorname{add}\left(\mathcal{M}_{X}\right)$.

Proof. As the empty set is meager, it follows that every open subset of X has the Baire property.

To see that BP_{X} is closed under complements, suppose that $B \subseteq X$ has the Baire property, fix an open set $U \subseteq X$ such that $B \triangle U$ is meager, set $C=\sim B$, let V be the interior of $\sim U$, and note that $C \triangle V \subseteq(C \triangle(\sim U)) \cup((\sim U) \triangle V)=(B \triangle U) \cup \sim(U \cup V)$. As $U \cup V$ is dense and open, it follows that C has the Baire property.

To see that the family of subsets of X with the Baire property is closed under unions of every length $\kappa<\operatorname{add}\left(\mathcal{M}_{X}\right)$, suppose that $\left(B_{\alpha}\right)_{\alpha<\kappa}$ is a sequence of subsets of X with the Baire property, and note that if $\left(U_{\alpha}\right)_{\alpha<\kappa}$ is a sequence of open subsets of X such that $B_{\alpha} \triangle U_{\alpha}$ is meager for all $\alpha<\kappa$, and $B=\bigcup_{\alpha<\kappa} B_{\alpha}$ and $U=\bigcup_{\alpha<\kappa} U_{\alpha}$, then $B \triangle U \subseteq \bigcup_{\alpha<\kappa} B_{\alpha} \triangle U_{\alpha}$ is meager, thus B has the Baire property. As the existence of such a sequence $\left(U_{\alpha}\right)_{\alpha<\kappa}$ is clear in the special case where $\kappa=2$, it follows that $B_{\alpha} \backslash V=\sim\left(\sim B_{\alpha} \cup V\right)$ has the Baire property for all $\alpha<\kappa$ and open sets $V \subseteq X$, so Proposition 1.5.6 yields the existence of such a sequence $\left(U_{\alpha}\right)_{\alpha<\kappa}$ in the general case. \boxtimes

Proposition 1.5.8. Suppose that X is a second-countable Baire space and $\kappa<\operatorname{add}\left(\mathcal{M}_{X}\right)$ is an aleph. Then every κ^{+}-Borel set $B \subseteq X$ has the Baire property.

Proof. By Proposition 1.5.7.
Theorem 1.5.9 (Lusin-Sierpiński). Suppose that X is a secondcountable Baire Hausdorff space and $\kappa<\operatorname{add}\left(\mathcal{M}_{X}\right)$ is an aleph. Then every κ-Souslin set $A \subseteq X$ has the Baire property.

Proof. By Proposition 1.4.1, we can assume that there is a continuous surjection $\phi: \kappa^{\mathbb{N}} \rightarrow A$. For all $t \in \kappa^{<\mathbb{N}}$, set $A_{t}=\phi\left(\mathcal{N}_{t}\right)$, appeal to Proposition 1.5.6 to obtain a maximal open set $U_{t} \subseteq X$ for which $U_{t} \backslash \sim A_{t}$ is meager, and define $C_{t}=\overline{A_{t}} \backslash U_{t}$.

Lemma 1.5.10. For all $t \in \kappa^{<\mathbb{N}}$, the set $A_{t} \backslash C_{t}$ is meager.
Proof. Note that $A_{t} \backslash C_{t}=A_{t} \backslash\left(\overline{A_{t}} \backslash U_{t}\right)=A_{t} \backslash \sim U_{t}=U_{t} \backslash \sim A_{t}$. \boxtimes
As $A \backslash \bigcup_{b \in \kappa^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} C_{b \mid n} \subseteq \bigcup_{t \in \kappa<\mathbb{N}} A_{t} \backslash C_{t}$ and Lemma 1.5.10 ensures that the latter set is meager, so too is the former. As the special case of Proposition 1.4.6 where ψ is a constant function implies that $\bigcup_{b \in \kappa^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} C_{b \mid n} \subseteq A$, it is sufficient to show that $\bigcup_{b \in \kappa^{\mathbb{N}}} \bigcap \begin{aligned} & n \in \mathbb{N} \\ & C_{b \upharpoonright n}\end{aligned}$ has the Baire property. As $C_{\emptyset} \backslash \bigcup_{b \in \kappa^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} C_{b \mid n} \subseteq \bigcup_{t \in \kappa<\mathbb{N}} C_{t} \backslash \bigcup_{\alpha<\kappa} C_{t \sim(\alpha)}$ and Proposition 1.5.7 ensures that C_{\emptyset} has the Baire property, it is sufficient to show that $C_{t} \backslash \bigcup_{\alpha<\kappa} C_{t \wedge(\alpha)}$ is meager for all $t \in \kappa^{<\mathbb{N}}$. As $\left(C_{t} \backslash \bigcup_{\alpha<\kappa} C_{t \sim(\alpha)}\right) \backslash\left(\bigcup_{\alpha<\kappa} A_{t \sim(\alpha)} \backslash C_{t \neg(\alpha)}\right) \subseteq C_{t} \backslash \bigcup_{\alpha<\kappa} A_{t \sim(\alpha)}=C_{t} \backslash A_{t}$, Proposition 1.5.7 ensures that $C_{t} \backslash \bigcup_{\alpha<\kappa} C_{t \uparrow(\alpha)}$ has the Baire property, and Lemma 1.5.10 implies that $\bigcup_{\alpha<\kappa} A_{t \wedge(\alpha)} \backslash C_{t \wedge(\alpha)}$ is meager, it only remains to note that every subset of X with the Baire property contained in $C_{t} \backslash A_{t}$ is meager, which follows from Proposition 1.5.6 and the observation that $C_{t} \backslash A_{t}=\left(\overline{A_{t}} \backslash U_{t}\right) \backslash A_{t} \subseteq\left(\sim U_{t}\right) \backslash A_{t}=\left(\sim A_{t}\right) \backslash U_{t}$. \boxtimes

Theorem 1.5.11 (Banach-Mazur). Suppose that AD holds and X is a second-countable complete metric space. Then every set $Y \subseteq X$ has the Baire property.

Theorem 1.5.12 (Montgomery, Novikov). Suppose that X is a topological space, Y is a second-countable Baire space, $\kappa<\operatorname{add}\left(\mathcal{M}_{Y}\right)$ is an aleph, and $R \subseteq X \times Y$ is a κ^{+}-Borel set. Then $\{x \in X \mid$ $R_{x} \cap V$ is not meager $\}$ is κ^{+}-Borel for all non-empty open sets $V \subseteq Y$.

Proof. Clearly the family of κ^{+}-Borel sets $R \subseteq X \times Y$ with the desired property contains every κ^{+}-Borel rectangle. To see that it is closed under unions of length κ, suppose that $\left(R_{\alpha}\right)_{\alpha<\kappa}$ is a sequence of κ^{+}-Borel sets, set $R=\bigcup_{\alpha<\kappa} R_{\alpha}$, suppose that $V \subseteq Y$ is a nonempty open set, and observe that $\left\{x \in X \mid R_{x} \cap V\right.$ is not meager $\}=$ $\bigcup_{\alpha<\kappa}\left\{x \in X \mid\left(R_{\alpha}\right)_{x} \cap V\right.$ is not meager $\}$. To see that it is closed under complements, suppose that $R \subseteq X \times Y$ is a κ^{+}-Borel set, set $S=\sim R$, suppose that $V \subseteq Y$ is a non-empty open set, fix a countable basis \mathcal{W} for V consisting solely of non-empty open sets, and observe that $\left\{x \in X \mid S_{x} \cap V\right.$ is not meager $\}=\bigcup_{W \in \mathcal{W}}\left\{x \in X \mid R_{x} \cap W\right.$ is meager $\}$ by Propositions 1.5.3, 1.5.4, and 1.5.8.

Theorem 1.5.13 (Kuratowski-Ulam). Suppose that X is a Baire space, Y is a second-countable Baire space, and $R \subseteq X \times Y$ has the Baire property.
(1) The set $\left\{x \in X \mid R_{x}\right.$ has the Baire property $\}$ is comeager.
(2) The set R is comeager if and only if $\left\{x \in X \mid R_{x}\right.$ is comeager $\}$ is comeager.

Proof. We first establish the special case of (\Longrightarrow) in (2) where R is dense and open. For each non-empty open set $V \subseteq Y$, define $V^{\prime}=\operatorname{proj}_{X}(R \cap(X \times V))$. Note that if $U \subseteq X$ is a non-empty open set, then $R \cap(U \times V) \neq \emptyset$, so $U \cap V^{\prime} \neq \emptyset$, thus V^{\prime} is dense. Fix a countable basis \mathcal{V} for Y consisting of non-empty sets, and note that the set $C=\bigcap_{V \in \mathcal{V}} V^{\prime}$ is comeager, and R_{x} is dense and open for all $x \in C$.

We next establish (\Longrightarrow) in (2). Fix dense open sets $R_{n} \subseteq X \times Y$ with the property that $\bigcap_{n \in \mathbb{N}} R_{n} \subseteq R$, and observe that the sets $C_{n}=$ $\left\{x \in X \mid\left(R_{n}\right)_{x}\right.$ is dense and open\} are comeager, thus so too is the set $C=\bigcap_{n \in \mathbb{N}} C_{n}$, and $\bigcap_{n \in \mathbb{N}}\left(R_{n}\right)_{x}$ is comeager for all $x \in C$.

To see (1), fix an open set $W \subseteq X \times Y$ for which $R \triangle W$ is meager, note that the set $C=\left\{x \in X \mid R_{x} \triangle W_{x}\right.$ is meager $\}$ is comeager, and observe that R_{x} has the Baire property for all $x \in C$.

It only remains to establish (\Longleftarrow) in (2). Towards this end, note that $W \backslash(R \triangle W) \subseteq R$, so if W is dense, then R is comeager. But if W is not dense, then there are non-empty open sets $U \subseteq X$ and $V \subseteq Y$ with the property that $(U \times V) \cap W=\emptyset$, and if $x \in U$, then $R_{x} \cap V \subseteq R_{x} \backslash W_{x} \subseteq R_{x} \triangle W_{x}$, so Proposition 1.5.3 yields comeagerly many $x \in U$ for which $R_{x} \cap V$ is both comeager in V and meager in V, contradicting Proposition 1.5.2.

Proposition 1.5.14. Suppose that X is a second-countable Baire space. Then $\operatorname{add}\left(\mathrm{BP}_{X \times X}\right) \leq \operatorname{add}\left(\mathcal{M}_{X}\right)$.

Proof. Suppose, towards a contradiction, that $\operatorname{add}\left(\mathcal{M}_{X}\right)$ is strictly less than $\operatorname{add}\left(\mathrm{BP}_{X \times X}\right)$, and fix a sequence $\left(M_{\alpha}\right)_{\alpha<\operatorname{add}\left(\mathcal{M}_{X}\right)}$ of meager subsets of X whose union M is not meager. Associate with each $x \in M$ the least ordinal $\alpha(x)$ for which $x \in M_{\alpha(x)}$, and let \preceq be the quasi-order on M given by $x \preceq y \Longleftrightarrow \alpha(x) \leq \alpha(y)$. As products of meager sets are meager, and \preceq is a union of strictly fewer than $\operatorname{add}\left(\mathrm{BP}_{X \times X}\right)$-many such products, it follows that \preceq has the Baire property. As every horizontal section of \preceq is meager, Theorem 1.5.13 yields a meager vertical section of \preceq. But M is the union of any such set with the corresponding horizontal section, and is therefore meager, a contradiction.

6. Canonical objects

A homomorphism from a D-ary relation R on X to a D-ary relation S on Y is a function $\phi: X \rightarrow Y$ for which $\phi^{D}(R) \subseteq S$. The diagonal on X is given by $\Delta(X)=\{(x, y) \in X \times X \mid x=y\}$.

Theorem 1.6.1 (Mycielski). Suppose that R is a meager binary relation on $2^{\mathbb{N}}$. Then there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to $\sim R$.

Proof. Fix a decreasing sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of dense open subsets of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ whose intersection is disjoint from R.

Lemma 1.6.2. Suppose that $n \in \mathbb{N}$ and $\phi: 2^{n} \rightarrow 2^{<\mathbb{N}}$. Then there is a function $\psi: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ such that:

- $\forall t \in 2^{n+1} \phi(t \upharpoonright n) \sqsubset \psi(t)$.
- $\forall t \in \sim \Delta\left(2^{n+1}\right) \prod_{i<2} \mathcal{N}_{\psi(t(i))} \subseteq U_{n}$.

Proof. Fix an enumeration $\left(t_{k}\right)_{k<4^{n+1}-2^{n+1}}$ of $\sim \Delta\left(2^{n+1}\right)$, as well as $\psi_{0}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ such that $\forall t \in 2^{n+1} \phi(t \upharpoonright n) \sqsubset \psi_{0}(t)$, and given $k<4^{n+1}-2^{n+1}$ and $\psi_{k}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$, fix $\psi_{k+1}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ such that:

- $\forall t \in 2^{n+1} \psi_{k}(t) \sqsubseteq \psi_{k+1}(t)$.
- $\prod_{i<2} \mathcal{N}_{\psi_{k+1}\left(t_{k}(i)\right)} \subseteq U_{n}$.

Clearly the function $\psi=\psi_{4^{n+1}-2^{n+1}}$ is as desired.
By Lemma 1.6.2, there are functions $\phi_{n}: 2^{n} \rightarrow 2^{<\mathbb{N}}$ such that:
(1) $\forall n \in \mathbb{N} \forall t \in 2^{n+1} \phi_{n}(t \upharpoonright n) \sqsubset \phi_{n+1}(t)$.
(2) $\forall n \in \mathbb{N} \forall t \in \sim \Delta\left(2^{n+1}\right) \prod_{i<2} \mathcal{N}_{\phi_{n+1}(t(i))} \subseteq U_{n}$.

Condition (1) ensures that we obtain a continuous function $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by setting by $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi_{n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$. To see that ϕ is a homomorphism from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to $\sim R$, note that if $c \in \sim \Delta\left(2^{\mathbb{N}}\right)$, then there exists $n \in \mathbb{N}$ such that $c(0)(n) \neq c(1)(n)$, in which case condition (2) ensures that $(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\phi_{m+1}(c(i) \upharpoonright(m+1))} \subseteq U_{m}$ for all $m \geq n$, thus $(\phi(c(i)))_{i<2} \in \sim R$.

A D-dimensional dihypergraph on a set X is a D-ary binary relation H on X disjoint from the D-dimensional diagonal on X, given by $\Delta^{D}(X)=\left\{x \in X^{D} \mid \forall c, d \in D x(c)=x(d)\right\}$. Given a D-ary relation H on X, we say that a set $Y \subseteq X$ is H-independent if $H \upharpoonright Y=\emptyset$. The box topology on a product $\prod_{d \in D} X_{d}$ of topological spaces is the topology generated by the sets of the form $\prod_{d \in D} U_{d}$, where $U_{d} \subseteq X_{d}$ is open for all $d \in D$.

Proposition 1.6.3. Suppose that D is a countable set of cardinality at least two, X is a topological space, H is a box-open D-dimensional dihypergraph on X, and $Y \subseteq X$ is H-independent. Then \bar{Y} is H independent.

Proof. If there exists $\bar{y} \in H \upharpoonright \bar{Y}$, then there is an open neighborhood $\prod_{d \in D} U_{d}$ of \bar{y} contained in H. Fix $y \in \prod_{d \in D} U_{d} \cap Y$, and observe that $y \in H \upharpoonright Y$, a contradiction.

The complete D-dimensional dihypergraph on a set X is the complement of the D-dimensional diagonal on X. A κ-coloring of a D dimensional dihypergraph H on X is a homomorphism $c: X \rightarrow \kappa$ from
H to the complete D-dimensional dihypergraph on κ. The existence of a κ-coloring of H is trivially equivalent to the existence of a covering of X by κ-many H-independent sets.

Proposition 1.6.4. Suppose that AD holds, D is a countable set of cardinality at least two, X is a subset of an analytic Hausdorff space, H is a box-open D-dimensional dihypergraph on X, and there is an ordinal coloring of H. Then there is an \aleph_{0}-coloring of H.

Proof. Fix an analytic Hausdorff space $Y \supseteq X$. Clearly we can assume that $Y \neq \emptyset$, so Proposition 1.4.1 yields a continuous surjection $\phi: \mathbb{N}^{\mathbb{N}} \rightarrow Y$. Fix an aleph κ for which there is a cover $\left(X_{\alpha}\right)_{\alpha<\kappa}$ of X by H-independent sets, and let C_{α} be the closure of X_{α} within Y for all $\alpha<\kappa$. As Theorem 1.1.5 ensures that $\left\{T_{\phi^{-1}\left(C_{\alpha}\right)} \mid \alpha<\kappa\right\}$ is countable, Proposition 1.1.2 ensures that $\left\{\phi^{-1}\left(C_{\alpha}\right) \mid \alpha<\kappa\right\}$ is countable, so the surjectivity of ϕ yields that $\left\{C_{\alpha} \mid \alpha<\kappa\right\}$ is countable. But Proposition 1.6.3 implies that $C_{\alpha} \cap X$ is H-independent for all $\alpha<\kappa$.

A subset of a topological space is F_{σ} if it is a union of countablymany closed sets, G_{δ} if it is an intersection of countably-many open sets, and $\boldsymbol{\Delta}_{2}^{0}$ if it is both F_{σ} and G_{δ}. A function $\phi: X \rightarrow Y$ is Γ-measurable if $\phi^{-1}(V) \in \Gamma$ for all open sets $V \subseteq Y$.

Proposition 1.6.5. Suppose that D is a countable set of cardinality at least two, X is a metric space, and H is a D-dimensional dihypergraph on X. Then the following are equivalent:
(1) There is a cover $\left(C_{n}\right)_{n \in \mathbb{N}}$ of X by H-independent closed sets.
(2) There is a Δ_{2}^{0}-measurable \aleph_{0}-coloring $c: X \rightarrow \mathbb{N}$ of H.

Proof. To see $(2) \Longrightarrow(1)$, observe that $c^{-1}(\{n\})$ is a union of countably-many closed sets for all $n \in \mathbb{N}$. To see $(1) \Longrightarrow(2)$, set $B_{n}=C_{n} \backslash \bigcup_{m<n} C_{m}$ for all $n \in \mathbb{N}$. As every closed subset of a metric space is the intersection of the ϵ-balls around it, and therefore G_{δ}, it follows that each of the sets B_{n} is F_{σ}, so the \aleph_{0}-coloring sending each point $x \in X$ to the unique natural number $n \in \mathbb{N}$ for which $x \in B_{n}$ is F_{σ}-measurable, and therefore Δ_{2}^{0}-measurable.

When D has cardinality at least two, we use $\mathbb{H}_{D^{\mathbb{N}}}$ to denote the D dimensional dihypergraph on $D^{\mathbb{N}}$ given by $\mathbb{H}_{D^{\mathbb{N}}}=\bigcup_{t \in D^{<\mathbb{N}}} \prod_{d \in D} \mathcal{N}_{t \wedge(d)}$.

Proposition 1.6.6. Suppose that D is a countable discrete space of cardinality at least two. Then every $\mathbb{H}_{D^{\mathbb{N}}}$-independent set $X \subseteq D^{\mathbb{N}}$ is meager.

Proof. By Proposition 1.6.3, the set $C=\bar{X}$ is $\mathbb{H}_{D^{\mathbb{N}}}$-independent. As Theorem 1.5.1 ensures that $D^{\mathbb{N}}$ is a Baire space, Proposition 1.5.8
implies that C has the Baire property, so Proposition 1.5.4 yields that if X is not meager, then there exists $t \in D^{<\mathbb{N}}$ for which $C \cap \mathcal{N}_{t}$ is comeager in \mathcal{N}_{t}, thus $\mathcal{N}_{t} \subseteq C$. But $(t \frown(d) \frown b(d))_{d \in D} \in \mathbb{H}_{D^{\mathbb{N}}} \upharpoonright C$ for all $b \in\left(D^{\mathbb{N}}\right)^{D}$, contradicting the $\mathbb{H}_{D^{\mathbb{N}}}$-independence of C.

Proposition 1.6.7. Suppose that D is a countable discrete space of cardinality at least two and $\kappa<\operatorname{add}\left(\mathcal{M}_{D^{\mathbb{N}}}\right)$. Then there is no κ coloring of $\mathbb{H}_{D^{\mathbb{N}}}$.

Proof. By Theorem 1.5.1 and Proposition 1.6.6.
Proposition 1.6.8. Suppose that AD holds and D is a countable discrete space of cardinality at least two. Then there is no ordinalcoloring of $\mathbb{H}_{D^{\mathrm{N}}}$.

Proof. By Theorem 1.5.1 and Propositions 1.6.4 and 1.6.7. \boxtimes
A digraph on a set X is an irreflexive binary relation G on X. For all sequences $s \in 2^{<\mathbb{N}}$, define a homeomorphism $\iota_{s}: \mathcal{N}_{s \wedge(0)} \rightarrow \mathcal{N}_{s \wedge(1)}$ by setting $\iota_{s}(s \frown(0) \frown c)=s \frown(1) \frown c$ for all $c \in 2^{\mathbb{N}}$. For all sets $S \subseteq 2^{<\mathbb{N}}$, define $G_{S}=\bigcup_{s \in S} \operatorname{graph}\left(\iota_{s}\right)$. Following the standard abuse of language, for each infinite set $N \subseteq \mathbb{N}$, we use $\mathbb{G}_{0}(N)$ to denote any digraph of the form G_{S}, where $S \subseteq 2^{<N}$ contains an extension of every element of $2^{<\mathbb{N}}$, but only one sequence of every length in N. Define $\mathbb{G}_{0}=\mathbb{G}_{0}(\mathbb{N})$.

Proposition 1.6.9. Suppose that $N \subseteq \mathbb{N}$ is infinite and $B \subseteq 2^{\mathbb{N}}$ is $a \mathbb{G}_{0}(N)$-independent set with the Baire property. Then B is meager.

Proof. Fix a set $S \subseteq 2^{<\mathbb{N}}$ for which $\mathbb{G}_{0}(N)=G_{S}$, and suppose, towards a contradiction, that B is not meager. By Proposition 1.5.4, there is a sequence $r \in 2^{<\mathbb{N}}$ for which B is comeager in \mathcal{N}_{r}. Fix an extension $s \in S$ of r. As ι_{s} is a homeomorphism and Proposition 1.5.3 ensures that B is comeager in \mathcal{N}_{s}, Proposition 1.5.5 implies that the set $C=B \cap \mathcal{N}_{s \wedge(0)} \cap \iota_{s}^{-1}\left(B \cap \mathcal{N}_{s \wedge(1)}\right)$ is comeager in $\mathcal{N}_{s \wedge(0)}$, and therefore not empty by Theorem 1.5.1. But $\left(c, \iota_{s}(c)\right) \in \mathbb{G}_{0}(N) \upharpoonright B$ for all $c \in C$, the desired contradiction.

For all sets $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, define $R^{-1}=\{(y, x) \in$ $Y \times X \mid x R y\}$ and $R S=\{(x, z) \in X \times Z \mid \exists y \in Y x R y S z\}$.

Proposition 1.6.10. Suppose that $\kappa<\operatorname{add}\left(\mathcal{M}_{2^{\mathbb{N}}}\right), N \subseteq \mathbb{N}$ is infinite, R is a binary relation on $2^{\mathbb{N}}$ with the Baire property, and there is a Baire-measurable κ-coloring c of $\mathbb{G}_{0}(N) \cap R^{-1} R$. Then R is meager.

Proof. Suppose, towards a contradiction, that R is not meager. Theorems 1.5.1 and 1.5.13 then yield $d \in 2^{\mathbb{N}}$ for which R_{d} has the

Baire property and is not meager. Fix $\alpha<\kappa$ for which $c^{-1}(\{\alpha\}) \cap R_{d}$ is not meager. As $R_{d} \times R_{d} \subseteq R^{-1} R$, it follows that $c^{-1}(\{\alpha\}) \cap R_{d}$ is $\mathbb{G}_{0}(N)$-independent, contradicting Proposition 1.6.9.

Proposition 1.6.11. Suppose that AD holds, $N \subseteq \mathbb{N}$ is infinite, and R is a binary relation on $2^{\mathbb{N}}$ for which there is an ordinal-coloring c of $\mathbb{G}_{0}(N) \cap R^{-1} R$. Then R is meager.

Proof. Theorem 1.5.11 ensures that R has the Baire property and c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14 imply that $\operatorname{add}\left(\mathcal{M}_{2^{\mathbb{N}}}\right)=\infty$, so this follows from Proposition 1.6.10. \boxtimes

The concatenation $\bigoplus_{m<n} s_{m}$ of a finite sequence $\left(s_{m}\right)_{m<n}$ of finite sequences is defined recursively by setting $\bigoplus_{m<0} s_{m}=\emptyset$ and letting $\bigoplus_{m<n+1} s_{m}$ be the concatenation of $\bigoplus_{m<n} s_{m}$ and s_{n}. The concatenation of an infinite sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of finite sequences is given by $\bigoplus_{n \in \mathbb{N}} s_{n}=\bigcup_{n \in \mathbb{N}} \bigoplus_{m<n} s_{m}$.

Proposition 1.6.12. Suppose that R is a non-meager binary relation on $2^{\mathbb{N}}$ with the Baire property. Then there are continuous homomorphisms $\phi_{i}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from \mathbb{G}_{0} to \mathbb{G}_{0} for which $\prod_{i<2} \phi_{i}\left(2^{\mathbb{N}}\right) \subseteq R$.

Proof. By Proposition 1.5.4, there exists $u \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ for which $R \cap \prod_{i<2} \mathcal{N}_{u(i)}$ is comeager in $\prod_{i<2} \mathcal{N}_{u(i)}$, in which case there are dense open sets $U_{n} \subseteq \prod_{i<2} \mathcal{N}_{u(i)}$ such that $\bigcap_{n \in \mathbb{N}} U_{n} \subseteq R$. Fix sequences $s_{n} \in 2^{n}$ with the property that $\mathbb{G}_{0}=G_{S}$, where $S=\left\{s_{n} \mid n \in \mathbb{N}\right\}$.

Lemma 1.6.13. Suppose that $n \in \mathbb{N}$ and $\phi_{i}: 2^{n} \rightarrow 2^{<\mathbb{N}}$ has the property that $u(i) \sqsubseteq \phi_{i}(t)$ for all $i<2$ and $t \in 2^{<\mathbb{N}}$. Then there exists $v \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that:

- $\forall t \in 2^{n} \times 2^{n} \prod_{i<2} \mathcal{N}_{\phi_{i}(t) \sim v(i)} \subseteq U_{n}$.
- $\forall i<2 \phi_{i}\left(s_{n}\right) \frown v(i) \in S$.

Proof. Fix an enumeration $\left(t_{k}\right)_{k<4^{n}}$ of $2^{n} \times 2^{n}$, and $v_{0} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$. Given $k<4^{n}$ and $v_{k} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, fix $v_{k+1} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that:

- $\forall i<2 v_{k}(i) \sqsubseteq v_{k+1}(i)$.
- $\prod_{i<2} \mathcal{N}_{\phi_{i}\left(t_{k}(i)\right) \sim v_{k+1}(i)} \subseteq U_{n}$.

Then any pair $v \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ with the property that $v_{4^{n}}(i) \sqsubseteq v(i)$ and $\phi_{i}\left(s_{n}\right) \frown v(i) \in S$ for all $i<2$ is as desired.

Fix functions $\phi_{i, 0}: 2^{0} \rightarrow 2^{<\mathbb{N}}$ such that $u(i) \sqsubseteq \phi_{i, 0}(\emptyset)$ for all $i<2$, and appeal to Lemma 1.6.13 to obtain pairs $u_{n} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, from which we define $\phi_{i, n+1}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ by $\phi_{i, n+1}(t)=\phi_{i, n}(t \upharpoonright n) \frown u_{n}(i) \frown(t(n))$ for all $i<2$ and $t \in 2^{n+1}$, such that:
(1) $\forall t \in 2^{n+1} \times 2^{n+1} \prod_{i<2} \mathcal{N}_{\phi_{i, n+1}(t(i))} \subseteq U_{n}$.
(2) $\forall c \in 2^{\mathbb{N}}\left(\phi_{i, n+1}\left(s_{n} \frown(j)\right) \frown c\right)_{i<2} \in \mathbb{G}_{0}$.

As $\forall i<2 \forall n \in \mathbb{N} \forall t \in 2^{n+1} \phi_{i, n}(t \upharpoonright n) \sqsubset \phi_{i, n+1}(t)$, we obtain continuous functions $\phi_{i}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by setting $\phi_{i}(c)=\bigcup_{n \in \mathbb{N}} \phi_{i, n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$ and $i<2$. To see that $\prod_{i<2} \phi_{i}\left(2^{\mathbb{N}}\right) \subseteq R$, note that if $c \in 2^{\mathbb{N}} \times 2^{\mathbb{N}}$, then $\forall n \in \mathbb{N}\left(\phi_{i}(c(i))\right)_{i<2} \in \prod_{i<2} \mathcal{N}_{\phi_{i, n+1}(c(i) \upharpoonright(n+1))} \subseteq U_{n}$ by condition (1). To see that each ϕ_{i} is a homomorphism from \mathbb{G}_{0} to \mathbb{G}_{0}, note that if $c \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, then $\left(\phi_{i}\left(s_{n} \frown(j) \frown c\right)\right)_{j<2}=\left(\phi_{i, n+1}\left(s_{n} \frown(j)\right) \frown d\right)_{j<2}$, where $d=\bigoplus_{m \in \mathbb{N}}(c(m)) \frown u_{n+1+m}(i)$, and appeal to condition (2). \boxtimes

The equivalence relation \mathbb{E}_{0} on $2^{\mathbb{N}}$ is given by

$$
c \mathbb{E}_{0} d \Longleftrightarrow \exists n \in \mathbb{N} \forall m \geq n c(m)=d(m)
$$

Proposition 1.6.14. The smallest equivalence relation E on $2^{\mathbb{N}}$ containing \mathbb{G}_{0} is \mathbb{E}_{0}.

Proof. Fix sequences $s_{n} \in 2^{n}$ such that $\mathbb{G}_{0}=G_{\left\{s_{n} \mid n \in \mathbb{N}\right\}}$. It is enough to show that $\forall c \in 2^{\mathbb{N}} \forall u, v \in 2^{n} u \frown(0) \frown c E v \frown(1) \frown c$ for all $n \in \mathbb{N}$. But if this holds strictly below some $n \in \mathbb{N}$, then $u \frown(0) \frown c E s_{n} \frown(0) \frown c E s_{n} \frown(1) \frown c E v \frown(1) \frown c$ for all $c \in 2^{\mathbb{N}}$ and $u, v \in 2^{n}$, so it holds at n as well.

An equivalence relation E is generically ergodic if every E-invariant set with the Baire property is comeager or meager.

Proposition 1.6.15. The relation \mathbb{E}_{0} is generically ergodic.
Proof. Suppose that $B \subseteq 2^{\mathbb{N}}$ is an \mathbb{E}_{0}-invariant non-meager set with the Baire property. By Proposition 1.5.4 and the obvious induction, it is sufficient to show that if $i<2, s \in 2^{<\mathbb{N}}$, and $B \cap \mathcal{N}_{s \wedge(i)}$ is comeager in $\mathcal{N}_{s \wedge(i)}$, then $B \cap \mathcal{N}_{s \neg(1-i)}$ is comeager in $\mathcal{N}_{s \wedge(1-i)}$. As ι_{s} is a homeomorphism, this follows from Proposition 1.5.5.

Proposition 1.6.16. Suppose that X is a Baire space, Y is a second-countable T_{0} space, E is a generically ergodic equivalence relation on X, and $\phi: X \rightarrow Y$ is a Baire-measurable homomorphism from E to $\Delta(Y)$. Then there exists $y \in Y$ for which $\phi^{-1}(\{y\})$ is comeager.

Proof. Fix a countable basis \mathcal{V} for Y, let \mathcal{W} be the set of all $V \in \mathcal{V}$ with the property that $\phi^{-1}(V)$ is comeager, and observe that the set $C=\left(\bigcap_{W \in \mathcal{W}} \phi^{-1}(W)\right) \backslash\left(\bigcup_{V \in \mathcal{V} \backslash \mathcal{W}} \phi^{-1}(V)\right)$ is comeager. As Y is T_{0}, it follows that $\phi \upharpoonright C$ is constant.

Given a topological space X, we say that a set $Y \subseteq X$ is \aleph_{0} universally Baire if for every continuous function $\phi: 2^{\mathbb{N}} \rightarrow X$, the set $\phi^{-1}(Y)$ has the Baire property. The incomparability relation associated
with a quasi-order R on a set X is the binary relation \perp_{R} on X for which $x \perp_{R} y$ if and only if neither $x R y$ nor $y R x$.

Proposition 1.6.17 (M-Vidnyánszky). Suppose that X is a topological space and R is an \aleph_{0}-universally-Baire quasi-order on X for which there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to \perp_{R}. Then there are continuous homomorphisms $\phi_{i}: 2^{\mathbb{N}} \rightarrow \phi\left(2^{\mathbb{N}}\right)$ from \mathbb{G}_{0} to $\perp_{R} \upharpoonright \phi\left(2^{\mathbb{N}}\right)$ such that $\prod_{i<2} \phi_{i}\left(2^{\mathbb{N}}\right) \subseteq \perp_{R}$.

Proof. As the quasi-order $R_{0}=(\phi \times \phi)^{-1}(R)$ has the Baire property, so too does $\perp_{R_{0}}$, as does every horizontal and vertical section of either relation.

Lemma 1.6.18. The relation $\perp_{R_{0}}$ is not meager.
Proof. Suppose, towards a contradiction, that $\perp_{R_{0}}$ is meager. Then the set $C=\left\{c \in 2^{\mathbb{N}} \mid\left(\perp_{R_{0}}\right)_{c}\right.$ is meager $\}$ is comeager, by Theorem 1.5.13. The binary relation R_{0}^{\prime} on $2^{\mathbb{N}}$ given by $c R_{0}^{\prime} d \Longleftrightarrow$ $\forall^{*} b \in 2^{\mathbb{N}}\left(b R_{0} c \Longrightarrow b R_{0} d\right)$ is clearly a quasi-order. Note that if $(d, c) \in\left(2^{\mathbb{N}} \times C\right) \backslash R_{0}^{\prime}$, then $(c, d]_{R_{0}}$ is not meager, so $c<_{R_{0}} d$. As $\mathbb{G}_{0} \subseteq \perp_{R_{0}}$, it follows that $\mathbb{G}_{0} \upharpoonright C \subseteq \equiv_{R_{0}^{\prime}}$. As Proposition 1.5.5 ensures that every comeager subset of $2^{\mathbb{N}}$ has an \mathbb{E}_{0}-invariant comeager subset, Proposition 1.6 .14 yields an \mathbb{E}_{0}-invariant comeager set $C^{\prime} \subseteq C$ for which $\mathbb{E}_{0} \upharpoonright C^{\prime} \subseteq \equiv_{R_{0}^{\prime}}$. Observe that for all $s \in 2^{\mathbb{N}}$, the set $B_{s}=\left\{c \in 2^{\mathbb{N}} \mid \forall^{*} b \in \mathcal{N}_{s} b R_{0} c\right\}$ has the Baire property, by Theorems 1.5.12 and 1.5.13. As Proposition 1.5.4 implies that $c \equiv_{R_{0}^{\prime}} d \Longleftrightarrow$ $\forall s \in 2^{<\mathbb{N}}\left(c \in B_{s} \Longleftrightarrow d \in B_{s}\right)$ for all $c, d \in C$, Proposition 1.6.15 ensures that $\equiv_{R_{0}^{\prime}}$ has a comeager equivalence class. Fixing $s, t \in 2^{<\mathbb{N}}$ for which $R_{0} \cap\left(\mathcal{N}_{s} \times \mathcal{N}_{t}\right)$ is comeager in $\mathcal{N}_{s} \times \mathcal{N}_{t}$, Theorem 1.5.13 implies that $\forall^{*} c \in \mathcal{N}_{t} \forall^{*} b \in \mathcal{N}_{s} b R_{0} c$, so $\forall^{*} b, c \in \mathcal{N}_{s} b R_{0} c$, thus $\equiv_{R_{0}}$ has an equivalence class that is comeager in \mathcal{N}_{s}. But Proposition 1.6.9 then ensures that $\equiv_{R_{0}} \cap \mathbb{G}_{0} \neq \emptyset$, the desired contradiction.

By Proposition 1.6.12 and Lemma 1.6.18, there are continuous homomorphisms $\phi_{i}^{\prime}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from \mathbb{G}_{0} to \mathbb{G}_{0} for which $\prod_{i<2} \phi_{i}^{\prime}\left(2^{\mathbb{N}}\right) \subseteq \perp_{R_{0}}$, in which case the functions $\phi_{i}=\phi \circ \phi_{i}^{\prime}$ are as desired.

Proposition 1.6.19 (M-Vidnyánszky). Suppose that X is an analytic Hausdorff space and R is an \aleph_{0}-universally-Baire quasi-order on X for which there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to \perp_{R}. Then there is a continuous homomorphism $\pi: 2^{\mathbb{N}} \rightarrow X$ from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to \perp_{R}.

Proof. Proposition 1.4.1 yields a continuous surjection $\psi: \mathbb{N}^{\mathbb{N}} \rightarrow$ X. We will recursively construct functions $\psi_{n}: 2^{n} \rightarrow \mathbb{N}^{n}$ and continuous homomorphisms $\phi_{s}: 2^{\mathbb{N}} \rightarrow \psi\left(\mathcal{N}_{\psi_{n}(s)}\right)$ from \mathbb{G}_{0} to $\perp_{R} \upharpoonright \psi\left(\mathcal{N}_{\psi_{n}(s)}\right)$ such that:
(1) $\forall i<2 \forall n \in \mathbb{N} \forall s \in 2^{n} \psi_{n}(s) \sqsubseteq \psi_{n+1}(s \frown(i))$.
(2) $\forall i<2 \forall n \in \mathbb{N} \forall s \in 2^{n} \phi_{s \cap(i)}\left(2^{\mathbb{N}}\right) \subseteq \phi_{s}\left(2^{\mathbb{N}}\right)$.
(3) $\forall n \in \mathbb{N} \forall s \in 2^{n} \prod_{i<2} \phi_{s _(i)}\left(2^{\mathbb{N}}\right) \subseteq \perp_{R}$.

We begin by setting $\phi_{0}=\phi$ and $\psi_{0}(\emptyset)=\emptyset$. Suppose that $n \in \mathbb{N}$ and we have found $\left(\phi_{s}\right)_{s \in 2^{n}}$ and ψ_{n}. For all $s \in 2^{n}$, Proposition 1.6 .17 yields continuous homomorphisms $\phi_{s, i}: 2^{\mathbb{N}} \rightarrow \phi_{s}\left(2^{\mathbb{N}}\right)$ from \mathbb{G}_{0} to $\perp_{R} \upharpoonright \phi_{s}\left(2^{\mathbb{N}}\right)$ for which $\prod_{i<2} \phi_{s, i}\left(2^{\mathbb{N}}\right) \subseteq \perp_{R}$. Fix extensions $\psi_{n+1}(s \frown(i)) \in \mathbb{N}^{n+1}$ of $\psi_{n}(s)$ such that $\phi_{s, i}^{-1}\left(\psi\left(\mathcal{N}_{\psi_{n+1}(s \wedge(i))}\right)\right)$ is not meager for all $i<2$. As Proposition 1.4.2 ensures that the latter sets are analytic, Proposition 1.5.9 implies that they have the Baire property, so the special case of Proposition 1.6.12 where $R=\prod_{i<2} \phi_{s, i}^{-1}\left(\psi\left(\mathcal{N}_{\psi_{n+1}\left(s _(i)\right)}\right)\right)$ yields continuous homomorphisms $\phi_{s, i}^{\prime}: 2^{\mathbb{N}} \rightarrow \phi_{s, i}^{-1}\left(\psi\left(\mathcal{N}_{\psi_{n+1}\left(s _(i)\right)}\right)\right)$ from \mathbb{G}_{0} to $\mathbb{G}_{0} \upharpoonright \phi_{s, i}^{-1}\left(\psi\left(\mathcal{N}_{\psi_{n+1}\left(s _(i)\right)}\right)\right)$. Define $\phi_{s _(i)}=\phi_{s, i} \circ \phi_{s, i}^{\prime}$.

Condition (1) ensures that we obtain a continuous map $\psi_{\infty}: 2^{\mathbb{N}} \rightarrow$ $\mathbb{N}^{\mathbb{N}}$ by setting $\psi_{\infty}(c)=\bigcup_{n \in \mathbb{N}} \psi_{n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$. Define $\pi=\psi \circ \psi_{\infty}$, and note that for all $c \in 2^{\mathbb{N}}$, Proposition 1.4.6 ensures that $\pi(c)$ is the unique element of $\bigcap_{n \in \mathbb{N}} \psi\left(\mathcal{N}_{\psi_{n}(c\lceil n)}\right)$, and since $\phi_{c \upharpoonright n}\left(2^{\mathbb{N}}\right) \subseteq \psi\left(\mathcal{N}_{\psi_{n}(c\lceil n)}\right)$ for all $n \in \mathbb{N}$ and the former sets have non-empty intersection by condition (2), it follows that $\pi(c)$ is also the unique element of $\bigcap_{n \in \mathbb{N}} \phi_{c \mid n}\left(2^{\mathbb{N}}\right)$. To see that π is a homomorphism from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to \perp_{R}, observe that if $c, d \in 2^{\mathbb{N}}$ are distinct, then there is a maximal natural number $n \in \mathbb{N}$ for which $c \upharpoonright n=d \upharpoonright n$, and since $\pi(c) \in \phi_{s \wedge(c(n))}\left(2^{\mathbb{N}}\right)$ and $\pi(d) \in \phi_{s \sim(d(n))}\left(2^{\mathbb{N}}\right)$, where $s=c \upharpoonright n=d \upharpoonright n$, condition (3) ensures that $\pi(c) \perp_{R} \pi(d)$.

Let \mathbb{F}_{0} denote the subequivalence relation of \mathbb{E}_{0} given by

$$
c \mathbb{F}_{0} d \Longleftrightarrow \exists n \in \mathbb{N} \forall m \geq n \sum_{k<m} c(k) \equiv \sum_{k<m} d(k)(\bmod 2) .
$$

Proposition 1.6.20. Suppose that E is an equivalence relation on $2^{\mathbb{N}}$ and F is an index-two subequivalence relation of E with the property that $\mathbb{G}_{0} \subseteq E \backslash F$. Then $\mathbb{F}_{0} \subseteq F$ and $\mathbb{E}_{0} \backslash \mathbb{F}_{0} \subseteq E \backslash F$.

Proof. Note that if $c \mathbb{E}_{0} d$, then Proposition 1.6 .14 yields a $\mathbb{G}_{0}^{ \pm 1}$ path γ from c to d, so the fact that $\mathbb{G}_{0} \subseteq E$ ensures that $c E d$. Moreover, the fact that $\mathbb{G}_{0} \subseteq \mathbb{E}_{0} \backslash \mathbb{F}_{0}$ and \mathbb{F}_{0} has index two below \mathbb{E}_{0} ensures that $c \mathbb{F}_{0} d \Longleftrightarrow \gamma$ has evenly-many edges, whereas the fact that $\mathbb{G}_{0} \subseteq E \backslash F$ and F has index two below E implies that $c F d \Longleftrightarrow \gamma$ has evenly-many edges, thus $c \mathbb{F}_{0} d \Longleftrightarrow c F d$.

A partial transversal of an equivalence relation E on X over a subequivalence relation F of E is a set $Y \subseteq X$ for which $E \upharpoonright Y=F \upharpoonright Y$.

Proposition 1.6.21. Suppose that $B \subseteq 2^{\mathbb{N}}$ is a partial transversal of \mathbb{E}_{0} over \mathbb{F}_{0} with the Baire property. Then B is meager.

Proof. As $\mathbb{G}_{0} \subseteq \mathbb{E}_{0} \backslash \mathbb{F}_{0}$, it follows that B is \mathbb{G}_{0}-independent, so Proposition 1.6.9 ensures that it is meager.

A homomorphism from a sequence $\left(R_{i}\right)_{i \in I}$ of D-ary relations on X to a sequence $\left(S_{i}\right)_{i \in I}$ of D-ary relations on Y is a function $\phi: X \rightarrow Y$ that is a homomorphism from R_{i} to S_{i} for all $i \in I$.

Proposition 1.6.22. Suppose that N is a nowhere dense binary relation on $2^{\mathbb{N}}$ and R is a meager binary relation on $2^{\mathbb{N}}$. Then there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\left(\sim \Delta\left(2^{\mathbb{N}}\right), \mathbb{F}_{0}, \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $\left(\sim N, \mathbb{F}_{0}, \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim R\right)$.

Proof. Fix a decreasing sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of dense open symmetric subsets of $\sim \bar{N}$ whose intersection is disjoint from R.

Lemma 1.6.23. Suppose that $n \in \mathbb{N}$ and $\phi: 2^{n} \rightarrow 2^{<\mathbb{N}}$. Then there exist $\ell>0$ and $u \in 2^{\ell} \times 2^{\ell}$ such that:

- $\forall t \in 2^{n} \times 2^{n} \prod_{i<2} \mathcal{N}_{\phi(t(i)) \wedge u(i)} \subseteq U_{n}$.
- $\sum_{k<\ell} u(0)(k) \not \equiv \sum_{k<\ell} u(1)(k)(\bmod 2)$.

Proof. Fix an enumeration $\left(t_{k}\right)_{k<4^{n}}$ of $2^{n} \times 2^{n}$, and $u_{0} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$. Given $k<4^{n}$ and $u_{k} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, fix $u_{k+1} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that:

- $\forall i<2 u_{k}(i) \sqsubseteq u_{k+1}(i)$.
- $\prod_{i<2} \mathcal{N}_{\phi\left(t_{k}(i)\right) \wedge u_{k+1}(i)} \subseteq U_{n}$.

Then any $\ell>0$ and pair $u \in 2^{\ell} \times 2^{\ell}$ such that $u_{4^{n}}(i) \sqsubseteq u(i)$ for all $i<2$ and $\sum_{k<\ell} u(0)(k) \not \equiv \sum_{k<\ell} u(1)(k)(\bmod 2)$ is as desired.

Fix $\phi_{0}: 2^{0} \rightarrow 2^{0}$, and appeal to Lemma 1.6.23 to obtain $\ell_{n}>0$ and pairs $u_{n} \in 2^{\ell_{n}} \times 2^{\ell_{n}}$, from which we define $\phi_{n+1}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ by $\phi_{n+1}(t)=\phi_{n}(t \upharpoonright n) \frown u_{n}(t(n))$ for all $t \in 2^{n+1}$, such that:
(1) $\forall t \in 2^{n} \times 2^{n} \prod_{i<2} \mathcal{N}_{\phi_{n+1}(t(i) \wedge(i))} \subseteq U_{n}$.
(2) $\sum_{k<\ell_{n}} u_{n}(0)(k) \not \equiv \sum_{k<\ell_{n}} u_{n}(1)(k)(\bmod 2)$.

As $\forall n \in \mathbb{N} \forall t \in 2^{n+1} \phi_{n}(t \upharpoonright n) \sqsubset \phi_{n+1}(t)$, we obtain a continuous function $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by setting $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi_{n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$. To see that ϕ is a homomorphism from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to $\sim N$, note that if $c \in \sim \Delta\left(2^{\mathbb{N}}\right)$, then there exists $n \in \mathbb{N}$ for which $c(0)(n) \neq c(1)(n)$, so $(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\phi_{n+1}(c(i) \upharpoonright(n+1))} \subseteq U_{n} \subseteq \sim N$ by condition (1). To see that ϕ is a homomorphism from $\left(\mathbb{F}_{0}, \mathbb{E}_{0} \backslash \mathbb{F}_{0}\right)$ to $\left(\mathbb{F}_{0}, \mathbb{E}_{0} \backslash \mathbb{F}_{0}\right)$, note
that if $c \in \mathbb{E}_{0}$, then there exists $n \in \mathbb{N}$ such that $c(0)(m)=c(1)(m)$ for all $m \geq n$, and condition (2) ensures that if $\ell=\sum_{m<n} \ell_{m}$, then

$$
\begin{aligned}
c(0) & \mathbb{F}_{0} c(1) \\
& \Longleftrightarrow \sum_{m<n} c(0)(m) \equiv \sum_{m<n} c(1)(m)(\bmod 2) \\
& \Longleftrightarrow|\{m<n \mid c(0)(m) \neq c(1)(m)\}| \text { is even } \\
& \Longleftrightarrow\left|\left\{m<n \mid u_{m}(c(0)(m)) \not \equiv u_{m}(c(1)(m))(\bmod 2)\right\}\right| \text { is even } \\
& \Longleftrightarrow \sum_{m<n} u_{m}(c(0)(m)) \equiv \sum_{m<n} u_{m}(c(1)(m))(\bmod 2) \\
& \Longleftrightarrow \sum_{m<\ell} \phi_{n}(c(0) \upharpoonright n)(m) \equiv \sum_{m<\ell} \phi_{n}(c(1) \upharpoonright n)(m)(\bmod 2) \\
& \Longleftrightarrow \phi(c(0)) \mathbb{F}_{0} \phi(c(1)) .
\end{aligned}
$$

To see that ϕ is a homomorphism from $\sim \mathbb{E}_{0}$ to $\sim R$, note that if $c \in \sim \mathbb{E}_{0}$, then there is an infinite set $N \subseteq \mathbb{N}$ such that $c(0)(n) \neq c(1)(n)$ for all $n \in N$, so $\forall n \in N(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\left.\phi_{n+1}(c(i))(n+1)\right)} \subseteq U_{n}$ by condition (1), thus $(\phi(c(i)))_{i<2} \in \sim R$.

For all sequences $t \in \bigcup_{n \in \mathbb{N}} 2^{n} \times 2^{n}$, define $\iota_{t}: \mathcal{N}_{t(0) \wedge(0)} \rightarrow \mathcal{N}_{t(1) \wedge(1)}$ by setting $\iota_{t}(t(0) \frown(0) \frown c)=t(1) \frown(1) \frown c$ for all $c \in 2^{\mathbb{N}}$. For all sets $T \subseteq \bigcup_{n \in \mathbb{N}} 2^{n} \times 2^{n}$, define $G_{T}=\bigcup_{t \in T} \operatorname{graph}\left(\iota_{t}\right)$.

Proposition 1.6.24. Suppose that $T \subseteq \bigcup_{n \in \mathbb{N}} 2^{n} \times 2^{n}$ contains an extension of every element of $2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, and R is a transitive binary relation on $2^{\mathbb{N}}$ with the Baire property containing G_{T}. Then R is comeager or meager.

Proof. Suppose, towards a contradiction, that R is neither comeager nor meager. By Proposition 1.5.4, there exist pairs $u, v \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ with the property that $R \cap\left(\mathcal{N}_{u(1)} \times \mathcal{N}_{v(0)}\right)$ is comeager in $\mathcal{N}_{u(1)} \times \mathcal{N}_{v(0)}$ and $R \cap\left(\mathcal{N}_{u(0)} \times \mathcal{N}_{v(1)}\right)$ is meager in $\mathcal{N}_{u(0)} \times \mathcal{N}_{v(1)}$. Fix $s, t \in T$ with the property that $u(i) \sqsubseteq s(i)$ and $v(i) \sqsubseteq t(i)$ for all $i<2$. As $\left(\iota_{s}^{-1} \times \iota_{t}\right)\left(R \cap\left(\mathcal{N}_{s(1) \wedge(1)} \times \mathcal{N}_{t(0) \wedge(0)}\right)\right) \subseteq R$, Proposition 1.5.5 ensures that $R \cap\left(\mathcal{N}_{s(0) \wedge(0)} \times \mathcal{N}_{t(1) \wedge(1)}\right)$ is comeager in $\mathcal{N}_{s(0) \wedge(0)} \times \mathcal{N}_{t(1) \wedge(1)}$. But $R \cap\left(\mathcal{N}_{s(0) \wedge(0)} \times \mathcal{N}_{t(1) \wedge(1)}\right)$ is also meager in $\mathcal{N}_{s(0) \wedge(0)} \times \mathcal{N}_{t(1) \wedge(1)}$ by Proposition 1.5.3, contradicting Theorem 1.5.1 and Proposition 1.5.2. \boxtimes

For each infinite set $N \subseteq \mathbb{N}$, we use $\mathbb{H}_{0}(N)$ to denote any digraph of the form G_{T}, where $T \subseteq \bigcup_{n \in N} \mathbb{N}^{n} \times \mathbb{N}^{n}$ contains an extension of every element of $2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, but only one pair corresponding to each length in N.

Proposition 1.6.25. Suppose that $\kappa<\operatorname{add}\left(\mathcal{M}_{2^{\mathbb{N}}}\right)$ and R is a linear quasi-order on $2^{\mathbb{N}}$ with the Baire property containing $\mathbb{H}_{0}(2 \mathbb{N}+1)$. Then there is no Baire-measurable κ-coloring c of $\equiv_{R} \cap \mathbb{G}_{0}(2 \mathbb{N})$.

Proof. As Theorem 1.5.1 and Proposition 1.6.24 ensure that R is comeager, so too is \equiv_{R}, contradicting Proposition 1.6.10.

Proposition 1.6.26. Suppose that AD holds and R is a linear quasiorder on $2^{\mathbb{N}}$ containing $\mathbb{H}_{0}(2 \mathbb{N}+1)$. Then there is no ordinal-coloring c of $\equiv_{R} \cap \mathbb{G}_{0}(2 \mathbb{N})$.

Proof. As Theorem 1.5.11 ensures that R has the Baire property and c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14 imply that $\operatorname{add}\left(\mathcal{M}_{2^{\mathbb{N}}}\right)=\infty$, this follows from Proposition 1.6.25. \boxtimes

The strict quasi-order associated with a quasi-order R on a set X is the binary relation $<_{R}$ on X for which $x<_{R} y$ if and only if $x R y$ but $\neg y R x$. The partial order \mathbb{R}_{0} on $2^{\mathbb{N}}$ is given by

$$
c<_{\mathbb{R}_{0}} d \Longleftrightarrow \exists n \in \mathbb{N}(c(n)<d(n) \text { and } \forall m>n c(m)=d(m))
$$

The odometer is the homeomorphism of $2^{\mathbb{N}}$ given by

$$
\sigma\left((1)^{n} \frown(0) \frown c\right)=(0)^{n} \frown(1) \frown c
$$

Proposition 1.6.27. The transitive closure R of graph $(\sigma) \backslash\left\{\left((1)^{\infty}\right.\right.$, $\left.\left.(0)^{\infty}\right)\right\}$ is ${<\mathbb{R}_{0} .}$.

Proof. It is enough to show that $\forall c \in 2^{\mathbb{N}} \forall u, v \in 2^{n} u \frown(0) \frown c R$ $v \frown(1) \frown c$ for all $n \in \mathbb{N}$. But if this holds strictly below some $n \in \mathbb{N}$, then $u \frown(0) \frown c S(1)^{n} \frown(0) \frown c R(0)^{n} \frown(1) \frown c S v \frown(1) \frown c$ for all $c \in 2^{\mathbb{N}}$ and $u, v \in 2^{n}$, where $S=\Delta\left(2^{\mathbb{N}}\right) \cup R$, so it holds at n. \boxtimes

A reduction of a D-ary relation R on X to a D-ary relation S on Y is a homomorphism from $(R, \sim R)$ to $(S, \sim S)$. An embedding of R into S is an injective reduction of R to S.

Proposition 1.6.28. Suppose that $B \subseteq 2^{\mathbb{N}}$ is a non-meager set with the Baire property. Then there is a continuous embedding of \mathbb{R}_{0} into $\mathbb{R}_{0} \upharpoonright B$.

Proof. By Proposition 1.5.4, there is a sequence $u \in 2^{<\mathbb{N}}$ for which $B \cap \mathcal{N}_{u}$ is comeager in \mathcal{N}_{u}, in which case there are dense open sets $U_{n} \subseteq \mathcal{N}_{u}$ such that $\bigcap_{n \in \mathbb{N}} U_{n} \subseteq B$.

Lemma 1.6.29. Suppose that $n \in \mathbb{N}$ and $\phi: 2^{n} \rightarrow 2^{<\mathbb{N}}$ has the property that $u \sqsubseteq \phi(s)$ for all $s \in 2^{n}$. Then there exists $v \in 2^{<\mathbb{N}}$ such that $\forall s \in 2^{n} \mathcal{N}_{\phi(s) \wedge v} \subseteq U_{n}$.

Proof. Fix an enumeration $\left(s_{k}\right)_{k<2^{n}}$ of 2^{n}, set $v_{0}=\emptyset$, and given $k<2^{n}$ and $v_{k} \in 2^{<\mathbb{N}}$, fix $v_{k+1} \in 2^{<\mathbb{N}}$ such that $v_{k} \sqsubseteq v_{k+1}$ and $\mathcal{N}_{\phi\left(s_{k}\right) \sim v_{k+1}} \subseteq U_{n}$. Then any $v \in 2^{<\mathbb{N}}$ such that $v_{2^{n}} \sqsubseteq v$ is as desired.

Fix $\phi_{0}: 2^{0} \rightarrow 2^{<\mathbb{N}}$ such that $u \sqsubseteq \phi_{0}(\emptyset)$, and appeal to Lemma 1.6.29 to obtain sequences $u_{n} \in 2^{<\mathbb{N}}$, from which we define $\phi_{n+1}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ by $\phi_{n+1}(s)=\phi_{n}(s \upharpoonright n) \frown u_{n} \frown s(n)$ for all $s \in 2^{n+1}$, such that $\forall s \in 2^{n+1} \mathcal{N}_{\phi_{n+1}(s)} \subseteq U_{n}$. As $\forall n \in \mathbb{N} \forall s \in 2^{n+1} \phi_{n}(s \upharpoonright n) \sqsubset \phi_{n+1}(s)$, we obtain a continuous embedding $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ of \mathbb{R}_{0} into \mathbb{R}_{0} by setting $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi_{n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$. To see that $\phi\left(2^{\mathbb{N}}\right) \subseteq B$, observe that if $c \in 2^{\mathbb{N}}$, then $\forall n \in \mathbb{N} \phi(c) \in \mathcal{N}_{\phi_{n+1}(c \uparrow(n+1))} \subseteq U_{n}$.

Proposition 1.6.30. Suppose that R is an \aleph_{0}-universally Baire quasi-order on $2^{\mathbb{N}}$ for which $\mathbb{R}_{0} \subseteq R \subseteq \mathbb{E}_{0}$. Then there is a continuous embedding of \mathbb{R}_{0} or \mathbb{E}_{0} into R.

Proof. Note that the set $X=\left\{c \in 2^{\mathbb{N}} \mid c<_{R} \sigma(c)\right\}$ has the Baire property, and Proposition 1.6.27 ensures that $R \upharpoonright X=\mathbb{R}_{0} \upharpoonright X$. If X is not meager, then Proposition 1.6.28 therefore yields a continuous embedding of \mathbb{R}_{0} into $R \upharpoonright X$. If X is meager, then Proposition 1.5.5 ensures that $\bigcup_{n \in \mathbb{Z}} \sigma^{n}(X)$ is meager, so Proposition 1.6.27 implies that $[X]_{\mathbb{E}_{0}}$ is meager, and since Proposition 1.6.27 also ensures that $R \upharpoonright \sim[X]_{\mathbb{E}_{0}}=\mathbb{E}_{0} \upharpoonright \sim[X]_{\mathbb{E}_{0}}$, Proposition 1.6 .28 yields a continuous embedding of \mathbb{E}_{0} into $R \upharpoonright \sim[X]_{\mathbb{E}_{0}}$.

Proposition 1.6.31. Suppose that N is a nowhere dense binary relation on $2^{\mathbb{N}}$ and R is a meager binary relation on $2^{\mathbb{N}}$. Then there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\left(\sim \Delta\left(2^{\mathbb{N}}\right), \operatorname{graph}(\sigma) \backslash\right.$ $\left.\left\{\left((1)^{\infty},(0)^{\infty}\right)\right\}, \sim \mathbb{E}_{0}\right)$ to $\left(\sim N, \mathbb{H}_{0}(2 \mathbb{N}+1), \sim R\right)$.

Proof. Fix a set $T \subseteq \bigcup_{n \in \mathbb{N}} 2^{n} \times 2^{n}$ for which $\mathbb{H}_{0}(2 \mathbb{N}+1)=G_{T}$, as well as a decreasing sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of dense open symmetric subsets of $\sim \bar{N}$ whose intersection is disjoint from R.

Lemma 1.6.32. Suppose that $n \in \mathbb{N}$ and $\phi: 2^{n} \rightarrow 2^{<\mathbb{N}}$. Then there exist $\ell \in \mathbb{N}$ and $u \in 2^{\ell} \times 2^{\ell}$ such that:

- $\forall s \in 2^{n} \times 2^{n} \prod_{i<2} \mathcal{N}_{\phi(s(i)) \sim u(i)} \subseteq U_{n}$.
- $\left(\phi\left((1-i)^{n}\right) \frown u(i)\right)_{i<2} \in T$.

Proof. Fix an enumeration $\left(s_{k}\right)_{k<4^{n}}$ of $2^{n} \times 2^{n}$, and $u_{0} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$. Given $k<4^{n}$ and $u_{k} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, fix $u_{k+1} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that:

- $\forall i<2 u_{k}(i) \sqsubseteq u_{k+1}(i)$.
- $\prod_{i<2} \mathcal{N}_{\phi\left(s_{k}(i)\right) \wedge u_{k+1}(i)} \subseteq U_{n}$.

Then any $\ell \in \mathbb{N}$ and $u \in 2^{\ell} \times 2^{\ell}$ with the property that $u_{4^{n}}(i) \sqsubseteq u(i)$ and $\left(\phi\left((1-i)^{n}\right) \frown u(i)\right)_{i<2} \in T$ are as desired.

Fix $\phi_{0}: 2^{0} \rightarrow 2^{<\mathbb{N}}$, and appeal to Lemma 1.6.32 to obtain $\ell_{n} \in \mathbb{N}$ and pairs $u_{n} \in 2^{\ell_{n}} \times 2^{\ell_{n}}$, from which we define $\phi_{n+1}: 2^{n+1} \rightarrow 2^{<\mathbb{N}}$ by $\phi_{n+1}(s)=\phi_{n}(s \upharpoonright n) \frown u_{n}(s(n)) \frown(s(n))$ for all $s \in 2^{n+1}$, such that:
(1) $\forall s \in 2^{n} \times 2^{n} \prod_{i<2} \mathcal{N}_{\phi_{n+1}(s(i) \wedge(i))} \subseteq U_{n}$.
(2) $\forall c \in 2^{\mathbb{N}}\left(\phi_{n+1}\left((1-i)^{n} \frown(i)\right) \frown c\right)_{i<2} \in \mathbb{H}_{0}(2 \mathbb{N}+1)$.

As $\forall n \in \mathbb{N} \forall s \in 2^{n+1} \phi_{n}(s \upharpoonright n) \sqsubset \phi_{n+1}(s)$, we obtain a continuous function $\phi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by setting $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi_{n}(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$. To see that ϕ is a homomorphism from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to $\sim N$, note that if $c \in \sim \Delta\left(2^{\mathbb{N}}\right)$, then there exists $n \in \mathbb{N}$ with the property that $c(0)(n) \neq c(1)(n)$, so $(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\phi_{n+1}(c(i) \upharpoonright(n+1))} \subseteq$ $U_{n} \subseteq \sim N$ by condition (1). To see that ϕ is a homomorphism from $\operatorname{graph}(\sigma) \backslash\left\{\left((1)^{\infty},(0)^{\infty}\right)\right\}$ to $\mathbb{H}_{0}(2 \mathbb{N}+1)$, note that if $c \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, then $\left(\phi\left((1-i)^{n} \frown(i) \frown c\right)\right)_{i<2}=\left(\phi_{n+1}\left((1-i)^{n} \frown(i)\right) \frown d\right)_{i<2}$, where $d=\bigoplus_{m \in \mathbb{N}} u_{n+1+m}(c(m)) \frown(c(m))$, and appeal to condition (2). To see that ϕ is a homomorphism from $\sim \mathbb{E}_{0}$ to $\sim R$, note that if $c \in \sim \mathbb{E}_{0}$, then there is an infinite set $N \subseteq \mathbb{N}$ such that $c(0)(n) \neq c(1)(n)$ for all $n \in N$, so $\forall n \in N(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\left.\phi_{n+1}(c(i))(n+1)\right)} \subseteq U_{n}$ by condition (1), thus $(\phi(c(i)))_{i<2} \in \sim R$.

CHAPTER 2

The box-open dihypergraph dichotomy

1. Colorings of box-open dihypergraphs

Here we consider the circumstances under which a box-open count-able-dimensional dihypergraph admits an ordinal coloring.

Theorem 2.1.1 (Feng, Carroy-M-Soukup). Suppose that D is a countable discrete space of cardinality at least two, κ is an aleph, X is a κ-Souslin Hausdorff space, and H is a box-open D-dimensional dihypergraph on X. Then at least one of the following holds:
(1) There is a κ-coloring of H.
(2) There is a continuous homomorphism $\phi: D^{\mathbb{N}} \rightarrow X$ from $\mathbb{H}_{D^{\mathbb{N}}}$ to H.

Proof. We can clearly assume that $X \neq \emptyset$, in which case Proposition 1.4.1 yields a continuous surjection $\phi_{X}: \kappa^{\mathbb{N}} \rightarrow X$. Recursively define an increasing sequence $\left(T^{\alpha}\right)_{\alpha<\kappa^{+}}$of subsets of $\kappa^{<\mathbb{N}}$, as well as a decreasing sequence $\left(X^{\alpha}\right)_{\alpha<\kappa^{+}}$of subsets of X, by setting $X^{0}=$ $X, T^{\alpha}=\left\{t \in \kappa^{<\mathbb{N}} \mid \phi_{X}\left(\mathcal{N}_{t}\right) \cap X^{\alpha}\right.$ is H-independent $\}$ and $X^{\alpha+1}=$ $\sim \bigcup_{t \in T^{\alpha}} \phi_{X}\left(\mathcal{N}_{t}\right)$ for all $\alpha<\kappa^{+}$, and $X^{\lambda}=\bigcap_{\alpha<\lambda} X^{\alpha}$ for all limit ordinals $\lambda<\kappa^{+}$.

Lemma 2.1.2. Suppose that $\alpha<\kappa^{+}$and $t \in \sim T^{\alpha+1}$. Then there is a sequence $\left(t_{d}\right)_{d \in D}$ of proper extensions of t in $\sim T^{\alpha}$ with the property that $\prod_{d \in D} \phi_{X}\left(\mathcal{N}_{t_{d}}\right) \subseteq H$.

Proof. As $t \notin T^{\alpha+1}$, there exists $x \in H \upharpoonright\left(\phi_{X}\left(\mathcal{N}_{t}\right) \cap X^{\alpha+1}\right)$. As H is box open, there is an open neighborhood $\prod_{d \in D} U_{d}$ of x contained in H. Fix a sequence $b \in \mathcal{N}_{t}^{D}$ such that $\phi_{X}^{D}(b)=x$, and for all $d \in D$, appeal to the continuity of ϕ_{X} to obtain a natural number $n_{d}>|t|$ such that $\phi_{X}\left(\mathcal{N}_{b(d) \mid n_{d}}\right) \subseteq U_{d}$, noting that the sequence $t_{d}=b(d) \upharpoonright n_{d}$ is in $\sim T^{\alpha}$, since $x(d) \in X^{\alpha+1}$.

As $\left(T^{\alpha}\right)_{\alpha<\kappa^{+}}$is increasing, there is an ordinal $\alpha<\kappa^{+}$with the property that $T^{\alpha}=T^{\alpha+1}$.

Lemma 2.1.3. If $\emptyset \in T^{\alpha}$, then there is a κ-coloring of H.
Proof. As the sets of the form $\phi_{X}\left(\mathcal{N}_{t}\right) \cap X^{\beta}$, where $\beta \leq \alpha$ and $t \in T^{\beta}$, are H-independent, it is sufficient to show that they cover X.

But if $x \in X$, then there is a least ordinal $\gamma \leq \alpha+1$ such that $x \notin X^{\gamma}$, and since γ is necessarily the successor of some ordinal $\beta \leq \alpha$, there exists $t \in T^{\beta}$ such that $x \in \phi_{X}\left(\mathcal{N}_{t}\right)$, so $x \in \phi_{X}\left(\mathcal{N}_{t}\right) \cap X^{\beta}$.

By Lemma 2.1.3, we can assume that $\emptyset \notin T^{\alpha}$. Lemma 2.1.2 and DC then yield a sequence of functions $\phi_{n}: D^{n} \rightarrow \sim T^{\alpha}$ such that:
(a) $\forall d \in D \forall t \in D^{n} \phi_{n}(t) \sqsubset \phi_{n+1}(t \frown(d))$.
(b) $\forall t \in D^{n} \prod_{d \in D} \phi_{X}\left(\mathcal{N}_{\phi_{n+1}(t \sim(d))}\right) \subseteq H$.

Condition (a) ensures that we obtain a continuous map $\phi_{\infty}: D^{\mathbb{N}} \rightarrow \kappa^{\mathbb{N}}$ by setting $\phi_{\infty}(b)=\bigcup_{n \in \mathbb{N}} \phi_{n}(b \upharpoonright n)$ for all $b \in D^{\mathbb{N}}$. To see that the map $\phi=\phi_{X} \circ \phi_{\infty}$ is a homomorphism from $\mathbb{H}_{D^{\mathbb{N}}}$ to H, note that if $n \in \mathbb{N}$ and $t \in D^{n}$, then $\phi^{D}\left(\prod_{d \in D} \mathcal{N}_{t \curvearrowright(d)}\right) \subseteq \prod_{d \in D} \phi_{X}\left(\mathcal{N}_{\phi_{n+1}(t \sim(d))}\right) \subseteq H$ by condition (b).

Theorem 2.1.4 (Feng, Carroy-M-Soukup). Suppose that D is a countable discrete space of cardinality at least two, X is an analytic Hausdorff space, and H is a box-open D-dimensional dihypergraph on X. Then exactly one of the following holds:
(1) There is an \aleph_{0}-coloring of H.
(2) There is a continuous homomorphism $\phi: D^{\mathbb{N}} \rightarrow X$ from $\mathbb{H}_{D^{\mathbb{N}}}$ to H.

Proof. Proposition 1.6.7 ensures that the two conditions are mutually exclusive, and the special case of Theorem 2.1.1 where $\kappa=\aleph_{0}$ implies that at least one of them holds.
®
Theorem 2.1.5 (Feng, Carroy-M-Soukup). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, D is a countable discrete space of cardinality at least two, X is a subset of an analytic Hausdorff space, and H is a box-open D-dimensional dihypergraph on X. Then exactly one of the following holds:
(1) There is an \aleph_{0}-coloring of H.
(2) There is a continuous homomorphism $\phi: D^{\mathbb{N}} \rightarrow X$ from $\mathbb{H}_{D^{\mathbb{N}}}$ to H.

Proof. Proposition 1.6.7 ensures that the two conditions are mutually exclusive. Theorem 1.4.15 yields an aleph κ for which X is κ-Souslin, so Theorem 2.1.1 ensures that there is a κ-coloring of H or a continuous homomorphism $\phi: D^{\mathbb{N}} \rightarrow X$ from $\mathbb{H}_{D^{\mathbb{N}}}$ to H, thus Proposition 1.6.4 implies that at least one of the two conditions holds.

Remark 2.1.6. Theorem 2.1.5 continues to hold under the weaker hypothesis that AD holds (see [CMS]), yielding analogous generalizations of the other consequences of $\mathrm{AD}_{\mathbb{R}}$ established in this chapter.

The following observation often ensures that the homomorphisms given by the above results are injective:

Proposition 2.1.7. Suppose that D is a set of cardinality at least two, X is a set, H is a D-dimensional dihypergraph on X consisting solely of injective sequences, and $\phi: D^{\mathbb{N}} \rightarrow X$ is a homomorphism from $\mathbb{H}_{D^{\mathbb{N}}}$ to H. Then ϕ is injective.

Proof. Suppose that $a, b \in D^{\mathbb{N}}$ are distinct, fix $c \in \mathbb{H}_{D^{\mathbb{N}}}$ for which $a, b \in c(D)$, and note that $\phi \circ c \in H$, so $\phi(a) \neq \phi(b)$.

A digraph on X is an irreflexive binary relation on X, and a graph is a symmetric digraph. Note that every homomorphism $\phi: X \rightarrow Y$ from a digraph G on X to a graph H on Y is a homomorphism from $G^{ \pm 1}$ to H. The complete graph on X is given by $K_{X}=\sim \Delta(X)$. As $K_{X}=\mathbb{H}_{2^{\mathbb{N}}}^{ \pm 1}$, it follows that a map $\phi: 2^{\mathbb{N}} \rightarrow X$ is a homomorphism from $\mathbb{H}_{2^{\mathbb{N}}}$ to a graph G if and only if it is a homomorphism from K_{X} to G.

We next consider the circumstances under which a set can be wellordered:

Theorem 2.1.8 (Souslin). Suppose that κ is an aleph and X is a κ-Souslin Hausdorff space. Then at least one of the following holds:
(1) The cardinality of X is at most κ.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$.

Proof. As every K_{X}-independent set $Y \subseteq X$ contains at most one point, this follows from the special cases of Theorem 2.1.1 and Proposition 2.1.7 where $D=2$ and $H=K_{X}$.

Theorem 2.1.9 (Souslin). Suppose that X is an analytic Hausdorff space. Then exactly one of the following holds:
(1) The set X is countable.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$.

Proof. As $\mathfrak{c} \not \leq \aleph_{0}$, this follows from the special case of Theorem 2.1.8 where $\kappa=\aleph_{0}$.

THEOREM 2.1.10 (Davis). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds and X is a subset of an analytic Hausdorff space. Then exactly one of the following holds:
(1) The set X is countable.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$.

Proof. As $\mathfrak{c} \not \leq \aleph_{0}$ and every K_{X}-independent set $Y \subseteq X$ contains at most one point, this follows from the analog of the proof of Theorem 2.1.8 in which one replaces the use of Theorem 2.1.1 with that of Theorem 2.1.5.

Finally, we consider the circumstances under which a space can be covered by a well-orderable family of compact sets.

Theorem 2.1.11 (Carroy-M-Soukup). Suppose that κ is an aleph, X is a metric space, and $Y \subseteq X$ is κ-Souslin. Then at least one of the following holds:
(1) There is a cover of Y by at most κ-many compact subsets of X.
(2) There is a closed continuous injection $\phi: \mathbb{N}^{\mathbb{N}} \hookrightarrow X$ with the property that $\phi\left(\mathbb{N}^{\mathbb{N}}\right) \subseteq Y$.
Proof. Let H be the \mathbb{N}-dimensional dihypergraph on X consisting of all injective sequences $x \in X^{\mathbb{N}}$ with no convergent subsequence. Note that if $x \in H, \epsilon_{n} \leq \inf _{m \in \mathbb{N} \backslash\{n\}} d(x(m), x(n))$ for all $n \in \mathbb{N}$, and $\epsilon_{n} \rightarrow 0$, then $\prod_{n \in \mathbb{N}} \mathcal{B}\left(x(n), \epsilon_{n} / 2\right) \subseteq H$, so H is box open. As every closed H independent set is compact, Proposition 1.6.3 ensures that if there is a κ-coloring of $H \upharpoonright Y$, then condition (1) holds. Otherwise, Theorem 2.1.1 yields a continuous homomorphism $\phi: \mathbb{N}^{\mathbb{N}} \rightarrow Y$ from $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}$ to H, and Proposition 2.1.7 ensures that ϕ is injective. To see that ϕ sends closed subsets of $\mathbb{N}^{\mathbb{N}}$ to closed subsets of X, it is sufficient to show that every sequence $a \in\left(\mathbb{N}^{\mathbb{N}}\right)^{\mathbb{N}}$ for which $\phi \circ a$ converges in X has a convergent subsequence. If there exists $b \in \mathbb{N}^{\mathbb{N}}$ such that $a(n)(i)<b(i)$ for all $i, n \in \mathbb{N}$, then the compactness of $\prod_{i \in \mathbb{N}} b(i)$ yields the desired subsequence. So suppose, towards a contradiction, that there does not exist such a b. Then there is a least $i \in \mathbb{N}$ for which $\{a(n)(i) \mid n \in \mathbb{N}\}$ is infinite. By passing to a subsequence, we can assume that for all distinct $m, n \in \mathbb{N}$, the sequences $a(m)$ and $a(n)$ differ from one another for the first time on their $i^{\text {th }}$ coordinates. Fix $b \in \mathbb{H}_{\mathbb{N}^{N}}$ for which $a(\mathbb{N}) \subseteq b(\mathbb{N})$, and observe that $\phi \circ b \in H$, contradicting the fact that $\phi \circ a$ converges.
\boxtimes
A subset of a topological space is K_{σ} if it is a union of countablymany compact sets.

Theorem 2.1.12 (Hurewicz, Kechris-Saint Raymond). Suppose that X is a metric space and $Y \subseteq X$ is analytic. Then exactly one of the following holds:
(1) There is a K_{σ} subset of X containing Y.
(2) There is a closed continuous injection $\phi: \mathbb{N}^{\mathbb{N}} \hookrightarrow X$ with the property that $\phi\left(\mathbb{N}^{\mathbb{N}}\right) \subseteq Y$.
Proof. As $\mathbb{N}^{\mathbb{N}}$ is not K_{σ} and preimages of compact sets under continuous closed injections are compact, this follows from the special case of Theorem 2.1.11 where $\kappa=\aleph_{0}$.

Theorem 2.1.13 (Kechris-Saint Raymond). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic metric space, and $Y \subseteq X$. Then exactly one of the following holds:
(1) There is a K_{σ} subset of X containing Y.
(2) There is a closed continuous injection $\phi: \mathbb{N}^{\mathbb{N}} \hookrightarrow X$ with the property that $\phi\left(\mathbb{N}^{\mathbb{N}}\right) \subseteq Y$.

Proof. As $\mathbb{N}^{\mathbb{N}}$ is not K_{σ} and preimages of compact sets under continuous closed injections are compact, this follows from the analog of the proof of Theorem 2.1.11 in which one replaces the use of Theorem 2.1.1 with that of Theorem 2.1.5.

2. Partial compactifications

Given sets $Y \subseteq X^{<\mathbb{N}}$ and $Z \subseteq X^{\leq \mathbb{N}}$, let $Y \frown Z$ denote the set of sequences of the form $y \frown z$, where $y \in Y$ and $z \in Z$. Given a sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ of topological spaces, the product topology on $\left(\prod_{n \in \mathbb{N}} X_{n}\right) \cup$ $\bigcup_{n \in \mathbb{N}} \prod_{m<n} X_{m}$ is the topology generated by the basic open sets of the form $\left(\prod_{m<n} U_{m}\right) \frown\left(\left(\prod_{m \in \mathbb{N}} X_{m+n}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+n}\right)$, where $n \in \mathbb{N}$ and $U_{m} \subseteq X_{m}$ is open for all $m<n$.

Proposition 2.2.1. Suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of compact spaces and U_{n} is a proper open subset of X_{n} for all $n \in \mathbb{N}$. Then $\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$ is compact.

Proof. Suppose that \mathcal{V} is a family of open subsets of $\left(\prod_{n \in \mathbb{N}} X_{n}\right) \cup$ $\bigcup_{n \in \mathbb{N}} \prod_{m<n} X_{m}$ covering the space in question. For all $n \in \mathbb{N}$, let \mathcal{V}_{n} be the family of all open hyperrectangles $\prod_{m<n} V_{m} \subseteq \prod_{m<n} X_{m}$ such that $\left(\prod_{m<n} V_{m}\right) \frown \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+n}$ is contained in a set in \mathcal{V}.

Lemma 2.2.2. Suppose that $n \in \mathbb{N}$ and $K_{m} \subseteq U_{m}$ is a non-empty compact set for all $m<n$. Then there is a compact set $K_{n} \subseteq U_{n}$ for which there is a finite set $\mathcal{F}_{n+1} \subseteq \mathcal{V}_{n+1}$ covering $\left(\prod_{m<n} K_{m}\right) \frown\left(\sim K_{n}\right)^{1}$.

Proof. As $\left(\prod_{m<n} K_{m}\right) \frown\left(\sim U_{n}\right)^{1}$ is compact, there is a finite subcover $\mathcal{F}_{n+1} \subseteq \mathcal{V}_{n+1}$ of $\left(\prod_{m<n} K_{m}\right) \frown\left(\sim U_{n}\right)^{1}$. Let \mathcal{F}_{n+1} be the family of sets $\mathcal{F} \subseteq \mathcal{F}_{n+1}$ for which $\left\{V_{n} \mid \prod_{m<n+1} V_{m} \in \mathcal{F}\right\}$ covers $\sim U_{n}$, and define $K_{n}=\sim \bigcap_{\mathcal{F} \in \mathcal{F}_{n+1}} \bigcup_{\prod_{m<n+1} V_{m} \in \mathcal{F}} V_{n}$. As $\sim U_{n} \subseteq \sim K_{n}$, it follows that $K_{n} \subseteq U_{n}$. To see that \mathcal{F}_{n+1} covers $\left(\prod_{m<n} K_{m}\right) \frown\left(\sim K_{n}\right)^{1}$, suppose that $x \in\left(\prod_{m<n} K_{m}\right) \frown\left(\sim K_{n}\right)^{1}$, and observe that the corresponding family $\mathcal{F}=\left\{\prod_{m<n+1} V_{m} \in \mathcal{F}_{n+1}|x| n \in \prod_{m<n} V_{m}\right\}$ is in \mathcal{F}_{n+1}, so the definition of K_{n} yields a hyperrectangle $\prod_{m<n+1} V_{m} \in \mathcal{F}$ for which $x_{n} \in V_{n}$, thus $x \in \prod_{m<n+1} V_{m} \in \mathcal{F}_{n+1}$.

Observe that if $n \in \mathbb{N}, K_{m} \subseteq U_{m}$ is a non-empty compact set for all $m<n, \mathcal{F}_{m+1} \subseteq \mathcal{V}_{m+1}$ is a cover of $\left(\prod_{\ell<m} K_{\ell}\right) \frown\left(\sim K_{m}\right)^{1}$ for all $m<n$, and $\mathcal{F}_{n+1} \subseteq \mathcal{V}_{n+1}$ is a cover of $\left(\prod_{m<n} K_{m}\right) \frown X^{1}$, then the basic open subsets of $\left(\prod_{m \in \mathbb{N}} X_{m}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{m}$ associated with
the sets in $\bigcup_{m<n+1} \mathcal{F}_{m+1}$ cover $\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$. By Lemma 2.2.2 and DC, we can therefore assume that there are nonempty compact sets $K_{n} \subseteq U_{n}$ and finite subcovers $\mathcal{F}_{n+1} \subseteq \mathcal{V}_{n+1}$ of $\left(\prod_{m<n} K_{m}\right) \frown\left(\sim K_{n}\right)^{1}$ for all $n \in \mathbb{N}$. Let \mathcal{V}_{∞} be the family of all basic open subsets of $\left(\prod_{n \in \mathbb{N}} X_{n}\right) \cup \bigcup_{n \in \mathbb{N}} \prod_{m<n} X_{m}$ contained in a set in \mathcal{V}. As $\prod_{n \in \mathbb{N}} K_{n}$ is compact, there is a finite subcover $\mathcal{F}_{\infty} \subseteq \mathcal{V}_{\infty}$ of $\prod_{n \in \mathbb{N}} K_{n}$. Fix $n \in \mathbb{N}$ for which every set in \mathcal{F}_{∞} is of the form $\left(\prod_{\ell<m} V_{\ell}\right) \frown\left(\left(\prod_{\ell \in \mathbb{N}} X_{\ell+m}\right) \cup \bigcup_{\ell \in \mathbb{N}} \prod_{k<\ell} X_{k+m}\right)$, where $m<n+1$ and $\prod_{\ell<m} V_{\ell} \subseteq \prod_{\ell<m} X_{\ell}$ is an open hyperrectangle. Then \mathcal{F}_{∞} is a cover of $\left(\prod_{m<n} K_{m}\right) \frown \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+n}$, so the sets in \mathcal{F}_{∞} along with the basic open subsets of $\left(\prod_{m \in \mathbb{N}} X_{m}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{m}$ associated with the sets in $\bigcup_{m<n} \mathcal{F}_{m+1}$ cover $\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$.

An ultrametric on X is a function $\rho: X \times X \rightarrow[0, \infty)$ such that $\rho(x, y)=0 \Longleftrightarrow x=y$ and $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$, and $\rho(x, z) \leq \max \{\rho(x, y), \rho(y, z)\}$ for all $x, y, z \in X$. Given a point $x \in X$ and a set $Y \subseteq X$, define $\rho(x, Y)=\inf _{y \in Y} \rho(x, y)$.

Proposition 2.2.3. Suppose that X is an ultrametric space, $x, y \in$ $X, Z \subseteq Y$, and $\rho_{X}(x, Z)>\rho_{X}(y, Z)$. Then $\rho_{X}(x, Z) \leq \rho(x, y)$.

Proof. Fix $z \in Z$ with the property that $\rho_{X}(x, Z)>\rho_{X}(y, z)$. As $\rho_{X}(x, Z) \leq \rho_{X}(x, z) \leq \max \left\{\rho_{X}(x, y), \rho_{X}(y, z)\right\}$, it follows that $\rho_{X}(x, Z) \leq \rho_{X}(x, y)$.

Proposition 2.2.4. Suppose that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of (complete) ultrametric spaces and $U_{n} \subseteq X_{n}$ is open for all $n \in \mathbb{N}$. Then $\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$ admits a compatible (complete) ultrametric.

Proof. Fix compatible (complete) ultrametrics ρ_{n} on X_{n} such that $\operatorname{diam}_{\rho_{n}}\left(X_{n}\right)<1$ for all $n \in \mathbb{N}$ and $\operatorname{diam}_{\rho_{n}}\left(X_{n}\right) \rightarrow 0$, and define $\rho:\left(\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}\right)^{2} \rightarrow[0, \infty)$ by $\rho(x, y)=$ $\max _{n<|x|,|y|} \rho_{n}(x(n), y(n)) \prod_{m<n} \max \left\{\rho_{m}\left(x(m), \sim U_{m}\right), \rho_{m}\left(y(m), \sim U_{m}\right)\right\}$.

To see that ρ is an ultrametric, suppose that $x, y, z \in\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup$ $\bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$, and fix $n \in \mathbb{N}$ with the property that $\rho(x, z)$ $=\rho_{n}(x(n), z(n)) \prod_{m<n} \max \left\{\rho_{m}\left(x(m), \sim U_{m}\right), \rho_{m}\left(z(m), \sim U_{m}\right)\right\}$.

Lemma 2.2.5. If $m<n$, then $\rho_{m}\left(x(m), \sim U_{m}\right)=\rho_{m}\left(z(m), \sim U_{m}\right)$.
Proof. Observe that if $\rho_{m}\left(x(m), \sim U_{m}\right) \neq \rho_{m}\left(z(m), \sim U_{m}\right)$, then Proposition 2.2.3 ensures that $\max \left\{\rho_{m}\left(x(m), \sim U_{m}\right), \rho_{m}\left(z(m), \sim U_{m}\right)\right\} \leq$

$$
\begin{aligned}
& \rho_{m}(x(m), z(m)) \text {, so } \\
& \qquad \begin{array}{l}
\rho_{n}(x(n), z(n)) \prod_{\ell<n} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(z(\ell), \sim U_{\ell}\right)\right\} \\
\quad<\prod_{\ell<m+1} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(z(\ell), \sim U_{\ell}\right)\right\} \\
\quad \leq \rho_{m}(x(m), z(m)) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(z(\ell), \sim U_{\ell}\right)\right\} \\
\quad \leq \rho(x, z),
\end{array}
\end{aligned}
$$

contradicting the definition of n.
Observe now that if $\rho_{m}\left(x(m), \sim U_{m}\right)=\rho_{m}\left(y(m), \sim U_{m}\right)$ for all $m<n$, then the fact that $\rho_{n}(x(n), z(n)) \leq \max \left\{\rho_{n}(x(n), y(n)), \rho_{n}(y(n), z(n))\right\}$ ensures that $\rho(x, z) \leq \max \{\rho(x, y), \rho(y, z)\}$. Otherwise, there is a least natural number $m<n$ for which $\rho_{m}\left(x(m), \sim U_{m}\right) \neq \rho_{m}\left(y(m), \sim U_{m}\right)$, in which case one more application of Proposition 2.2.3 ensures that $\rho_{m}\left(x(m), \sim U_{m}\right) \leq \rho_{m}(x(m), y(m))$, so

$$
\begin{aligned}
\rho(x, z) & =\rho_{n}(x(n), z(n)) \prod_{\ell<n} \rho_{\ell}\left(x(\ell), \sim U_{\ell}\right) \\
& <\prod_{\ell<m+1} \rho_{\ell}\left(x(\ell), \sim U_{\ell}\right) \\
& \leq \rho_{m}(x(m), y(m)) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\} \\
& \leq \rho(x, y) .
\end{aligned}
$$

To see that the topology generated by ρ is coarser than that inherited from the product topology, suppose that $\epsilon>0$ and $x \in\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup$ $\bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$, and fix $n \in \mathbb{N}$ such that $\operatorname{diam}_{\rho_{m}}\left(X_{m}\right)<\epsilon$ for all $m \geq n$. Then the intersection of $\left(\prod_{m<\min \{n,|x|\}} \mathcal{B}_{\rho_{m}}(x(m), \epsilon)\right) \frown$ $\left(\left(\prod_{m \in \mathbb{N}} X_{m+\min \{n,|x|\}}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+\min \{n,|x|\}}\right)$ with the space in question is contained in $\mathcal{B}_{\rho}(x, \epsilon)$, for if y is in the aforementioned intersection and $m<\min \{|x|,|y|\}$, then either $m<\min \{n,|x|\}$ or $m \geq n$, in which case $\rho_{m}(x(m), y(m)) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\} \leq$ $\rho_{m}(x(m), y(m))<\epsilon$, so $y \in \mathcal{B}_{\rho}(x, \epsilon)$.

To see that the topology generated by ρ is finer than that inherited from the product topology, observe that if $0<\epsilon<1, x \in\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup$ $\bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$, and $1 \leq n \leq|x|$ is a natural number, then $\mathcal{B}_{\rho}\left(x, \epsilon \prod_{m<n-1} \rho_{m}\left(x(m), \sim U_{m}\right)\right)$ is contained in $\left(\prod_{m<n} \mathcal{B}_{\rho_{m}}(x(m), \epsilon)\right) \frown$ $\left(\left(\prod_{m \in \mathbb{N}} X_{m+n}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+n}\right)$, for if y is in the former set and $m<\min \{n-1,|y|\}$, then

$$
\begin{aligned}
& \rho_{m}(x(m), y(m)) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\} \\
& \quad<\prod_{\ell<n-1} \rho_{\ell}\left(x(\ell), \sim U_{\ell}\right) \\
& \quad \leq \rho_{m}\left(x(m), \sim U_{m}\right) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\},
\end{aligned}
$$

so $\rho_{m}(x(m), y(m))<\rho_{m}\left(x(m), \sim U_{m}\right)$, and it follows that $y(m) \in U_{m}$, hence $m+1<|y|$, in which case the obvious induction ensures that
$n-1<|y|$, so if $m<n$, then

$$
\begin{aligned}
& \rho_{m}(x(m), y(m)) \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\} \\
& \quad<\epsilon \prod_{\ell<n-1} \rho_{\ell}\left(x(\ell), \sim U_{\ell}\right) \\
& \quad \leq \epsilon \prod_{\ell<m} \max \left\{\rho_{\ell}\left(x(\ell), \sim U_{\ell}\right), \rho_{\ell}\left(y(\ell), \sim U_{\ell}\right)\right\},
\end{aligned}
$$

thus $\rho_{m}(x(m), y(m))<\epsilon$, and therefore $y \in\left(\prod_{m<n} \mathcal{B}_{\rho_{m}}(x(m), \epsilon)\right) \frown$ $\left(\left(\prod_{m \in \mathbb{N}} X_{m+n}\right) \cup \bigcup_{m \in \mathbb{N}} \prod_{\ell<m} X_{\ell+n}\right)$.

To see that the completeness of each ρ_{n} yields that of ρ, suppose that $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a ρ-Cauchy sequence, and note that if $n \in \mathbb{N}$ has the property that $\left|x_{k}\right|>n$ for all but finitely many $k \in \mathbb{N}$ and $\left(x_{k}(m)\right)_{k \in \mathbb{N}}$ converges to a point of U_{m} for all $m<n$, then there exists $\epsilon_{m}>0$ such that $\forall^{\infty} k \in \mathbb{N} \rho\left(x_{k}(m), \sim U_{m}\right) \geq \epsilon_{m}$ for all $m<n$, so $\left(x_{k}(n)\right)_{k \in \mathbb{N}}$ is a ρ_{n}-Cauchy sequence, thus the completeness of ρ_{n} ensures that it converges. A straightforward recursive construction therefore yields a sequence $x \in\left(\prod_{n \in \mathbb{N}} U_{n}\right) \cup \bigcup_{n \in \mathbb{N}}\left(\prod_{m<n} U_{m}\right) \frown\left(\sim U_{n}\right)^{1}$ with the property that $x_{k}(n) \rightarrow x(n)$ for all $n<|x|$, in which case $x_{k} \rightarrow x$.

Let $\operatorname{Cnvg}(X)$ denote the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of X that converge to an element of X.

Proposition 2.2.6. Suppose that X and Y are metric spaces, $D \subseteq$ X is dense, and $\phi: D \rightarrow Y$ is a continuous homomorphism from $\operatorname{Cnvg}(X) \upharpoonright D$ to $\operatorname{Cnvg}(Y)$. Then there is a continuous extension $\psi: X \rightarrow Y$ of ϕ.

Proof. Note first that if $\left(w_{n}\right)_{n \in \mathbb{N}}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ are sequences of elements of D that converge to the same point of X, then the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$, given by $v_{2 n}=w_{n}$ and $v_{2 n+1}=x_{n}$, is also convergent, thus so too is $\left(\phi\left(v_{n}\right)\right)_{n \in \mathbb{N}}$, hence $\left(\phi\left(w_{n}\right)\right)_{n \in \mathbb{N}}$ and $\left(\phi\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converge to the same point of Y. It follows that there is a unique extension $\psi: X \rightarrow Y$ of ϕ such that $x_{n} \rightarrow x \Longrightarrow \psi\left(x_{n}\right) \rightarrow \psi(x)$ for all $\left(x_{n}\right)_{n \in \mathbb{N}} \in D^{\mathbb{N}}$ and $x \in X$. To see that ψ is continuous, suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence of elements of X converging to some $x \in X$, fix sequences $\left(x_{m, n}\right)_{m \in \mathbb{N}}$ of points of D converging to x_{n} for all $n \in \mathbb{N}$, fix a sequence $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ of positive real numbers converging to zero, fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\rho_{X}\left(x_{f(n), n}, x_{n}\right), \rho_{Y}\left(\psi\left(x_{f(n), n}\right), \psi\left(x_{n}\right)\right)<\epsilon_{n}$ for all $n \in \mathbb{N}$, and observe that $x_{f(n), n} \rightarrow x$, so $\psi\left(x_{f(n), n}\right) \rightarrow \psi(x)$, thus $\psi\left(x_{n}\right) \rightarrow \psi(x)$. \boxtimes

3. Separation by unions of closed hyperrectangles

A hyperrectangular homomorphism from a pair (R_{X}, S_{X}) of subsets of $\prod_{d \in D} X_{d}$ to a pair $\left(R_{Y}, S_{Y}\right)$ of subsets of $\prod_{d \in D} Y_{d}$ is a function $\phi: \prod_{d \in D} \operatorname{proj}_{d}\left(R_{X} \cup S_{X}\right) \rightarrow \prod_{d \in D} Y_{d}$ of the form $\phi(x)(d)=\left(\phi_{d} \circ x\right)(d)$,
where $\phi_{d}: \operatorname{proj}_{d}\left(R_{X} \cup S_{X}\right) \rightarrow Y_{d}$ for all $d \in D$, with the property that $\phi\left(R_{X}\right) \subseteq R_{Y}$ and $\phi\left(S_{X}\right) \subseteq S_{Y}$.

We use $\mathbb{N}_{*}=\mathbb{N} \cup\{\infty\}$ to denote the one-point compactification of \mathbb{N}, and $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$ to denote the D-ary relation on the subspace $(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right)$ of $\left(D \times \mathbb{N}_{*}\right)^{\leq \mathbb{N}}$ consisting of all sequences of the form $(t \frown((d, \infty)))_{d \in D}$, where $t \in(D \times \mathbb{N})^{<\mathbb{N}}$.

Proposition 2.3.1. Suppose that D is a non-empty countable discrete space and $C \subseteq(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right)$ is an $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$-independent closed set. Then C is meager.
 comeager in $(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right)$, and Theorem 1.5.1 and Proposition 2.2.4 ensure that the latter is a Baire space, Proposition 1.6.6 ensures that C is meager.

Theorem 2.3.2 (Carroy-M-Soukup). Suppose that D is a nonempty countable discrete space, κ is an aleph, $\left(X_{d}\right)_{d \in D}$ is a sequence of metric spaces, $R \subseteq \prod_{d \in D} X_{d}$ is κ-Souslin, and $S \subseteq \sim R$. Then at least one of the following holds:
(1) There is a union of at most κ-many closed hyperrectangles separating R from S.
(2) There exists a continuous hyperrectangular homomorphism ϕ :

$$
\begin{aligned}
& \prod_{d \in D}(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown\{((d, \infty))\}\right) \rightarrow \prod_{d \in D} X_{d} \text { from } \\
& \left(\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right), \mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}\right) \text { to }(R, S) .
\end{aligned}
$$

Proof. Let H be the $(D \times \mathbb{N})$-dimensional dihypergraph on R consisting of all sequences $\left(x_{d, n}\right)_{(d, n) \in D \times \mathbb{N}}$ of elements of R for which there exists $y \in S$ with the property that $\forall d \in D y(d)=\lim _{n \rightarrow \infty} x_{d, n}(d)$. Observe that if $\left(x_{d, n}\right)_{(d, n) \in D \times \mathbb{N}} \in H, \epsilon_{n} \rightarrow 0$, and $U_{d, n}=\{x \in R \mid$ $\left.\rho_{X_{d}}\left(x(d), x_{d, n}(d)\right)<\epsilon_{n}\right\}$ for all $(d, n) \in D \times \mathbb{N}$, then $\prod_{(d, n) \in D \times \mathbb{N}} U_{d, n} \subseteq$ H, so H is box open. Moreover, if $Q \subseteq R$ is H-independent, then there does not exist $y \in\left(\prod_{d \in D} \overline{\operatorname{proj}_{d}(Q)}\right) \cap S$, since otherwise there are sequences $\left(x_{d, n}\right)_{n \in \mathbb{N}}$ of elements of $\operatorname{proj}_{d}(Q)$ such that $x_{d, n} \rightarrow y(d)$ for all $d \in D$, as well as $x_{d, n}^{\prime} \in Q$ such that $x_{d, n}=x_{d, n}^{\prime}(d)$ for all $(d, n) \in D \times \mathbb{N}$, thus $x_{d, n}^{\prime}(d) \rightarrow y(d)$ for all $d \in D$. It follows that if there is a κ-coloring $c: R \rightarrow \kappa$ of H, then $\bigcup_{\alpha<\kappa} \prod_{d \in D} \overline{\operatorname{proj}_{d}\left(c^{-1}(\{\alpha\})\right)}$ separates R from S. Otherwise, Theorem 2.1.1 yields a continuous homomorphism $\phi^{\prime}:(D \times \mathbb{N})^{\mathbb{N}} \rightarrow R$ from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}}$ to H. Note that for all $d \in D$, the function $\operatorname{proj}_{d} \circ \phi^{\prime}$ is a continuous homomorphism from $\operatorname{Cnvg}\left((D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown\{((d, \infty))\}\right)\right) \upharpoonright(D \times \mathbb{N})^{\mathbb{N}}$ to $\operatorname{Cnvg}\left(X_{d}\right)$, so Proposition 2.2.6 ensures the existence of a continuous extension $\phi_{d}:(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown\{((d, \infty))\}\right) \rightarrow X_{d}$ of $\operatorname{proj}_{d} \circ \phi^{\prime}$, in which
case the function $\phi=\prod_{d \in D} \phi_{d}$ is a hyperrectangular homomorphism from $\left(\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right), \mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}\right)$ to (R, S).

Theorem 2.3.3 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that D is a non-empty countable discrete space, $\left(X_{d}\right)_{d \in D}$ is a sequence of metric spaces, $R \subseteq \prod_{d \in D} X_{d}$ is analytic, and $S \subseteq \sim R$. Then exactly one of the following holds:
(1) There is a union of countably-many closed hyperrectangles separating R from S.
(2) There exists a continuous hyperrectangular homomorphism ϕ :

$$
\begin{aligned}
& \prod_{d \in D}(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown\{((d, \infty))\}\right) \rightarrow \prod_{d \in D} X_{d} \text { from } \\
& \left(\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right), \mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}\right) \text { to }(R, S)
\end{aligned}
$$

Proof. To see that conditions (1) and (2) are mutually exclusive, note that if $\left(\prod_{d \in D} C_{d, n}\right)_{n \in \mathbb{N}}$ is a sequence of hyperrectangles whose union separates $\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right)$ from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$, then $\left(\bigcap_{d \in D} C_{d, n}\right)_{n \in \mathbb{N}}$ is a cover of $(D \times \mathbb{N})^{\mathbb{N}}$ by $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty^{-}}$-independent sets, and appeal to Proposition 2.3.1, noting that $(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right)$ is a Baire space in which $(D \times \mathbb{N})^{\mathbb{N}}$ is comeager, by Theorem 1.5.1 and Proposition 2.2.4. To see that at least one of the two conditions holds, appeal to the special case of Theorem 2.3.2 where $\kappa=\aleph_{0}$.

Theorem 2.3.4 (Carroy-M-Soukup). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, D is a non-empty countable discrete space, $\left(X_{d}\right)_{d \in D}$ is a sequence of analytic metric spaces, $R \subseteq \prod_{d \in D} X_{d}$, and $S \subseteq \sim R$. Then exactly one of the following holds:
(1) There is a union of countably-many closed hyperrectangles separating R from S.
(2) There exists a continuous hyperrectangular homomorphism ϕ :

$$
\begin{aligned}
& \prod_{d \in D}(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown\{((d, \infty))\}\right) \rightarrow \prod_{d \in D} X_{d} \text { from } \\
& \left(\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right), \mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}\right) \text { to }(R, S) .
\end{aligned}
$$

Proof. The proof that conditions (1) and (2) are mutually exclusive is exactly the same as in Theorem 2.3.3. The proof that at least one of the two conditions holds is analogous to that of Theorem 2.3.2, replacing the use of Theorem 2.1.1 with that of Theorem 2.1.5. \boxtimes

In particular, we obtain a characterization of the circumstances under which two disjoint sets can be separated by a well-ordered union of closed sets:

Theorem 2.3.5 (Carroy-M-Soukup). Suppose that κ is an aleph, X is a metric space, $A \subseteq X$ is κ-Souslin, and $Y \subseteq \sim A$. Then at least one of the following holds:
(1) There is a union of at most κ-many closed sets separating A from Y.
(2) There is a continuous reduction $\pi: \mathbb{N}^{\mathbb{N}} \cup\left(\mathbb{N}^{<\mathbb{N}} \frown\{(\infty)\}\right) \rightarrow$ $A \cup Y$ of $\mathbb{N}^{\mathbb{N}}$ to A.

Proof. This is the special case of Theorem 2.3 .2 where $D=1$. \boxtimes
Theorem 2.3.6 (Hurewicz, Kechris-Louveau-Woodin). Suppose that X is a metric space, $A \subseteq X$ is analytic, and $Y \subseteq \sim A$. Then exactly one of the following holds:
(1) There is an F_{σ} subset of X separating A from Y.
(2) There is a continuous reduction $\pi: \mathbb{N}^{\mathbb{N}} \cup\left(\mathbb{N}^{<\mathbb{N}} \frown\{(\infty)\}\right) \rightarrow$ $A \cup Y$ of $\mathbb{N}^{\mathbb{N}}$ to A.

Proof. This is the special case of Theorem 2.3 .3 where $D=1$. \boxtimes
Theorem 2.3.7 (Kechris-Louveau-Woodin). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic metric space, $A \subseteq X$, and $Y \subseteq \sim A$. Then exactly one of the following holds:
(1) There is an F_{σ} subset of X separating A from Y.
(2) There is a continuous reduction $\pi: \mathbb{N}^{\mathbb{N}} \cup\left(\mathbb{N}^{<\mathbb{N}} \frown\{(\infty)\}\right) \rightarrow$ $A \cup Y$ of $\mathbb{N}^{\mathbb{N}}$ to A.

Proof. This is the special case of Theorem 2.3 .4 where $D=1$. \boxtimes
We next generalize Theorems 2.1.1, 2.1.4, and 2.1.5 beyond boxopen dihypergraphs:

Theorem 2.3.8 (Carroy-M-Soukup). Suppose that D is a countable discrete space of cardinality at least two, κ is an aleph, X is a κ-Souslin metric space, and H is a D-dimensional dihypergraph on X. Then at least one of the following holds:
(1) There is a cover of X by at most κ-many H-independent closed sets.
(2) There is a continuous homomorphism $\phi:(D \times \mathbb{N})^{\mathbb{N}} \cup((D \times$ $\left.\mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right) \rightarrow X$ from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$ to H.
Proof. Observe that if $\left(\prod_{d \in D} C_{\alpha, d}\right)_{\alpha<\kappa}$ is a sequence of hyperrectangles whose union separates $\Delta^{D}(X)$ from H, then $\left(\bigcap_{d \in D} C_{\alpha, d}\right)_{\alpha<\kappa}$ is a cover of X by H-independent sets. By Theorem 2.3.2, we can therefore assume that there is a continuous hyperrectangular homomorphism $\prod_{d \in D} \phi_{d}$ from $\left(\Delta^{D}\left((D \times \mathbb{N})^{\mathbb{N}}\right), \mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}\right)$ to $\left(\Delta^{D}(X), H\right)$. But then the function $\phi=\bigcup_{d \in D} \phi_{d}$ is a homomorphism from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$ to H, and Proposition 2.2.6 ensures that it is continuous.

Theorem 2.3.9 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that D is a countable discrete space of cardinality at least two, X is an analytic metric space, and H is a D-dimensional dihypergraph on X. Then exactly one of the following holds:
(1) There is a Δ_{2}^{0}-measurable \aleph_{0}-coloring of H.
(2) There is a continuous homomorphism $\phi:(D \times \mathbb{N})^{\mathbb{N}} \cup((D \times$ $\left.\mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right) \rightarrow X$ from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$ to H.
Proof. To see that conditions (1) and (2) are mutually exclusive, note that $(D \times \mathbb{N})^{\mathbb{N}} \cup\left((D \times \mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right)$ is a Baire space by Theorem 1.5.1 and Proposition 2.2.4, and appeal to Propositions 1.6.5 and 2.3.1. To see that at least one of them holds, appeal to the special case of Theorem 2.3.8 where $\kappa=\aleph_{0}$.

Theorem 2.3.10 (Carroy-M-Soukup). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, D is a countable discrete space of cardinality at least two, X is a subset of an analytic metric space, and H is a D-dimensional dihypergraph on X. Then exactly one of the following holds:
(1) There is a Δ_{2}^{0}-measurable \aleph_{0}-coloring of H.
(2) There is a continuous homomorphism $\phi:(D \times \mathbb{N})^{\mathbb{N}} \cup((D \times$ $\left.\mathbb{N})^{<\mathbb{N}} \frown(D \times\{\infty\})^{1}\right) \rightarrow X$ from $\mathbb{H}_{(D \times \mathbb{N})^{\mathbb{N}}, \infty}$ to H.
Proof. The proof that conditions (1) and (2) are mutually exclusive is exactly the same as in Theorem 2.3.9. The proof that at least one of the two conditions holds is analogous to that of Theorem 2.3.8, replacing the use of Theorem 2.3.2 with that of Theorem 2.3.4. \boxtimes

CHAPTER 3

The \mathbb{G}_{0} dichotomy, I: Abstract colorings

1. Colorings within cliques

Given a binary relation R on X, we say that a set $Y \subseteq X$ is an R-clique if $y R z$ for all distinct $y, z \in Y$.

Theorem 3.1.1 (Geschke). Suppose that κ is an aleph, X is a Hausdorff space, G is a κ-Souslin digraph on X, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is a κ-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. Suppose that condition (1) fails, and fix an R-clique $Y \subseteq$ X for which there is no κ-coloring of $G \upharpoonright Y$. By Proposition 1.4.1, we can assume that there is a continuous surjection $\phi_{G}: \kappa^{\mathbb{N}} \rightarrow G$. By Propositions 1.4.1, 1.4.2, and 1.4.3, we can assume that there is a continuous function $\phi_{X}: \kappa^{\mathbb{N}} \rightarrow X$ for which $\phi_{X}\left(\kappa^{\mathbb{N}}\right)$ is the union of the left and right projections of G onto X. Fix a decreasing sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of open subsets of $X \times X$ whose intersection is R, as well as sequences $s_{n} \in 2^{n}$ for which $\mathbb{G}_{0}=G_{\left\{s_{n} \mid n \in \mathbb{N}\right\}}$.

We will define a decreasing sequence $\left(Y^{\alpha}\right)_{\alpha<\kappa^{+}}$of subsets of Y, off of which there are κ-colorings of $G \upharpoonright Y$. We begin by setting $Y^{0}=Y$. For all limit ordinals $\lambda<\kappa^{+}$, we set $Y^{\lambda}=\bigcap_{\alpha<\lambda} Y^{\alpha}$. To describe the construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form $a=\left(n^{a}, \phi^{a},\left(\psi_{n}^{a}\right)_{n<n^{a}}\right)$, where $n^{a} \in \mathbb{N}, \phi^{a}: 2^{n^{a}} \rightarrow \kappa^{<\mathbb{N}}, \psi_{n}^{a}: 2^{n^{a}-(n+1)} \rightarrow \kappa^{n^{a}}$ for all $n<n^{a}$, and $\phi_{X}\left(\mathcal{N}_{\phi^{a}(s)}\right) \times \phi_{X}\left(\mathcal{N}_{\phi^{a}(t)}\right) \subseteq R_{n^{a}}$ for all distinct $s, t \in 2^{n^{a}}$. A one-step extension of an approximation a is an approximation b such that:
(a) $n^{b}=n^{a}+1$.
(b) $\forall s \in 2^{n^{a}} \forall t \in 2^{n^{b}}\left(s \sqsubset t \Longrightarrow \phi^{a}(s) \sqsubset \phi^{b}(t)\right)$.
(c) $\forall n<n^{a} \forall s \in 2^{n^{a}-(n+1)} \forall t \in 2^{n^{b}-(n+1)}\left(s \sqsubset t \Longrightarrow \psi_{n}^{a}(s) \sqsubset \psi_{n}^{b}(t)\right)$.

Similarly, a configuration is a triple of the form $\gamma=\left(n^{\gamma}, \phi^{\gamma},\left(\psi_{n}^{\gamma}\right)_{n<n^{\gamma}}\right)$, where $n^{\gamma} \in \mathbb{N}, \phi^{\gamma}: 2^{n^{\gamma}} \rightarrow \kappa^{\mathbb{N}}, \psi_{n}^{\gamma}: 2^{n^{\gamma}-(n+1)} \rightarrow \kappa^{\mathbb{N}}$ for all $n<n^{\gamma}$, and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(t)=\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown t\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown t\right)\right)$ for
all $n<n^{\gamma}$ and $t \in 2^{n^{\gamma}-(n+1)}$. A configuration γ is compatible with an approximation a if the following conditions hold:
(i) $n^{a}=n^{\gamma}$.
(ii) $\forall t \in 2^{n^{a}} \phi^{a}(t) \sqsubseteq \phi^{\gamma}(t)$.
(iii) $\forall n<n^{a} \forall t \in 2^{n^{a}-(n+1)} \psi_{n}^{a}(t) \sqsubseteq \psi_{n}^{\gamma}(t)$.

A configuration γ is compatible with a set $Y^{\prime} \subseteq Y$ if $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(2^{n^{\gamma}}\right) \subseteq Y^{\prime}$. An approximation a is Y^{\prime}-terminal if no configuration is compatible with a one-step extension of a and Y^{\prime}. Let $A\left(a, Y^{\prime}\right)$ denote the set of points of the form $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{a}}\right)$, where γ varies over all configurations compatible with a and Y^{\prime}.

Lemma 3.1.2. Suppose that $Y^{\prime} \subseteq Y$ and a is a Y^{\prime}-terminal approximation. Then $A\left(a, Y^{\prime}\right)$ is G-independent.

Proof. Suppose, towards a contradiction, that there are configurations γ_{0} and γ_{1}, both compatible with a and Y^{\prime}, with the property that $\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right) \in G$. Fix a sequence $d \in \kappa^{\mathbb{N}}$ such that $\phi_{G}(d)=\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right)$, and let γ denote the configuration given by $n^{\gamma}=n^{a}+1, \phi^{\gamma}(t \frown(i))=\phi^{\gamma_{i}}(t)$ for all $i<2$ and $t \in 2^{n^{a}}, \psi_{n}^{\gamma}(t \frown(i))=\psi_{n}^{\gamma_{i}}(t)$ for all $i<2, n<n^{a}$, and $t \in 2^{n^{a}-(n+1)}$, and $\psi_{n^{a}}^{\gamma}(\emptyset)=d$. Then γ is compatible with a one-step extension of a, contradicting the fact that a is Y^{\prime}-terminal.

Define $Y^{\alpha+1}$ to be the difference of Y^{α} and the union of the sets of the form $A\left(a, Y^{\alpha}\right)$, where a varies over all Y^{α}-terminal approximations.

Lemma 3.1.3. Suppose that $\alpha<\kappa^{+}$and a is a non- $Y^{\alpha+1}$-terminal approximation. Then a has a non- Y^{α}-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration γ compatible with b and $Y^{\alpha+1}$. Then $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{b}}\right) \in Y^{\alpha+1}$, so b is not Y^{α}-terminal.

Fix $\alpha<\kappa^{+}$such that the families of Y^{α}-terminal approximations and $Y^{\alpha+1}$-terminal approximations are one and the same, and let a_{0} denote the unique approximation for which $n^{a_{0}}=0$ and $\phi^{a_{0}}(\emptyset)=\emptyset$. As $A\left(a_{0}, Y^{\prime}\right)=Y^{\prime}$ for all $Y^{\prime} \subseteq Y$, we can assume that a_{0} is not $Y^{\alpha_{-}}$ terminal, since otherwise $Y^{\alpha+1}=\emptyset$, so there is a κ-coloring of $G \upharpoonright Y$.

By recursively applying Lemma 3.1.3, we obtain non- Y^{α}-terminal one-step extensions a_{n+1} of a_{n} for all $n \in \mathbb{N}$. Define $\phi^{\prime}, \psi_{n}: 2^{\mathbb{N}} \rightarrow \kappa^{\mathbb{N}}$ by $\phi^{\prime}(c)=\bigcup_{n \in \mathbb{N}} \phi^{a_{n}}(c \upharpoonright n)$ and $\psi_{n}(c)=\bigcup_{m>n} \psi_{n}^{a_{m}}(c \upharpoonright(m-(n+1)))$ for all $n \in \mathbb{N}$. Clearly these functions are continuous.

To see that the function $\phi=\phi_{X} \circ \phi^{\prime}$ is a homomorphism from \mathbb{G}_{0} to G, we will show the stronger fact that if $c \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, then

$$
\left(\phi_{G} \circ \psi_{n}\right)(c)=\left(\left(\phi_{X} \circ \phi^{\prime}\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi^{\prime}\right)\left(s_{n} \frown(1) \frown c\right)\right) .
$$

And for this, it is sufficient to show that if U is an open neighborhood of $\left(\left(\phi_{X} \circ \phi^{\prime}\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi^{\prime}\right)\left(s_{n} \frown(1) \frown c\right)\right)$ and V is an open neighborhood of $\left(\phi_{G} \circ \psi_{n}\right)(c)$, then $U \cap V \neq \emptyset$. Towards this end, fix $m>n$ such that $\phi_{X}\left(\mathcal{N}_{\phi^{a_{m}}\left(s_{n} \wedge(0) \wedge s\right)}\right) \times \phi_{X}\left(\mathcal{N}_{\phi^{a_{m}\left(s_{n} \sim(1) \wedge s\right)}}\right) \subseteq U$ and $\phi_{G}\left(\mathcal{N}_{\psi_{n}^{a_{m}}(s)}\right) \subseteq V$, where $s=c \upharpoonright(m-(n+1))$. The fact that a_{m} is not Y^{α}-terminal yields a configuration γ compatible with a_{m}, in which case $\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown s\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown s\right)\right) \in U$ and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(s) \in V$, thus $U \cap V \neq \emptyset$.

To see that $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique, observe that if $c, d \in 2^{\mathbb{N}}$ are distinct and $n \in \mathbb{N}$ is sufficiently large that $c \upharpoonright n \neq d \upharpoonright n$, then $\phi(c) \in \phi_{X}\left(\mathcal{N}_{\phi^{a_{n}}(c \mid n)}\right)$ and $\phi(d) \in \phi_{X}\left(\mathcal{N}_{\phi^{a_{n}}(d \upharpoonright n)}\right)$, so $\phi(c) R_{n} \phi(d)$.

Theorem 3.1.4 (Geschke). Suppose that X is a Hausdorff space, G is an analytic digraph on X, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is an \aleph_{0}-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. This is the special case of Theorem 3.1.1 where $\kappa=\aleph_{0}$. \boxtimes
Theorem 3.1.5 (Geschke). Suppose that X is an analytic Hausdorff space, G is a $\boldsymbol{\Sigma}_{2}^{1}$ digraph on X, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is an \aleph_{1}-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. Note that G is \aleph_{1}-Souslin by Propositions 1.4.2 and 1.4.10, and appeal to the special case of Theorem 3.1.1 where $\kappa=\aleph_{1}$.

Theorem 3.1.6 (Geschke). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, G is a $\boldsymbol{\Sigma}_{2 n+1}^{1}$ digraph on X, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is a $\boldsymbol{\kappa}_{2 n+1}^{1}$-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mutually exclusive. To see that at least one of them holds, note that G is $\boldsymbol{\kappa}_{2 n+1}^{1}$-Souslin by Theorem 1.4.14, and appeal to the special case of Theorem 3.1.1 where $\kappa=\boldsymbol{\kappa}_{2 n+1}^{1}$.

Theorem 3.1.7 (Geschke). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, G is a $\boldsymbol{\Sigma}_{2 n+2}^{1}$ digraph on X, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is a $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mutually exclusive. To see that at least one of them holds, note that G is $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-Souslin by Theorem 1.4.14, and appeal to the special case of Theorem 3.1.1 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$.

Remark 3.1.8. For all $n \in \mathbb{N}$, the weakenings of the corresponding special cases of Theorems 3.1.6 and 3.1.7 in which conditions (1) and (2) are not required to be mutually exclusive are consequences of $\operatorname{Det}\left(\Delta_{n}^{1}\right)$, yielding analogous generalizations of the other consequences of AD established in this chapter.

Theorem 3.1.9 (Geschke). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, G is a digraph on X, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, there is an ordinal-coloring of $G \upharpoonright Y$.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mutually exclusive. To see that at least one of them holds, note that there is an aleph κ for which G is κ-Souslin by Theorem 1.4.14, and appeal to Theorem 3.1.1.

2. Discrete perfect sets within cliques

An extended-valued quasi-metric on X is a map $\rho: X \times X \rightarrow[0, \infty]$ such that $\rho(x, x)=0$ for all $x \in X, \rho(x, y)=\rho(y, x)$ for all $x, y \in X$, and $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$ for all $x, y, z \in X$. Given $\epsilon \geq 0$, we say that (X, ρ) is ϵ-discrete if $\rho(x, y)>\epsilon$ for all distinct $x, y \in X$.

Theorem 3.2.1 (Geschke). Suppose that $\delta \geq 0, \epsilon \geq 2 \delta, \kappa$ is an aleph, X is a Hausdorff space, ρ is an extended-valued quasi-metric on X for which $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire and $\rho^{-1}([0, \epsilon])$ is co- κ Souslin, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) Every R-clique $Y \subseteq X$ is a union of at most κ-many sets of ρ-diameter at most ϵ.
(2) There is a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. Suppose that condition (1) fails, fix an R-clique $Y \subseteq X$ for which there is no cover of Y by at most κ-many sets of ρ-diameter at most ϵ, set $G=\rho^{-1}((\epsilon, \infty])$, and observe that Theorem 3.1.1 yields a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-clique. Define $G^{\prime}=(\rho \circ(\phi \times \phi))^{-1}([0, \delta])$, and observe that $\mathbb{G}_{0} \cap\left(G^{\prime}\right)^{-1} G^{\prime}=\emptyset$, so Proposition 1.6.10 ensures that G^{\prime} is meager, thus Theorem 1.6.1 yields a continuous homomorphism $\psi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\sim \Delta\left(2^{\mathbb{N}}\right)$ to $\sim G^{\prime}$. Define $\pi=\phi \circ \psi$.

Theorem 3.2.2 (Geschke). Suppose that κ is an aleph, X is a Hausdorff space, ρ is an extended-valued quasi-metric on X for which there are arbitrarily small $\delta, \epsilon>0$ such that $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire and $\rho^{-1}([0, \epsilon])$ is co- κ-Souslin, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ has a basis of cardinality at most κ.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. By Theorem 3.2.1, it is enough to note that if $\epsilon_{n} \rightarrow 0$, \mathcal{Y}_{n} is a cover of Y by sets of ρ-diameter at most ϵ_{n} for all $n \in \mathbb{N}$, and $\mathcal{U}_{n}=\left\{\mathcal{B}_{\rho}\left(Y^{\prime}, \epsilon_{n}\right) \cap Y \mid Y^{\prime} \in \mathcal{Y}_{n}\right\}$ for all $n \in \mathbb{N}$, then the $\operatorname{set} \mathcal{U}=\bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}$ is a basis for (Y, ρ).

The special case of either of the above theorems, where ρ is the characteristic function of the complement of an equivalence relation and $R=X \times X$, is a version of Harrington-Shelah's perfect set theorem for co- κ-Souslin equivalence relations. The analogous special cases of the following results are Silver's perfect set theorem for co-analytic equivalence relations, Burgess's perfect set theorem for analytic equivalence relations, and their generalizations under determinacy.

Theorem 3.2.3 (Harrington-Friedman-Kechris, Geschke). Suppose that X is an analytic Hausdorff space, ρ is an extended-valued quasimetric on X for which there are arbitrarily small $\epsilon>0$ such that $\rho^{-1}([0, \epsilon])$ is co-analytic, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ is separable.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. As Proposition 1.5.9 ensures that there are arbitrarily small $\delta>0$ for which $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire, the special case of Theorem 3.2.2 where $\kappa=\aleph_{0}$ yields $\neg(1) \Longrightarrow(2)$. To see that the two conditions are mutually exclusive, note that condition (2) ensures that the cardinality of any basis for (X, ρ) is at least \mathfrak{c}.

Theorem 3.2.4 (Geschke). Suppose that X is an analytic Hausdorff space, ρ is an extended-valued quasi-metric on X for which there are arbitrarily small $\delta, \epsilon>0$ such that $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire and $\rho^{-1}([0, \epsilon])$ is Π_{2}^{1}, and R is a reflexive G_{δ} binary relation on X. Then at least one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ has a basis of cardinality at most \aleph_{1}.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. As Propositions 1.4.2 and 1.4.10 ensure that there are arbitrarily small $\epsilon>0$ for which $\rho^{-1}([0, \epsilon])$ is co- \aleph_{1}-Souslin, this follows from the special case of Theorem 3.2.2 where $\kappa=\aleph_{1}$.

Theorem 3.2.5 (Geschke). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, ρ is an extended-valued quasi-metric on X for which there are arbitrarily small $\epsilon>0$ such that $\rho^{-1}([0, \epsilon])$ is $\Pi_{2 n+1}^{1}$, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ has a basis of cardinality at most $\boldsymbol{\kappa}_{2 n+1}^{1}$.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.
Proof. As Theorem 1.1.5 ensures that $2^{\mathbb{N}}$ cannot be well-ordered, Theorem 1.5.11 implies that $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire for all $\delta>0$, and Theorem 1.4.14 yields arbitrarily small $\epsilon>0$ for which $\rho^{-1}([0, \epsilon])$ is co- $\boldsymbol{\kappa}_{2 n+1}^{1}$-Souslin, this follows from the special case of Theorem 3.2.2 where $\kappa=\boldsymbol{\kappa}_{2 n+1}^{1}$.

Theorem 3.2.6 (Geschke). Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and ρ is an extended-valued quasi-metric on X for which there are arbitrarily small $\epsilon>0$ such that $\rho^{-1}([0, \epsilon])$ is $\Pi_{2 n+2}^{1}$, and R is a reflexive G_{δ} binary relation on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ has a basis of cardinality at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. As Theorem 1.1.5 ensures that $2^{\mathbb{N}}$ cannot be well-ordered, Theorem 1.5 .11 implies that $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire for all $\delta>0$, and Theorem 1.4.14 yields arbitrarily small $\epsilon>0$ for which $\rho^{-1}([0, \epsilon])$ is co- $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-Souslin, this follows from the special case of Theorem 3.2.2 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$.

Theorem 3.2.7 (Geschke). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and ρ is an extended-valued quasi-metric on X. Then exactly one of the following holds:
(1) For every R-clique $Y \subseteq X$, the space $(Y, \rho \upharpoonright Y)$ has a wellorderable basis.
(2) There exist $\delta>0$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-clique and $\left(\pi\left(2^{\mathbb{N}}\right), \rho \upharpoonright \pi\left(2^{\mathbb{N}}\right)\right)$ is δ-discrete.

Proof. As Theorem 1.1.5 ensures that $2^{\mathbb{N}}$ cannot be well-ordered, Theorem 1.5.11 implies that $\rho^{-1}([0, \delta])$ is \aleph_{0}-universally Baire for all $\delta>0$, and Theorem 1.4.15 yields an aleph κ for which there are arbitrarily small $\epsilon>0$ such that $\rho^{-1}([0, \epsilon])$ is co- κ-Souslin, this follows from Theorem 3.2.2.

3. Scrambled sets

Note that if X is a metric space, $\phi: X \rightarrow \mathbb{R}$, and $y \in X$, then $\lim \inf _{\rho_{X}(x, y) \rightarrow \infty} \phi(x)$ and $\lim \sup _{\rho_{X}(x, y) \rightarrow \infty} \phi(x)$ do not depend on y. We denote them by $\liminf _{\|x\| \rightarrow \infty} \phi(x)$ and $\lim \sup _{\|x\| \rightarrow \infty} \phi(x)$.

Suppose that $S \curvearrowright X$ is an action of a metric semigroup on a metric space. We say that two points x and y of X are proximal if $\liminf _{\|s\| \rightarrow \infty} \rho_{X}(s \cdot x, s \cdot y)=0$, we use P_{S}^{X} to denote the set of all such pairs, and we say that a set $Y \subseteq X$ is proximal if it is a P_{S}^{X}-clique.

Proposition 3.3.1. Suppose that $S \curvearrowright X$ is an action of a metric semigroup by continuous functions on a metric space. Then P_{S}^{X} is G_{δ}.

Proof. The desired result follows from the fact that if $r \in S$, then $P_{S}^{X}=\bigcap_{\epsilon>0} \bigcap_{n \in \mathbb{N}} \bigcup_{\rho_{S}(r, s) \geq n}\left\{(x, y) \in X \times X \mid \rho_{X}(s \cdot x, s \cdot y)<\epsilon\right\} . \quad \boxtimes$

Associated with $S \curvearrowright X$ is the function $\rho_{S}^{X}: X \times X \rightarrow[0, \infty]$ given by $\rho_{S}^{X}(x, y)=\lim \sup _{\|s\| \rightarrow \infty} \rho_{X}(s \cdot x, s \cdot y)$.

Proposition 3.3.2. Suppose that $S \curvearrowright X$ is an action of a metric semigroup by continuous functions on a metric space. Then ρ_{S}^{X} is Borel.

Proof. It is sufficient to observe that if $r \in S$ and $\delta>0$, then $\left(\rho_{S}^{X}\right)^{-1}([\delta, \infty])=\bigcap_{\epsilon<\delta} \bigcap_{n \in \mathbb{N}} \bigcup_{\rho_{S}(r, s) \geq n}\left\{(x, y) \mid \rho_{X}(s \cdot x, s \cdot y)>\epsilon\right\} . \quad \boxtimes$

Proposition 3.3.3. Suppose that $S \curvearrowright X$ is an action of a metric semigroup on a metric space. Then ρ_{S}^{X} is an extended-valued quasimetric.

Proof. It is sufficient to show that if $x, y, z \in X$ and $\epsilon>0$, then $\rho_{S}^{X}(x, z) \leq \rho_{S}^{X}(x, y)+\rho_{S}^{X}(y, z)+\epsilon$. Towards this end, suppose that $r \in S$, fix $n \in \mathbb{N}$ such that $\sup _{\rho_{S}(r, s) \geq n} \rho_{X}(s \cdot x, s \cdot y) \leq \rho_{S}^{X}(x, y)+\epsilon / 3$ and $\sup _{\rho_{S}(r, s) \geq n} \rho_{X}(s \cdot y, s \cdot z) \leq \rho_{S}^{X}(y, z)+\epsilon / 3$, as well as $s \in S$ with the property that $\rho_{S}(r, s) \geq n$ and $\rho_{X}(s \cdot x, s \cdot z) \geq \rho_{S}^{X}(x, z)-\epsilon / 3$. Then $\rho_{S}^{X}(x, z) \leq \epsilon / 3+\rho_{X}(s \cdot x, s \cdot z) \leq \epsilon / 3+\rho_{X}(s \cdot x, s \cdot y)+\rho_{X}(s \cdot y, s \cdot z) \leq$ $\epsilon / 3+\rho_{S}^{X}(x, y)+\epsilon / 3+\rho_{S}^{X}(y, z)+\epsilon / 3$.

We say that a set $Y \subseteq X$ is scrambled if it is proximal but 0 discrete, and we say that $S \curvearrowright X$ is Li-Yorke chaotic if there is a scrambled uncountable set $Y \subseteq X$.

Theorem 3.3.4 (Geschke). Suppose that $S \curvearrowright X$ is a Li-Yorke chaotic action of a metric semigroup by continuous functions on an analytic metric space. Then there is a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is scrambled.

Proof. This is the special case of Theorem 3.2.1 where $\delta=\epsilon=0$, $\kappa=\aleph_{0}, \rho=\rho_{S}^{X}$, and $R=P_{S}^{X}$.

We say that a set $Y \subseteq X$ is uniformly scrambled if it is proximal but there exists $\epsilon>0$ for which $\left(Y, \rho_{S}^{X} \upharpoonright Y\right)$ is ϵ-discrete, and we say that $S \curvearrowright X$ is uniformly Li-Yorke chaotic if there is a uniformlyscrambled uncountable set $Y \subseteq X$. As this rules out the separability of $\left(Y, \rho_{S}^{X} \upharpoonright Y\right)$, the following fact ensures that it yields a uniformlyscrambled non-empty perfect set:

Theorem 3.3.5 (Geschke). Suppose that $S \curvearrowright X$ is an action of a metric semigroup by continuous functions on an analytic metric space. Then exactly one of the following holds:
(1) For every proximal set $Y \subseteq X$, the space $\left(Y, \rho_{S}^{X} \upharpoonright Y\right)$ is separable.
(2) There is a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\pi\left(2^{\mathbb{N}}\right)$ is scrambled.

Proof. This is the special case of Theorem 3.2.3 where $\rho=\rho_{S}^{X}$ and $R=P_{S}^{X}$.

CHAPTER 4

The \mathbb{G}_{0} dichotomy, II: Borel colorings

1. Borel colorings

Given a set $R \subseteq X \times Y$, we say that a pair (A, B) of sets is R independent if $R \cap(A \times B)=\emptyset$.

Proposition 4.1.1. Suppose that κ is an aleph for which every $(\kappa+1)$-Borel subset of an analytic Hausdorff space is κ-Souslin, X and Y are analytic Hausdorff spaces, $R \subseteq X \times Y$ is κ-Souslin, and (A, B) is an R-independent pair of κ-Souslin sets. Then there is an R-independent pair $\left(A^{\prime}, B^{\prime}\right)$ of $(\kappa+1)$-Borel sets for which $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}$.

Proof. As A is disjoint from $\operatorname{proj}_{X}(R \cap(X \times B))$, and Propositions 1.4.2 and 1.4.3 ensure that the latter set is κ-Souslin, Theorem 1.4.7 yields a $(\kappa+1)$-Borel set $A^{\prime} \subseteq X$ separating the former from the latter. As B is disjoint from $\operatorname{proj}_{Y}\left(R \cap\left(A^{\prime} \times Y\right)\right)$, and Propositions 1.4.2 and 1.4.3 ensure that the latter set is κ-Souslin, Theorem 1.4.7 yields a $(\kappa+1)$-Borel set $B^{\prime} \subseteq X$ separating the former from the latter. \boxtimes

Proposition 4.1.2. Suppose that κ is an aleph for which every $(\kappa+1)$-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an analytic Hausdorff space, G is a κ-Souslin digraph on X, and $A \subseteq X$ is a G-independent κ-Souslin set. Then there is a G-independent $(\kappa+1)$ Borel set $B \supseteq A$.

Proof. The fact that A is G-independent ensures that (A, A) is a G-independent pair, so Proposition 4.1 .1 yields a G-independent pair (C, D) of $(\kappa+1)$-Borel supersets of A. Set $B=C \cap D$.

THEOREM 4.1.3 (Kanovei). Suppose that κ is an aleph for which κ^{+}-DC holds, $\lambda \geq \kappa$ is an aleph for which every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, and G is a κ-Souslin digraph on X. Then at least one of the following holds:
(1) There is a $(\lambda+1)$-Borel κ-coloring of G.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G.

Proof. By Proposition 1.4.1, we can assume that there are continuous surjections $\phi_{G}: \kappa^{\mathbb{N}} \rightarrow G$ and $\phi_{X}: \kappa^{\mathbb{N}} \rightarrow X$. Fix sequences $s_{n} \in 2^{n}$ for which $\mathbb{G}_{0}=G_{\left\{s_{n} \mid n \in \mathbb{N}\right\}}$.

We will recursively a decreasing sequence $\left(B^{\alpha}\right)_{\alpha<\kappa^{+}}$of $(\lambda+1)$-Borel subsets of X, off of which there are $(\lambda+1)$-Borel κ-colorings of G. We begin setting $B^{0}=X$. For all limit ordinals $\mu<\kappa^{+}$, we set $B^{\mu}=\bigcap_{\alpha<\mu} B^{\alpha}$. To describe the construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form $a=\left(n^{a}, \phi^{a},\left(\psi_{n}^{a}\right)_{n<n^{a}}\right)$, where $n^{a} \in \mathbb{N}, \phi^{a}: 2^{n^{a}} \rightarrow \kappa^{n^{a}}$, and $\psi_{n}^{a}: 2^{n^{a}-(n+1)} \rightarrow \kappa^{n^{a}}$ for all $n<n^{a}$. A one-step extension of such an a is an approximation b for which:
(a) $n^{b}=n^{a}+1$.
(b) $\forall s \in 2^{n^{a}} \forall t \in 2^{n^{b}}\left(s \sqsubset t \Longrightarrow \phi^{a}(s) \sqsubset \phi^{b}(t)\right)$.
(c) $\forall n<n^{a} \forall s \in 2^{n^{a}-(n+1)} \forall t \in 2^{n^{b}-(n+1)}\left(s \sqsubset t \Longrightarrow \psi_{n}^{a}(s) \sqsubset \psi_{n}^{b}(t)\right)$.

Similarly, a configuration is a triple of the form $\gamma=\left(n^{\gamma}, \phi^{\gamma},\left(\psi_{n}^{\gamma}\right)_{n<n^{\gamma}}\right)$, where $n^{\gamma} \in \mathbb{N}$, $\phi^{\gamma}: 2^{n^{\gamma}} \rightarrow \kappa^{\mathbb{N}}, \psi_{n}^{\gamma}: 2^{n^{\gamma}-(n+1)} \rightarrow \kappa^{\mathbb{N}}$ for all $n<n^{\gamma}$, and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(t)=\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown t\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown t\right)\right)$ for all $n<n^{\gamma}$ and $t \in 2^{n^{\gamma}-(n+1)}$. A configuration γ is compatible with an approximation a if the following conditions hold:
(i) $n^{a}=n^{\gamma}$.
(ii) $\forall t \in 2^{n^{a}} \phi^{a}(t) \sqsubseteq \phi^{\gamma}(t)$.
(iii) $\forall n<n^{a} \forall t \in 2^{n^{a}}-(n+1) \quad \psi_{n}^{a}(t) \sqsubseteq \psi_{n}^{\gamma}(t)$.

A configuration γ is compatible with a set $X^{\prime} \subseteq X$ if $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(2^{n^{\gamma}}\right) \subseteq$ X^{\prime}. An approximation a is X^{\prime}-terminal if no configuration is compatible with a one-step extension of a and X^{\prime}. Let $A\left(a, X^{\prime}\right)$ denote the set of points of the form $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{a}}\right)$, where γ varies over all configurations compatible with a and X^{\prime}.

Lemma 4.1.4. Suppose that $X^{\prime} \subseteq X$ and a is a Y-terminal approximation. Then $A\left(a, X^{\prime}\right)$ is G-independent.

Proof. Suppose, towards a contradiction, that there are configurations γ_{0} and γ_{1}, both compatible with a and X^{\prime}, with the property that $\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right) \in G$. Fix a sequence $d \in \kappa^{\mathbb{N}}$ such that $\phi_{G}(d)=\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right)$, and let γ denote the configuration given by $n^{\gamma}=n^{a}+1, \phi^{\gamma}(t \frown(i))=\phi^{\gamma_{i}}(t)$ for all $i<2$ and $t \in 2^{n^{a}}, \psi_{n}^{\gamma}(t \frown(i))=\psi_{n}^{\gamma_{i}}(t)$ for all $i<2, n<n^{a}$, and $t \in 2^{n^{a}-(n+1)}$, and $\psi_{n^{a}}^{\gamma}(\emptyset)=d$. Then γ is compatible with a one-step extension of a, contradicting the fact that a is X^{\prime}-terminal.

For all B^{α}-terminal approximations a, Proposition 4.1.2 yields a G-independent $(\lambda+1)$-Borel set $B\left(a, B^{\alpha}\right) \supseteq A\left(a, B^{\alpha}\right)$. Let $B^{\alpha+1}$ be
the set obtained from B^{α} by subtracting the union of the sets of the form $B\left(a, B^{\alpha}\right)$, where a varies over all B^{α}-terminal approximations.

Lemma 4.1.5. Suppose that $\alpha<\kappa^{+}$and a is a non- $B^{\alpha+1}$-terminal approximation. Then a has a non- B^{α}-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration γ compatible with b and $B^{\alpha+1}$. Then $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{b}}\right) \in B^{\alpha+1}$, so b is not B^{α}-terminal.

Fix $\alpha<\kappa^{+}$such that the families of B^{α}-terminal approximations and $B^{\alpha+1}$-terminal approximations are one and the same, and let a_{0} denote the unique approximation for which $n^{a_{0}}=0$. As $A\left(a_{0}, X^{\prime}\right)=$ X^{\prime} for all $X^{\prime} \subseteq X$, we can assume that a_{0} is not B^{α}-terminal, since otherwise $B^{\alpha+1}=\emptyset$, so there is a $(\lambda+1)$-Borel κ-coloring of G.

By recursively applying Lemma 4.1.5, we obtain non- B^{α}-terminal one-step extensions a_{n+1} of a_{n} for all $n \in \mathbb{N}$. Define $\phi, \psi_{n}: 2^{\mathbb{N}} \rightarrow \kappa^{\mathbb{N}}$ by $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi^{a_{n}}(c \upharpoonright n)$ and $\psi_{n}(c)=\bigcup_{m>n} \psi_{n}^{a_{m}}(c \upharpoonright(m-(n+1)))$ for all $n \in \mathbb{N}$. Clearly these functions are continuous.

To establish that the function $\pi=\phi_{X} \circ \phi$ is a homomorphism from G_{S} to G, we will show the stronger fact that if $c \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, then

$$
\left(\phi_{G} \circ \psi_{n}\right)(c)=\left(\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(1) \frown c\right)\right) .
$$

And for this, it is sufficient to show that if U is an open neighborhood of $\left(\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(1) \frown c\right)\right)$ and V is an open neighborhood of $\left(\phi_{G} \circ \psi_{n}\right)(c)$, then $U \cap V \neq \emptyset$. Towards this end, fix $m>n$ such that $\phi_{X}\left(\mathcal{N}_{\phi^{a_{m}}\left(s_{n} \wedge(0) \wedge s\right)}\right) \times \phi_{X}\left(\mathcal{N}_{\phi^{a_{m}\left(s_{n} \wedge(1) \wedge s\right)}}\right) \subseteq U$ and $\phi_{G}\left(\mathcal{N}_{\psi_{n}^{a_{m}}(s)}\right) \subseteq V$, where $s=c \upharpoonright(m-(n+1))$. The fact that a_{m} is not B^{α}-terminal yields a configuration γ compatible with a_{m}. Then $\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown s\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown s\right)\right) \in U$ and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(s) \in V$, thus $U \cap V \neq \emptyset$.

Remark 4.1.6. The assumption of κ^{+}-DC can be reduced to κ-DC by first running the above argument without Proposition 4.1 .2 (i.e., by setting $B\left(a, B^{\alpha}\right)=A\left(a, B^{\alpha}\right)$ as in the proof of Theorem 3.1.1) to obtain an upper bound $\alpha^{\prime}<\kappa^{+}$for the least ordinal $\alpha<\kappa^{+}$such that the families of B^{α}-terminal and $B^{\alpha+1}$-terminal approximations coincide.

Remark 4.1.7. Under the stronger assumption that there is a function sending each code for a $(\lambda+1)$-Borel subset of an analytic Hausdorff space to a witness that the set is λ-Souslin, the assumption of κ-DC can be removed by working with codes for the $(\lambda+1)$-Borel sets B^{α}. Under AD , the existence of such a function follows from Theorem 1.4.14 and other well-known consequences of determinacy (i.e., the coding lemma and projective uniformization) when $\lambda=\boldsymbol{\kappa}_{2 n+1}^{1}$.

Remark 4.1.8. Kanovei has shown that both κ-DC and the assumption that every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin can be removed (see [Kan97]), and the ideas underlying his argument can be used to obtain analogous generalizations of the corollaries established in this chapter.

Theorem 4.1.9 (Kechris-Solecki-Todorcevic). Suppose that X is an analytic Hausdorff space and G is an analytic digraph on X. Then exactly one of the following holds:
(1) There is a Borel \aleph_{0}-coloring of G.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G.

Proof. This follows from Theorem 1.4.10, Proposition 1.6.10, and the special case of Remark 4.1.6 where $\kappa=\lambda=\aleph_{0}$.

Theorem 4.1.10 (Kanovei). Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and G is a $\boldsymbol{\Sigma}_{2 n+1}^{1}$ digraph on X. Then exactly one of the following holds:
(1) There is a $\boldsymbol{\Delta}_{2 n+1}^{1}$-measurable $\boldsymbol{\kappa}_{2 n+1}^{1}$-coloring of G.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G.

Proof. This follows from Theorem 1.4.14, Proposition 1.6.11, and the special case of Remark 4.1 .7 where $\kappa=\lambda=\kappa_{2 n+1}^{1}$.

Theorem 4.1.11 (Kanovei). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, and G is a $\Sigma_{2 n+2}^{1}$ digraph on X. Then exactly one of the following holds:
(1) There is a $\boldsymbol{\Delta}_{2 n+3}^{1}$-measurable $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-coloring of G.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G.

Proof. By Theorem 1.4.14, Proposition 1.6.11, and the special case of Remark 4.1.7 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$and $\lambda=\boldsymbol{\kappa}_{2 n+3}^{1}$.

TheOrem 4.1.12 (Kechris-Solecki-Todorcevic). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and G is a digraph on X. Then exactly one of the following holds:
(1) There is an ordinal-valued-coloring of G.
(2) There is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G.

Proof. By the special case of Theorem 3.1.9 where $R=X \times X$.

2. Index two subequivalence relations

Given an equivalence relation E on X, we say that a digraph G on X is E-invariant if $G=E G E$.

Proposition 4.2.1. Suppose that κ is an aleph for which every $(\kappa+1)$-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an analytic Hausdorff space, E is a κ-Souslin equivalence relation on X, G is an E-invariant κ-Souslin digraph on X, and $B \subseteq X$ is a G independent $(\kappa+1)$-Borel set. Then B is contained in an E-invariant G-independent $(\kappa+1)$-Borel set.

Proof. Set $B_{0}=B$, and given $n \in \mathbb{N}$ and a G-independent $(\kappa+1)$ Borel set $B_{n} \subseteq X$, define $A_{n+1}=\left[B_{n}\right]_{E}$, and appeal to Proposition 4.1.2 to obtain a G-independent $(\kappa+1)$-Borel set $B_{n+1} \supseteq A_{n+1}$. It only remains to note that $\bigcup_{n \in \mathbb{N}} B_{n}$ is E-invariant and G-independent. \boxtimes

A transversal of an equivalence relation E on X over a subequivalence relation F is a maximal set $Y \subseteq X$ for which $E \upharpoonright Y=F \upharpoonright Y$.

Theorem 4.2.2. Suppose that κ is an aleph for which κ-DC holds and every $(\kappa+1)$-Borel subset of an analytic Hausdorff space is κ Souslin, X is an analytic Hausdorff space, E is a κ-Souslin equivalence relation on X, and F is a \aleph_{0}-universally-Baire co- κ-Souslin index-two subequivalence relation of E. Then at least one of the following holds:
(1) There is a $(\kappa+1)$-Borel transversal of E over F.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{F}_{0} \backslash \Delta\left(2^{\mathbb{N}}\right), \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $(F \backslash \Delta(X), E \backslash F, \sim E)$.
Proof. Define $G=E \backslash F$. If there is a $(\kappa+1)$-Borel κ-coloring c of G, then each of the sets $c^{-1}(\{\alpha\})$ is a $(\kappa+1)$-Borel partial transversal of E over F. As $x F y \Longleftrightarrow(E \backslash F)_{x} \cap(E \backslash F)_{y} \neq \emptyset$ for all $x, y \in X$, it follows that F is κ-Souslin, so Proposition 4.2 .1 yields F-invariant $(\kappa+1)$-Borel partial transversals $B_{\alpha} \subseteq X$ of E over F containing $c^{-1}(\{\alpha\})$. As $\left[B_{\alpha}\right]_{E}$ can be expressed as $\left\{x \in X \mid \exists y \in[x]_{E} y \in B_{\alpha}\right\}$ and $B_{\alpha} \cup\left\{x \in X \mid \forall y \in X\left(y \notin(E \backslash F)_{x}\right.\right.$ or $\left.\left.y \in B_{\alpha}\right)\right\}$, Theorem 1.4.9 ensures that it is $(\kappa+1)$-Borel, thus so too is the transversal of E over F given by $\bigcup_{\alpha<\kappa} B_{\alpha} \backslash \bigcup_{\beta<\alpha}\left[B_{\beta}\right]_{E}$. By Remark 4.1.6, we can therefore assume that there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to G. Let D^{\prime}, E^{\prime}, and F^{\prime} be the pullbacks of the diagonal on X, E, and F through $\phi \times \phi$. As $\mathbb{G}_{0} \cap\left(F^{\prime}\right)^{-1} F^{\prime}=\emptyset$, Proposition 1.6.10 ensures that F^{\prime} is meager. As $E^{\prime}=F^{\prime} \cup\left(\mathrm{id} \times\left(\iota_{\emptyset} \cup \iota_{\emptyset}^{-1}\right)\right)\left(F^{\prime}\right)$, Proposition 1.5.5 implies that E^{\prime} has the Baire property. As $\mathbb{G}_{0} \subseteq E^{\prime} \backslash F^{\prime}$, Proposition 1.6.20 ensures that $\mathbb{F}_{0} \subseteq F^{\prime}$ and $\mathbb{E}_{0} \backslash \mathbb{F}_{0} \subseteq E^{\prime} \backslash F^{\prime}$, in which case Proposition 1.6.22 yields a continuous homomorphism $\psi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\left(\mathbb{F}_{0} \backslash \Delta\left(2^{\mathbb{N}}\right), \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $\left(F^{\prime} \backslash D^{\prime}, E^{\prime} \backslash F^{\prime}, \sim E^{\prime}\right)$. Set $\pi=\phi \circ \psi$. \boxtimes

Theorem 4.2.3 (Louveau). Suppose that X is an analytic Hausdorff space, E is an analytic equivalence relation on X, and F is a
co-analytic index-two subequivalence relation of E. Then exactly one of the following holds:
(1) There is a Borel transversal of E over F.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{F}_{0} \backslash \Delta\left(2^{\mathbb{N}}\right), \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $(F \backslash \Delta(X), E \backslash F, \sim E)$.

Proof. This follows from Theorems 1.4.10 and 1.5.9, Proposition 1.6.22, and the special case of Theorem 4.2 .2 where $\kappa=\aleph_{0}$.

Theorem 4.2.4. Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, E is a $\Sigma_{2 n+1}^{1}$ equivalence relation on X, and F is a $\boldsymbol{\Pi}_{2 n+1}^{1}$ index-two subequivalence relation of E. Then exactly one of the following holds:
(1) There is a $\boldsymbol{\Delta}_{2 n+1}^{1}$ transversal of E over F.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{F}_{0} \backslash \Delta\left(2^{\mathbb{N}}\right), \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $(F \backslash \Delta(X), E \backslash F, \sim E)$.

Proof. This follows from Remark 4.1.7, Theorem 1.5.9, Proposition 1.6.22, and the proof of the special case of Theorem 4.2.2 where $\kappa=\boldsymbol{\kappa}_{2 n+1}^{1}$.

Theorem 4.2.5. Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, E is an equivalence relation on X, and F is an index-two subequivalence relation of E. Then exactly one of the following holds:
(1) There is a transversal of E over F.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{F}_{0} \backslash \Delta\left(2^{\mathbb{N}}\right), \mathbb{E}_{0} \backslash \mathbb{F}_{0}, \sim \mathbb{E}_{0}\right)$ to $(F \backslash \Delta(X), E \backslash F, \sim E)$.

Proof. This follows from Theorem 1.5.9, Proposition 1.6.22, and the analog of the proof of the special case of Theorem 4.2.2 for $F \subseteq E$ where the use of Proposition 4.2.1 is removed and the use of Theorem 4.1.3 is replaced with that of Theorem 4.1.12.

3. Perfect antichains

We say that a set $Y \subseteq X$ is an R-antichain if it is an \perp_{R}-clique, and an R-chain if it is \perp_{R}-independent.

Theorem 4.3.1 (M-Vidnyánszky). Suppose that κ is an aleph for which κ-DC holds, $\lambda \geq \kappa$ is an aleph for which every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, and R is an \aleph_{0}-universally Baire quasi-order on X for which \perp_{R} is κ-Souslin. Then at least one of the following holds:
(1) There is a cover of X by at most κ-many $(\lambda+1)$-Borel R chains.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. If condition (1) fails, then Remark 4.1.6 yields a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from \mathbb{G}_{0} to \perp_{R}, in which case Proposition 1.6.19 ensures that condition (2) holds.

Theorem 4.3.2 (M-Vidnyánszky). Suppose that X is an analytic Hausdorff space and R is an \aleph_{0}-universally Baire quasi-order on X for which \perp_{R} is analytic. Then exactly one of the following holds:
(1) There is a cover of X by countably-many Borel R-chains.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. The special case of Theorem 4.3.1 where $\kappa=\lambda=\aleph_{0}$ ensures that at least one of the two conditions holds, and the fact that $\mathfrak{c} \not \leq \aleph_{0}$ implies that they are mutually exclusive.

Theorem 4.3.3 (M-Vidnyánszky). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, and R is a quasi-order on X for which \perp_{R} is $\boldsymbol{\Sigma}_{2 n+1}^{1}$. Then exactly one of the following holds:
(1) There is a cover of X by at most $\boldsymbol{\kappa}_{2 n+1}^{1}$-many $\boldsymbol{\Delta}_{2 n+1}^{1} R$-chains.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is \aleph_{0}-universally Baire, Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where $\kappa=\lambda=\boldsymbol{\kappa}_{2 n+1}^{1}$ ensure that (1) or (2) holds, and Theorem 1.1.5 and the fact that $\mathfrak{c} \not \subset \aleph_{0}$ imply that they are mutually exclusive.

Theorem 4.3.4 (M-Vidnyánszky). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, and R is a quasi-order on X for which \perp_{R} is $\boldsymbol{\Sigma}_{2 n+2}^{1}$. Then exactly one of the following holds:
(1) There is a cover of X by at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many $\boldsymbol{\Delta}_{2 n+3}^{1} R$ chains.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is \aleph_{0}-universally Baire, Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$and $\lambda=\boldsymbol{\kappa}_{2 n+3}^{1}$ ensure that (1) or (2) holds, and they are mutually exclusive by Theorem 1.1.5 and the fact that $\mathfrak{c} \not \leq \aleph_{0}$. \boxtimes

Theorem 4.3.5 (Foreman). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and R is a quasi-order on X. Then exactly one of the following holds:
(1) There is a cover of X by a well-ordered sequence of R-chains.
(2) There is a continuous injection $\phi: 2^{\mathbb{N}} \hookrightarrow X$ for which $\phi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is \aleph_{0}-universally Baire, the analog of the proof of Theorem 4.3.1, where the use of Theorem 4.1.3 is replaced with that of Theorem 4.1.12, ensures that at least one of the two conditions holds, and Theorem 1.1.5 and the fact that $\mathfrak{c} \not \leq \aleph_{0}$ imply that they are mutually exclusive.

4. Parametrization and uniformization

Theorem 4.4.1 (M-Vidnyánszky). Suppose that κ is an aleph for which κ-DC holds, $\lambda \geq \kappa$ is an aleph for which every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, X and Y are analytic Hausdorff spaces, R is an \aleph_{0}-universally Baire quasi-order on Y for which \perp_{R} is κ-Souslin, and $S \subseteq X \times Y$ is κ-Souslin. Then at least one of the following holds:
(1) The set S is a union of at most κ-many $(\lambda+1)$-Borel-in-S sets whose vertical sections are R-chains.
(2) There exist $x \in X$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain.

Proof. Suppose that condition (1) fails, let G be the graph on $X \times Y$ with respect to which (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are neighbors if and only if they are both in $S, x=x^{\prime}$, and $y \perp_{R} y^{\prime}$, and observe that if a set $T \subseteq S$ is G-independent, then its vertical sections are R-chains, so by Remark 4.1.6, we can assume that there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X \times Y$ from \mathbb{G}_{0} to G. Then $\operatorname{proj}_{X} \circ \phi$ is a homomorphism from \mathbb{G}_{0} to equality, so Proposition 1.6.14 ensures that it is a homomorphism from \mathbb{E}_{0} to equality, hence Propositions 1.6.15 and 1.6.16 imply that it is constant. Let x denote its constant value, and observe that $\operatorname{proj}_{Y} \circ \phi$ is a homomorphism from \mathbb{G}_{0} to \perp_{R}. As $\bigcup_{i<2} \operatorname{proj}_{i}\left(\mathbb{G}_{0}\right)=2^{\mathbb{N}}$, it follows that $\left(\operatorname{proj}_{Y} \circ \phi\right)\left(2^{\mathbb{N}}\right) \subseteq S_{x}$, so the proof of Proposition 1.6.19 yields a continuous injection π : $2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain. \boxtimes

Theorem 4.4.2 (M-Vidnyánszky). Suppose that X and Y are analytic Hausdorff spaces, R is an \aleph_{0}-universally Baire quasi-order on Y for which \perp_{R} is analytic, and $S \subseteq X \times Y$ is an analytic set whose vertical sections are unions of countably-many R-chains. Then S is a union of countably-many Borel-in-S sets whose vertical sections are R-chains.

Proof. The special case of Theorem 4.4.1 where $\kappa=\lambda=\aleph_{0}$ ensures that if the conclusion fails, then there exist $x \in X$ and a
continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain. As $\mathfrak{c} \not \subset \aleph_{0}$, this contradicts the fact that S_{x} is a union of countably-many R-chains.

Theorem 4.4.3 (M-Vidnyánszky). Suppose that AD holds, $n \in \mathbb{N}$, X and Y are analytic Hausdorff spaces, R is a quasi-order on Y for which \perp_{R} is $\boldsymbol{\Sigma}_{2 n+1}^{1}$, and $S \subseteq X \times Y$ is a $\boldsymbol{\Sigma}_{2 n+1}^{1}$ set whose vertical sections are unions of at most $\boldsymbol{\kappa}_{2 n+1}^{1}$-many R-chains. Then S is a union of at most $\boldsymbol{\kappa}_{2 n+1}^{1}-m a n y \boldsymbol{\Delta}_{2 n+1}^{1}-i n-S$ sets whose vertical sections are R-chains.

Proof. As Theorem 1.5.11 ensures that R is \aleph_{0}-universally Baire, Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where $\kappa=\lambda=\kappa_{2 n+1}^{1}$ ensure that if the conclusion fails, then there exist $x \in X$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain. As Theorem 1.1.5 ensures that $\mathfrak{c} \not \leq \boldsymbol{\kappa}_{2 n+1}^{1}$, this contradicts the fact that S_{x} is a union of at most $\boldsymbol{\kappa}_{2 n+1}^{1}$-many R-chains.

Theorem 4.4.4 (M-Vidnyánszky). Suppose that AD holds, $n \in \mathbb{N}$, X and Y are analytic Hausdorff spaces, R is a quasi-order on Y for which \perp_{R} is $\Sigma_{2 n+2}^{1}$, and $S \subseteq X \times Y$ is a $\boldsymbol{\Sigma}_{2 n+2}^{1}$ set whose vertical sections are unions of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many R-chains. Then S is a union of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many $\boldsymbol{\Delta}_{2 n+3}^{1}-i n-S$ sets whose vertical sections are R-chains.

Proof. As Theorem 1.5.11 ensures that R is \aleph_{0}-universally Baire, Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$and $\lambda=\boldsymbol{\kappa}_{2 n+3}^{1}$ ensure that if the conclusion fails, then there exist $x \in X$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain. As Theorem 1.1.5 ensures that $\mathfrak{c} \not \leq\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$, this contradicts the fact that S_{x} is a union of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many R-chains.

Theorem 4.4.5. Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X and Y are analytic Hausdorff spaces, R is a quasi-order on Y, and $S \subseteq X \times Y$ is a set whose vertical sections are well-ordered unions of R-chains. Then S is a well-ordered union of sets whose vertical sections are R-chains.

Proof. The analog of the proof of the special case of Theorem 4.4.1 in which the use of Theorem 4.1.3 is replaced with that of Theorem 4.1.12 ensures that if the conclusion fails, then there exist $x \in X$ and a continuous injection $\pi: 2^{\mathbb{N}} \hookrightarrow S_{x}$ for which $\pi\left(2^{\mathbb{N}}\right)$ is an R-antichain. As Theorem 1.1.5 ensures that there is no well-ordering of \mathfrak{c}, this contradicts the fact that S_{x} is a well-ordered union of R-chains.

In particular, we obtain generalizations of the Lusin-Novikov uniformization theorem for sets with countable vertical sections:

Theorem 4.4.6 (Lusin-Novikov, Conley-M). Suppose that X and Y are analytic Hausdorff spaces, F is a Borel equivalence relation on Y, and $S \subseteq X \times Y$ is an analytic set whose vertical sections are unions of countably-many F-classes. Then S is a union of countably-many Borel-in-S sets whose non-empty vertical sections are F-classes.

Proof. By the special case of Theorem 4.4.2 where $R=F$, it is enough to show that every Borel-in- S subset of S whose vertical sections are contained in F-classes is contained in a Borel-in- S subset of S whose non-empty vertical sections are F-classes. But this follows from Proposition 4.2.1.

Theorem 4.4.7 (Conley-M). Suppose that AD holds, $n \in \mathbb{N}, X$ and Y are analytic Hausdorff spaces, F is a $\boldsymbol{\Delta}_{2 n+1}^{1}$ equivalence relation on Y, and $S \subseteq X \times Y$ is a $\Sigma_{2 n+1}^{1}$ set whose vertical sections are unions of at most $\boldsymbol{\kappa}_{2 n+1}^{1}-m a n y ~ F$-classes. Then S is a union of at most $\boldsymbol{\kappa}_{2 n+1^{-}}^{1}$ many $\Delta_{2 n+1}^{1}-i n-S$ sets whose non-empty vertical sections are F-classes.

Proof. By the proof of the special case of Theorem 4.4.3 where $R=F$, it is enough to show that there is a function sending each code for a $\left(\boldsymbol{\kappa}_{2 n+1}^{1}+1\right)$-Borel-in- S subset of S whose vertical sections are contained in F-classes to a code for a $\left(\boldsymbol{\kappa}_{2 n+1}^{1}+1\right)$-Borel-in- S superset contained in S whose non-empty vertical sections are F-classes. But this follows Remark 4.1.7 and the proof of Proposition 4.2.1.

Theorem 4.4.8 (Conley-M). Suppose that AD holds, $n \in \mathbb{N}, X$ and Y are analytic Hausdorff spaces, F is a $\boldsymbol{\Delta}_{2 n+2}^{1}$ equivalence relation on Y, and $S \subseteq X \times Y$ is a $\boldsymbol{\Sigma}_{2 n+2}^{1}$ set whose vertical sections are unions of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many F-classes. Then S is a union of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many $\boldsymbol{\Delta}_{2 n+3}^{1}$-in-S sets whose non-empty vertical sections are F-classes.

Proof. By the proof of the special case of Theorem 4.4.4 where $R=F$, it is enough to show that there is a function sending each code for a $\left(\boldsymbol{\kappa}_{2 n+3}^{1}+1\right)$-Borel-in- S subset of S whose vertical sections are contained in F-classes to a code for a $\left(\boldsymbol{\kappa}_{2 n+3}^{1}+1\right)$-Borel-in- S superset contained in S whose vertical sections are F-classes. But this follows Remark 4.1.7 and the proof of Proposition 4.2.1.

Theorem 4.4.9 (Conley-M). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X and Y are analytic Hausdorff spaces, F is an equivalence relation on Y, and $S \subseteq X \times Y$ is a set whose vertical sections are well-ordered unions of
F-classes. Then S is a well-ordered union of sets whose non-empty vertical sections are F-classes.

Proof. This is a trivial consequence of Theorem 4.4.5.
\boxtimes
Given an equivalence relation E on X, we say that a set $S \subseteq X \times Y$ is E-invariant if the vertical sections of E-related points coincide. Note that if $X=Y=2^{\mathbb{N}}$ and $E=\mathbb{E}_{0}$, then the non-empty vertical sections of the E-invariant set $S=\mathbb{E}_{0}$ are countable, but Proposition 1.6.9 ensures that S is not a union of countably-many E-invariant Borel sets whose non-empty vertical sections are singletons.

Theorem 4.4.10. Suppose that X and Y are analytic Hausdorff spaces, E and F are Borel equivalence relations on X and Y, and $S \subseteq X \times Y$ is an E-invariant analytic set whose vertical sections are unions of countably-many F-classes. Then exactly one of the following holds:
(1) The set S is a union of countably-many E-invariant Borel-in-S sets whose vertical sections are unions of finitely-many F-classes.
(2) There are continuous embeddings $\phi: 2^{\mathbb{N}} \rightarrow X$ of \mathbb{E}_{0} into E and $\psi: 2^{\mathbb{N}} \rightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right)$ into F for which $(\phi \times \psi)\left(\mathbb{E}_{0}\right) \subseteq S$.

Proof. This is a straightforward corollary of Theorem 4.4.6 and [CCM16, Theorem 1].

Theorem 4.4.11. Suppose that AD holds, $n \in \mathbb{N}, X$ and Y are analytic Hausdorff spaces, E and F are $\Delta_{2 n+1}^{1}$ equivalence relations on X and Y, and $S \subseteq X \times Y$ is an E-invariant $\boldsymbol{\Sigma}_{2 n+1}^{1}$ whose vertical sections are unions of at most $\boldsymbol{\kappa}_{2 n+1}^{1}$-many F-classes. Then exactly one of the following holds:
(1) The set S is a union of at most $\boldsymbol{\kappa}_{2 n+1}^{1}$-many E-invariant $\boldsymbol{\Delta}_{2 n+1}^{1}$ -in-S sets whose vertical sections are unions of finitely-many F-classes.
(2) There are continuous embeddings $\phi: 2^{\mathbb{N}} \rightarrow X$ of \mathbb{E}_{0} into E and $\psi: 2^{\mathbb{N}} \rightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right)$ into F for which $(\phi \times \psi)\left(\mathbb{E}_{0}\right) \subseteq S$.
Proof. This is a straightforward corollary of Theorem 4.4.7 and the analog of [CCM16, Theorem 1] for $\boldsymbol{\Delta}_{2 n+1}^{1}$ equivalence relations. \boxtimes

Theorem 4.4.12. Suppose that AD holds, $n \in \mathbb{N}, X$ and Y are analytic Hausdorff spaces, E and F are $\boldsymbol{\Delta}_{2 n+2}^{1}$ equivalence relations on X and Y, and $S \subseteq X \times Y$ is an E-invariant $\boldsymbol{\Sigma}_{2 n+2}^{1}$ whose vertical sections are unions of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many F-classes. Then exactly one of the following holds:
(1) The set S is a union of at most $\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-many E-invariant $\boldsymbol{\Delta}_{2 n+3}^{1}-i n-S$ sets whose vertical sections are unions of finitelymany F-classes.
(2) There are continuous embeddings $\phi: 2^{\mathbb{N}} \rightarrow X$ of \mathbb{E}_{0} into E and $\psi: 2^{\mathbb{N}} \rightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right)$ into F for which $(\phi \times \psi)\left(\mathbb{E}_{0}\right) \subseteq S$.
Proof. This is a straightforward corollary of Theorem 4.4.7 and the analog of [CCM16, Theorem 1] for $\boldsymbol{\Delta}_{2 n+2}^{1}$ equivalence relations. \boxtimes

Theorem 4.4.13. Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X and Y are analytic Hausdorff spaces, E and F are equivalence relations on X and Y, and $S \subseteq X \times Y$ is an E-invariant set whose vertical sections are well-ordered unions of F-classes. Then exactly one of the following holds:
(1) The set S is a well-ordered union of E-invariant sets whose vertical sections are unions of finitely-many F-classes.
(2) There are continuous embeddings $\phi: 2^{\mathbb{N}} \rightarrow X$ of \mathbb{E}_{0} into E and $\psi: 2^{\mathbb{N}} \rightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right)$ into F for which $(\phi \times \psi)\left(\mathbb{E}_{0}\right) \subseteq S$.

Proof. This is a straightforward corollary of Theorem 4.4.9 and the analog of $\left[\mathbf{C C M 1 6}\right.$, Theorem 1] under $A D_{\mathbb{R}}$.

CHAPTER 5

The $\left(\mathbb{G}_{0}, \mathbb{H}_{0}\right)$ dichotomy

1. Borel local colorings

Given a binary relation R on X, the downward R-saturation of a set $Y \subseteq X$ is given by $[Y]_{R}=\{x \in X \mid \exists y \in Y x R y\}$, and the upward R saturation of a set $Y \subseteq X$ is given by $[Y]^{R}=\{x \in X \mid \exists y \in Y$ y $R x\}$. We say that Y is downward R-invariant if $Y=[Y]_{R}$, and upward R-invariant if $Y=[Y]^{R}$.

Proposition 5.1.1. Suppose that κ is an aleph for which every $(\kappa+1)$-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an analytic Hausdorff space, R is a κ-Souslin quasi-order on X, and $\left(A_{0}, A_{1}\right)$ is an R-independent pair of κ-Souslin sets. Then there is an R-independent pair $\left(B_{0}, B_{1}\right)$ of $(\kappa+1)$-Borel sets such that $A_{0} \subseteq B_{0}$, $A_{1} \subseteq B_{1}, B_{0}$ is upward R-invariant, and B_{1} is downward R-invariant.

Proof. Set $A_{0,0}=A_{0}$ and $A_{1,0}=A_{1}$. Given $n \in \mathbb{N}$ and an R independent pair $\left(A_{0, n}, A_{1, n}\right)$ of κ-Souslin sets, appeal to Proposition 4.1.1 to obtain an R-independent pair ($B_{0, n}, B_{1, n}$) of ($\kappa+1$)-Borel sets such that $A_{0, n} \subseteq B_{0, n}$ and $A_{1, n} \subseteq B_{1, n}$, and set $A_{0, n+1}=\left[B_{0, n}\right]^{R}$ and $A_{1, n+1}=\left[B_{1, n}\right]_{R}$. Define $B_{0}=\bigcup_{n \in \mathbb{N}} B_{0, n}$ and $B_{1}=\bigcup_{n \in \mathbb{N}} B_{1, n}$.

The lexicographical ordering of 2^{α} is the partial order given by $c<_{R_{\operatorname{lex} \mid 22^{\alpha}} d} \Longleftrightarrow \exists \beta<\alpha(c \upharpoonright[0, \beta)=d \upharpoonright[0, \beta)$ and $c(\beta)<d(\beta))$.

Theorem 5.1.2. Suppose that κ is an aleph for which κ^{+}-DC holds, $\lambda \geq \kappa$ is an aleph for which every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, G is a κ-Souslin digraph on X, and R is a κ-Souslin quasi-order on X. Then at least one of the following holds:
(1) There exist a quasi-order $R^{\prime} \supseteq R$ that admits a $(\lambda+1)$-Borel reduction to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\kappa^{+}$, and for which there is $a(\lambda+1)$-Borel κ-coloring of $\equiv_{R^{\prime}} \cap G$.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Proof. By Proposition 1.4.1, we can assume that there are continuous surjections $\phi_{G}: \kappa^{\mathbb{N}} \rightarrow G, \phi_{R}: \kappa^{\mathbb{N}} \rightarrow R$, and $\phi_{X}: \kappa^{\mathbb{N}} \rightarrow X$. Fix
$s_{2 n} \in 2^{2 n}$ and $t_{2 n+1} \in 2^{2 n+1} \times 2^{2 n+1}$ for which $\mathbb{G}_{0}(2 \mathbb{N})=G_{\left\{s_{2 n} \mid n \in \mathbb{N}\right\}}$ and $\mathbb{H}_{0}(2 \mathbb{N}+1)=G_{\left\{t_{2 n+1} \mid n \in \mathbb{N}\right\}}$.

We will construct decreasing sequences $\left(B^{\alpha}\right)_{\alpha<\kappa^{+}}$of $(\lambda+1)$-Borel subsets of X and $\left(R^{\alpha}\right)_{\alpha<\kappa^{+}}$of quasi-orders containing R such that for all $\alpha<\kappa^{+}$, there exist $\beta<\kappa^{+}$for which there is a $(\lambda+1)$-Borel reduction of R^{α} to $R_{\text {lex }} \upharpoonright 2^{\beta}$, and a $(\lambda+1)$-Borel κ-coloring of $\equiv_{R^{\alpha}} \cap G$ off of B^{α}. We begin by setting $B^{0}=X$ and $R^{0}=X \times X$. For all limit ordinals $\mu<\kappa^{+}$, we set $B^{\mu}=\bigcap_{\alpha<\mu} B^{\alpha}$ and $R^{\mu}=\bigcap_{\alpha<\mu} R^{\alpha}$. To describe the construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form $a=\left(n^{a}, \phi^{a},\left(\psi_{n}^{a}\right)_{n<n^{a}}\right)$, where $n^{a} \in \mathbb{N}, \phi^{a}: 2^{n^{a}} \rightarrow \kappa^{n^{a}}$, and $\psi_{n}^{a}: 2^{n^{a}-(n+1)} \rightarrow \kappa^{n^{a}}$ for all $n<n^{a}$. A one-step extension of such an a is an approximation b for which:
(a) $n^{b}=n^{a}+1$.
(b) $\forall s \in 2^{n^{a}} \forall t \in 2^{n^{b}}\left(s \sqsubset t \Longrightarrow \phi^{a}(s) \sqsubset \phi^{b}(t)\right)$.
(c) $\forall n<n^{a} \forall s \in 2^{n^{a}-(n+1)} \forall t \in 2^{n^{b}-(n+1)}\left(s \sqsubset t \Longrightarrow \psi_{n}^{a}(s) \sqsubset \psi_{n}^{b}(t)\right)$.

An approximation a is even if n^{a} is even, and odd if n^{a} is odd.
A configuration is a triple of the form $\gamma=\left(n^{\gamma}, \phi^{\gamma},\left(\psi_{n}^{\gamma}\right)_{n<n \gamma}\right)$, such that $n^{\gamma} \in \mathbb{N}, \phi^{\gamma}: 2^{n^{\gamma}} \rightarrow \kappa^{\mathbb{N}}, \psi_{n}^{\gamma}: 2^{n^{\gamma}-(n+1)} \rightarrow \kappa^{\mathbb{N}}$ for all $n<n^{\gamma}$, $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(s)=\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown s\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown s\right)\right)$ for all even $n<n^{\gamma}$ and $s \in 2^{n^{\gamma}-(n+1)}$, and along similar lines, $\left(\phi_{R} \circ \psi_{n}^{\gamma}\right)(t)=$ $\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n}(0) \frown(0) \frown t\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n}(1) \frown(1) \frown t\right)\right)$ for all odd $n<n^{\gamma}$ and $t \in 2^{n^{\gamma}-(n+1)}$. A configuration γ is compatible with an approximation a if the following conditions hold:
(i) $n^{a}=n^{\gamma}$.
(ii) $\forall t \in 2^{n^{a}} \phi^{a}(t) \sqsubseteq \phi^{\gamma}(t)$.
(iii) $\forall n<n^{a} \forall t \in 2^{n^{a}-(n+1)} \psi_{n}^{a}(t) \sqsubseteq \psi_{n}^{\gamma}(t)$.

A configuration γ is compatible with a set $X^{\prime} \subseteq X$ if $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(2^{n^{\gamma}}\right) \subseteq$ X^{\prime}, and compatible with a quasi-order $R^{\prime} \supseteq R$ on X if $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(2^{n^{\gamma}}\right)$
 terminal if no configuration is compatible with a one-step extension of a, X^{\prime}, and R^{\prime}. For all even approximations a, let $A\left(a, X^{\prime}, R^{\prime}\right)$ be the set of points of the form $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{a}}\right)$, where γ varies over configurations compatible with a, X^{\prime}, and R^{\prime}. For all odd approximations a and $i<2$, let $A_{i}\left(a, X^{\prime}, R^{\prime}\right)$ be the set of points of the form $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n^{a}}(i)\right)$, where γ varies over all configurations compatible with a, X^{\prime}, and R^{\prime}.

Lemma 5.1.3. Suppose that $X^{\prime} \subseteq X, R^{\prime} \supseteq R$ is a quasi-order on X, and a is an $\left(X^{\prime}, R^{\prime}\right)$-terminal even approximation. Then $A\left(a, X^{\prime}, R^{\prime}\right)$ is $\left(\equiv_{R^{\prime}} \cap G\right)$-independent.

Proof. Suppose, towards a contradiction, that there are configurations γ_{0} and γ_{1}, both compatible with a, X^{\prime}, and R^{\prime}, with the property that $\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right) \in G$. Fix a sequence $d \in \kappa^{\mathbb{N}}$ such that $\phi_{G}(d)=\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(s_{n^{a}}\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(s_{n^{a}}\right)\right)$, and let γ denote the configuration given by $n^{\gamma}=n^{a}+1, \phi^{\gamma}(t \frown(i))=\phi^{\gamma_{i}}(t)$ for all $i<2$ and $t \in 2^{n^{a}}, \psi_{n}^{\gamma}(t \frown(i))=\psi_{n}^{\gamma_{i}}(t)$ for all $i<2, n<n^{a}$, and $t \in 2^{n^{a}-(n+1)}$, and $\psi_{n^{a}}^{\gamma}(\emptyset)=d$. Then γ is compatible with a one-step extension of a, contradicting the fact that a is $\left(X^{\prime}, R^{\prime}\right)$-terminal.

LEmmA 5.1.4. Suppose that $X^{\prime} \subseteq X, R^{\prime} \supseteq R$ is a quasi-order on X, and a is an $\left(X^{\prime}, R^{\prime}\right)$-terminal odd approximation. Then $\left(A_{0}\left(a, X^{\prime}, R^{\prime}\right)\right.$, $\left.A_{1}\left(a, X^{\prime}, R^{\prime}\right)\right)$ is an $\left(\equiv_{R^{\prime}} \cap R\right)$-independent pair.

Proof. Suppose, towards a contradiction, that there are configurations γ_{0} and γ_{1}, both compatible with a, X^{\prime}, and R^{\prime}, with the property that $\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(t_{n^{a}}(0)\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(t_{n^{a}}(1)\right)\right) \in \equiv_{R^{\prime}} \cap R$. Fix a sequence $d \in \kappa^{\mathbb{N}}$ such that $\phi_{R}(d)=\left(\left(\phi_{X} \circ \phi^{\gamma_{0}}\right)\left(t_{n^{a}}(0)\right),\left(\phi_{X} \circ \phi^{\gamma_{1}}\right)\left(t_{n^{a}}(1)\right)\right)$, and let γ denote the configuration given by $n^{\gamma}=n^{a}+1, \phi^{\gamma}(t \frown(i))=\phi^{\gamma_{i}}(t)$ for all $i<2$ and $t \in 2^{n^{a}}, \psi_{n}^{\gamma}(t \frown(i))=\psi_{n}^{\gamma_{i}}(t)$ for all $i<2, n<n^{a}$, and $t \in 2^{n^{a}-(n+1)}$, and $\psi_{n^{a}}^{\gamma}(\emptyset)=d$. Then γ is compatible with a one-step extension of a, contradicting the fact that a is $\left(X^{\prime}, R^{\prime}\right)$-terminal.

For all (B^{α}, R^{α})-terminal even approximations a, Proposition 4.1.2 gives rise to a $\left(\equiv_{R^{\alpha}} \cap G\right)$-independent $(\lambda+1)$-Borel set $B\left(a, B^{\alpha}, R^{\alpha}\right) \supseteq$ $A\left(a, B^{\alpha}, R^{\alpha}\right)$. Let $B^{\alpha+1}$ be the difference of B^{α} and the union of the sets of the form $B\left(a, B^{\alpha}, R^{\alpha}\right)$, where a varies over all $\left(B^{\alpha}, R^{\alpha}\right)$-terminal even approximations.

For all (B^{α}, R^{α})-terminal odd approximations a and $i<2$, another application of Proposition 5.1.1 yields an $\left(\equiv_{R^{\prime}} \cap R\right)$-independent pair $\left(B_{0}\left(a, B^{\alpha}, R^{\alpha}\right), B_{1}\left(a, B^{\alpha}, R^{\alpha}\right)\right)$ of $(\lambda+1)$-Borel sets with the property that $A_{i}\left(a, B^{\alpha}, R^{\alpha}\right) \subseteq B_{i}\left(a, B^{\alpha}, R^{\alpha}\right)$ for all $i<2$. Fix an injective enumeration $\left(a_{\beta}^{\alpha}\right)_{\beta<\beta_{\alpha}}$ of the family of all $\left(B^{\alpha}, R^{\alpha}\right)$-terminal odd approximations, define $\pi^{\alpha}: X \rightarrow 2^{\beta_{\alpha}}$ by $\pi^{\alpha}(x)(\beta)=\chi_{B_{0}\left(a^{\beta}, B^{\alpha}, R^{\alpha}\right)}(x)$ for all $\beta<\beta_{\alpha}$, and let $R^{\alpha+1}$ be the subquasiorder of R^{α} with respect to which $x R^{\alpha+1} y \Longleftrightarrow\left(x<_{R^{\alpha}} y\right.$ or $\left(x \equiv_{R^{\alpha}} y\right.$ and $\left.\left.\pi^{\alpha}(x) R_{\text {lex }} \pi^{\alpha}(y)\right)\right)$.

Lemma 5.1.5. Suppose that $\alpha<\kappa^{+}$and a is a non- $\left(B^{\alpha+1}, R^{\alpha+1}\right)$ terminal approximation. Then a has a non- $\left(B^{\alpha}, R^{\alpha}\right)$-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration γ compatible with $b, B^{\alpha+1}$, and $R^{\alpha+1}$. If a is odd, then $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n^{b}}\right) \in B^{\alpha+1}$, so b is not $\left(B^{\alpha}, R^{\alpha}\right)$-terminal. If a is even, then $\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n^{b}}(0)\right) \equiv_{R^{\alpha+1}}\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n^{b}}(1)\right)$, so b is not $\left(B^{\alpha}, R^{\alpha}\right)$ terminal.

Fix $\alpha<\kappa^{+}$such that the families of (B^{α}, R^{α})-terminal approximations and $\left(B^{\alpha+1}, R^{\alpha+1}\right)$-terminal approximations are one and the same, and let a_{0} denote the unique approximation for which $n^{a_{0}}=0$. Then $A\left(a_{0}, X^{\prime}, R^{\prime}\right)=X^{\prime}$ for all $X^{\prime} \subseteq X$ and quasi-orders $R^{\prime} \supseteq R$ on X, so we can assume that a_{0} is not $\left(B^{\alpha}, R^{\alpha}\right)$-terminal, since otherwise $B^{\alpha+1}=\emptyset$, in which case there is a $(\lambda+1)$-Borel κ-coloring of $\equiv_{R^{\alpha}} \cap G$.

By recursively applying Lemma 5.1.5, we obtain non- $\left(B^{\alpha}, R^{\alpha}\right)$-terminal one-step extensions a_{n+1} of a_{n} for all $n \in \mathbb{N}$. Define $\phi, \psi_{n}: 2^{\mathbb{N}} \rightarrow$ $\kappa^{\mathbb{N}}$ by $\phi(c)=\bigcup_{n \in \mathbb{N}} \phi^{a_{n}}(c \upharpoonright n)$ and $\psi_{n}(c)=\bigcup_{m>n} \psi_{n}^{a_{m}}(c \upharpoonright(m-(n+1)))$ for all $n \in \mathbb{N}$. Clearly these functions are continuous.

To establish that the function $\pi=\phi_{X} \circ \phi$ is a homomorphism from $\mathbb{G}_{0}(2 \mathbb{N})$ to G, we will show that if $c \in 2^{\mathbb{N}}$ and $n \in 2 \mathbb{N}$, then

$$
\left(\phi_{G} \circ \psi_{n}\right)(c)=\left(\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(1) \frown c\right)\right) .
$$

And for this, it is sufficient to show that if U is an open neighborhood of $\left(\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(s_{n} \frown(1) \frown c\right)\right)$ and V is an open neighborhood of $\left(\phi_{G} \circ \psi_{n}\right)(c)$, then $U \cap V \neq \emptyset$. Towards this end, fix $m>n$ such that $\phi_{X}\left(\mathcal{N}_{\phi^{a_{m}}\left(s_{n} \curvearrowright(0) \wedge s\right)}\right) \times \phi_{X}\left(\mathcal{N}_{\phi^{a_{m}\left(s_{n} \wedge(1) \wedge s\right)}}\right) \subseteq U$ and $\phi_{G}\left(\mathcal{N}_{\psi_{n}^{a_{m}}(s)}\right) \subseteq V$, where $s=c \upharpoonright(m-(n+1))$. The fact that a_{m} is not $\left(B^{\alpha}, R^{\alpha}\right)$-terminal yields a configuration γ compatible with a_{m}. Then $\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(0) \frown s\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(s_{n} \frown(1) \frown s\right)\right) \in U$ and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(s) \in V$, thus $U \cap V \neq \emptyset$.

To establish that the function $\pi=\phi_{X} \circ \phi$ is a homomorphism from $\mathbb{H}_{0}(2 \mathbb{N}+1)$ to R, we will show that if $c \in 2^{\mathbb{N}}$ and $n \in 2 \mathbb{N}+1$, then

$$
\left(\phi_{R} \circ \psi_{n}\right)(c)=\left(\left(\phi_{X} \circ \phi\right)\left(t_{n}(0) \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(t_{n}(1) \frown(1) \frown c\right)\right) .
$$

And for this, it is sufficient to show that if U is an open neighborhood of $\left(\left(\phi_{X} \circ \phi\right)\left(t_{n}(0) \frown(0) \frown c\right),\left(\phi_{X} \circ \phi\right)\left(t_{n}(1) \frown(1) \frown c\right)\right)$ and V is an open neighborhood of $\left(\phi_{G} \circ \psi_{n}\right)(c)$, then $U \cap V \neq \emptyset$. Towards this end, fix $m>n$ such that $\phi_{X}\left(\mathcal{N}_{\phi^{a_{m}}\left(t_{n}(0) \wedge(0) \wedge t\right)}\right) \times \phi_{X}\left(\mathcal{N}_{\phi^{a_{m}\left(t_{n}(1) \wedge(1) \wedge t\right)}}\right) \subseteq U$ and $\phi_{G}\left(\mathcal{N}_{\psi_{n}^{a_{m}}(t)}\right) \subseteq V$, where $t=c \upharpoonright(m-(n+1))$. The fact that a_{m} is not $\left(B^{\alpha}, R^{\alpha}\right)$-terminal yields a configuration γ compatible with a_{m}. Then $\left(\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n}(0) \frown(0) \frown t\right),\left(\phi_{X} \circ \phi^{\gamma}\right)\left(t_{n}(1) \frown(1) \frown t\right)\right) \in U$ and $\left(\phi_{G} \circ \psi_{n}^{\gamma}\right)(t) \in V$, thus $U \cap V \neq \emptyset$.

REmark 5.1.6. The assumption of κ^{+}-DC can again be reduced to κ-DC by first running the argument without Proposition 5.1.1.

REmark 5.1.7. Under the stronger assumption that there is a function sending each code for a $(\lambda+1)$-Borel subset of an analytic Hausdorff space to a witness that the set is λ-Souslin, the assumption of κ-DC can again be removed by working with codes for $(\lambda+1)$-Borel sets.

Remark 5.1.8. The ideas behind [Kan97] can again be used to eliminate both κ-DC and the assumption that every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, and to obtain analogous generalizations of the corollaries established in this chapter.

Theorem 5.1.9. Suppose that X is an analytic Hausdorff space, G is an analytic digraph on X, and R is an analytic quasi-order on X. Then exactly one of the following holds:
(1) There exists a quasi-order $R^{\prime} \supseteq R$ that admits a Borel reduction to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\omega_{1}$, and for which there is a Borel \aleph_{0}-coloring of $\equiv_{R^{\prime}} \cap G$.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Proof. This follows from Theorem 1.4.10, Proposition 1.6.25, and the special case of Remark 5.1.6 where $\kappa=\lambda=\aleph_{0}$.

Theorem 5.1.10. Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, G is a $\Sigma_{2 n+1}^{1}$ digraph on X, and R is a $\Sigma_{2 n+1}^{1}$ quasiorder on X. Then exactly one of the following holds:
(1) There exists a quasi-order $R^{\prime} \supseteq R$ that admits a $\Delta_{2 n+1}^{1}$-measurable reduction to $R_{\text {lex }} \upharpoonright 2^{\kappa}$ for some $\kappa<\boldsymbol{\delta}_{2 n+1}^{1}$, and for which there is a $\boldsymbol{\Delta}_{2 n+1}^{1} \boldsymbol{\kappa}_{2 n+1}^{1}$-coloring of $\equiv_{R^{\prime}} \cap G$.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Proof. This follows from Proposition 1.6.26 and the special case of Remark 5.1.7 where $\kappa=\lambda=\boldsymbol{\kappa}_{2 n+1}^{1}$.

Theorem 5.1.11. Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, G is a $\boldsymbol{\Sigma}_{2 n+2}^{1}$ digraph on X, and R is a $\boldsymbol{\Sigma}_{2 n+2}^{1}$ quasiorder on X. Then exactly one of the following holds:
(1) There exists a quasi-order $R^{\prime} \supseteq R$ for which there are a $\Delta_{2 n+3^{-}}^{1}$ measurable reduction of R^{\prime} to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{++}$ and a $\boldsymbol{\Delta}_{2 n+3}^{1}\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$-coloring of $\equiv_{R^{\prime}} \cap G$.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Proof. This follows from Proposition 1.6.26 and the special case of Remark 5.1.7 where $\kappa=\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$and $\lambda=\boldsymbol{\kappa}_{2 n+3}^{1}$.

Theorem 5.1.12. Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, G is a digraph on X, and R is a quasi-order on X. Then exactly one of the following holds:
(1) There exists a quasi-order $R^{\prime} \supseteq R$ that admits a reduction to $R_{\mathrm{lex}} \upharpoonright 2^{\alpha}$ for some ordinal α, and for which there is an ordinalvalued coloring of $\equiv_{R^{\prime}} \cap G$.
(2) There exists a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Proof. This follows from Theorem 1.4.15, Proposition 1.6.26, and the simplification of the proof of Theorem 5.1.2 in which the use of Proposition 5.1.1 is eliminated.

2. Linearizability of quasi-orders

Proposition 5.2.1. Suppose that κ is an aleph for which every ($\kappa+$ 1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an analytic Hausdorff space, E is a κ-Souslin equivalence relation on X, R is a co- κ-Souslin quasi-order on X, and $\left(A_{0}, A_{1}\right)$ is an $(E \backslash R)$-independent pair of κ-Souslin sets. Then there is an $(E \backslash R)$-independent pair $\left(B_{0}, B_{1}\right)$ of $(\kappa+1)$-Borel sets such that $A_{0} \subseteq B_{0}, A_{1} \subseteq B_{1}, B_{0}$ is downward $(E \cap R)$-invariant, and B_{1} is upward $(E \cap R)$-invariant.

Proof. Set $A_{0,0}=A_{0}$ and $A_{1,0}=A_{1}$. Given $n \in \mathbb{N}$ and an $(E \backslash R)$ independent pair $\left(A_{0, n}, A_{1, n}\right)$ of κ-Souslin sets, appeal to Proposition 4.1.1 to obtain an $(E \backslash R)$-independent pair ($B_{0, n}, B_{1, n}$) of ($\kappa+1$)-Borel sets with the property that $A_{0, n} \subseteq B_{0, n}$ and $A_{1, n} \subseteq B_{1, n}$, and set $A_{0, n+1}=\left[B_{0, n}\right]_{E \cap R}$ and $A_{1, n+1}=\left[B_{1, n}\right]^{E \cap R}$. Define $B_{0}=\bigcup_{n \in \mathbb{N}} B_{0, n}$ and $B_{1}=\bigcup_{n \in \mathbb{N}} B_{1, n}$.
\boxtimes
Theorem 5.2.2. Suppose that κ is an aleph for which κ-DC holds, $\lambda \geq \kappa$ is an aleph for which every $(\lambda+1)$-Borel subset of an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, and R is an \aleph_{0}-universally-Baire bi- κ-Souslin quasi-order on X. Then at least one of the following holds:
(1) There is a quasi-order $S \supseteq R$ that admits a $(\lambda+1)$-Borel reduction to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\kappa^{+}$and for which \equiv_{R} and \equiv_{S} coincide.
(2) There is a continuous embedding of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Proof. Define $G=\sim R$. Suppose first that there is a quasiorder $R^{\prime} \supseteq R$ that admits a $(\lambda+1)$-Borel reduction to $R_{\mathrm{lex}} \upharpoonright 2^{\alpha}$ for some $\alpha<\kappa^{+}$, and for which there is a $(\lambda+1)$-Borel κ-coloring c of $\equiv_{R^{\prime}} \cap G$. Then Proposition 5.2.1 yields $\left(\equiv_{R^{\prime}} \backslash R\right)$-independent pairs $\left(B_{0, \alpha}, B_{1, \alpha}\right)$ of $(\lambda+1)$-Borel sets such that $B_{0, \alpha}$ is downward $\left(\equiv_{R^{\prime}} \cap R\right)$-invariant, $B_{1, \alpha}$ is upward $\left(\equiv_{R^{\prime}} \cap R\right)$-invariant, and $c^{-1}(\{\alpha\}) \subseteq$ $B_{0, \alpha} \cap B_{1, \alpha}$ for all $\alpha<\kappa$. Define $\phi: X \rightarrow(2 \times 2)^{\kappa}$ by $\phi(x)(\alpha)=$ $\left(1-\chi_{B_{0, \alpha}}(x), \chi_{B_{1, \alpha}}(x)\right)$, let S^{\prime} be the quasi-order on X given by $x S^{\prime}$ $y \Longleftrightarrow x<_{R^{\prime}} y$ or $\left(x \equiv_{R^{\prime}} y\right.$ and $\left.\phi(x) R_{\text {lex }} \phi(y)\right)$, and note that $R \subseteq S^{\prime}$ and $\equiv_{S^{\prime}} \cap R \subseteq \equiv_{R}$, thus $E \cap R \subseteq \equiv_{R}$, where E is the smallest equivalence relation containing $\equiv_{S^{\prime}} \cap R$. By Proposition 4.2.1, there are E-invariant $\left(\equiv_{S^{\prime}} \backslash R\right)$-independent Borel sets $B_{\alpha} \supseteq c^{-1}(\{\alpha\})$. Define $\psi: X \rightarrow 2^{\kappa}$ by $\psi(x)(\alpha)=\chi_{B_{\alpha}}(x)$, let S be the quasi-order on X given by $x S y \Longleftrightarrow x<_{S^{\prime}} y$ or $\left(x \equiv_{S^{\prime}} y\right.$ and $\left.\psi(x) R_{\text {lex }} \psi(y)\right)$, and observe that $R \subseteq S$ and \equiv_{R} and \equiv_{S} coincide.

By Theorem 5.1.2, we can therefore assume that there is a continuous homomorphism $\phi: 2^{\mathbb{N}} \rightarrow X$ from $\left(\mathbb{G}_{0}(2 \mathbb{N}), \mathbb{H}_{0}(2 \mathbb{N}+1)\right)$ to (G, R).

Let D_{0} and R_{0} be the pullbacks of $\Delta(X)$ and R through $\phi \times \phi$. As $\equiv_{R_{0}} \cap \mathbb{G}_{0}(2 \mathbb{N})=\emptyset$, Proposition 1.6.25 ensures that $\equiv_{R_{0}}$ is meager, so R_{0} is not comeager. As $\mathbb{H}_{0}(2 \mathbb{N}+1) \subseteq R_{0}$, Proposition 1.6.24 therefore implies that R_{0} is meager. By Proposition 1.6.31, there is a continuous homomorphism $\psi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ from $\left(\sim \Delta\left(2^{\mathbb{N}}\right), \operatorname{graph}(\sigma) \backslash\right.$ $\left.\left\{\left((1)^{\infty},(0)^{\infty}\right)\right\}, \sim \mathbb{E}_{0}\right)$ to $\left(\sim D_{0}, R_{0}, \sim R_{0}\right)$, in which case $\phi \circ \psi$ is a homomorphism from $\left(\sim \Delta\left(2^{\mathbb{N}}\right), \mathbb{R}_{0}, \sim \mathbb{E}_{0}\right)$ to $(\sim \Delta(X), R, \sim R)$. As the pullback R_{0}^{\prime} of R through $\phi \circ \psi$ is \aleph_{0}-universally Baire and $\mathbb{R}_{0} \subseteq R_{0}^{\prime} \subseteq \mathbb{E}_{0}$, Proposition 1.6.30 yields a continuous embedding $\pi: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ of \mathbb{E}_{0} or \mathbb{R}_{0} into R_{0}^{\prime}, in which case $\phi \circ \psi \circ \pi$ is a continuous embedding of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Theorem 5.2.3 (Kanovei, Louveau). Suppose that X is an analytic Hausdorff space and R is a Borel quasi-order on X. Then exactly one of the following holds:
(1) There is a quasi-order $S \supseteq R$ that admits a Borel reduction $\phi: X \rightarrow 2^{\alpha}$ to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\omega_{1}$, and for which \equiv_{R} and \equiv_{S} coincide.
(2) There is a continuous embedding $\psi: 2^{\mathbb{N}} \hookrightarrow X$ of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Proof. The special case of Theorem 5.2.2, where $\kappa=\lambda=\aleph_{0}$, ensures that at least one of the conditions holds. To see that they are mutually exclusive, note that otherwise, the pullback S_{0} of $R_{\text {lex }} \upharpoonright 2^{\alpha}$ through $(\phi \circ \psi) \times(\phi \circ \psi)$ has the Baire property and is not meager, since it is linear. As $\mathbb{H}_{0} \subseteq \mathbb{R}_{0} \subseteq S_{0}$, Proposition 1.6.24 ensures that S_{0} is comeager, so $\equiv_{S_{0}}$ is comeager. Let R_{0} be the pullback of R through ϕ, and observe that $\equiv_{R_{0}}$ and $\equiv_{S_{0}}$ coincide, thus the former is comeager, as well. But $R_{0} \subseteq \mathbb{E}_{0}$, contradicting the fact that \mathbb{E}_{0} is meager.

Theorem 5.2.4 (Kanovei, Louveau). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, and R is a $\Delta_{2 n+1}^{1}$ quasi-order on X. Then exactly one of the following holds:
(1) There is a quasi-order $S \supseteq R$ that admits a $\Delta_{2 n+1}^{1}$ reduction to $R_{\text {lex }} \upharpoonright 2^{\kappa}$ for some $\kappa<\left(\kappa_{2 n+1}^{1}\right)^{+}$, and for which \equiv_{R} and \equiv_{S} coincide.
(2) There is a continuous embedding of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Proof. Theorem 1.4.14 and Remark 5.1.7 ensure that at least one of the following conditions hold. To see that they are mutually exclusive, appeal to Theorem 1.5.11 and the second half of the proof of Theorem 5.2.3.

Theorem 5.2.5 (Kanovei, Louveau). Suppose that AD holds, $n \in \mathbb{N}$, X is an analytic Hausdorff space, and R is a $\Delta_{2 n+2}^{1}$ quasi-order on X. Then exactly one of the following holds:
(1) There is a quasi-order $S \supseteq R$ that admits a $\Delta_{2 n+3}^{1}$ reduction to $R_{\text {lex }} \upharpoonright 2^{\kappa}$ for some $\kappa<\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{++}$, and for which \equiv_{R} and \equiv_{S} coincide.
(2) There is a continuous embedding of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Proof. As in the proof of Theorem 5.2.4.
Theorem 5.2.6 (Kanovei, Louveau). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and R is a quasi-order on X. Then exactly one of the following holds:
(1) There is a quasi-order $S \supseteq R$ that admits a reduction to $R_{\text {lex }} \upharpoonright$ 2^{α} for some ordinal α, and for which \equiv_{R} and \equiv_{S} coincide.
(2) There is a continuous embedding of \mathbb{E}_{0} or \mathbb{R}_{0} into R.

Proof. Theorem 1.4.15 and the analog of the proof of Theorem 5.2.2, where the use of Theorem 5.1.2 is replaced with that of Theorem 5.1.12, ensures that at least one of the two conditions holds. The proof of Theorem 5.2.4 ensures that they are mutually exclusive.

Theorem 5.2.7 (Harrington-Kechris-Louveau). Suppose that X is an analytic Hausdorff space and E is a Borel equivalence relation on X. Then exactly one of the following holds:
(1) There is a Borel reduction of E to equality on $2^{\mathbb{N}}$.
(2) There is a continuous embedding of \mathbb{E}_{0} into E.

Proof. As the class of equivalence relations is closed downward under embeddability, this follows from the special case of Theorem 5.2.3 in which R is an equivalence relation.

Theorem 5.2.8 (Harrington-Kechris-Louveau). Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and E is a $\Delta_{2 n+1}^{1}$ equivalence relation on X. Then exactly one of the following holds:
(1) There is a $\boldsymbol{\Delta}_{2 n+1}^{1}$ reduction of E to equality on $2^{\kappa_{2 n+1}^{1}}$.
(2) There is a continuous embedding of \mathbb{E}_{0} into E.

Proof. As the class of equivalence relations is closed downward under embeddability, this follows from the special case of Theorem 5.2.4 in which R is an equivalence relation.

Theorem 5.2.9 (Harrington-Kechris-Louveau). Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and E is a $\Delta_{2 n+2}^{1}$ equivalence relation on X. Then exactly one of the following holds:
(1) There is a $\boldsymbol{\Delta}_{2 n+3}^{1}$ reduction of E to equality on $2^{\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}}$.
(2) There is a continuous embedding of \mathbb{E}_{0} into E.

Proof. As the class of equivalence relations is closed downward under embeddability, this follows from the special case of Theorem 5.2.5 in which R is an equivalence relation.

Theorem 5.2.10 (Harrington-Kechris-Louveau). Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and E is an equivalence relation on X. Then exactly one of the following holds:
(1) There is a reduction of E to equality on 2^{κ} for some aleph κ.
(2) There is a continuous embedding of \mathbb{E}_{0} into E.

Proof. As the class of equivalence relations is closed downward under embeddability, this follows from the special case of Theorem 5.2.6 in which R is an equivalence relation.

A quasi-order R on a set X is linear if X is an R-chain.
Theorem 5.2.11 (Harrington-Marker-Shelah). Suppose that X is an analytic Hausdorff space and R is a linear Borel quasi-order on X. Then there is a Borel reduction of R to $R_{\mathrm{lex}} \upharpoonright 2^{\alpha}$ for some $\alpha<\omega_{1}$.

Proof. Otherwise, Theorem 5.2.3 yields a Borel reduction of \mathbb{E}_{0} or \mathbb{R}_{0} to a linear Borel quasi-order, which the second part of the proof of Theorem 5.2.3 rules out.

Theorem 5.2.12. Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and R is a linear $\boldsymbol{\Delta}_{2 n+1}^{1}$ quasi-order on X. Then there is a $\boldsymbol{\Delta}_{2 n+1}^{1}$ reduction of R to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{+}$.

Proof. Otherwise, Theorem 5.2.4 yields a reduction of \mathbb{E}_{0} or \mathbb{R}_{0} to a linear quasi-order, which the proof of Theorem 5.2.4 rules out. \boxtimes

Theorem 5.2.13. Suppose that AD holds, $n \in \mathbb{N}, X$ is an analytic Hausdorff space, and R is a linear $\boldsymbol{\Delta}_{2 n+2}^{1}$ quasi-order on X. Then there is a $\boldsymbol{\Delta}_{2 n+3}^{1}$ reduction of R to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some $\alpha<\left(\boldsymbol{\kappa}_{2 n+1}^{1}\right)^{++}$.

Proof. Otherwise, Theorem 5.2.5 yields a reduction of \mathbb{E}_{0} or \mathbb{R}_{0} to a linear quasi-order, which the proof of Theorem 5.2.5 rules out. \boxtimes

Theorem 5.2.14. Suppose that $\mathrm{AD}_{\mathbb{R}}$ holds, X is an analytic Hausdorff space, and R is a linear quasi-order on X. Then there is a reduction of R to $R_{\text {lex }} \upharpoonright 2^{\alpha}$ for some ordinal α.

Proof. Otherwise, Theorem 5.2.6 yields a reduction of \mathbb{E}_{0} or \mathbb{R}_{0} to a linear quasi-order, which the proof of Theorem 5.2.6 rules out. \boxtimes

Bibliography

[CCM16] John D. Clemens, Clinton T. Conley, and Benjamin D. Miller, The smooth ideal, Proc. Lond. Math. Soc. (3) 112 (2016), no. 1, 57-80. MR 3458145
[CMS] R. Carroy, B. D. Miller, and D. T. Soukup, The open dihypergraph dichotomy and the second level of the Borel hierarchy, To appear in Contemporary Mathematics.
[Kan97] V. Kanovei, Two dichotomy theorems on colourability of non-analytic graphs, Fund. Math. 154 (1997), no. 2, 183-201, European Summer Meeting of the Association for Symbolic Logic (Haifa, 1995). MR 1477757 (98m:03103)
[Mil] B. D. Miller, The classification of finite equivalence relations on $2^{\mathbb{N}} / \mathbb{E}_{0}$, unpublished note, see http://www.logic.univie.ac.at/~millerb45/ otherwork/quotient.pdf.

Index

$\left(X^{\prime}, R^{\prime}\right)$-terminal, 60
$<_{R}, 23$
D-dimensional diagonal, 14
D-dimensional dihypergraph, 14
E-invariant, 50,57
$F_{\sigma}, 15$
$G_{\delta}, 15$
$G_{S}, 16$
$G_{T}, 22$
$H^{- \text {-independent, }} 14$
$I^{<\mathbb{N}}, 1$
$I^{\leq \mathbb{N}}, 1$
$K_{\sigma}, 30$
$K_{X}, 29$
$P_{S}^{X}, 45$
R-antichain, 52
R-chain, 52
R-clique, 39
R-independent, 47
$R S, 16$
$R^{-1}, 16$
$R^{y}, 3$
$R_{x}, 3$
$T_{X}, 1$
$X \triangle Y, 9$
X^{\prime}-terminal, 48
$Y \frown Z, 31$
Y^{\prime}-terminal, 40
$[T], 1$
$\mathrm{BP}_{X}, 11$
$\Delta_{2}^{0}, 15$
$\Delta_{n}^{1}, 7$
$\mathbb{F}_{0}, 20$
Γ-measurable, 15
$\mathbb{G}_{0}(N), 16$
$\mathbb{H}_{D^{\mathbb{N}}}, 15$
$\mathbb{H}_{0}(N), 22$

$\boldsymbol{\Pi}_{n}^{1}, 7$
$\boldsymbol{\Sigma}_{1}^{1}, 7$
$\boldsymbol{\Sigma}_{n+1}^{1}, 7$
\aleph_{0}-universally Baire, 18
$\bigoplus_{m<n} s_{m}, 17$
$\bigoplus_{n \in \mathbb{N}} s_{n}, 17$
$\Delta^{D}(X), 14$
$\Delta(X), 13$
ϵ-discrete, 42
$\equiv_{R}, 7$
$\perp_{R}, 19$
$\iota_{s}, 16$
$\iota_{t}, 22$
κ-Borel, 3
κ-Souslin, 4
κ-coloring, 14
κ-complete algebra, 3
$\mathbb{E}_{0}, 18$
$\operatorname{add}(\mathcal{F}), 11$
$\mathcal{M}_{X}, 11$
$\rho(R), 2$
$\rho(x, Y), 32$
$\rho_{S}^{X}, 45$
(i), 1
σ-algebra, 3
$s \frown t, 1$
$s \sqsubset t, 1$
$s \sqsubseteq t, 1$
additivity, 11
algebra, 3
analytic, 4
approximation, 39, 48, 60
Baire property, 9
Baire space, 9
bi-Г, 5

Borel, 3
box topology, 14
branch, 1
closed under initial segments, 1
co-Г, 5
code, 4
coded by, 4
comeager, 9
compatible, 40, 48, 60
complete D-dimensional
dihypergraph, 14
complete graph, 29
concatenation, 1,17
configuration, 39, 48, 60
diagonal, 13
digraph, 16, 29
downward R-invariant, 59
downward R-saturation, 59
embedding, 23
equivalence relation, 7
even, 60
extended-valued quasi-metric, 42
extension, 1
generically ergodic, 18
graph, 29
homomorphism, 13, 21
horizontal sections, 3
hyperrectangular homomorphism, 34
incomparability relation, 18
initial segment, 1
length, 1
lexicographical ordering, 59
Li-Yorke chaotic, 46
linear, 68
meager, 9
odd, 60
odometer, 23
one-step extension, 39, 48, 60
partial order, 7
partial transversal, 21
product topology, 31
proper extension, 1
proper initial segment, 1
proximal, 45
quasi-order, 7
rank, 2
reduction, 23
retraction, 2
scrambled, 46
separated, 6
strict quasi-order, 23
subtree, 1
symmetric difference, 9
transversal, 51
tree, 1
ultrametric, 32
upward R-invariant, 59
upward R-saturation, 59
vertical sections, 3
well-founded, 1, 2

