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Introduction

The goal of these notes is to provide a succinct introduction to the
primary structural dichotomy theorems of descriptive set theory. The
only prerequisites are a rudimentary knowledge of point-set topology
and set theory. Working in the base theory ZF + DC, we first discuss
trees, the corresponding representations of closed, Borel, and Souslin
sets, and Baire category. We then consider consequences of the open
dihypergraph dichotomy and variants of the Gg dichotomy. While pri-
marily focused upon Borel structures, we also note that minimal modi-
fications of our arguments can be combined with well-known structural
consequences of determinacy (which we take as a black box) to yield
generalizations into the projective hierarchy and beyond.
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CHAPTER 1

Preliminaries

1. Closed sets

Given a set I, define I<N = (J, " and I=N = <N U [N, The
length of a sequence t € I=N is given by |t| = nif t € [, and |t| = oo if
t € IN. Given sequences s,t € I=N, we say that s is an initial segment
of t, or t is an extension of s, if |s| < |t| and s = ¢ | |s|, in which case
we write s C t. In the special case that s # ¢, we say that s is a proper
wnitial segment of t, or t is a proper extension of s, in which case we
write s C t. A tree on I is a set T C I<N that is closed under initial
segments, in the sense that Vt € TVn < |t| t [ n € T. A subtree of T
is a tree S C T on I. A branch through T is a sequence z € I such
that Vn € Nz [ n € T. We use [T] to denote the set of all branches
through 7', and we say that T is well-founded if [T] = 0.

Suppose now that [ is a discrete topological space. For each se-
quence s € I<N let N denote the set of extensions of s in /. These
sets form a basis for the product topology on IV.

ProprosITION 1.1.1. Suppose that I is discrete space and T is a
tree on I. Then [T] is closed.

PROOF. Observe that if z € [T, then N, N [T] # 0 for all n € N,
soz [neT forall n € N, thus = € [T]. X

Given a set X C IV, we use Tx to denote the set of proper initial
segments of elements of X.

PROPOSITION 1.1.2. Suppose that I is a discrete space and X C IN.
Then X = [Tx].

PROOF. Clearly X C [Tx], so X C [Tx] by Proposition 1.1.1. Con-
versely, if z € [Tx|, then [ n € Tx for all n € N, so N, N X # () for
all n € N, thus z € X. X

We use (i) to denote the singleton sequence given by s(0) = i. The
concatenation of sequences s,t € I<N is the extension s ~ t of s given
by (s ~t)(|s| +n) = t(n) for all n < |¢|.
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2 1. PRELIMINARIES

ProproOSITION 1.1.3. Suppose that I is a well-orderable discrete
space and C C IN is a non-empty closed set. Then there is a func-
tion B: Te — C with the property that ¥t € T t £ [(t).

PRrROOF. Fix a well-ordering < of I, and define ¢: T — I by letting
t(t) be the <-minimal element of I for which ¢t ~ (¢(t)) € T¢. Define
p": Te — Te by BO(t) =t and g"7H(t) = B"(t) ~ ((co f")(t)), and set
Bt) = Unen 8" (1)- X

A retraction from a set X onto a subset Y is a surjection ¢: X — Y
whose restriction to Y is the identity.

ProposITION 1.1.4. Suppose that I is a well-orderable discrete
space and C C IV is a non-empty closed set. Then there is a con-
tinuous retraction ¢: IN — C.

PROOF. Proposition 1.1.2 ensures that for all sequences x € ~C,
there is a maximal proper initial segment ¢(x) of z in T, and Proposi-
tion 1.1.3 yields a function §: Tx — C' such that V¢ € T t C (). Let
¢: IV — C be the retraction agreeing with 3 o ¢ off of C. To see that
¢ is continuous, it is enough to show that if n € N and # € IV, then
gb(-/\/’x{n) - N¢(x)[n~ But if x f n e TC then gb(-/\/’x{n) - Nx[n = Nzi)(x)[na
and if z [ n ¢ Te then ¢(Nypn) = {d(2)} C N n- =

Now that we have explicitly proven and applied a particular in-

stance of the axiom of choice, it should be noted that the axiom of
determinacy rules out simply assuming the latter:

THEOREM 1.1.5 (Solovay). Suppose that AD holds. Then there is
no injective wi -sequence of elements of NN,

2. Ranks

Suppose that R is a binary relation on X. For all Y C X, define
Vi={yeY|IreY xRy} Y =Y, Y™ = (v, for all
ordinals o, and Y, = (,_, YA for all limit ordinals A. The rank of
R is the least ordinal p(R) for which Xg)(R)) = XI({)(R)H).

The relation R is well-founded if Y # Y}, for all non-empty sets
Y C X. By DC, this is equivalent to the inexistence of a sequence
r € XY with the property that Vn € N z(n + 1) R z(n).

PROPOSITION 1.2.1. A binary relation R on a set X is well-founded
if and only if XE{)(R)) = 0.

PROOF. It is clear that if R is well-founded, then Xg)(R)) = 0.

Conversely, if there is a non-empty set Y C X for which Y = Y’, then

a straightforward transfinite induction shows that Y C X}({)(R)). X
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The rank of a point x € X with respect to R is the largest ordinal
pr(x) for which z € Xl(%p 7)) o1 0o if no such ordinal exists. We adopt
the conventions that co = oo + 1 and « < oo for all ordinals a.

PROPOSITION 1.2.2. Suppose that R is a binary relation on a set
X. ThenVx € X pr(x) =sup{pr(w)+1|w R z}.

PROOF. Note that if « is an ordinal, w R z, and w,z € XI(QQ), then
z € X 50 pr(x) > pr(w) + 1. But if a > sup{pr(w) +1 | w R z}
is an ordinal, then = ¢ X 0 pr(z) < a. b

The horizontal sections of a set R C X x Y are the sets of the form

RY ={z € X |z Ry}, where y € Y. The vertical sections are the sets
of the foom R, ={y € Y | x Ry}, where x € X.

PROPOSITION 1.2.3. Suppose that X and Y are sets, R and S are
binary relations on X and Y, and ¢: X — Y is a function.
(1) IfVz € X ¢(R*) C S?@) then Vo € X pr(z) < ps(é(x)).
(2) IfVz € X S%@) C ¢(R*), then Vo € X pr(z) > ps(é(x)).
Proor. To see (1), note that if « is an ordinal for which pg(z) <
ps(¢(x))) whenever pr(z) < «, then Proposition 1.2.2 ensures that
pr(z) = sup{pr(w) + 1| w € R*}
< sup{ps(¢p(w)) + 1w € R}
< ps(o(z))
(p(R))

whenever pg(z) = a. Moreover, if pp(z) = oo, then x € X7, and

since QS(XI(%'D(R))) - Yép(s)), if follows that pg(¢p(x)) = co.
To see (2), note that if o is an ordinal for which pr(z) > ps(p(x)))
whenever pr(z) < a, then Proposition 1.2.2 ensures that

pr(r) = sup{pr(w) + 1| w € R}
> sup{ps(¢(w)) + 1 [w e R"}
> ps(o(x))

whenever pgr(z) = a. X

3. Borel sets

Suppose that x is an ordinal. A family of sets is a k-complete
algebra if it is closed under complements and unions of length strictly
less than k. An algebra is an Ny-complete algebra, whereas a o-algebra
is an Nj-complete algebra. A subset of a topological space is k-Borel
if it is in the smallest k-complete algebra containing the open sets. A
subset of a topological space is Borel if it is Ny-Borel.
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PROPOSITION 1.3.1. Suppose that k is an ordinal, X s set, and X
1s a family of subsets of X that is closed under complements. Then the
closure of X under disjoint unions of length strictly less than k and
intersections of length strictly less than k is a k-complete algebra.

PROOF. Let Y denote the family of sets Y C X for which both
Y and ~Y are in the desired closure. Clearly X C Y and ) is closed
under complements, so it is sufficient to show that ) is closed under
unions of length strictly less than k. Towards this end, suppose that
A < k and (Y,)a<n is a sequence of sets in ). Then the set Z, =
Yo\ Ugea Y5 = Yo N[ N3, ~Ys is in the desired closure for all a < A,
so the sets (J, oy Yo = Uper Za and ~J,\ Yo =, ~Ya are in the
desired closure, and therefore in Y. %4

A code for a (k + 1)-Borel subset of X is a pair (f,T"), where T is
a well-founded tree on k x k and f is a function associating to each
sequence t € ~T" asubset of X that is closed or open. Given such a code,
we recursively deﬁne £©@ on ~T by setting f© = f, letting f@+D be
the extension of f(® given by f@+(t) = Uper Nyer f @t ~((B,7))
whenever p7(t) = « for all ordinals «, and defining f® =J,_, f©
for all limit ordinals \. Set f = f*GIM) The (k + 1)-Borel set coded
by (f,T) is f(0). While AC, and Proposition 1.3.1 ensure that every
(k + 1)-Borel set is of this form, merely being (k + 1)-Borel is not a
reasonable notion of definability in the absence of AC,. Although it is
easy to modify our arguments to produce sets which have (x4 1)-Borel
codes, we will focus on (k + 1)-Borel sets for the sake of clarity.

4. Souslin sets

A topological space is k-Souslin if it is a continuous image of a
closed subset of kY, where & is endowed with the discrete topology. A
topological space is analytic if it is Np-Souslin.

PROPOSITION 1.4.1. Suppose that k is an aleph and X is non-empty
and r-Souslin. Then there is a continuous surjection ¢: kK~ — X.

PROOF. Fix a closed set C' C s for which there is a continuous sur-
jection ¢': C' — X, appeal to Proposition 1.1.4 to obtain a continuous

retraction ¢”: kN — C, and define ¢ = ¢' o ¢". b

PROPOSITION 1.4.2. Suppose that k is an aleph, X is a k-Souslin
space, Y 1s a topological space, and ¢: X — Y is continuous. Then:
(1) The set ¢(X) is k-Souslin.

(2) IfY is Hausdorff and A C Y is k-Souslin, then ¢~ (A) is k-Souslin.
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Proor. Clearly we can assume that A and X are non-empty, in
which case Proposition 1.4.1 yields continuous surjections ¢ 4: &N — A
and ¢x: kY — X. To see (1), note that (¢ o ¢x)(kY) = ¢(X). To see
(2), let m: kN x KN — KN be the projection onto the left coordinate,
and note that the set C' = {(a,b) € K" x k" | (p o ¢px)(a) = da(b)} is
closed and (¢x o 7)(C) = ¢~ 1(A). <

PrRoOPOSITION 1.4.3. Suppose that k is an aleph, X is a topological
space, do: K — X is continuous for all « < K, and Ay = ¢o (k") for
all « < k. Then:

(1) The set |, ., Aa is k-Souslin.
(2) The set [], oy An is k-Souslin.
(3) If X is Hausdorff, then (,cy An is k-Souslin.

PROOF. To see (1), note that the function () ~ b — ¢,(b) is a
continuous surjection from £ onto (J, < Ao

To see (2), note that the function (b,)nen — (On(bn))nen is a con-
tinuous surjection from (k™)™ onto [T, oy An-

To see (3), obtain a continuous surjection ¢: kY —» [Len An as
above, let 7: XN — X be the projection onto the 0" coordinate, and
note that the set C' = ¢~ ' ({(@y)nen € [ ,en 4n | VR € N 2, =z, }) is
closed and (70 ¢)(C) = ey An- =

Given a pointclass I' of subsets of topological spaces, we say that a
subset of a topological space is co-I' if its complement is I', and be-I" if
it is both I' and co-I".

PROPOSITION 1.4.4. Suppose that k is an aleph, X is a k-Souslin
space, and C' C X is closed. Then C' is bi-k-Souslin.

ProoOF. By Proposition 1.4.1, we can assume that there is a contin-
uous surjection ¢: k¥ — X. To see that C is k-Souslin, note that the
set D = ¢ 1(C) is closed and ¢(D) = C. To see that C'is co-x-Souslin,
note that ~D is open, set S = {s € k<N | N; C ~D}, and observe that
~C = U,eq @(Ns), so ~C'is k-Souslin by Proposition 1.4.3. X

PROPOSITION 1.4.5. Suppose that k is an aleph and X is a k-Sous-
lin Hausdorff space. Then every Borel subset of X is bi-k-Souslin.

Proor. By Propositions 1.3.1, 1.4.3, and 1.4.4. X

In order to establish a natural strengthening of the converse, we
will need the following simple observation:

PROPOSITION 1.4.6. Suppose that k is an aleph, X is a Hausdorff
space, and ¢,v: kN — X are continuous. Then for all ¢,d € k" such

that ¢(c) # ¥(d), there exists n € N for which ¢(Ney) N (Nam) = 0.
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PROOF. As X is Hausdorff, there are disjoint open neighborhoods
U and V of ¢(c) and ¥(d). As ¢ and v are continuous, there exists
n € N sufficiently large that ¢(N.,) C U and ¢(Ngpy,) € V. But then
#(Nepn) is contained in ~V, and therefore disjoint from ¥ (Nyp,). X

We say that sets A and B are separated by a set C if A C C and
BnC=19.

THEOREM 1.4.7 (Lusin). Suppose that k is an aleph, X is a Haus-
dorff space, and A, B C X are disjoint k-Souslin sets. Then there is a
(k + 1)-Borel set C C X separating A from B.

ProoOF. By Proposition 1.4.1, we can assume that there are con-
tinuous surjections ¢: kN — A and ¢: kN — B. Set A, = ¢(N;)
and B, = ¢(N,) for all t € k<N define m;: (k x k)N — £<N by
mi(t)(n) = t(n)(i) for all i« < 2, and let T" be the tree on kK x k of all
sequences t € (k x k)< for which A N By, ) # 0. Proposition 1.4.6
ensures that 7" is well-founded. Define f on ~T by f(t) = Az, «), noting
that (f,7T) is a code for a (k + 1)-Borel subset of X.

LEMMA 1.4.8. Suppose that t € (k x k)<N. Then f(t) separates
Aﬂo(t) from Bm(t)-

PROOF. The definition of T" ensures that f(t) separates A, from
B for all t € ~T. But if f(t ~ ((a, B))) separates Aqp)~(a) from
Brywy~p forall a, § <, then (5, F(t ~ ((, §))) separates Az 1)~(a)
from By, () for all @ < K, so U, Nser f(t ~ ((ar, B))) separates A
from By, (), thus the obvious induction yields the desired result. X

The special case of Lemma 1.4.8 where ¢t = () ensures that the
(k + 1)-Borel set coded by (f,T') separates A from B. X

THEOREM 1.4.9 (Souslin). Suppose that X is a Hausdorff space.
Then every bi-k-Souslin subset of X is (k + 1)-Borel.

PROOF. By the special case of Theorem 1.4.7 where A =~B. K

THEOREM 1.4.10 (Souslin). Suppose that X is an analytic Haus-
dorff space. Then the families of bi-analytic and Borel subsets of X
coincide.

Proor. By Proposition 1.4.5 and Theorem 1.4.9. X

ProPOSITION 1.4.11. Suppose that X is an Ni-Souslin Hausdorff
space and C C X is co-analytic. Then C' is Ny-Souslin.
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ProOF. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection ¢: NN — ~C. Set T, = {t € NN | 2z € ¢(N;)} for
all z € X, and observe that the set B of all (f,z) € W)™ x X such
that Vn € NVt € N<N (t ~ (n) ¢ T, or f(t ~ (n)) < f(t)) is Borel.
As Proposition 1.4.3 ensures that w?w x X is Ni-Souslin, Proposition

1.4.5 implies that so too is B.
LEMMA 1.4.12. The sets C' and projx(B) coincide.

PRrooOF. If 2 € ~C, then T, is not well-founded, so x ¢ projy(B). If
x € C, then the special case of Proposition 1.4.6 in which ¢ is constant
ensures that T, is well-founded, so Propositions 1.2.1 and 1.2.2 imply
that (f,z) € BitVt € T, f(t) = poz,(t), thus z € projy(B). X

As Proposition 1.4.2 ensures that projy(B) is N;-Souslin, Lemma
1.4.12 implies that so too is C. X

A subset of an analytic Hausdorff space is X} if it is analytic. More
generally, for each natural number n > 0, a subset of an analytic Haus-
dorff space is IT}, if its complement is X}, and X, ; if it is a continuous
image of a IT} subset of an analytic Hausdorff space. A subset of an
analytic Hausdorff space is A}, if it is both X and IT}..

A quasi-order on a set X is a reflexive transitive binary relation R
on X. The equivalence relation associated with such a quasi-order is
the binary relation = on X for which x =5 y if and only if x R y and
y R x. A partial order is a quasi-order for which the corresponding
equivalence relation is equality. For all n > 0, let 8! denote the supre-
mum of the lengths of well-orderings of the form R/=g, where R is a
Al quasi-order on an analytic Hausdorff space.

As strict embeddability of well-orderings of N is an analytic binary
relation on a co-analytic subset of P(N x N), it follows that &3 > w.
The following theorem ensures that §] = wy, and when combined with
Propositions 1.4.3 and 1.4.11, it also implies that §3 < ws:

THEOREM 1.4.13 (Kunen-Martin). Suppose that k is an aleph, X

1s a Hausdorff space, and R is a well-founded k-Souslin binary relation
on X. Then p(R) < kT.

Proor. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection (¢,%): kN — R. Let S be the set of non-empty
sequences s € (k)N such that Vn < |s| — 1 ¢(s(n)) = ¥(s(n + 1)).
The well-foundedness of R yields that of 7 [ S. Define 7: S — X by
7(s) = ¢(s(|s| — 1)), and observe that Vs € S R™® C 7((3 [ S)*) and
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7m(S) ={zr € X | R, # 0}, so Propositions 1.2.1 — 1.2.3 ensure that

p(318)+1=sup{pys(s) +1]se€S}t+1
> sup{pr(m(s))+1|se St+1
> sup{pr(z) |z € X} +1
> sup{pr(z)+1|z € X}
= p(R),

thus it is sufficient to show that p(2 [ S) < k™.

Let T be the set of sequences t € J,,.,(x™)" with the property that
Vn < [t| =1 ¢(Nym)) N Y (Nym+1)) # 0, and let =< be the partial order
on T given by s Xt <= Vn < |s| s(n) C t(n). By Proposition 1.4.6,
the well-foundedness of 71 | S yields that of . Define n’: S — T by
7'(s)(n) = s(n) | |s| forall n < |s|. As Vs € S a'((a]9)*) C =),
Propositions 1.2.1 and 1.2.3 ensure that

p(315) =sup{ps(s) +1]s €S}
< sup{p-(7'(s)) +1| s € S}
<sup{p-(t) +1[t T}
= p(-),

so it is sufficient to show that p(>) < x*. But this follows from the
fact that |T| < k. X

The axiom of determinacy provides the primary motivation for
studying k'-Borel and k-Souslin sets when x > N;:

THEOREM 1.4.14 (Kechris, Martin, Moschovakis). Suppose that AD
holds and n € N. Then there is an aleph K3, with the property that
0311 = (Kb,i1)T. Moreover:

(1) The A}, ., and (K, )" -Borel subsets of analytic Hausdorff
spaces coincide.

(2) The 33, and K}, -Souslin subsets of analytic Hausdorff
spaces coincide.

(3) The 33,5 and (K}, 1) -Souslin subsets of analytic Hausdorff
spaces coincide.

THEOREM 1.4.15 (Woodin). Suppose that ADg holds, X is an ana-
lytic Hausdorff space, and Y C X. Then there is an aleph k for which
Y is k-Souslin.
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5. Baire category

A subset of a topological space is meager if it is a union of countably-
many nowhere dense sets. A subset of a topological space is comeager
if its complement is meager, or equivalently, if it contains an intersec-
tion of countably-many dense open sets. A Baire space is a topological
space all of whose comeager subsets are dense.

THEOREM 1.5.1 (Baire). Every complete metric space X is a Baire
space.

PROOF. Suppose that C' C X is comeager and U C X is non-empty
and open, and fix positive real numbers ¢, — 0 and dense open sets
U, € X for which (. U. € C. By DC, there is a sequence (V},)nen of
non-empty open subsets of U with the property that diam(V},) < e,,
V, € U,, and m C V, for all n € N. Then the unique point of
Mpen Vo isin CNU. =

PROPOSITION 1.5.2. Suppose that X is a Baire space. Then every
non-empty open set U C X 1s a Baire space.

PROOF. Suppose that (U, )nen is a sequence of dense open subsets
of U, let V be the interior of ~U, and observe that U, UV is a dense
subset of X for all n € N, so [,y Un UV is also a dense subset of X,

thus [,y Un is a dense subset of U. =

PROPOSITION 1.5.3. Suppose that X is a topological space, U C X
1s a non-empty open set, and Y C U. Then'Y is meager in U if and
only if Y is meager in X.

ProoOF. It is sufficient to show that Y is nowhere dense in U if and
only if Y is nowhere dense in X. As the closure of Y within U is the
intersection of U with the closure of Y within X, it follows that if Y
is somewhere dense in U then it is somewhere dense in X. Conversely,
if Y is somewhere dense in X, then there is a non-empty open set
V' C X contained in the closure of Y within X, and since any such set
is contained in the closure of U within X, it follows that U NV # (),
thus Y is somewhere dense in U. X

The symmetric difference of sets X and Y is the set X A'Y of points
appearing in exactly one of them. A subset of a topological space has
the Baire property if its symmetric difference with some open subset of
the space is meager.

PROPOSITION 1.5.4. Suppose that X is a topological space and B C
X has the Baire property. Then at least one of the following holds:
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(1) The set B is meager.
(2) There is a non-empty open set U C X with the property that
BnU is comeager in U.

Moreover, if X is a Baire space, then exactly one of these holds.

PROOF. Fix an open set U C X such that B A U is meager. If U
is empty, then B is meager. Otherwise, since U \ B is meager in X,
Proposition 1.5.3 ensures that it is meager in U, in which case BN U
is comeager in U.

To see that conditions (1) and (2) are mutually exclusive when X
is a Baire space, suppose that there is a non-empty open set U C X
with the property that BN U is comeager in U. If B is meager, then
B NU is meager in U by Proposition 1.5.3, so (BNU)N (U \ B) is
comeager in U, contradicting Proposition 1.5.2. X

PROPOSITION 1.5.5. Suppose that X and Y are topological spaces,
¢: X — Y 1s a continuous open surjection, and D C Y. Then D 1is
comeager if and only if the set C = ¢~1(D) is comeager.

PROOF. Suppose first that D is comeager. Then there are dense
open sets V,, C Y such that ﬂneN V,, € D. The fact that ¢ is continuous
ensures that the sets U, = ¢~'(V},) are open, and the fact that ¢ is
open implies that they are dense, thus C' is comeager.

Conversely, suppose that C' is comeager. Then there are dense open
sets U,, € X such that [,y U, € C. The fact that ¢ is open ensures
that the sets V,, = ¢(U,,) are open, and the fact that ¢ is a continuous
surjection implies that they are dense, thus D is comeager. X

PROPOSITION 1.5.6. Suppose that X is a second-countable Baire
space and Y C X. Then there is a maximal open set U C X for which
U\Y is meager. Moreover, every set B C X with the Baire property
contained in Y \ U is meager.

PROOF. Fix a countable basis U for X, and define V = {U € U |
U\Y is meager} and U = JV. Then U\ Y = J, o,V \ Y is meager.
To see that U is the maximal such open set, note that if U’ C X is an
open set not contained in U, then it contains a non-empty set U” € U
not contained in U, so U” ¢ V, thus U”\ Y is not meager, hence U’ \ Y
is not meager.

Suppose, towards a contradiction, that there is a non-meager set
B C X with the Baire property contained in Y \ U. Proposition 1.5.4
yields a non-empty open set W C X in which BN W is comeager. Fix
a non-empty set V' C W in U. Proposition 1.5.3 ensures that V' \ B
is meager, so V' \ Y is meager, thus V € V, hence V' C U, in which
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case B is disjoint from V. But Proposition 1.5.3 implies that BNV is
comeager in V', contradicting Proposition 1.5.2. X

Let BP x denote the family of subsets of X with the Baire property,
and M x the family of all meager subsets of X. The additivity of a
family F of sets is the least aleph add(F) with the property that there
is a sequence (Fa)a<add( 7) of sets in F whose union is not in F, or oo
if no such aleph exists.

ProPOSITION 1.5.7. Suppose that X is a second-countable Baire
space. Then BPx contains every open subset of X and is closed under
complements, and add(BPy) > add(My).

PROOF. As the empty set is meager, it follows that every open
subset of X has the Baire property.

To see that BPx is closed under complements, suppose that B C X
has the Baire property, fix an open set U C X such that B A U
is meager, set C' = ~B, let V be the interior of ~U, and note that
CAVCCACFUNU(~U)AV)=(BAU)U~UUV). AsUUV
is dense and open, it follows that C' has the Baire property.

To see that the family of subsets of X with the Baire property
is closed under unions of every length k£ < add(My), suppose that
(Ba)a<w is a sequence of subsets of X with the Baire property, and note
that if (U, )a<x is a sequence of open subsets of X such that B, A U,
is meager for all o« < &, and B = |J,., Bo and U = {J,_, U, then
B AU C U, Ba AU, is meager, thus B has the Baire property.
As the existence of such a sequence (U, )q< is clear in the special case
where k = 2, it follows that B, \ V = ~(~B, U V) has the Baire
property for all @ < x and open sets V' C X, so Proposition 1.5.6
yields the existence of such a sequence (U, )a<x in the general case.

PROPOSITION 1.5.8. Suppose that X is a second-countable Baire
space and k < add(Mx) is an aleph. Then every k™ -Borel set B C X
has the Baire property.

ProoF. By Proposition 1.5.7. X

THEOREM 1.5.9 (Lusin-Sierpinski). Suppose that X is a second-
countable Baire Hausdorff space and k < add(Mx) is an aleph. Then
every k-Souslin set A C X has the Baire property.

PRroor. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection ¢: kN — A. For all t € k<N, set A; = ¢(N;), appeal
to Proposition 1.5.6 to obtain a maximal open set U; C X for which
U, \ ~A, is meager, and define C;, = A, \ U,.
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LEMMA 1.5.10. For allt € k<N, the set A, \ C; is meager.
ProOOF. Note that At\Ct = At\(Kt\Ut) = At\NUt = Ut\NAt. X

As AN\ Upet Nhen Coin € Userer A¢ \ Cp and Lemma 1.5.10 en-
sures that the latter set is meager, so too is the former. As the special
case of Proposition 1.4.6 where 1 is a constant function implies that
Upert Ninen Coin € A, it is sufficient to show that (J,c,x(),eny Coin has
the Baire property. As Cp\ Uper [nen Comn € Usen<r Ct \ Uner Cina)
and Proposition 1.5.7 ensures that Cp has the Baire property, it is suf-
ficient to show that C; \ J,., Ci~(a) is meager for all t € k<N As
(Ce\Uacr Cin(@) \ (Uack At~(@) \ Cin@) € Cr\Uaer Ain@) = Ci\ Ay,
Proposition 1.5.7 ensures that C; \ |, ., Ci~(a) has the Baire property,
and Lemma 1.5.10 implies that | J,_, Ai~(a) \ Ci~(a) is meager, it only
remains to note that every subset of X with the Baire property con-
tained in C; \ A; is meager, which follows from Proposition 1.5.6 and
the observation that C;\ A, = (A, \U,)\ A; C (~U)\ Ay = (~A)\U;. ®

THEOREM 1.5.11 (Banach-Mazur). Suppose that AD holds and X is
a second-countable complete metric space. Then every set’ Y C X has
the Baire property.

THEOREM 1.5.12 (Montgomery, Novikov). Suppose that X is a
topological space, Y is a second-countable Baire space, k < add(My)
is an aleph, and R C X x Y is a k*-Borel set. Then {x € X |
R, NV is not meager} is k™ -Borel for all non-empty open sets V C Y.

PROOF. Clearly the family of x™-Borel sets R C X x Y with the
desired property contains every x'-Borel rectangle. To see that it is
closed under unions of length , suppose that (R,)a<x iS & sequence
of k-Borel sets, set R = (J,_, Ra, suppose that V' C Y is a non-
empty open set, and observe that {x € X | R, NV is not meager} =
Uaerniz € X | (Ra). NV is not meager}. To see that it is closed under
complements, suppose that R C X x Y is a k'-Borel set, set S = ~R,
suppose that V' C Y is a non-empty open set, fix a countable basis
W for V' consisting solely of non-empty open sets, and observe that
{z € X | S, NV is not meager} = iz € X | R, N W is meager}
by Propositions 1.5.3, 1.5.4, and 1.5.8. X

THEOREM 1.5.13 (Kuratowski-Ulam). Suppose that X is a Baire
space, Y is a second-countable Baire space, and R C X XY has the
Baure property.

(1) The set {x € X | R, has the Baire property} is comeager.
(2) The set R is comeager if and only if {x € X | R, is comeager}
18 comeager.
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PrROOF. We first establish the special case of (=) in (2) where
R is dense and open. For each non-empty open set V' C Y, define
V' = projx (RN (X x V)). Note that if U C X is a non-empty open
set, then RN (U x V) # 0, so UNV’' # (), thus V' is dense. Fix a
countable basis V for Y consisting of non-empty sets, and note that the
set C'= ), cp V' is comeager, and R, is dense and open for all z € C.

We next establish (=) in (2). Fix dense open sets R, C X x Y
with the property that (), .y R» C R, and observe that the sets C,, =
{z € X | (R,), is dense and open} are comeager, thus so too is the set
C = Nyen Cns and (), cn(Ry)z is comeager for all z € C.

To see (1), fix an open set W C X x Y for which R A W is meager,
note that the set C' = {x € X | R, A W, is meager} is comeager, and
observe that R, has the Baire property for all z € C.

It only remains to establish (<=) in (2). Towards this end, note
that W\ (R A W) C R, so if W is dense, then R is comeager. But
if W is not dense, then there are non-empty open sets U C X and
V' C Y with the property that (U x V)NW = 0, and if z € U, then
R,NV C R, \W, C R, AW, so Proposition 1.5.3 yields comeagerly
many x € U for which R, NV is both comeager in V' and meager in V/,
contradicting Proposition 1.5.2. X

PrRoOPOSITION 1.5.14. Suppose that X s a second-countable Baire
space. Then add(BPxyy) < add(My).

PROOF. Suppose, towards a contradiction, that add(M x) is strictly
less than add(BPx.x), and fix a sequence (Mq)a<aaamy) Of meager
subsets of X whose union M is not meager. Associate with each x € M
the least ordinal a(x) for which € M., and let < be the quasi-order
on M given by z Xy <= «a(x) < a(y). As products of meager sets
are meager, and =< is a union of strictly fewer than add(BP y« x)-many
such products, it follows that < has the Baire property. As every hori-
zontal section of < is meager, Theorem 1.5.13 yields a meager vertical
section of <. But M is the union of any such set with the corresponding
horizontal section, and is therefore meager, a contradiction. X

6. Canonical objects

A homomorphism from a D-ary relation R on X to a D-ary relation
S on Y is a function ¢: X — Y for which ¢”(R) C S. The diagonal
on X is given by A(X) = {(z,y) € X x X | z = y}.

THEOREM 1.6.1 (Myecielski). Suppose that R is a meager binary
relation on 2. Then there is a continuous homomorphism ¢: 2N — 2N

from ~A(2Y) to ~R.
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PROOF. Fix a decreasing sequence (U, )nen of dense open subsets
of 2% x 2N whose intersection is disjoint from R.

LEMMA 1.6.2. Suppose that n € N and ¢: 2" — 2<N. Then there
is a function : 2" — 2N such that:
oVt €2 p(t I m) C ().
o Vi € ~A(27H) Hi<2N¢(t(i)) cUu,.

PROOF. Fix an enumeration (t)gcgnti_gnt1 of ~A(2"1) ) as well
as g: 2" — 2<N such that Vt € 2" ¢(t | n) T 9o(t), and given
k< 4ntt —ontland 4y, 270 — 2N fix afy 0 2770 — 2<N guch that:

o Vit € 2" iy (t) C by (2).
* [Lica Nuisttn() € Un
Clearly the function ¥ = ¥n+1_gn+1 is as desired. X

By Lemma 1.6.2, there are functions ¢,,: 2* — 2<N such that:

(1) Vn e NVt € 2"*1 ¢, (t [ n) T ¢pia(t).

(2) Vn € NVt € NA(Q”'H) Hi<2 N¢n+1(t(i)) cu,.
Condition (1) ensures that we obtain a continuous function ¢: 2% — 28
by setting by ¢(c) = U,y @n(c [ n) for all ¢ € 2Y. To see that ¢ is a
homomorphism from ~A(2Y) to ~R, note that if ¢ € ~A(2Y), then there
exists n € N such that ¢(0)(n) # ¢(1)(n), in which case condition (2)
ensures that (¢(c(7)))icz € [Lico Nomsi(e()i(mt1)) € U for all m > n,
thus (¢(c(7)))i<2 € ~R. X

A D-dimensional dihypergraph on a set X is a D-ary binary relation
H on X disjoint from the D-dimensional diagonal on X, given by
AP(X) = {x € XP |Ve,d € D z(c) = z(d)}. Given a D-ary relation
H on X, we say that a set Y C X is H-independent if H | Y = (.
The box topology on a product [],., X4 of topological spaces is the
topology generated by the sets of the form [], ., Uq, where Uy C Xy is
open for all d € D.

PROPOSITION 1.6.3. Suppose that D is a countable set of cardinality
at least two, X is a topological space, H is a box-open D-dimensional
dihypergraph on X, and Y C X is H-independent. Then Y is H-
independent.

PROOF. If there exists 7 € H | Y, then there is an open neighbor-
hood [],.p Ug of ¥ contained in H. Fix y € [[,., UsNY, and observe
that y € H | Y, a contradiction. X

The complete D-dimensional dihypergraph on a set X is the com-
plement of the D-dimensional diagonal on X. A k-coloring of a D-
dimensional dihypergraph H on X is a homomorphism c¢: X — « from
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H to the complete D-dimensional dihypergraph on . The existence of
a k-coloring of H is trivially equivalent to the existence of a covering
of X by k-many H-independent sets.

PROPOSITION 1.6.4. Suppose that AD holds, D is a countable set of
cardinality at least two, X s a subset of an analytic Hausdorff space,
H is a box-open D-dimensional dihypergraph on X, and there is an
ordinal coloring of H. Then there is an Rg-coloring of H.

PRrOOF. Fix an analytic Hausdorff space Y O X. Clearly we can
assume that Y # (), so Proposition 1.4.1 yields a continuous surjection
¢: NN — Y. Fix an aleph  for which there is a cover (X4 )a<x of X by
H-independent sets, and let C,, be the closure of X, within Y for all
a < K. As Theorem 1.1.5 ensures that {T},-1(c,) | @ < K} is countable,
Proposition 1.1.2 ensures that {¢p~'(C,) | @ < k} is countable, so the
surjectivity of ¢ yields that {C, | « < k} is countable. But Proposition
1.6.3 implies that C, N X is H-independent for all a < k. X

A subset of a topological space is F, if it is a union of countably-
many closed sets, G if it is an intersection of countably-many open sets,
and A if it is both F, and Gs. A function ¢: X — Y is ['-measurable
if = 1(V) €T for all open sets V C Y.

PROPOSITION 1.6.5. Suppose that D is a countable set of cardi-
nality at least two, X 1s a metric space, and H s a D-dimensional
dihypergraph on X . Then the following are equivalent:

(1) There is a cover (Cp)nen of X by H-independent closed sets.
(2) There is a AS-measurable No-coloring c: X — N of H.

PROOF. To see (2) = (1), observe that ¢~ '({n}) is a union of
countably-many closed sets for all n € N. To see (1) = (2), set
B, = Cy\ U,,<, Cm for all n € N. As every closed subset of a metric
space is the intersection of the e-balls around it, and therefore Gg, it
follows that each of the sets B,, is F,, so the Ny-coloring sending each
point x € X to the unique natural number n € N for which x € B,, is
F,-measurable, and therefore A%-measurable. X

When D has cardinality at least two, we use Hpwn to denote the D-
dimensional dihypergraph on DN given by Hpn = {,cp<n [ Lie p Ni~(a)-

PROPOSITION 1.6.6. Suppose that D is a countable discrete space
of cardinality at least two. Then every Hpn-independent set X C DN
1S meager.

PROOF. By Proposition 1.6.3, the set C' = X is Hpn-independent.
As Theorem 1.5.1 ensures that DY is a Baire space, Proposition 1.5.8
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implies that C' has the Baire property, so Proposition 1.5.4 yields that
if X is not meager, then there exists ¢t € D<N for which C' NN is
comeager in Ny, thus V; C C. But (t ~ (d) ~ b(d))gep € Hpn | C for
all b € (DV)P| contradicting the Hpn-independence of C. b

PROPOSITION 1.6.7. Suppose that D is a countable discrete space
of cardinality at least two and k < add(Mpn). Then there is no k-
coloring of Hpw.

Proor. By Theorem 1.5.1 and Proposition 1.6.6. X

PROPOSITION 1.6.8. Suppose that AD holds and D is a countable
discrete space of cardinality at least two. Then there is no ordinal-
coloring of Hpn.

ProoF. By Theorem 1.5.1 and Propositions 1.6.4 and 1.6.7. X

A digraph on a set X is an irreflexive binary relation G on X. For
all sequences s € 2<N define a homeomorphism ¢, : No~0) = Noa(n
by setting ts(s ~ (0) ~ ¢) = s ~ (1) ~ ¢ for all ¢ € 2. For all sets
S C 27N define Gy = (J,g graph(s). Following the standard abuse
of language, for each infinite set N C N, we use Go(/V) to denote any
digraph of the form Gg, where S C 2<% contains an extension of every
element of 2<N, but only one sequence of every length in N. Define

Go = Go(N).

PROPOSITION 1.6.9. Suppose that N C N is infinite and B C 2V is
a Go(N)-independent set with the Baire property. Then B is meager.

PROOF. Fix a set S C 2<N for which G¢(N) = G, and suppose,
towards a contradiction, that B is not meager. By Proposition 1.5.4,
there is a sequence r € 2<N for which B is comeager in N,. Fix an
extension s € S of r. As t, is a homeomorphism and Proposition 1.5.3
ensures that B is comeager in N, Proposition 1.5.5 implies that the set
C = BN NN (BNN;.q)) is comeager in N, (), and therefore
not empty by Theorem 1.5.1. But (¢, 5(c)) € Go(N) | B for all c € C,
the desired contradiction. X

For all sets R C X XY and S C Y x Z, define R™! = {(y,z) €
YxX|zRytand RS={(z,2) e X xZ|yeY xRyS z}.

PROPOSITION 1.6.10. Suppose that k < add(Myn), N C N is infi-
nite, R is a binary relation on 2% with the Baire property, and there is
a Baire-measurable k-coloring ¢ of Go(N)N R™'R. Then R is meager.

PROOF. Suppose, towards a contradiction, that R is not meager.
Theorems 1.5.1 and 1.5.13 then yield d € 2" for which R; has the
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Baire property and is not meager. Fix o < x for which ¢™*({a}) N Ry
is not meager. As Ry x Ry C R7'R, it follows that ¢~ !({a}) N Ry is
Go(N)-independent, contradicting Proposition 1.6.9. X

PROPOSITION 1.6.11. Suppose that AD holds, N C N 1is infinite,
and R is a binary relation on 2N for which there is an ordinal-coloring

¢ of Go(N)N R 'R. Then R is meager.

PROOF. Theorem 1.5.11 ensures that R has the Baire property and
c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14 imply
that add(Myv) = oo, so this follows from Proposition 1.6.10. X

The concatenation @,,_,, sm of a finite sequence (s,,)m<n of finite
sequences is defined recursively by setting ,,_,sm = 0 and letting
@D..<ni1 Sm be the concatenation of P, , sm and s,. The concate-
nation of an infinite sequence (s,)nen of finite sequences is given by

®n€N Sn = UnEN @m<n Sm-

PROPOSITION 1.6.12. Suppose that R is a non-meager binary rela-

tion on 2V with the Baire property. Then there are continuous homo-
morphisms ¢;: 28 — 2% from Gy to Gy for which [],_, ¢:(2V) C R.

PROOF. By Proposition 1.5.4, there exists u € 2<N x 2<N for which
RN Hi<2 Nu(i) is comeager in Hi<2 Nu(i), in which case there are dense
open sets U, C [[,_, Ny such that (), .U, € R. Fix sequences
Sp € 2" with the property that Gy = Gg, where S = {s,, | n € N}.

LEMMA 1.6.13. Suppose that n € N and ¢;: 2" — 2<N has the
property that u(i) C ¢;(t) for alli < 2 and t € 2<N. Then there exists
v € 2N x 2<N such that:

o Vt e 2" x 2" HKQ./\/’@@)AU(Z-) cu,.
o Vi <2 ¢i(s,) ~v(i) € S.

PROOF. Fix an enumeration (#)p<sn of 2" x 2" and vy € 2<Nx 2<N,

Given k < 4" and v, € 2<N x 2N fix v, € 2<N x 2<N such that:

o Vi <2 Uk(l) C Uk+1(i).

o [Lics Nowwn@~ona@ S Un-
Then any pair v € 2<% x 2<N with the property that vy (i) C v(i) and
¢i(sn) ~v(i) € S for all i < 2 is as desired. ]

Fix functions ¢;: 2° — 2<N such that u(i) T ¢;o(0) for all i < 2,
and appeal to Lemma 1.6.13 to obtain pairs u,, € 2<Nx2<N_ from which
we define @; . 1: 2" — 2N by @ 01 (t) = din(t [ 1) ~ un(i) ~ (E(n))
for all i < 2 and ¢t € 2"*!, such that:

(1) Vit € 2mH x 2t Hi<2N¢i,n+1(t(i)) C Un.
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(2) Ve € 28 (@iny1(sn ~ (J)) ~ €)ica € Gy,.
As Vi < 2Vn € NVt € 2" ¢, ,.(t | n) T ¢inr1(t), we obtain continuous
functions ¢;: 2% — 2N by setting ¢;(c) = U, ey Pin(c | n) for all ¢ € 28
and ¢ < 2. To see that [[;,_, #;(2") C R, note that if ¢ € 2V x 2, then
Vn € N (¢i(c(i)))ic2 € [Lico Ny (cti)in+1)) S Un by condition (1). To
see that each ¢; is a homomorphism from G, to Gy, note that if ¢ € 28
and n € N, then (6i(s, ~ (7) ~ )iz = (Binsr(5n ~ (1)) ~ Do,
where d = @, .n(c(m)) ~ Upt14m (i), and appeal to condition (2). ®

The equivalence relation Ey on 2V is given by
cEyd < 3In € NVm >n ¢(m) = d(m).

PROPOSITION 1.6.14. The smallest equivalence relation E on 2N
containing Gq is Ey.

PROOF. Fix sequences s, € 2" such that Gy = Gy, jneny. It is
enough to show that Ve € 2"Wu,v € 2" u ~ (0) ~c Ev ~ (1) ~ ¢
for all n € N. But if this holds strictly below some n € N, then
u~0)~cEs ~0)~cEs,~(1)~cEuv~(l)~cforall
c €2V and u,v € 2", so it holds at n as well. =

An equivalence relation E is generically ergodic if every E-invariant
set with the Baire property is comeager or meager.

PROPOSITION 1.6.15. The relation Eq is generically ergodic.

PROOF. Suppose that B C 2" is an Ey-invariant non-meager set
with the Baire property. By Proposition 1.5.4 and the obvious induc-
tion, it is sufficient to show that if i < 2, s € 2<N and BN Ny is
comeager in Ny, then BNN, 1_; is comeager in Ny 1_;). As ¢, is
a homeomorphism, this follows from Proposition 1.5.5. X

PROPOSITION 1.6.16. Suppose that X s a Baire space, Y 1is a
second-countable Ty space, E is a generically ergodic equivalence rela-

tion on X, and ¢: X — 'Y is a Baire-measurable homomorphism from
E to A(Y). Then there exists y € Y for which ¢~ ({y}) is comeager.

PROOF. Fix a countable basis V for Y, let W be the set of all V € V
with the property that ¢~1(V) is comeager, and observe that the set

C = Nwew® (W) \ (Uveriw ¢ (V) is comeager. As Y is Ty, it
follows that ¢ | C' is constant. X

Given a topological space X, we say that a set ¥ C X is Ng-
universally Baire if for every continuous function ¢: 2% — X, the set
¢ 1Y) has the Baire property. The incomparability relation associated
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with a quasi-order R on a set X is the binary relation Lz on X for
which x L g y if and only if neither x R y nor y R x.

PROPOSITION 1.6.17 (M-Vidnyanszky). Suppose that X is a topo-
logical space and R is an Wo-universally-Baire quasi-order on X for
which there is a continuous homomorphism ¢: 28 — X from Gq to

Lg. Then there are continuous homomorphisms ¢;: 28 — ¢(2%) from
Go to L [ ¢(2) such that T],_, ¢:(2%) C Lg.

PROOF. As the quasi-order Ry = (¢ x ¢)~!(R) has the Baire prop-
erty, so too does _Lg,, as does every horizontal and vertical section of
either relation.

LEMMA 1.6.18. The relation Lg, is not meager.

PROOF. Suppose, towards a contradiction, that Lp, is meager.
Then the set C = {c € 2V | (Lg,). is meager} is comeager, by The-
orem 1.5.13. The binary relation Rj on 2V given by ¢ R d <=
Vb € 2% (b Ry ¢ = b Ry d) is clearly a quasi-order. Note that if
(d,e) € (2Y x C) \ R}, then (c,d]g, is not meager, so ¢ <g, d. As
Go C Lk, it follows that Go [ C C =g;. As Proposition 1.5.5 ensures
that every comeager subset of 2% has an Eq-invariant comeager sub-
set, Proposition 1.6.14 yields an Eq-invariant comeager set ¢’ C C'
for which Ey [ ¢ C =pg;. Observe that for all s € 2N the set
By = {c € 2V | V*b € N, b Ry c} has the Baire property, by Theo-
rems 1.5.12 and 1.5.13. As Proposition 1.5.4 implies that ¢ =g, d <
Vs € 2N (¢ € B, <= d € B,) for all ¢,d € C, Proposition 1.6.15
ensures that =g, has a comeager equivalence class. Fixing s,t € <N
for which RyN (N x N;) is comeager in N x Ny, Theorem 1.5.13 implies
that V¢ € NiV*b € N b Ry ¢, so V*b,c € N, b Ry ¢, thus =g, has an
equivalence class that is comeager in N,. But Proposition 1.6.9 then
ensures that =g, N Gq # (), the desired contradiction. X

By Proposition 1.6.12 and Lemma 1.6.18, there are continuous ho-
momorphisms ¢} : 2V — 28 from Gy to Gy for which [,_, ¢#5(2V) C Lg,,
in which case the functions ¢; = ¢ o ¢} are as desired. X

PROPOSITION 1.6.19 (M-Vidnyénszky). Suppose that X is an an-
alytic Hausdorff space and R is an Ng-universally-Baire quasi-order on
X for which there is a continuous homomorphism ¢: 2% — X from Gy

to Lr. Then there is a continuous homomorphism m: 2% — X from
NA(QN) to J_R.
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PROOF. Proposition 1.4.1 yields a continuous surjection 1: NN —»

X. We will recursively construct functions v,,: 2" — N" and contin-
uous homomorphisms ¢s: 2% — (Ny,(5)) from Gy to Lg | (N, (s)
such that:

(1) Vi < 2Vn € NVs € 2" ¢,(s) E Ypi1(s ~ (7).

(2) Vi < 2Vn € NVs € 2™ ¢(;(2Y) C ¢,(2%).

(3) Vn € NVs € 2™ Hi<2 ¢S,\(i)(2N) C Lpg.
We begin by setting ¢g = ¢ and ¢(0)) = (). Suppose that n € N and we
have found (¢s)seon and vb,. For all s € 2" Proposition 1.6.17 yields
continuous homomorphisms ¢, ;: 2% — ¢,(2V) from Gy to Lz | ¢4(2")
for which [, , ¢s:(2") C Lg. Fix extensions ¢,41(s ~ (i)) € N*H!
of 1, (s) such that ¢_; (¥(Ny, .1 (s~@))) is not meager for all i < 2.
As Proposition 1.4.2 ensures that the latter sets are analytic, Propo-
sition 1.5.9 implies that they have the Baire property, so the special
case of Proposition 1.6.12 where R = [[,_, &, (¥ (Ny,,1(s~@))) yields
continuous homomorphisms ¢, ;: 2% — ¢} (Y(Ny, ., (s~@)) from Gg to
Go | Gbs_zl (¢(an+1(5f\(i))))‘ Define Qbe\(i) = ¢s,z‘ o Cb/sz

Condition (1) ensures that we obtain a continuous map s : 2% —

NN by setting ¢oo(c) = U, ey ¥n(c | n) for all ¢ € 28, Define m = 1ot)u,
and note that for all ¢ € 2%, Proposition 1.4.6 ensures that 7(c) is the
unique element of (), oy ¥ (N (en)), and since @ep, (2) € DNy, (ein))
for all n € N and the former sets have non-empty intersection by condi-
tion (2), it follows that 7(c) is also the unique element of (), .y @ern(2V).
To see that 7 is a homomorphism from ~A(2Y) to Lp, observe that
if ¢,d € 2V are distinct, then there is a maximal natural number
n € N for which ¢ | n = d | n, and since 7(c) € Ps(c(n))(2") and
m(d) € s (amy(2V), where s = ¢ | n = d | n, condition (3) ensures
that 7(c) Lg 7(d). X

Let F, denote the subequivalence relation of E, given by
cFod <= InecNVm>n Y, _ ck)=>,_, dk) (mod 2).

PROPOSITION 1.6.20. Suppose that E is an equivalence relation on

2N and F is an index-two subequivalence relation of E with the property
that Go C E\ F. ThenF, C F and Eg \F, C E\ F.

ProOF. Note that if ¢ Eqg d, then Proposition 1.6.14 yields a G(fl—
path ~ from ¢ to d, so the fact that Go C FE ensures that ¢ F d.
Moreover, the fact that Gy C Ey \ F, and F, has index two below
Ey ensures that ¢ F, d <= v has evenly-many edges, whereas the
fact that Go € E \ F and F has index two below E implies that
¢ F'd < ~ has evenly-many edges, thus cF, d <= c F' d. X
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A partial transversal of an equivalence relation £ on X over a sube-
quivalence relation F' of F is a set Y C X for which £ [Y =F Y.

PROPOSITION 1.6.21. Suppose that B C 2" is a partial transversal
of Ey over F, with the Baire property. Then B is meager.

PrOOF. As Gy C Ej \ Fy, it follows that B is Gy-independent, so
Proposition 1.6.9 ensures that it is meager. X

A homomorphism from a sequence (R;);c; of D-ary relations on X
to a sequence (5;);e; of D-ary relations on Y is a function ¢: X — Y
that is a homomorphism from R; to S; for all 7 € I.

PROPOSITION 1.6.22. Suppose that N is a nowhere dense binary
relation on 2% and R is a meager binary relation on 2V. Then there is a
continuous homomorphism ¢: 2% — 2N from (~A(2N), Fy, Eo \ Fy, ~Eo)
to (NN7]F07]EO \]FWNR)'

PROOF. Fix a decreasing sequence (U, ),en of dense open symmet-
ric subsets of ~N whose intersection is disjoint from R.

LEMMA 1.6.23. Suppose that n € N and ¢: 2" — 2<N. Then there
exist £ > 0 and u € 2° x 2° such that:

o Vte2m x 2" Hi<2/\/’¢(t(i))ﬁu(i) cUu,.
® D ke w(0)(k) # > u(1)(k) (mod 2).

PROOF. Fix an enumeration (fg)g<qn of 2" x 2", and ug € 2<N x 2<N,
Given k < 4" and uy, € 2N x 2N fix uyyq € 2<N x 2<N such that:

o Vi <2 up(i) C ugyq(i).

o [Tica Notw@nmuna ) S Un-
Then any ¢ > 0 and pair u € 2¢ x 2° such that uy(i) C (i) for all
i<2and ), _,u(0)(k) # > ., u(l)(k) (mod 2) is as desired. X

Fix ¢p: 2° — 2°, and appeal to Lemma 1.6.23 to obtain ¢, > 0
and pairs u, € 2 x 2% from which we define ¢,,: 2"** — 2<N by
Gni1(t) = dn(t | n) ~ uy(t(n)) for all t € 271, such that:

(1) ¥t €27 x 2" [T, .y Noy e @) & Une

(2) 2per, un(0)(K) # > pcp, un(1)(R) (mod 2).
As Vn € NVt € 2" ¢, (t | n) C ¢,e1(t), we obtain a continuous
function ¢: 2V — 2% by setting ¢(c) = J, oy @n(c I n) for all ¢ € 2V
To see that ¢ is a homomorphism from ~A(2Y) to ~N, note that if
c € ~A(2Y), then there exists n € N for which ¢(0)(n) # ¢(1)(n), so
(0(c(7)))ic2 € TLico Nonia(cliyin+1)) € Un € ~N by condition (1). To
see that ¢ is a homomorphism from (F,, Eq \ F,) to (F,, Eq \ F,), note
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that if ¢ € Eo, then there exists n € N such that ¢(0)(m) = ¢(1)(m) for
all m > n, and condition (2) ensures that if £ =Y _ /., then
c(0) Fy (1)

= Ymen 0)(m) =32, c(1)(m) (mod 2)

<~ [{m < n|c(0)(m) # c(1)(m)}| is even

— |{m < n|un(c(0)(m)) £ un(c(l)(m)) (mod 2)}| is even

= Dmen Um(c(0)(m)) = 32,y um(c(1)(m)) (mod 2)

> Dt On(c(0) [ 1) (m)

> ¢(c(0)) Fy ¢(c(1))-
To see that ¢ is a homomorphism from ~Eq to ~R, note that if ¢ € ~E,
then there is an infinite set N C N such that ¢(0)(n) # ¢(1)(n) for

alln € N, soVn € N (¢(c(2)))icz € [LicaNopirte@imr1)) € Un by
condition ( ), thus (¢(c(i)))ic2 € ~R. X

m<n

2 mee Pn(c(1) [ n)(m) (mod 2)

For all sequences t € (J, oy 2" x 2", define ¢;: Nyoy)~0) = Niy~q)
by setting ¢;(t(0) ~ (0) ~ ¢) = t(1) ~ (1) ~ ¢ for all ¢ € 2V. For all
sets T C (J,,en 2" X 27, define G = U, graph(z).

PROPOSITION 1.6.24. Suppose that T C |, 2" x 2" contains an
extension of every element of 2<N x 2N and R is a transitive bi-
nary relation on 2% with the Baire property containing Gr. Then R is
comeager or meager.

PROOF. Suppose, towards a contradiction, that R is neither comea-
ger nor meager. By Proposition 1.5.4, there exist pairs u,v € 2<N x 2<N
with the property that RN (Nya) X Nyy) is comeager in N1y X Ny
and RN (Nyo) x Nyq)) is meager in Nygy X Nyqy. Fix s,t € T with
the property that w(i) C s(i) and v(i) T (i) for all i < 2. As
(¢ % ) (RO (Nay~) X Nyoy~))) € R, Proposition 1.5.5 ensures

that RN (Ns0)~0) X Ny1y~)) is comeager in Ny(g)~0) X M . But
RN (M(O)A(O) X/vt(l)m(l)) is also meager n ./\/’5(0) ~(0) XN by Pl‘OpO-
sition 1.5.3, contradicting Theorem 1.5.1 and Proposmon 1 D.2. X

For each infinite set N C N, we use Hy(/N) to denote any digraph of
the form G, where T' C Une ~ N" x N" contains an extension of every

element of 2<N x 2<N_ but only one pair corresponding to each length
in N.

PROPOSITION 1.6.25. Suppose that k < add(Myn) and R is a linear
quasi-order on 2% with the Baire property containing Hy(2N+1). Then
there is no Baire-measurable k-coloring ¢ of =g N Go(2N).
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PROOF. As Theorem 1.5.1 and Proposition 1.6.24 ensure that R is
comeager, so too is =g, contradicting Proposition 1.6.10. X

PROPOSITION 1.6.26. Suppose that AD holds and R is a linear quasi-
order on 2V containing Hy(2N + 1). Then there is no ordinal-coloring

c of =r N Gy(2N).

PROOF. As Theorem 1.5.11 ensures that R has the Baire property
and c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14
imply that add(M,n) = oo, this follows from Proposition 1.6.25. X

The strict quasi-order associated with a quasi-order R on a set X
is the binary relation <z on X for which x <g y if and only if z R y
but —y R x. The partial order Ry on 2V is given by

¢ <g, d <= In €N (c(n) < d(n) and Ym > n c¢(m) = d(m)).
The odometer is the homeomorphism of 2V given by
o((1)" ~(0) ~¢) = (0)" ~ (1) ~c.

PROPOSITION 1.6.27. The transitive closure R of graph(o)\{((1)*,
(0))} is <my-

PROOF. It is enough to show that Ve € 2%Vu,v € 2" u ~ (0) ~c R
v~ (1) ~ cfor all n € N. But if this holds strictly below some n € N,
then u ~ (0) ~c¢ S ()" ~(0) ~cR(0)* ~ (1) ~cS v~ (1) ~cfor
all ¢ € 2Y and u,v € 27, where S = A(2Y) U R, so it holds at n. X

A reduction of a D-ary relation R on X to a D-ary relation S on Y
is a homomorphism from (R, ~R) to (S,~S). An embedding of R into
S is an injective reduction of R to S.

PROPOSITION 1.6.28. Suppose that B C 2" is a non-meager set

with the Baire property. Then there is a continuous embedding of Rg
into Ry | B.

PROOF. By Proposition 1.5.4, there is a sequence v € 2<N for which

B NN, is comeager in N,, in which case there are dense open sets
U, € N, such that (", U, € B.

LEMMA 1.6.29. Suppose that n € N and ¢: 2" — 2<N has the
property that u T ¢(s) for all s € 2". Then there exists v € 2<N such
that Vs € 2" N5 C Un.

PROOF. Fix an enumeration (sg)x<on of 2", set vy = ), and given
E < 2" and v, € 2<N, fix vy € 2<N such that v, T v4; and
/\@(sk%vk“ C U,. Then any v € 2<N such that von C v is as desired. &
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Fix ¢g: 2° — 2<N such that u C ¢y(), and appeal to Lemma 1.6.29
to obtain sequences u,, € 2<V, from which we define ¢, ;: 2"+ — 2<N
by éni1(s) = én(s | n) ~ u, ~ s(n) for all s € 2" such that
Vs € 2" Ny 1(5) C Up. AsVn € NVs € 2 ¢, (s [ n) T ¢gnyi(s), we
obtain a continuous embedding ¢: 2% — 2N of R, into Ry by setting
P(c) = U, ey @n(c I n) for all ¢ € 2V, To see that ¢(2V) C B, observe
that if ¢ € 2%, then Vn € N ¢(c) € Ny, 1 (citnt1)) S Un. b

PrROPOSITION 1.6.30. Suppose that R is an Ny-universally Baire
quasi-order on 2N for which Ry C R C Ey. Then there is a continuous
embedding of Ry or Eq into R.

PROOF. Note that the set X = {c € 2V | ¢ < o(c)} has the Baire
property, and Proposition 1.6.27 ensures that R [ X = Ry [ X. If
X is not meager, then Proposition 1.6.28 therefore yields a continu-
ous embedding of Ry into R [ X. If X is meager, then Proposition
1.5.5 ensures that (J,, ., 0" (X) is meager, so Proposition 1.6.27 implies
that [X]|g, is meager, and since Proposition 1.6.27 also ensures that
R | ~[X]g, = Eg [ ~[X]g,, Proposition 1.6.28 yields a continuous em-
bedding of Eq into R [ ~[X]g,. X

PROPOSITION 1.6.31. Suppose that N is a nowhere dense binary
relation on 2N and R is a meager binary relation on 2~. Then there
is a continuous homomorphism ¢: 28 — 2N from (~A(2Y), graph(o) \
{((1)>,(0)>)}, ~Eo) to (~N,Ho(2N + 1), ~R).

PRrROOF. Fix aset T' C |J, oy 2" x 2" for which Hy(2N+1) = G, as

well as a decreasing sequence (Up,)nen of dense open symmetric subsets
of ~N whose intersection is disjoint from R.

LEMMA 1.6.32. Suppose that n € N and ¢: 2" — 2<N. Then there
exist { € N and u € 2 x 2¢ such that:
o Vs €27 x 2" [ [,y No(s(i)~utiy € Un-
o (B((1—i)") A u(D)ie €T
PROOF. Fix an enumeration (s, )g<sn of 2" x 2", and uy € 2<% x2<N,
Given k < 4" and uy, € 2N x 2N fix uyyq € 2<N x 2<% such that:
o Vi <2 Uk(l) C Uk+1(i).
® [Lico Notsi(inunsatiy S Un.
Then any ¢ € N and u € 2° x 2° with the property that uy. (i) C u(i)
and (¢((1 —14)") ~ u(i))i<e € T are as desired. X

Fix ¢o: 2° — 2<N and appeal to Lemma 1.6.32 to obtain ¢, € N
and pairs u, € 2 x 2% from which we define ¢, : 2" — 2<N by
Gni1(8) = Pn(s | n) ~un(s(n)) ~ (s(n)) for all s € 21 such that:
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(1) Vs e 2" x 2" HKQ./\/’%H(S@A(Z‘)) cU,.

(2) Ve € 2V (¢py1 (1 =)™ ~ (1)) ~ €)icn € Hp(2N + 1).
As Vn € NVs € 2" ¢.(s | n) C ¢ny1(s), we obtain a continu-
ous function ¢: 2V — 2N by setting ¢(c) = U,y @nlc [ n) for all
c € 2% To see that ¢ is a homomorphism from ~A(2Y) to ~N,
note that if ¢ € ~A(2Y), then there exists n € N with the prop-
erty that ¢(0)(n) # c(1)(n), so (#(c(i)))ic2 € [LicaNopir(eyim1) S
U, € ~N by condition (1). To see that ¢ is a homomorphism from
graph(a)\ {((1)>, (0)>)} to Hy(2N+ 1), note that if ¢ € 2% and n € N,
then (¢((1 —2)" ~ (i) ~ €))icz = (¢n41((1 = 8)" ~ () ~ d)ica, Where
d = P,,cn Unt1+m(c(m)) ~ (c(m)), and appeal to condition (2). To
see that ¢ is a homomorphism from ~Eg to ~R, note that if ¢ € ~E,
then there is an infinite set N C N such that ¢(0)(n) # ¢(1)(n) for
all n € N, so Vn € N (gb(c(z)))Kg S Hi<2N¢n+1(C(i)[(n+1)) cu, by
condition (1), thus (¢(c(7)))i<2 € ~R. X






CHAPTER 2

The box-open dihypergraph dichotomy

1. Colorings of box-open dihypergraphs

Here we consider the circumstances under which a box-open count-
able-dimensional dihypergraph admits an ordinal coloring.

THEOREM 2.1.1 (Feng, Carroy-M-Soukup). Suppose that D is a
countable discrete space of cardinality at least two, k is an aleph, X
1s a k-Souslin Hausdorff space, and H is a box-open D-dimensional
dihypergraph on X. Then at least one of the following holds:

(1) There is a k-coloring of H.
(2) There is a continuous homomorphism ¢: DY — X from Hpn to H.

PROOF. We can clearly assume that X # (), in which case Propo-
sition 1.4.1 yields a continuous surjection ¢x: N — X. Recursively
define an increasing sequence (T%),<.+ of subsets of k<N as well as
a decreasing sequence (X%),..+ of subsets of X, by setting X° =
X, T* = {t € kN | ¢x(N;) N X is H-independent} and X =
“iere dx(N;) for all @ < kT, and X* =), X© for all limit ordi-
nals A\ < k™.

LEMMA 2.1.2. Suppose that o < k+ and t € ~T**L. Then there is
a sequence (tq)aep of proper extensions of t in ~T'“ with the property
that TLep ox (Ni,) C H.

PROOF. As t ¢ T, there exists * € H | (¢x(N;) N XH). As
H is box open, there is an open neighborhood [],., Ug of & contained
in H. Fix a sequence b € NP such that ¢£(b) = x, and for all d € D,
appeal to the continuity of ¢x to obtain a natural number n, > |[t|
such that ¢x (Ny)m,) € Uy, noting that the sequence tq = b(d) [ ng is
in ~7T°, since x(d) € X! ﬁl

As (T)4<n+ is increasing, there is an ordinal o < k™ with the
property that 7% = T+,

LEMMA 2.1.3. If ) € T, then there is a k-coloring of H.

PROOF. As the sets of the form ¢x(N;) N X?, where 8 < a and
t € TP, are H-independent, it is sufficient to show that they cover X.

27
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But if x € X, then there is a least ordinal v < av+ 1 such that x ¢ X7,
and since 7 is necessarily the successor of some ordinal g < «, there
exists t € T? such that = € ¢x(N}), so x € dpx(N;) N XP. =

By Lemma 2.1.3, we can assume that () ¢ 7*. Lemma 2.1.2 and DC
then yield a sequence of functions ¢,,: D™ — ~T“ such that:
(a) Vd € DVt € D™ ¢,(t) C ¢pi1(t ~ (d)).
(b) vt € D" [Laep Ox Wonsana) S H.
Condition (a) ensures that we obtain a continuous map ¢.,: DY — k&
by setting ¢oo(b) = U,en @n(b [ n) for all b € DN. To see that the map
¢ = ¢x 0 O is @ homomorphism from Hpr to H, note that if n € N

and t € D", then ¢" ([ cp Nina)) € [aep x N ir(t~@y) S H by
condition (b). b

THEOREM 2.1.4 (Feng, Carroy-M-Soukup). Suppose that D is a
countable discrete space of cardinality at least two, X is an analytic
Hausdorff space, and H is a boz-open D-dimensional dihypergraph on
X. Then exactly one of the following holds:

(1) There is an Rg-coloring of H.
(2) There is a continuous homomorphism ¢: DY — X from Hpn to H.

PROOF. Proposition 1.6.7 ensures that the two conditions are mu-
tually exclusive, and the special case of Theorem 2.1.1 where kK = Ny
implies that at least one of them holds. X

THEOREM 2.1.5 (Feng, Carroy-M-Soukup). Suppose that ADg holds,
D is a countable discrete space of cardinality at least two, X is a subset
of an analytic Hausdorff space, and H is a box-open D-dimensional
dihypergraph on X. Then exactly one of the following holds:

(1) There is an Wg-coloring of H.
(2) There is a continuous homomorphism ¢: DN — X from Hpn to H.

PROOF. Proposition 1.6.7 ensures that the two conditions are mu-
tually exclusive. Theorem 1.4.15 yields an aleph x« for which X is
r-Souslin, so Theorem 2.1.1 ensures that there is a x-coloring of H or
a continuous homomorphism ¢: DY — X from Hpn to H, thus Propo-
sition 1.6.4 implies that at least one of the two conditions holds. X

REMARK 2.1.6. Theorem 2.1.5 continues to hold under the weaker
hypothesis that AD holds (see [CMS]), yielding analogous generaliza-
tions of the other consequences of ADg established in this chapter.

The following observation often ensures that the homomorphisms
given by the above results are injective:
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PROPOSITION 2.1.7. Suppose that D is a set of cardinality at least
two, X s a set, H is a D-dimensional dihypergraph on X consisting
solely of injective sequences, and ¢: DN — X is a homomorphism from
Hpw to H. Then ¢ is injective.

PROOF. Suppose that a,b € DY are distinct, fix ¢ € Hpn for which
a,b € ¢(D), and note that poc € H, so ¢(a) # ¢(b). X

A digraph on X is an irreflexive binary relation on X, and a graph
is a symmetric digraph. Note that every homomorphism ¢: X — Y
from a digraph G on X to a graph H on Y is a homomorphism from
G*! to H. The complete graph on X is given by Ky = ~A(X). As
Kx = H;tNl, it follows that a map ¢: 2% — X is a homomorphism from
Hywv to a graph G if and only if it is a homomorphism from Kx to G.

We next consider the circumstances under which a set can be well-
ordered:

THEOREM 2.1.8 (Souslin). Suppose that k is an aleph and X is a
k-Souslin Hausdorff space. Then at least one of the following holds:

(1) The cardinality of X is at most k.
(2) There is a continuous injection ¢: 2N — X.

PROOF. As every Ky-independent set Y C X contains at most
one point, this follows from the special cases of Theorem 2.1.1 and
Proposition 2.1.7 where D = 2 and H = K. X

THEOREM 2.1.9 (Souslin). Suppose that X is an analytic Hausdorff
space. Then exactly one of the following holds:
(1) The set X is countable.
(2) There is a continuous injection ¢: 2N — X.

PROOF. As ¢ £ N, this follows from the special case of Theorem
2.1.8 where k = N,. X

THEOREM 2.1.10 (Davis). Suppose that ADg holds and X is a subset
of an analytic Hausdorff space. Then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection ¢: 2N — X.

PROOF. As ¢ £ Ny and every Kx-independent set Y C X contains
at most one point, this follows from the analog of the proof of Theo-
rem 2.1.8 in which one replaces the use of Theorem 2.1.1 with that of
Theorem 2.1.5. X

Finally, we consider the circumstances under which a space can be
covered by a well-orderable family of compact sets.
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THEOREM 2.1.11 (Carroy-M-Soukup). Suppose that k is an aleph,
X is a metric space, and Y C X is k-Souslin. Then at least one of the
following holds:

(1) There is a cover of Y by at most k-many compact subsets of
X.

(2) There is a closed continuous injection ¢: NN — X with the
property that ¢(NY) C Y.

PRroOF. Let H be the N-dimensional dihypergraph on X consisting
of all injective sequences x € X" with no convergent subsequence. Note
that if v € H, €, < inf ey oy d(z(m), z(n)) for all n € N, and €, — 0,
then [], .y B(z(n),e,/2) € H, so H is box open. As every closed H-
independent set is compact, Proposition 1.6.3 ensures that if there is
a r-coloring of H [ Y, then condition (1) holds. Otherwise, Theorem
2.1.1 yields a continuous homomorphism ¢: NY — Y from Hyw to H,
and Proposition 2.1.7 ensures that ¢ is injective. To see that ¢ sends
closed subsets of N to closed subsets of X, it is sufficient to show
that every sequence a € (NY)N for which ¢ o a converges in X has a
convergent subsequence. If there exists b € NY such that a(n)(i) < b(i)
for all i,n € N, then the compactness of [[, b(i) yields the desired
subsequence. So suppose, towards a contradiction, that there does not
exist such a b. Then there is a least ¢ € N for which {a(n)(i) | n € N}
is infinite. By passing to a subsequence, we can assume that for all
distinct m, n € N, the sequences a(m) and a(n) differ from one another
for the first time on their i*" coordinates. Fix b € Hyn for which
a(N) C b(N), and observe that ¢ o b € H, contradicting the fact that
¢ o a converges. X

A subset of a topological space is K, if it is a union of countably-
many compact sets.

THEOREM 2.1.12 (Hurewicz, Kechris—Saint Raymond). Suppose that
X is a metric space and Y C X is analytic. Then exactly one of the
following holds:

(1) There is a K, subset of X containing Y .
(2) There is a closed continuous injection ¢: NN < X with the
property that ¢(NY) C Y.
Proor. As NV is not K, and preimages of compact sets under
continuous closed injections are compact, this follows from the special
case of Theorem 2.1.11 where Kk = N,,. X

THEOREM 2.1.13 (Kechris—Saint Raymond). Suppose that ADg holds,
X is an analytic metric space, and Y C X. Then exactly one of the
following holds:
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(1) There is a K, subset of X containing Y .
(2) There is a closed continuous injection ¢: NN — X with the
property that ¢(NY) C Y.

Proor. As NV is not K, and preimages of compact sets under
continuous closed injections are compact, this follows from the analog
of the proof of Theorem 2.1.11 in which one replaces the use of Theorem
2.1.1 with that of Theorem 2.1.5. X

2. Partial compactifications

Given sets Y C X<N and Z C X=N let Y ~ Z denote the set of
sequences of the form y ~ z, where y € Y and z € Z. Given a sequence
(Xn)nen of topological spaces, the product topology on ([],cyXn) U
Unen Inen Xm is the topology generated by the basic open sets of the

form (Hm<n Um) ~ ((HmeN Xm+n) U UmEN H€<m Xf‘f‘n)? where n € N
and U,, C X,, is open for all m < n.

PROPOSITION 2.2.1. Suppose that (X, )nen s a sequence of compact
spaces and U, is a proper open subset of X, for alln € N. Then

(I en Un) UUpen Len Um) ~ (~UR)' is compact.

PROOF. Suppose that V is a family of open subsets of (] ],,cy Xn)U
Unen I Lnen Xm covering the space in question. For all n € N, let V),
be the family of all open hyperrectangles [] Vin € I nen Xm such

m<n ~ M

that (T],..,, Vin) ~ Upmen [r<m Xe4n is contained in a set in V.

LEMMA 2.2.2. Suppose that n € N and K,, C U,, is a non-empty
compact set for all m < n. Then there is a compact set K, C U, for
which there is a finite set Fpi1 C Vi covering (]| Kn) ~ (~K,)'.

ProoF. As ([],,-,, Km) ~ (~U,)" is compact, there is a finite sub-
cover Foi1 C Vogr of (I1,cp Km) ~ (~Un)'. Let F iy be the family
of sets F C F,41 for which {V,, | [],,c1 Vin € F} covers ~U,,, and de-
fine K,, = Nﬂfefnﬂ UH,,L<,L+1Vm€f V... As ~U, C ~K,, it follows that

K, C U,. To see that F,4; covers ([],,., Km) ~ (~K,)', suppose
that « € ([[,,-, Km) ~ (~K,)', and observe that the corresponding
family F = {[[,.cns1 Vim € Fugr | @ [ n € J],,c, Vin} 15 in Fryy, so
the definition of K, yields a hyperrectangle [], . _,., Vi € F for which
xn € Vp, thus x € [] Vin € Frg1. 5

m<n

m<n+1

Observe that if n € N, K, C U,, is a non-empty compact set for
all m < n, Fy1 € Vs is a cover of (I],.,, Ke) ~ (~K,)' for all
m < n, and F,11 € V,yq is a cover of ([],,., Km) ~ X', then the

basic open subsets of ([],,cy Xm) U Upen I licim Xm associated with
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the sets in (J,, -, Fmt1 cover ([,en Un) UUnen (T nen Un) ~ (~Un)'.
By Lemma 2.2.2 and DC, we can therefore assume that there are non-

empty compact sets K, C U, and finite subcovers F,,; C V,.1 of
(ILen Km) ~ (~K,)* for all n € N. Let Vs be the family of all
basic open subsets of (][], .y Xn) UU,en [Lnen Xm contained in a set
in V. As [],cyKn is compact, there is a finite subcover F, C Vi
of HneN K,. Fix n € N for which every set in F, is of the form
(ITocrn Vo) ~ (T Tseny Xewm) U Upen [ico Xitm), where m < n + 1 and
[ Ve € Ili<s, X¢ is an open hyperrectangle. Then F is a cover
of (ILnen Km) ~ Umen [Li<m Xe4n, 50 the sets in F,, along with the
basic open subsets of (] ],,cn Xim) UU,en [ Lo<im Xm associated with the

sets in U,,<,, Fm+1 cover ([[,en Un) UlUnen(ILnen Un) ~ (~Un)'.  ®

An ultrametric on X is a function p: X x X — [0,00) such that
plx,y) =0 <= z =y and p(z,y) = p(y,x) for all z,y € X, and
p(x, z) < max{p(x,y), p(y, z)} for all z,y,z € X. Given a point z € X
and a set Y C X, define p(x,Y) = inf ey p(z, y).

PROPOSITION 2.2.3. Suppose that X is an ultrametric space, x,y €
X7 Z C Y7 and IOX(xa Z) > pX(yv Z) Then PX(% Z) < p((lf,y)

PROOF. Fix z € Z with the property that px(z,Z) > px(y, 2).
As px(x,Z) < px(x,2) < max{px(z,vy),px(y,2)}, it follows that
px(:c,Z) SpX(xay) x

PROPOSITION 2.2.4. Suppose that (X, )nen is a sequence of (com-
plete) ultrametric spaces and U, C X,, is open for all n € N. Then

(I en Un) YU, en(I Linen Um) ~ (~U,)* admits a compatible (complete)
ultrametric.

PRrOOF. Fix compatible (complete) ultrametrics p,, on X,, such that
diam,, (X,) < 1 for all n € N and diam,, (X,) — 0, and define
p: ((Ilhen Un) U UnenI Lycn Um) ~ (~Un)')* = [0,00) by pl(z,y) =

maxXn<z|y Pn((n), y(n)) 1, max{pn (z(m), ~Un), pm(y(m), ~Un)}.
To see that p is an ultrametric, suppose that z,y,z € ([[,,c Un) U

U,en(ILcr, Un) ~ (~Uy,)*, and fix n € N with the property that p(x, z)
= pu(2(n), 2(n)) [T <y max{pm(z(m), ~Un.), pm(2(m), ~Unm)}.

LEMMA 2.2.5. If m < n, then py(z(m),~Up) = pm(z(m), ~Uy).

PROOF. Observe that if p,,(z(m),~U,) # pm(z(m),~Uy), then
Proposition 2.2.3 ensures that max{p,,(z(m), ~Up), pm(z(m), ~Up)} <
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pm(x(m), 2(m)), so
pn(@(n), 2(0)] [y, max{pe(2(£), ~Us), pe(2(£), ~Up) }
< ocmr max{pe(2(0), ~Ue), pe(2(€), ~Ur) }
)

< pm(@(m), 2(m))] 1<, max{pe(x(€), ~Us), pe(2(€), ~Ur)}
< p(z,2),

contradicting the definition of n. 53

Observe now that if p,,(z(m), ~Upn) = pm(y(m), ~U,,) for allm < n,

then the fact that p, (z(n), 2(n)) < max{pn(x(n), y(n)) pu(y(n), (n))}
ensures that p(z, z) < max{p(z,y), p(y, z)}. Otherwise, there is a least

natural number m < n for which p,,(z(m),~Un) # pm(y(m),~Up),
in which case one more application of Proposition 2.2.3 ensures that

prm(x(m), ~Up) < pm(2(m),y(m)), so
p(@,2) = pu(@(n), 2(n))[ o<, pe((l), ~Uy)
< H£<m+1 pe(x(L),~Uy)
< pm(x(m), y(m)) 1<, max{pe(x(C), ~Ue), pe(y(£),~Ue) }
< p(z,y).

To see that the topology generated by p is coarser than that inher-
ited from the product topology, suppose that € > 0 and = € (] [,,cy Un)U
Unen(ILcr. Un) ~ (~Uy,)*, and fix n € N such that diam,, (X,,) < €
for all m > n. Then the intersection of (I, - minn,a)y Bom (2(M), €)) ~
(T mew Ximamingnoi}) U mer ILoc Xetmingn,2y) with the space in ques-
tion is contained in B,(x,¢), for if y is in the aforementioned intersec-
tion and m < min{|z|, |y|}, then either m < min{n, |z|} or m > n, in
which case p(@(m), y(m)) L1, max{pe((0), ~Us), pe(y(6). ~Up)} <
pm(x(m),y(m)) <€, soy € B,(x,€).

To see that the topology generated by p is finer than that inherited
from the product topology, observe that if 0 < e <1, z € ([[,,cy Un) U
Unen(ILy<r Un) ~ (~Uy)', and 1 < n < |2] is a natural number, then
B,(z,€]],,<pn_1 pm(x(m),~Uy)) is contained in (] ],,.,, By, (x(m),€)) ~
(T Lnen Xman) U Upen Lrcm Xe4n), for if y is in the former set and
m < min{n — 1, |y|}, then

pm(x<m>’ y(m)>H£<m maX{Pe(l‘(@’ NUK): Pe(y(@u NUZ)}
< Hecno1 pe(x(€),~Uy)
< p(x(m), ~Upn)] 1, max{pe(z(€), ~Us), pe(y(£), ~Ue) },

s0 pm(z(m),y(m)) < pm(xz(m),~U,,), and it follows that y(m) € Uy,
hence m + 1 < |y|, in which case the obvious induction ensures that
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n—1<|y|, soif m < n, then

prm(x(m), y(m))[To<,, max{pe(x(£), ~Up), pe(y(£),~Up)}
< €[ Tpcn_y pe(@(),~Uy)
< €H£<m maX{pg(I(f), NUE)? pf(y(@v NUK)}7

thus pp,(z(m),y(m)) < €, and therefore y € (], Bp.(x(m),€)) ~
((HmEN Xm+n) U UmEN H£<m Xf—&-ﬂ)'

To see that the completeness of each p, yields that of p, suppose
that (zx)ren is a p-Cauchy sequence, and note that if n € N has the
property that |z;| > n for all but finitely many k& € N and (x;(m))ken
converges to a point of U, for all m < n, then there exists ¢, > 0
such that V°k € N p(z(m),~U,,) > €, for all m < n, so (xx(n))kren
is a p,-Cauchy sequence, thus the completeness of p, ensures that it
converges. A straightforward recursive construction therefore yields a

sequence Z € (I, cn Un)UU,en (T Lnen Um) ~ (~Uy)' with the property
that zx(n) — z(n) for all n < |z|, in which case z;, — . =

Let Cnvg(X) denote the set of sequences (2, )nen of elements of X
that converge to an element of X.

PROPOSITION 2.2.6. Suppose that X andY are metric spaces, D C
X is dense, and ¢: D — Y is a continuous homomorphism from
Cnvg(X) [ D to Covg(Y). Then there is a continuous extension

v: X =Y of ¢.

PrOOF. Note first that if (wy,)ney and (x,),eny are sequences of
elements of D that converge to the same point of X, then the sequence
(Un)nen, given by ve, = w, and vy,1 = x,, is also convergent, thus
0 100 is (¢(vy,))nen, hence (@(wy,))nen and (P(x,,))nen converge to the
same point of Y. It follows that there is a unique extension ¢¥: X — Y
of ¢ such that z, » z = ¢¥(x,) — ¥(z) for all (x,)neny € DY and
x € X. To see that 1 is continuous, suppose that (x,),cn is a sequence
of elements of X converging to some z € X, fix sequences (Zp, n)men
of points of D converging to z, for all n € N, fix a sequence (€,)nen
of positive real numbers converging to zero, fix a function f: N — N
such that px (2 fm)n, Tn), Py (V( @) n), ¥(2n)) < €, for all n € N, and
observe that (), — &, 50 V(T fm)n) = (), thus ¥(x,) = P(z). ®

3. Separation by unions of closed hyperrectangles

A hyperrectangular homomorphism from a pair (Rx, Sx) of subsets
of [[,ep Xa to a pair (Ry,Sy) of subsets of [[,.,Ys is a function

¢: [lsep projg(Rx U Sx) — [,ep Ya of the form ¢(x)(d) = (¢q0x)(d),
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where ¢4: proj,(Rx U Sx) — Yy for all d € D, with the property that
¢(Rx) C Ry and ¢(Sx) C Sy.

We use N, = N U {oo} to denote the one-point compactification
of N, and Hpynn e to denote the D-ary relation on the subspace
(D x N)NU((D x N)<N ~ (D x {oo})!) of (D x N,)=N consisting of all
sequences of the form (¢t ~ ((d, 0)))aep, where t € (D x N)<N.

PROPOSITION 2.3.1. Suppose that D is a non-empty countable dis-
crete space and C C (D x NN U ((D x N)<N ~ (D x {co})!) is an
H(pxwy oo -tndependent closed set. Then C' is meager.

PRrROOF. As C' N (D x N)N is H pnyv-independent, (D x NV is
comeager in (D x N)NU (D x N)*N ~ (D x {oc})!), and Theorem
1.5.1 and Proposition 2.2.4 ensure that the latter is a Baire space,
Proposition 1.6.6 ensures that C' is meager. X

THEOREM 2.3.2 (Carroy-M-Soukup). Suppose that D is a non-
empty countable discrete space, k is an aleph, (Xg)aep 1S a sequence of
metric spaces, R C [],cp Xa is x-Souslin, and S C ~R. Then at least
one of the following holds:

(1) There is a union of at most k-many closed hyperrectangles
separating R from S.

(2) There exists a continuous hyperrectangular homomorphism ¢ :
[Tacp(D x N)"U (D x N)<¥ ~ {((d, 00))}) = [14ep Xa from
(AP((D x N)¥), Hpxnyi o) to (R, S).

PROOF. Let H be the (D x N)-dimensional dihypergraph on R con-
sisting of all sequences (xd,n)(dm)e pxn of elements of R for which there
exists y € S with the property that Vd € D y(d) = lim, e Tan(d).
Observe that if (zqn)@nepxy € H, €, = 0, and Uy, = {2 € R |
px,((d), Tan(d)) < €} for all (d,n) € D x N, then [ 4,)cpun Uan C
H, so H is box open. Moreover, if () C R is H-independent, then
there does not exist y € ([[,cpproj,(@)) NS, since otherwise there
are sequences (Zqn)nen of elements of proj,(Q)) such that x4, — y(d)
for all d € D, as well as zj;, € @ such that x4, = z,(d) for all
(d,n) € D x N, thus 2, (d) — y(d) for all d € D. Tt follows that if

there is a k-coloring c¢: R — & of H, then |J,_, [[,cp Projs(c ({a}))
separates R from S. Otherwise, Theorem 2.1.1 yields a continuous ho-
momorphism ¢': (D x N)Y — R from Hpyny to H. Note that for
all d € D, the function proj, o ¢’ is a continuous homomorphism from
Crvg((D x N)MU ((D x N)< ~ {((d, 00))})) I (D x N) to Cnvg(Xa),
so Proposition 2.2.6 ensures the existence of a continuous extension

da: (DxN)NU (D x N)<N ~ {((d,00))}) = Xq4 of proj, o ¢, in which




36 2. THE BOX-OPEN DIHYPERGRAPH DICHOTOMY

case the function ¢ = [],.p ¢4 is a hyperrectangular homomorphism
from (AP ((D x N)N), H puw o) to (R, S). =

THEOREM 2.3.3 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that
D is a non-empty countable discrete space, (Xq)acp S a sequence of
metric spaces, R C [[,cp Xa is analytic, and S C ~R. Then exactly
one of the following holds:

(1) There is a union of countably-many closed hyperrectangles sep-
arating R from S.

(2) There exists a continuous hyperrectangular homomorphism ¢ :
[Tacp(D x N)" U (D x N)<¥ ~ {((d, 00))}) = [14ep Xa from
(AP((D x N)¥), Hpxwy o) to (R, S).

ProoFr. To see that conditions (1) and (2) are mutually exclusive,
note that if (J],., Can)nen is a sequence of hyperrectangles whose
union separates AP((D x N)N) from Hpuw)s oo, then ((Nyep Can)nen
is a cover of (D x N)Y by H pyxwn oo-independent sets, and appeal to
Proposition 2.3.1, noting that (D x N)N U ((D x N)<N ~ (D x {oo})!)
is a Baire space in which (D x N)Y is comeager, by Theorem 1.5.1 and
Proposition 2.2.4. To see that at least one of the two conditions holds,
appeal to the special case of Theorem 2.3.2 where k = N. X

THEOREM 2.3.4 (Carroy-M-Soukup). Suppose that ADg holds, D is
a non-empty countable discrete space, (X4)aep 1S a sequence of analytic
metric spaces, R C [[,cp X4, and S € ~R. Then exactly one of the
following holds:

(1) There is a union of countably-many closed hyperrectangles sep-
arating R from S.

(2) There exists a continuous hyperrectangular homomorphism ¢:
[Ticp(D x N)YU (D x N)< ~ {((d, 00))}) = [4ep Xa from
(AD((_D X N)N)7H(D><N)N,oo) to (R, S)

PROOF. The proof that conditions (1) and (2) are mutually exclu-
sive is exactly the same as in Theorem 2.3.3. The proof that at least
one of the two conditions holds is analogous to that of Theorem 2.3.2,
replacing the use of Theorem 2.1.1 with that of Theorem 2.1.5. X

In particular, we obtain a characterization of the circumstances
under which two disjoint sets can be separated by a well-ordered union
of closed sets:

THEOREM 2.3.5 (Carroy-M-Soukup). Suppose that k is an aleph,
X is a metric space, A C X 1is k-Souslin, and 'Y C ~A. Then at least
one of the following holds:
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(1) There is a union of at most k-many closed sets separating A
from Y.

(2) There is a continuous reduction 7: NY U (NN ~ {(c0)}) —
AUY of NN to A.

ProoF. This is the special case of Theorem 2.3.2 where D =1. X

THEOREM 2.3.6 (Hurewicz, Kechris-Louveau-Woodin). Suppose that
X is a metric space, A C X 1is analytic, and Y C ~A. Then exactly
one of the following holds:

(1) There is an F, subset of X separating A from Y.
(2) There is a continuous reduction 7: NY U (NN ~ {(c0)}) —
AUY of NN to A.

PRroOF. This is the special case of Theorem 2.3.3 where D =1. K

THEOREM 2.3.7 (Kechris-Louveau-Woodin). Suppose that ADg holds,

X is an analytic metric space, A C X, andY C ~A. Then exactly one
of the following holds:

(1) There is an F, subset of X separating A from Y .
(2) There is a continuous reduction 7: NY U (NN ~ {(c0)}) —
AUY of NY to A.

ProoF. This is the special case of Theorem 2.3.4 where D =1. K

We next generalize Theorems 2.1.1, 2.1.4, and 2.1.5 beyond box-
open dihypergraphs:

THEOREM 2.3.8 (Carroy-M-Soukup). Suppose that D is a countable
discrete space of cardinality at least two, k is an aleph, X is a k-Souslin
metric space, and H is a D-dimensional dihypergraph on X. Then at
least one of the following holds:

(1) There is a cover of X by at most k-many H-independent closed
sets.

(2) There is a continuous homomorphism ¢: (D x N)N U (D x
N)<N ~ (D x {oo})t) = X from H(pynyy o0 to H.

PRrROOF. Observe that if ([ ,c Ca,d)a<x is a sequence of hyperrect-
angles whose union separates A”(X) from H, then ((V;ep Ca,d)a<s i
a cover of X by H-independent sets. By Theorem 2.3.2, we can there-
fore assume that there is a continuous hyperrectangular homomorphism
[Tucp @a from (AP((D x N)N), H pypyvoo) to (AP(X), H). But then
the function ¢ = (J,cp ¢q is a homomorphism from H pynyw o to H,
and Proposition 2.2.6 ensures that it is continuous. X
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THEOREM 2.3.9 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that
D is a countable discrete space of cardinality at least two, X is an ana-
lytic metric space, and H is a D-dimensional dihypergraph on X. Then
ezxactly one of the following holds:

(1) There is a AS-measurable No-coloring of H.
(2) There is a continuous homomorphism ¢: (D x N)N U (D x
N)N ~ (D x {oo})') = X from Hpywy oo to H.

PRrOOF. To see that conditions (1) and (2) are mutually exclusive,
note that (D x N)NU ((D x N)<N ~ (D x {oo})!) is a Baire space by
Theorem 1.5.1 and Proposition 2.2.4, and appeal to Propositions 1.6.5
and 2.3.1. To see that at least one of them holds, appeal to the special
case of Theorem 2.3.8 where k = N,. X

THEOREM 2.3.10 (Carroy-M-Soukup). Suppose that ADg holds, D
1s a countable discrete space of cardinality at least two, X is a subset of
an analytic metric space, and H is a D-dimensional dihypergraph on
X. Then exactly one of the following holds:

(1) There is a AS-measurable No-coloring of H.
(2) There is a continuous homomorphism ¢: (D x N)N U (D x
N)<N ~ (D x {oo})') = X from Hpyny o to H.

PRrOOF. The proof that conditions (1) and (2) are mutually exclu-
sive is exactly the same as in Theorem 2.3.9. The proof that at least
one of the two conditions holds is analogous to that of Theorem 2.3.8,
replacing the use of Theorem 2.3.2 with that of Theorem 2.3.4. X



CHAPTER 3

The G( dichotomy, I: Abstract colorings

1. Colorings within cliques

Given a binary relation R on X, we say that a set Y C X is an
R-clique if y R z for all distinct y, z € Y.

THEOREM 3.1.1 (Geschke). Suppose that k is an aleph, X is a Hau-
sdorff space, G is a k-Souslin digraph on X, and R is a reflexive G
binary relation on X. Then at least one of the following holds:

(1) For every R-clique Y C X, there is a k-coloring of G Y.
(2) There is a continuous homomorphism ¢: 2N — X from Gq to
G for which ¢(2V) is an R-clique.

PROOF. Suppose that condition (1) fails, and fix an R-clique Y C
X for which there is no x-coloring of G | Y. By Proposition 1.4.1,
we can assume that there is a continuous surjection ¢g: kY — G.
By Propositions 1.4.1, 1.4.2, and 1.4.3, we can assume that there is
a continuous function ¢x: N — X for which ¢x (k") is the union of
the left and right projections of G onto X. Fix a decreasing sequence
(R,)nen of open subsets of X x X whose intersection is R, as well as
sequences s, € 2" for which Gg = G, jneny-

We will define a decreasing sequence (Y%),..+ of subsets of Y, off
of which there are k-colorings of G | Y. We begin by setting Y =Y.
For all limit ordinals A < k%, we set Y =, _, Y* To describe the
construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form a = (n% ¢% (¢¥%)n<pa),
where n® € N, ¢%: 2" — <N 2. ont=(n+1) 5 k7 for all n < n®, and
Ox (Npa(s)) X ¢x(Nyary) C Rpa for all distinet s,¢ € 2", A one-step
extension of an approximation a is an approximation b such that:

(a) n® =n*+1.

(b) Vs € 27"Vt € 2% (s C t = ¢%(s) T ¢¥(t)).

(¢) Vn < n®s € 20"~y g on' (D) (g = ¢ = %(s) T ¢ (1))
Similarly, a configuration is a triple of the form v = (n?, ¢, (V) )pn<n~),
where n?” € N, ¢7: 2" — N 7 277 =+ 5 kN for all n < n?, and
(66 0 E1)(E) = ((Bx 0 6) (50 ~ (0) ~ 1), (6x © 9")(s0 ~ (1) ~ 1)) for

39



40 3. THE Go DICHOTOMY, I: ABSTRACT COLORINGS

all n < nY and ¢t € 27"+ A configuration v is compatible with an
approximation a if the following conditions hold:
(i) n® =n".

(i) Vi € 2 6°(t) C (1),

(iii) Vn < navt € 2=+l a3y T o (t).
A configuration v is compatible with aset Y’ C Y if (¢xo0¢?)(27") C Y.
An approximation a is Y'-terminal if no configuration is compatible
with a one-step extension of a and Y. Let A(a,Y”’) denote the set of
points of the form (¢x 0 ¢7)(s,a), where «y varies over all configurations
compatible with a and Y”.

LEMMA 3.1.2. Suppose that Y’ CY and a is a Y'-terminal approx-
imation. Then A(a,Y”) is G-independent.

PROOF. Suppose, towards a contradiction, that there are configu-
rations vy and -7, both compatible with a¢ and Y’, with the property
that ((¢x © ¢7°)(5pa), (0x © ¢ )(8pa)) € G. Fix a sequence d € kN
such that ¢g(d) = ((dx 0 ¢7°)(Spa), (¢x © ¢7)(Spa)), and let v denote
the configuration given by n? = n® + 1, ¢"(t ~ (i)) = ¢7(t) for all
i< 2andt € 2" It ~ (i) = YYi(t) for all i < 2, n < n? and
t € 2=+ and . (0) = d. Then 7 is compatible with a one-step
extension of a, contradicting the fact that a is Y’-terminal. 53

Define Y**! to be the difference of Y* and the union of the sets of
the form A(a,Y®), where a varies over all Y*-terminal approximations.

LEMMA 3.1.3. Suppose that o < k™ and a is a non-Y ' -terminal
approximation. Then a has a non-Y *-terminal one-step extension.

PRrOOF. Fix a one-step extension b of a for which there is a config-
uration 7 compatible with b and Y**1. Then (¢x o ¢7)(s,p) € Y,
so b is not Y “-terminal. 5

Fix a < k% such that the families of Y®terminal approximations
and Y**!-terminal approximations are one and the same, and let aq
denote the unique approximation for which n® = 0 and ¢ (@) = (.
As A(ag,Y') = Y’ for all Y/ C Y, we can assume that ag is not Y*-
terminal, since otherwise Y1 = (), so there is a s-coloring of G | Y.

By recursively applying Lemma 3.1.3, we obtain non-Y *-terminal
one-step extensions a,; of a, for all n € N. Define ¢, 1, : 28 — &N
by ¢(6) = Upney 6 (¢ [ 1) and n(e) = Uy,s, w2 (c | (m — (n+1)))
for all n € N. Clearly these functions are continuous.

To see that the function ¢ = ¢x o ¢’ is a homomorphism from G
to G, we will show the stronger fact that if ¢ € 2N and n € N, then

(0 © Pn)(c) = ((¢x © ¢)(sn ~ (0) ~ ), (¢x © ¢)(sn ~ (1) ~©)).
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And for this, it is sufficient to show that if U is an open neighborhood
of ((¢x o @')(sn ~ (0) ~ ¢),(px 0 ¢)(sp ~ (1) ~ ¢)) and V is an
open neighborhood of (¢¢ o 1,)(c), then U NV # (). Towards this
end, fix m > n such that ¢x (Nam (s,~©0)~s)) X Ox Ngam (s,~1)~s)) S U
and ¢g(Nyam(s)) € V, where s = ¢ | (m — (n + 1)). The fact that
a,, is not Y*-terminal yields a configuration v compatible with a,,, in
which case ((¢x 0 @7)(sp ~ (0) ~s), (px 0 @7) (s, ~ (1) ~s)) € U and
(g o)(s) € V, thus UNV # ().

To see that ¢(2V) is an R-clique, observe that if ¢,d € 2V are
distinct and n € N is sufficiently large that ¢ | n # d | n, then

¢(c) € ¢X(N¢an(crn)) and ¢(d) € ¢x (N¢>an(dm)), s0 ¢(c) Ry ¢(d). X

THEOREM 3.1.4 (Geschke). Suppose that X is a Hausdorff space,
G is an analytic digraph on X, and R is a reflexive G§ binary relation
on X. Then at least one of the following holds:

(1) For every R-clique Y C X, there is an Wg-coloring of G Y.

(2) There is a continuous homomorphism ¢: 2N — X from G to
G for which ¢(2V) is an R-clique.

PRroOOF. This is the special case of Theorem 3.1.1 where Kk = Ny. K

THEOREM 3.1.5 (Geschke). Suppose that X is an analytic Haus-
dorff space, G is a X digraph on X, and R is a reflexive Gs binary
relation on X. Then at least one of the following holds:

(1) For every R-clique Y C X, there is an Xi-coloring of G | Y.
(2) There is a continuous homomorphism ¢: 28 — X from Gg to
G for which ¢(2Y) is an R-clique.

Proor. Note that G is N;-Souslin by Propositions 1.4.2 and 1.4.10,
and appeal to the special case of Theorem 3.1.1 where k = N;. X

THEOREM 3.1.6 (Geschke). Suppose that AD holds, n € N, X is
an analytic Hausdorff space, G is a X3, digraph on X, and R is a
reflexive G binary relation on X. Then exactly one of the following

holds:

(1) For every R-clique Y C X, there is a K3, -coloring of G | Y.
(2) There is a continuous homomorphism ¢: 28 — X from Gq to
G for which ¢(2V) is an R-clique.

PROOF. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that GG
is ki 41-Souslin by Theorem 1.4.14, and appeal to the special case of
Theorem 3.1.1 where k = K3, ;. X
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THEOREM 3.1.7 (Geschke). Suppose that AD holds, n € N, X s
an analytic Hausdorff space, G is a E%n+2 digraph on X, and R is a

reflexive Gs binary relation on X. Then exactly one of the following
holds:
(1) For every R-clique Y C X, there is a (Ky,.,)"-coloring of
GlY.
(2) There is a continuous homomorphism ¢: 28 — X from Gq to
G for which ¢(2V) is an R-clique.

PROOF. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that G is
(K3,.1)T-Souslin by Theorem 1.4.14, and appeal to the special case of
Theorem 3.1.1 where k = (K3, 1)". =

REMARK 3.1.8. For all n € N, the weakenings of the correspond-
ing special cases of Theorems 3.1.6 and 3.1.7 in which conditions (1)
and (2) are not required to be mutually exclusive are consequences of
Det(A}), yielding analogous generalizations of the other consequences
of AD established in this chapter.

THEOREM 3.1.9 (Geschke). Suppose that ADg holds, X is an an-
alytic Hausdorff space, G is a digraph on X, and R is a reflexive Gs
binary relation on X. Then exactly one of the following holds:

(1) For every R-cligue Y C X, there is an ordinal-coloring of
Gl|Y.

(2) There is a continuous homomorphism ¢: 28 — X from Gq to
G for which ¢(2V) is an R-clique.

PROOF. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that there
is an aleph x for which G is k-Souslin by Theorem 1.4.14, and appeal
to Theorem 3.1.1. X

2. Discrete perfect sets within cliques

An extended-valued quasi-metric on X is a map p: X x X — [0, o0
such that p(z,z) = 0 for all x € X, p(z,y) = p(y,z) for all z,y € X,
and p(z,2) < p(z,y) + p(y, 2) for all z,y,z € X. Given € > 0, we say
that (X, p) is e-discrete if p(x,y) > € for all distinct z,y € X.

THEOREM 3.2.1 (Geschke). Suppose that 6 > 0, € > 20, k is an
aleph, X is a Hausdorff space, p is an extended-valued quasi-metric on
X for which p~1([0,4]) is Ro-universally Baire and p~'([0,€]) is co-r-
Souslin, and R is a reflexive G5 binary relation on X. Then at least
one of the following holds:
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(1) Every R-cligue Y C X is a union of at most k-many sets of
p-diameter at most €.

(2) There is a continuous injection m: 2N < X for which w(2Y) is
an R-clique and (w(2Y), p | w(2Y)) is §-discrete.

PROOF. Suppose that condition (1) fails, fix an R-clique Y C X
for which there is no cover of Y by at most k-many sets of p-diameter
at most €, set G = p~!((€,00]), and observe that Theorem 3.1.1 yields
a continuous homomorphism ¢: 2 — X from Gy to G for which ¢(2)
is an R-clique. Define G’ = (po (¢ x ¢))7!([0,4]), and observe that
Go N (G")7'G" = 0, so Proposition 1.6.10 ensures that G’ is meager,
thus Theorem 1.6.1 yields a continuous homomorphism ¢ : 28 — 2N
from ~A(2V) to ~G’. Define 7 = ¢ 0 1. =

THEOREM 3.2.2 (Geschke). Suppose that k is an aleph, X is a Hau-
sdorff space, p is an extended-valued quasi-metric on X for which there
are arbitrarily small §, € > 0 such that p~1([0,6]) is Ng-universally Baire
and p~([0, €]) is co-k-Souslin, and R is a reflexive G5 binary relation
on X. Then at least one of the following holds:

(1) For every R-clique Y C X, the space (Y,p |'Y) has a basis of
cardinality at most k.

(2) There exist § > 0 and a continuous injection w: 28 < X for
which w(2V) is an R-clique and (w(2V), p | w(2Y)) is d-discrete.

Proor. By Theorem 3.2.1, it is enough to note that if ¢, — 0,
Y, is a cover of Y by sets of p-diameter at most ¢, for all n € N; and
U, ={B,(Y' &)NY | Y' € Y, }foralln € N, then the set U = J,, .y Un
is a basis for (Y, p). =

The special case of either of the above theorems, where p is the
characteristic function of the complement of an equivalence relation
and R = X x X, is a version of Harrington-Shelah’s perfect set theo-
rem for co-k-Souslin equivalence relations. The analogous special cases
of the following results are Silver’s perfect set theorem for co-analytic
equivalence relations, Burgess’s perfect set theorem for analytic equiv-
alence relations, and their generalizations under determinacy.

THEOREM 3.2.3 (Harrington-Friedman-Kechris, Geschke). Suppose
that X is an analytic Hausdorff space, p is an extended-valued quasi-
metric on X for which there are arbitrarily small € > 0 such that
p~ ([0, €]) is co-analytic, and R is a reflezive G binary relation on X.
Then exactly one of the following holds:

(1) For every R-clique Y C X, the space (Y,p | 'Y') is separable.
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(2) There exist § > 0 and a continuous injection 7: 2% — X for
which w(2Y) is an R-clique and (w(2V), p | w(2Y)) is 6-discrete.

PROOF. As Proposition 1.5.9 ensures that there are arbitrarily small
§ > 0 for which p~1([0,]) is Ng-universally Baire, the special case of
Theorem 3.2.2 where k = ¥ yields =(1) = (2). To see that the two
conditions are mutually exclusive, note that condition (2) ensures that
the cardinality of any basis for (X, p) is at least c. X

THEOREM 3.2.4 (Geschke). Suppose that X is an analytic Haus-
dorff space, p is an extended-valued quasi-metric on X for which there
are arbitrarily small §, € > 0 such that p~1([0,d]) is Ng-universally Baire
and p~1([0,¢€]) is 11}, and R is a reflerive Gs binary relation on X.
Then at least one of the following holds:

(1) For every R-clique Y C X, the space (Y,p |'Y) has a basis of
cardinality at most N;.

(2) There exist § > 0 and a continuous injection 7: 2N — X for
which w(2Y) is an R-clique and (w(2V), p | w(2Y)) is d-discrete.

PRrROOF. As Propositions 1.4.2 and 1.4.10 ensure that there are ar-
bitrarily small € > 0 for which p~*([0, €]) is co-N;-Souslin, this follows
from the special case of Theorem 3.2.2 where k = N;. X

THEOREM 3.2.5 (Geschke). Suppose that AD holds, n € N, X is
an analytic Hausdorff space, p is an extended-valued quasi-metric on
X for which there are arbitrarily small € > 0 such that p=*([0,€]) is
H%nﬂ, and R is a reflexive Gs binary relation on X. Then exactly one
of the following holds:

(1) For every R-clique Y C X, the space (Y,p |'Y) has a basis of
cardinality at most K, ;.

(2) There exist § > 0 and a continuous injection 7: 2N — X for
which w(2Y) is an R-clique and (w(2V), p | w(2Y)) is d-discrete.

PROOF. As Theorem 1.1.5 ensures that 2V cannot be well-ordered,
Theorem 1.5.11 implies that p~'([0,4]) is No-universally Baire for all
0 > 0, and Theorem 1.4.14 yields arbitrarily small ¢ > 0 for which
p~1([0, €]) is co-K3,,.,-Souslin, this follows from the special case of The-
orem 3.2.2 where k = K3, ;. X

THEOREM 3.2.6 (Geschke). Suppose that AD holds, n € N, X is an
analytic Hausdorff space, and p is an extended-valued quasi-metric on
X for which there are arbitrarily small ¢ > 0 such that p~*([0,€]) is
1}, . ,, and R is a reflezive G5 binary relation on X. Then exactly one

of the following holds:
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(1) For every R-clique Y C X, the space (Y,p [ Y) has a basis of
cardinality at most (K3, ,)".

(2) There exist § > 0 and a continuous injection 7: 2N — X for
which w(2Y) is an R-clique and (w(2V), p | ©(2Y)) is 6-discrete.

PROOF. As Theorem 1.1.5 ensures that 2 cannot be well-ordered,
Theorem 1.5.11 implies that p~'([0,4]) is No-universally Baire for all
0 > 0, and Theorem 1.4.14 yields arbitrarily small ¢ > 0 for which
p~1([0,€]) is co-(k, 1) T-Souslin, this follows from the special case of
Theorem 3.2.2 where k = (K3, 1)". b

THEOREM 3.2.7 (Geschke). Suppose that ADg holds, X is an ana-
lytic Hausdorff space, and p is an extended-valued quasi-metric on X.
Then exactly one of the following holds:

(1) For every R-clique Y C X, the space (Y,p |'Y) has a well-
orderable basis.

(2) There exist § > 0 and a continuous injection 7: 2N — X for
which w(2Y) is an R-clique and (m(2V), p | w(2Y)) is 6-discrete.

PROOF. As Theorem 1.1.5 ensures that 2 cannot be well-ordered,
Theorem 1.5.11 implies that p~'([0,4]) is No-universally Baire for all
0 > 0, and Theorem 1.4.15 yields an aleph k for which there are ar-
bitrarily small € > 0 such that p~*([0, €]) is co-x-Souslin, this follows
from Theorem 3.2.2. X

3. Scrambled sets

Note that if X is a metric space, ¢: X — R, and y € X, then
liminf, (2 )00 @(x) and limsup, ) ¢(¥) do not depend on y.
We denote them by lim inf)j, 0 ¢() and lim supy, 00 ¢(7).

Suppose that S ~ X is an action of a metric semigroup on a
metric space. We say that two points x and y of X are proximal if
lim inf |50 px (s - 2, s - y) = 0, we use Pg to denote the set of all such
pairs, and we say that a set Y C X is proximal if it is a P& -clique.

PROPOSITION 3.3.1. Suppose that S ~ X is an action of a metric
semigroup by continuous functions on a metric space. Then PZ is Gjs.

PRrOOF. The desired result follows from the fact that if » € .S, then
Pg = me>0 mnEN Ups(T,S)Zn{(x7y) € X xX | pX<8 "L, S y) < 6}' X

Associated with S ~ X is the function p3 : X x X — [0, 00] given
by p3 (,y) = imsup| L0 px (5 - 7,5 Y).
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PROPOSITION 3.3.2. Suppose that S ~ X is an action of a metric
semigroup by continuous functions on a metric space. Then px is Bor-
el.

PROOF. It is sufficient to observe that if » € S and 6 > 0, then
(p:;()—l([(i OOD = ﬂe<5 ﬂneN Ups(r,s)Zn{(x7 y) | pX(S * X, S y) > E}' X

PROPOSITION 3.3.3. Suppose that S ~ X is an action of a metric
semigroup on a metric space. Then pa is an extended-valued quasi-
metric.

PRroOOF. It is sufficient to show that if z,y,2z € X and € > 0, then
pa(z,2) < pd(z,y) + pa(y,2) + e Towards this end, suppose that
r € S, fix n € N such that sup, (. o5, px(s-2,5-y) < pg (z,y) + €/3
and sup,,, o>n Px (-9, 5-2) < pg (y,2) +€/3, as well as s € S with the
property that ps(r,s) > n and px(s-z,s-2) > pg(z,2) — €¢/3. Then
pa(r,2) <e/3+px(s-x,5-2) <€/3+px(s-z,5 y)+px(s-y,s-2) <
€/3+ pa(z,y) +€¢/3+ ps(y,2) +€/3. b

We say that a set Y C X is scrambled if it is proximal but O-
discrete, and we say that S ~ X is Li-Yorke chaotic if there is a
scrambled uncountable set Y C X.

THEOREM 3.3.4 (Geschke). Suppose that S ~ X is a Li-Yorke
chaotic action of a metric semigroup by continuous functions on an

analytic metric space. Then there is a continuous injection : 2N < X
for which 7 (2Y) is scrambled.

Proor. This is the special case of Theorem 3.2.1 where § = ¢ = 0,
k= Ng, p=px,and R = P. X

We say that a set Y C X is uniformly scrambled if it is proximal
but there exists € > 0 for which (Y, ps | Y) is e-discrete, and we say
that S ~ X is wuniformly Li-Yorke chaotic if there is a uniformly-
scrambled uncountable set Y C X. As this rules out the separability
of (Y,pa |'Y), the following fact ensures that it yields a uniformly-
scrambled non-empty perfect set:

THEOREM 3.3.5 (Geschke). Suppose that S ~ X is an action of a
metric semigroup by continuous functions on an analytic metric space.
Then exactly one of the following holds:

(1) For every prozimal set Y C X, the space (Y, ps |'Y) is sepa-
rable.

(2) There is a continuous injection 7: 28 < X for which w(2N) is
scrambled.
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PROOF. This is the special case of Theorem 3.2.3 where p = px
and R = P&. X






CHAPTER 4

The G( dichotomy, 1I: Borel colorings

1. Borel colorings

Given a set R C X x Y, we say that a pair (A, B) of sets is R-
independent if RN (A x B) =.

PROPOSITION 4.1.1. Suppose that k is an aleph for which every
(k + 1)-Borel subset of an analytic Hausdorff space is k-Souslin, X
and Y are analytic Hausdorff spaces, R C X XY 1is k-Souslin, and
(A, B) is an R-independent pair of k-Souslin sets. Then there is an
R-independent pair (A’, B') of (k+ 1)-Borel sets for which A C A" and
BCPHB.

PROOF. As A is disjoint from proj (RN (X x B)), and Propositions
1.4.2 and 1.4.3 ensure that the latter set is k-Souslin, Theorem 1.4.7
yields a (k+1)-Borel set A’ C X separating the former from the latter.
As B is disjoint from projy, (RN (A" x Y)), and Propositions 1.4.2 and
1.4.3 ensure that the latter set is k-Souslin, Theorem 1.4.7 yields a
(k + 1)-Borel set B’ C X separating the former from the latter. X

PROPOSITION 4.1.2. Suppose that k is an aleph for which every
(k+1)-Borel subset of an analytic Hausdor(f space is k-Souslin, X is an
analytic Hausdorff space, G is a k-Souslin digraph on X, and A C X 1is
a G-independent k-Souslin set. Then there is a G-independent (k+1)-
Borel set B D A.

ProoF. The fact that A is G-independent ensures that (A, A) is a
G-independent pair, so Proposition 4.1.1 yields a G-independent pair
(C, D) of (k+ 1)-Borel supersets of A. Set B=CnND. X

THEOREM 4.1.3 (Kanovei). Suppose that k is an aleph for which
kT-DC holds, A\ > k is an aleph for which every (A + 1)-Borel subset of
an analytic Hausdorff space is A\-Souslin, X is an analytic Hausdorff
space, and G is a k-Souslin digraph on X. Then at least one of the
following holds:

(1) There is a (A + 1)-Borel k-coloring of G.
(2) There is a continuous homomorphism ¢: 2% — X from Gq to G.

49
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PROOF. By Proposition 1.4.1, we can assume that there are contin-
uous surjections ¢ : kY — G and ¢x: kY — X. Fix sequences s,, € 2"
for which Go = G{sn\neN}-

We will recursively a decreasing sequence (B%),<.+ of (A + 1)-Bor-
el subsets of X, off of which there are (A + 1)-Borel k-colorings of
G. We begin setting B = X. For all limit ordinals u < x*, we set
Bt =,., B* To describe the construction at successor ordinals, we
require several preliminaries.

An approximation is a triple of the form a = (n% ¢%, (¢V%)n<pa),
where n® € N, ¢: 27" — £™, and ¢2: 27" ~(+D) 5 k7 for all n < n%
A one-step extension of such an a is an approximation b for which:

(a) n® =n2+1.

(b) Vs € 27"Vt € 2" (s C t = ¢%(s) T ¢°(1)).

(¢) Vn < n®s € 20"~y g on' (D) (g = ¢ = 4%(s) T ¢ (t)).
Similarly, a configuration is a triple of the form v = (n?, ¢, (V) )pen~),
where n7 € N, ¢7: 277 — N o7 2n"=(n+1) 5 kN for all n < n?, and
(66 0 E1)(E) = ((Bx © 6) (50 ~ (0) ~ 1), (6x © 9")(s0 ~ (1) ~ 1)) for
all n < nY and ¢t € 27"+ A configuration v is compatible with an
approximation a if the following conditions hold:

(i) n* =n".

(i) V¢ €2 ¢°(t) C ¢7(t).

(iii) Vn < novt € 2~ e (t) T o (t).

A configuration « is compatible with a set X’ C X if (¢x 0 ¢?)(2"") C
X’. An approximation a is X'-terminal if no configuration is com-
patible with a one-step extension of a and X’. Let A(a, X’) denote
the set of points of the form (¢px o ¢7)(s,e), where v varies over all
configurations compatible with a and X".

LEMMA 4.1.4. Suppose that X' C X and a is a Y -terminal approx-
imation. Then A(a, X') is G-independent.

PROOF. Suppose, towards a contradiction, that there are configu-
rations o and ~;, both compatible with a and X’, with the property
that ((¢x © ¢79)(5pa), (¢x © @7 )(5pa)) € G. Fix a sequence d € kY
such that 6g(d) = ((6x © ™) (swe), (éx 0 67)(se)), and let y denote
the configuration given by n?" = n® 4+ 1, ¢7(t ~ (i)) = ¢ (¢) for all
i< 2and t € 2" It ~ (i) = YYi(t) for all i < 2, n < n% and
t € 27~ and ¥7.(0) = d. Then 7 is compatible with a one-step
extension of a, contradicting the fact that a is X’-terminal. I

For all B®-terminal approximations a, Proposition 4.1.2 yields a
G-independent (A + 1)-Borel set B(a, B*) 2 A(a, B*). Let B**! be
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the set obtained from B® by subtracting the union of the sets of the
form B(a, B*), where a varies over all B®-terminal approximations.

LEMMA 4.1.5. Suppose that o < k™ and a is a non-B**'-terminal
approzimation. Then a has a non-B“-terminal one-step extension.

PRrROOF. Fix a one-step extension b of a for which there is a config-
uration 7 compatible with b and B**!. Then (¢x o ¢7)(s,p) € Bt
so b is not B“-terminal. 5

Fix a < k% such that the families of B“terminal approximations
and B“"!-terminal approximations are one and the same, and let aq
denote the unique approximation for which n® = 0. As A(ag, X') =
X' for all X! C X, we can assume that ag is not B%terminal, since
otherwise B**! = (), so there is a (A + 1)-Borel x-coloring of G.

By recursively applying Lemma 4.1.5, we obtain non- B*-terminal
one-step extensions a,; of a, for all n € N. Define ¢, v, : 28 — &N by
6() = Upey 0 (c [ 1) and tn(c) = Upay, 27 (¢ | (m — (n +1))) for
all n € N. Clearly these functions are continuous.

To establish that the function ™ = ¢x o ¢ is a homomorphism from
G to G, we will show the stronger fact that if ¢ € 2% and n € N, then

(9c o n)(c) = ((¢x © @) (sn ~ (0) ~ ), (¢x © @) (50 ~ (1) ~ ).
And for this, it is sufficient to show that if U is an open neighborhood
of ((px 0 ®)(sn ~ (0) ~ ¢),(dx © P)(sn ~ (1) ~ ¢)) and V is an
open neighborhood of (¢¢ o 1¥,)(c), then U NV # (). Towards this
end, fix m > n such that qbX(./\/’(bam(snA(o),\s)) X ng(./\/’(;,am(snA(l)f\s)) cU
and ¢g(Nyam(s)) € V, where s = ¢ | (m — (n + 1)). The fact that
a,, is not B%terminal yields a configuration v compatible with a,,.
Then ((¢x © 6")(5n ~ (0) ~ 5, (éx © 6)(5n ~ (1) ~ 5)) € U and
(g op)(s) € V, thus UNV # (). <

REMARK 4.1.6. The assumption of x7-DC can be reduced to x-DC
by first running the above argument without Proposition 4.1.2 (i.e., by
setting B(a, B*) = A(a, B*) as in the proof of Theorem 3.1.1) to obtain
an upper bound o/ < k% for the least ordinal o < k™ such that the
families of B*terminal and B**!-terminal approximations coincide.

REMARK 4.1.7. Under the stronger assumption that there is a func-
tion sending each code for a (A1)-Borel subset of an analytic Hausdorff
space to a witness that the set is A-Souslin, the assumption of xk-DC can
be removed by working with codes for the (A+1)-Borel sets B¢. Under
AD, the existence of such a function follows from Theorem 1.4.14 and
other well-known consequences of determinacy (i.e., the coding lemma
and projective uniformization) when A = K3, ;.
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REMARK 4.1.8. Kanovei has shown that both x-DC and the assump-
tion that every (A + 1)-Borel subset of an analytic Hausdorff space is
A-Souslin can be removed (see [Kan97]), and the ideas underlying his
argument can be used to obtain analogous generalizations of the corol-
laries established in this chapter.

THEOREM 4.1.9 (Kechris-Solecki-Todorcevic). Suppose that X is
an analytic Hausdorff space and G is an analytic digraph on X. Then
exactly one of the following holds:

(1) There is a Borel Xg-coloring of G.
(2) There is a continuous homomorphism ¢: 2N — X from Gg to G.

Proor. This follows from Theorem 1.4.10, Proposition 1.6.10, and
the special case of Remark 4.1.6 where k = A\ = N,. X

THEOREM 4.1.10 (Kanovei). Suppose that AD holds, n € N, X is
an analytic Hausdorff space, and G is a X3, ., digraph on X. Then
exactly one of the following holds:

(1) There is a A}, ,,-measurable K}, -coloring of G.

(2) There is a continuous homomorphism ¢: 28 — X from Gg to G.

Proor. This follows from Theorem 1.4.14, Proposition 1.6.11, and
the special case of Remark 4.1.7 where Kk = A = K, ;. X

THEOREM 4.1.11 (Kanovei). Suppose that AD holds, n € N, X is
an analytic Hausdorff space, and G is a X3, ., digraph on X. Then
exactly one of the following holds:

(1) There is a A}, s-measurable (K3, )" -coloring of G.
(2) There is a continuous homomorphism ¢: 28 — X from Gg to G.

Proor. By Theorem 1.4.14, Proposition 1.6.11, and the special
case of Remark 4.1.7 where k = (k},, ;)" and A = Kk}, 5. X

THEOREM 4.1.12 (Kechris-Solecki-Todorcevic). Suppose that ADg
holds, X is an analytic Hausdorff space, and G is a digraph on X.
Then exactly one of the following holds:

(1) There is an ordinal-valued-coloring of G.
(2) There is a continuous homomorphism ¢: 28 — X from Gg to G.

PROOF. By the special case of Theorem 3.1.9 where R = X xX. X

2. Index two subequivalence relations

Given an equivalence relation £ on X, we say that a digraph G on
X is E-invariant if G = EGE.
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PROPOSITION 4.2.1. Suppose that k is an aleph for which every
(k 4+ 1)-Borel subset of an analytic Hausdorff space is k-Souslin, X is
an analytic Hausdorff space, E is a k-Souslin equivalence relation on
X, G is an E-invariant k-Souslin digraph on X, and B C X is a G-
independent (k + 1)-Borel set. Then B is contained in an E-invariant
G-independent (k + 1)-Borel set.

PROOF. Set By = B, and given n € N and a G-independent (k+1)-
Borel set B, C X, define 4,1 = [B,]g, and appeal to Proposition
4.1.2 to obtain a G-independent (k+ 1)-Borel set B, 411 2 A,41. It only

remains to note that (J,, . By is E-invariant and G-independent.  ®

A transversal of an equivalence relation £ on X over a subequiva-
lence relation F' is a maximal set Y C X for which E [Y =F | Y.

THEOREM 4.2.2. Suppose that k is an aleph for which k-DC holds
and every (k + 1)-Borel subset of an analytic Hausdorff space is k-
Souslin, X s an analytic Hausdorff space, E is a k-Souslin equivalence
relation on X, and F is a Ng-uniwersally-Baire co-k-Souslin indez-two
subequivalence relation of E. Then at least one of the following holds:

(1) There is a (k + 1)-Borel transversal of E over F.

(2) There exists a continuous homomorphism ¢: 28 — X from
(IFO \ A<2N)>EO \ IFO? NEO) to (F \ A(X)a E \ F> NE)

PROOF. Define G = E\ F'. If there is a (k4 1)-Borel k-coloring ¢ of
G, then each of the sets ¢ !({a}) is a (k + 1)-Borel partial transversal
of Eover F. Asz Fy < (E\F),N(E\F),#0foral z,y € X,
it follows that F' is k-Souslin, so Proposition 4.2.1 yields F-invariant
(k + 1)-Borel partial transversals B, C X of E over F' containing
c'({a}). As [B,]g can be expressed as {xr € X | Iy € [z]p y € B}
and B,U{r e X |Vye X (y¢ (E\ F), ory € B,)}, Theorem 1.4.9
ensures that it is (k + 1)-Borel, thus so too is the transversal of F over
F given by U, Ba \ Us-o[Bsle. By Remark 4.1.6, we can therefore
assume that there is a continuous homomorphism ¢: 2% — X from G,
to G. Let D', E', and F’ be the pullbacks of the diagonal on X, F, and
F through ¢ x ¢. As Gy N (F')"'F’" = (), Proposition 1.6.10 ensures
that F’ is meager. As B/ = F'U (id x (19U, ")) (F"), Proposition 1.5.5
implies that E’ has the Baire property. As Gy C E’\ F”’, Proposition
1.6.20 ensures that F, C F’ and Ey \ F, € E’\ F’, in which case
Proposition 1.6.22 yields a continuous homomorphism : 28 — 2N
from (F,\A(2Y), Eo\Fy, ~Eo) to (F'\D', E'\F',~FE"). Set m = ¢o9). K

THEOREM 4.2.3 (Louveau). Suppose that X is an analytic Haus-
dorff space, E s an analytic equivalence relation on X, and F is a
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co-analytic index-two subequivalence relation of E. Then exactly one
of the following holds:

(1) There is a Borel transversal of E over F.
(2) There exists a continuous homomorphism ¢: 2% — X from

(FO\A(QN)7EO\FO7NEO) to (F\A(X)aE\F7NE)

Proor. This follows from Theorems 1.4.10 and 1.5.9, Proposition
1.6.22, and the special case of Theorem 4.2.2 where k = ;. X

THEOREM 4.2.4. Suppose that AD holds, n € N, X is an analytic
Hausdorff space, E is a Z%RH equivalence relation on X, and I is a
IT}, , index-two subequivalence relation of E. Then exactly one of the
following holds:

(1) There is a A}, ., transversal of E over F.

(2) There exists a continuous homomorphism ¢: 28 — X from
(Fo \ A(2N), Eq \ Fy, ~Eo) to (F\ A(X),E\ F,~F).

Proor. This follows from Remark 4.1.7, Theorem 1.5.9, Proposi-
tion 1.6.22, and the proof of the special case of Theorem 4.2.2 where

THEOREM 4.2.5. Suppose that ADg holds, X is an analytic Haus-
dorff space, E is an equivalence relation on X, and F is an index-two
subequivalence relation of E. Then exactly one of the following holds:

(1) There is a transversal of E over F.

(2) There exists a continuous homomorphism ¢: 28 — X from
(IFO \ A<2N)>EO \ IFO? NEO) to (F \ A(X)a E \ F> NE)

ProoOF. This follows from Theorem 1.5.9, Proposition 1.6.22, and
the analog of the proof of the special case of Theorem 4.2.2 for FF C £
where the use of Proposition 4.2.1 is removed and the use of Theorem
4.1.3 is replaced with that of Theorem 4.1.12. X

3. Perfect antichains

We say that a set Y C X is an R-antichain if it is an L g-clique,
and an R-chain if it is 1 gr-independent.

THEOREM 4.3.1 (M-Vidnyénszky). Suppose that k is an aleph for
which k-DC holds, A > k is an aleph for which every (A+1)-Borel subset
of an analytic Hausdorff space is A-Souslin, X is an analytic Hausdorff
space, and R is an Rg-universally Baire quasi-order on X for which 1 g
is k-Souslin. Then at least one of the following holds:

(1) There is a cover of X by at most k-many (XA + 1)-Borel R-
chains.
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(2) There is a continuous injection ¢: 2% < X for which ¢(2N) is
an R-antichain.

Proor. If condition (1) fails, then Remark 4.1.6 yields a continuous
homomorphism ¢: 2% — X from G, to Ly, in which case Proposition
1.6.19 ensures that condition (2) holds. X

THEOREM 4.3.2 (M-Vidnyanszky). Suppose that X is an analytic
Hausdorff space and R is an Ng-universally Baire quasi-order on X for
which LR is analytic. Then exactly one of the following holds:

(1) There is a cover of X by countably-many Borel R-chains.
(2) There is a continuous injection ¢: 28 < X for which ¢(2V) is
an R-antichain.

PROOF. The special case of Theorem 4.3.1 where kK = A = Ny
ensures that at least one of the two conditions holds, and the fact that
¢ £ Ny implies that they are mutually exclusive. X

THEOREM 4.3.3 (M-Vidnyédnszky). Suppose that AD holds, n € N,
X is an analytic Hausdorff space, and R is a quasi-order on X for
which Lg is 33, 1. Then ezactly one of the following holds:

(1) There is a cover of X by at most Ky, -many A}, ., R-chains.
(2) There is a continuous injection ¢: 2% < X for which ¢(2N) is
an R-antichain.

PROOF. As Theorem 1.5.11 ensures that R is Np-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where
k= X = K3, 4 ensure that (1) or (2) holds, and Theorem 1.1.5 and the
fact that ¢ £ Ry imply that they are mutually exclusive. X

THEOREM 4.3.4 (M-Vidnyénszky). Suppose that AD holds, n € N,
X is an analytic Hausdorff space, and R is a quasi-order on X for
which Lg is 33,,,. Then exactly one of the following holds:
(1) There is a cover of X by at most (K3, ) -many A}, 5 R-
chains.
(2) There is a continuous injection ¢: 2% < X for which ¢(2V) is
an R-antichain.

PROOF. As Theorem 1.5.11 ensures that R is Np-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where
k= (K3,.1)" and A = K}, 4 ensure that (1) or (2) holds, and they are
mutually exclusive by Theorem 1.1.5 and the fact that ¢ £ N. X

THEOREM 4.3.5 (Foreman). Suppose that ADg holds, X is an ana-
lytic Hausdorff space, and R is a quasi-order on X. Then exactly one

of the following holds:
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(1) There is a cover of X by a well-ordered sequence of R-chains.
(2) There is a continuous injection ¢: 2N — X for which ¢(2V) is
an R-antichain.

PROOF. As Theorem 1.5.11 ensures that R is Np-universally Baire,
the analog of the proof of Theorem 4.3.1, where the use of Theorem
4.1.3 is replaced with that of Theorem 4.1.12, ensures that at least one
of the two conditions holds, and Theorem 1.1.5 and the fact that ¢ £ X,
imply that they are mutually exclusive. X

4. Parametrization and uniformization

THEOREM 4.4.1 (M-Vidnyénszky). Suppose that k is an aleph for
which k-DC holds, A > k is an aleph for which every (A+1)-Borel subset
of an analytic Hausdorff space is A-Souslin, X and Y are analytic Hau-
sdorff spaces, R is an Ny-universally Baire quasi-order on'Y for which
1L g 1s k-Souslin, and S C X XY is k-Souslin. Then at least one of the
following holds:

(1) The set S is a union of at most k-many (A + 1)-Borel-in-S
sets whose vertical sections are R-chains.

(2) There exist x € X and a continuous injection w: 2N < S, for
which 7(2N) is an R-antichain.

PROOF. Suppose that condition (1) fails, let G be the graph on
X xY with respect to which (x,y) and (2, y') are neighbors if and only
if they are both in S, x = 2/, and y Ly 9/, and observe that if a set
T C S is G-independent, then its vertical sections are R-chains, so by
Remark 4.1.6, we can assume that there is a continuous homomorphism
¢: 2% — X xY from Gy to G. Then projy o¢ is a homomorphism from
Gy to equality, so Proposition 1.6.14 ensures that it is a homomorphism
from E; to equality, hence Propositions 1.6.15 and 1.6.16 imply that it
is constant. Let x denote its constant value, and observe that projy o ¢
is a homomorphism from Gy to Lg. As |J;_, proj;(Go) = 2, it follows
that (projy o ¢)(2%) C S,, so the proof of Proposition 1.6.19 yields a
continuous injection 7: 2N < S, for which 7(2") is an R-antichain. ®

THEOREM 4.4.2 (M-Vidnyanszky). Suppose that X and Y are an-
alytic Hausdorff spaces, R is an Wo-universally Baire quasi-order on
Y for which Ly is analytic, and S C X XY is an analytic set whose
vertical sections are unions of countably-many R-chains. Then S 1is
a union of countably-many Borel-in-S sets whose vertical sections are
R-chains.

ProOOF. The special case of Theorem 4.4.1 where kK = A = N,
ensures that if the conclusion fails, then there exist x € X and a
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continuous injection 7: 2N < S, for which 7(2") is an R-antichain. As
¢ £ Ny, this contradicts the fact that S, is a union of countably-many
R-chains. X

THEOREM 4.4.3 (M-Vidnyédnszky). Suppose that AD holds, n € N,
X and Y are analytic Hausdorff spaces, R is a quasi-order on'Y for
which Lg is 35,.,, and S C X XY is a X3, set whose vertical
sections are unions of at most K}, ,-many R-chains. Then S is a
union of at most Ky, ,,-many A3, -in-S sets whose vertical sections
are R-chains.

PROOF. As Theorem 1.5.11 ensures that R is Np-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where
Kk = A = Kj,,, ensure that if the conclusion fails, then there exist
r € X and a continuous injection 7: 2% < S, for which 7(2V) is an
R-antichain. As Theorem 1.1.5 ensures that ¢ € &3, ;, this contradicts
the fact that S, is a union of at most k3, ,,-many R-chains. X

THEOREM 4.4.4 (M-Vidnyédnszky). Suppose that AD holds, n € N,
X and Y are analytic Hausdorff spaces, R is a quasi-order on'Y for
which Lg is 33,5, and S C X XY is a X3, set whose vertical
sections are unions of at most (K, )" -many R-chains. Then S is a
union of at most (K3, )" -many A}, s-in-S sets whose vertical sec-
tions are R-chains.

PROOF. As Theorem 1.5.11 ensures that R is Np-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where
k= (Kd,s1)T and A = Kj, 5 ensure that if the conclusion fails, then
there exist € X and a continuous injection 7: 2 < S, for which
m(2"Y) is an R-antichain. As Theorem 1.1.5 ensures that ¢ £ (k3,,,)",
this contradicts the fact that S, is a union of at most (K3, ;)" -many
R-chains. X

THEOREM 4.4.5. Suppose that ADg holds, X and Y are analytic
Hausdorff spaces, R is a quasi-order on'Y, and S C X XY is a set
whose vertical sections are well-ordered unions of R-chains. Then S is
a well-ordered union of sets whose vertical sections are R-chains.

PROOF. The analog of the proof of the special case of Theorem 4.4.1
in which the use of Theorem 4.1.3 is replaced with that of Theorem
4.1.12 ensures that if the conclusion fails, then there exist x € X and
a continuous injection 7: 28 < S, for which 7(2") is an R-antichain.
As Theorem 1.1.5 ensures that there is no well-ordering of ¢, this con-
tradicts the fact that S, is a well-ordered union of R-chains. X
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In particular, we obtain generalizations of the Lusin-Novikov uni-
formization theorem for sets with countable vertical sections:

THEOREM 4.4.6 (Lusin-Novikov, Conley-M). Suppose that X and
Y are analytic Hausdorff spaces, F' is a Borel equivalence relation on
Y, and S C X XY is an analytic set whose vertical sections are unions
of countably-many F-classes. Then S is a union of countably-many
Borel-in-S sets whose non-empty vertical sections are F-classes.

PRrROOF. By the special case of Theorem 4.4.2 where R = F, it
is enough to show that every Borel-in-S subset of S whose vertical
sections are contained in F-classes is contained in a Borel-in-S subset
of S whose non-empty vertical sections are F-classes. But this follows
from Proposition 4.2.1. X

THEOREM 4.4.7 (Conley-M). Suppose that AD holds, n € N, X and
Y are analytic Hausdorff spaces, F is a A}, ., equivalence relation on
Y, and S C X XY is a3}, set whose vertical sections are unions of
at most Ky, . -many F-classes. Then S is a union of at most K,%HH—
many A3, 1-in-S sets whose non-empty vertical sections are F-classes.

Proor. By the proof of the special case of Theorem 4.4.3 where
R = F, it is enough to show that there is a function sending each code
for a (k},,; + 1)-Borel-in-S subset of S whose vertical sections are
contained in F-classes to a code for a (K3, + 1)-Borel-in-S superset
contained in S whose non-empty vertical sections are F-classes. But
this follows Remark 4.1.7 and the proof of Proposition 4.2.1. X

THEOREM 4.4.8 (Conley-M). Suppose that AD holds, n € N, X and
Y are analytic Hausdorff spaces, F is a A}, 5 equivalence relation on
Y, and S C X xY is a X3, set whose vertical sections are unions
of at most (K3, ) -many F-classes. Then S is a union of at most
(K3iq) T -many AJ,  5-in-S sets whose non-empty vertical sections are
F-classes.

Proor. By the proof of the special case of Theorem 4.4.4 where
R = F, it is enough to show that there is a function sending each code
for a (K}, 3 + 1)-Borel-in-S subset of S whose vertical sections are
contained in F-classes to a code for a (K3, 5 + 1)-Borel-in-S superset
contained in S whose vertical sections are F-classes. But this follows
Remark 4.1.7 and the proof of Proposition 4.2.1. X

THEOREM 4.4.9 (Conley-M). Suppose that ADg holds, X and Y
are analytic Hausdorff spaces, F' is an equivalence relation on 'Y, and
S C X xY s a set whose vertical sections are well-ordered unions of
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F-classes. Then S is a well-ordered union of sets whose non-empty
vertical sections are F'-classes.

Proor. This is a trivial consequence of Theorem 4.4.5. X

Given an equivalence relation E on X, we say that aset S C X xY
is E-invariant if the vertical sections of E-related points coincide. Note
that if X =Y = 2% and E = E,, then the non-empty vertical sections
of the E-invariant set S = [E; are countable, but Proposition 1.6.9
ensures that S is not a union of countably-many FE-invariant Borel sets
whose non-empty vertical sections are singletons.

THEOREM 4.4.10. Suppose that X and Y are analytic Hausdorff
spaces, E and F are Borel equivalence relations on X and Y, and
S C X xY is an E-invariant analytic set whose vertical sections are
unions of countably-many F'-classes. Then exactly one of the following

holds:

(1) The set S is a union of countably-many E-invariant Borel-
n-S sets whose vertical sections are unions of finitely-many
F-classes.

(2) There are continuous embeddings ¢: 2N — X of Eq into E and
P 2N =Y of A(2Y) into F for which (¢ x )(Eg) C S.

Proor. This is a straightforward corollary of Theorem 4.4.6 and
[CCM16, Theorem 1]. =

THEOREM 4.4.11. Suppose that AD holds, n € N, X and Y are
analytic Hausdorff spaces, E and F are A}, ., equivalence relations
on X andY, and S C X XY is an E-invariant 33, ., whose vertical

sections are unions of at most K3, -many F-classes. Then ezactly one
of the following holds:

(1) The set S is a union of at most K, , ;-many E-invariant A}, -
in-S sets whose vertical sections are unions of finitely-many
F'-classes.

(2) There are continuous embeddings ¢: 28 — X of By into E and
¥ 28 =Y of A(2Y) into F for which (¢ x ) (Ey) C S.

Proor. This is a straightforward corollary of Theorem 4.4.7 and
the analog of [CCM16, Theorem 1] for A}, equivalence relations.

THEOREM 4.4.12. Suppose that AD holds, n € N, X and Y are
analytic Hausdorff spaces, E and F are A}, ., equivalence relations
on X and Y, and S C X x Y is an E-invariant 23, , whose vertical
sections are unions of at most (K3, )" -many F-classes. Then exactly
one of the following holds:
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(1) The set S is a union of at most (K3, )" -many E-invariant
A3, 5-in-S sets whose vertical sections are unions of finitely-
many F'-classes.

(2) There are continuous embeddings ¢: 28 — X of By into E and
¥ 28 =Y of A(2Y) into F for which (¢ x ) (Ey) C S.

Proor. This is a straightforward corollary of Theorem 4.4.7 and
the analog of [CCM16, Theorem 1] for A}, equivalence relations. &

THEOREM 4.4.13. Suppose that ADg holds, X and Y are analytic
Hausdorff spaces, E and F are equivalence relations on X and Y, and
S C X xY is an E-invariant set whose vertical sections are well-ordered
untons of F'-classes. Then exactly one of the following holds:

(1) The set S is a well-ordered union of E-invariant sets whose
vertical sections are unions of finitely-many F'-classes.

(2) There are continuous embeddings ¢: 2N — X of Eg into E and
P 2N =Y of A(2Y) into F for which (¢ x ) (Eg) C S.

PRrROOF. This is a straightforward corollary of Theorem 4.4.9 and
the analog of [CCM16, Theorem 1] under ADg. X



CHAPTER 5
The (Gg, Hy) dichotomy

1. Borel local colorings

Given a binary relation R on X, the downward R-saturation of a set
Y C Xisgivenby [Y]g={x € X |Jy € Y 2 Ry}, and the upward R-
saturation of aset Y C X is given by Y] ={r e X |y €Y y R z}.
We say that Y is downward R-invariant if Y = [Y]g, and upward
R-invariant if Y = [Y]%.

PROPOSITION 5.1.1. Suppose that k is an aleph for which every
(k 4 1)-Borel subset of an analytic Hausdorff space is k-Souslin, X is
an analytic Hausdorff space, R is a k-Souslin quasi-order on X, and
(Ao, A1) is an R-independent pair of k-Souslin sets. Then there is an
R-independent pair (By, By) of (k + 1)-Borel sets such that Ay C By,
Ay C By, Byg is upward R-invariant, and By is downward R-invariant.

PROOF. Set Agy = Ap and A;p = A;. Given n € N and an R-
independent pair (Ag,,, A1) of k-Souslin sets, appeal to Proposition
4.1.1 to obtain an R-independent pair (Byn, B1,) of (k + 1)-Borel sets
such that Ay, C By, and Ay, C Bi,, and set Ag,11 = [Bon|® and
A17n+1 = [Bl,n]R‘ Define BO = UnEN BO,n and Bl = UnEN Bl,n' X

The lexicographical ordering of 2% is the partial order given by
C<ppg2e d <= I <a(c]]0,8)=4d][]0,5)and c¢(5) < d(B)).

THEOREM 5.1.2. Suppose that k is an aleph for which k*-DC holds,
A > K is an aleph for which every (A + 1)-Borel subset of an analytic
Hausdorff space is A-Souslin, X is an analytic Hausdorff space, G is a
k-Souslin digraph on X, and R is a k-Souslin quasi-order on X. Then
at least one of the following holds:
(1) There exist a quasi-order R' O R that admits a (A + 1)-Borel
reduction to Ry | 2¢ for some a < k™, and for which there is
a (A + 1)-Borel k-coloring of =r N G.
(2) There exists a continuous homomorphism ¢: 28 — X from
(Go(2N),Ho(2N + 1)) to (G, R).

Proor. By Proposition 1.4.1, we can assume that there are con-
tinuous surjections ¢g: kN — G, ¢p: kY — R, and ¢x: k¥ — X. Fix

61
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Sop € 22" and tont1 € 22nt1 5 22041 for which Go(ZN) = G{52n|n€N} and
Ho(2N +1) = G{t2n+1\n€N}‘

We will construct decreasing sequences (B%),<.+ of (A 4 1)-Bor-
el subsets of X and (R*),<.+ of quasi-orders containing R such that
for all @ < k™, there exist § < k™ for which there is a (A + 1)-Borel
reduction of R® to Ry, | 2%, and a (A + 1)-Borel s-coloring of =g NG
off of B®. We begin by setting B = X and R’ = X x X. For all
limit ordinals p < &%, we set B* = (,_,B* and R = ,_, R*.
To describe the construction at successor ordinals, we require several
preliminaries.

An approxzimation is a triple of the form a = (n% ¢%, (V%)n<na),
where n® € N, ¢: 27" — £™, and ¢2: 27" ~("+D) 5 k7 for all n < n®
A one-step extension of such an a is an approximation b for which:

(a) nb=n®+1.
(b) Vs € 27"Vt € 27" (s C t = ¢%(s) T ¢¥(t)).
(c) Vn < n®s € 27"~y g 9"~ (ntD) (5 =t = % (s) T ¢ (t)).

An approximation a is even if n® is even, and odd if n® is odd.

A configuration is a triple of the form v = (n7, ¢, (¥)p<nr), such
that n? € N, ¢7: 27" — kN o7 207+ kN for all n < n?,
(6007)(s) = ((6x 06")(50 ~ (0) ~ 5), (6x 067) (80 ~ (1) ~ 5)) for all
even n < n” and s € 2" ~("*D and along similar lines, (¢ o ¥7)(t) =
(63 0 ) (tal0) ~ (0) ~ ), (dx © 67)(ta(1) ~ (1) ~ 1)) for all odd
n < nY and t € 27~ A configuration ~ is compatible with an
approximation a if the following conditions hold:

(i) n* =n".

(i) ¥t € 2" 6°(t) C (1),

(iii) Vn < navt € 2~ e (t) T o (t).
A configuration «y is compatible with a set X’ C X if (¢x 0 ¢?)(2"") C
X', and compatible with a quasi-order R 2 R on X if (¢x o ¢7)(2")
is contained in a single =gi-class. An approximation a is (X', R')-
terminal if no configuration is compatible with a one-step extension of
a, X', and R'. For all even approximations a, let A(a, X', R’) be the set
of points of the form (¢x o ¢?)(spe), where «y varies over configurations
compatible with a, X', and R’. For all odd approximations a and i < 2,
let A;(a, X', R') be the set of points of the form (¢x 0¢?)(tna (7)), where
~ varies over all configurations compatible with a, X', and R'.

LEMMA 5.1.3. Suppose that X' C X, R' O R is a quasi-order on X,
and a is an (X', R')-terminal even approximation. Then A(a, X', R')
is (=g N G)-independent.
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PROOF. Suppose, towards a contradiction, that there are configura-
tions 7o and 7;, both compatible with a, X', and R’, with the property
that ((dx © ¢7°)(8pe), (dx © ¢")(8,4)) € G. Fix a sequence d € k"
such that ¢g(d) = ((dx © ¢7°)(Spa), (Gx © @7)(spa)), and let v denote
the configuration given by n? = n®* + 1, ¢7(t ~ (i)) = ¢"(t) for all
i< 2and t € 2" It ~ (i) = YYi(t) for all i < 2, n < n? and
t € 27~(+D) “and ¢).(()) = d. Then 7 is compatible with a one-step
extension of a, contradicting the fact that a is (X', R’)-terminal. &

LEMMA 5.1.4. Suppose that X' C X, R' O R is a quasi-order on X,
and a is an (X', R')-terminal odd approzimation. Then (A¢(a, X', R'),
Ai(a, X', R)) is an (=g N R)-independent pair.

PROOF. Suppose, towards a contradiction, that there are configura-
tions vy and 71, both compatible with a, X', and R’, with the property
that ((¢x 0 ) (tne(0)), (dx © @) (tna(1))) € =r N R. Fix a sequence
d € k" such that ¢r(d) = ((x 0 ¢7°)(ta(0)), (dx © ¢7)(tne(1))), and
let v denote the configuration given by n? = n*+1, ¢7(t ~ (i)) = ¢ (¢)
for all i < 2 and ¢t € 2" 7 (t ~ (i)) = )i(t) for all i < 2, n < n?, and
t € 27~(+D) “and ¢).(()) = d. Then 7 is compatible with a one-step
extension of a, contradicting the fact that a is (X', R’)-terminal. &

For all (B%, R*)-terminal even approximations a, Proposition 4.1.2
gives rise to a (=g- NG)-independent (A + 1)-Borel set B(a, B, R*) 2
A(a, B*, R*). Let B®™! be the difference of B® and the union of the
sets of the form B(a, B*, R*), where a varies over all (B®, R*)-terminal
even approximations.

For all (B*, R*)-terminal odd approximations a and i < 2, another
application of Proposition 5.1.1 yields an (=r N R)-independent pair
(Bo(a, B, R*), By(a, B*, R*)) of (A + 1)-Borel sets with the property
that A;(a, B, R*) C Bj;(a, B, R*) for all i < 2. Fix an injective
enumeration (a§)s<p, of the family of all (B, R*)-terminal odd ap-
proximations, define 7%: X — 2% by 7%(z)(B3) = X Bo(a#,B,re) () for
all B < B, and let R**! be the subquasiorder of R* with respect to
which z R*™ y <= (2 <ge y or (z =pe y and () Riex 7(y))).

LEMMA 5.1.5. Suppose that o < k% and a is a non-(B*™, RoT1)-

terminal approximation. Then a has a non-(B®*, R*)-terminal one-step
extension.

PRrROOF. Fix a one-step extension b of a for which there is a con-
figuration v compatible with b, B**! and R**!'. If a is odd, then
(dx © ¢7)(s,p) € BT, s0 b is not (B, R*)-terminal. If a is even,
then (¢x 0 @7)(t,0(0)) =pgat1 (dx 0 @7)(t,0(1)), so b is not (B, R*)-

terminal. X
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Fix o < k* such that the families of (B, R*)-terminal approxima-
tions and (B*™', R®™!)-terminal approximations are one and the same,
and let ag denote the unique approximation for which n* = 0. Then
Alap, X', R') = X' for all X’ C X and quasi-orders R’ O R on X, so we
can assume that ag is not (B, R*)-terminal, since otherwise B! = (),
in which case there is a (A + 1)-Borel k-coloring of =g- N G.

By recursively applying Lemma 5.1.5, we obtain non-(B®, R*)-ter-
minal one-step extensions a,; of a, for all n € N. Define ¢, ¢, : 2 —
5 by $(c) = U, oy 6 (c | n) and ¢ (c) = U, 6 (c | (m — (n +1)))
for all n € N. Clearly these functions are continuous.

To establish that the function m = ¢x o ¢ is a homomorphism from
Go(2N) to G, we will show that if ¢ € 2 and n € 2N, then

(06 ©¥n)(c) = ((¢x © @) (sn ~ (0) ~ ¢), (¢x © P)(sn ~ (1) ~ €)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((6x © 8)(3n ~ (0) ~ 0), (6x © )(5n ~ (1) ~ c)) and V" is an open
neighborhood of (¢g o ¥,)(c), then U NV # (. Towards this end,
fix m > n such that ¢x(Nem (s,~0)~s)) X Ox (Ngam (s,~(1)~5)) € U and
pc(Nyam(s) €V, where s = ¢ [ (m — (n+ 1)). The fact that a,,
is not (B%, R“)-terminal yields a configuration v compatible with a,.
Then ((¢x 0 ¢")(sn ~ (0) ~ 5),(¢x 0 @7)(sn, ~ (1) ~ s)) € U and
(dgop)(s) € V, thus UNV # 0.

To establish that the function m = ¢x o ¢ is a homomorphism from
Hy(2N + 1) to R, we will show that if ¢ € 2% and n € 2N + 1, then

(Or © ¥n)(c) = ((¢x © @) (1 (0) ~ (0) ~ ¢), (¢x 0 P)(tn(1) ~ (1) ~ €)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((6x 0 8)(£a(0) ~ (0) ~ ©), (65 © B)(tal1) ~ (1) ~ ¢)) and V' is an
open neighborhood of (¢g o 1,,)(c), then UNV # (. Towards this end,
fix m>n such that ¢X(N¢am(tn(0)r\(0)r\t)) X (bX(NWM(tn(l)r\(l)r\t)) Q U
and ¢g(Nyamy) €V, where t = ¢ [ (m — (n +1)). The fact that a,,
is not (B*, R*)-terminal yields a configuration v compatible with a,,.
Then ((¢x © ¢7)(tn(0) ~ (0) ~ 1), (¢x 0 ¢7)(ta(1) ~ (1) ~ 1)) € U and
(pg o)) (t) € V, thus UNV # 0. b

REMARK 5.1.6. The assumption of x7-DC can again be reduced to
k-DC by first running the argument without Proposition 5.1.1.

REMARK 5.1.7. Under the stronger assumption that there is a func-
tion sending each code for a (A+1)-Borel subset of an analytic Hausdorff
space to a witness that the set is A-Souslin, the assumption of xk-DC can
again be removed by working with codes for (A + 1)-Borel sets.
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REMARK 5.1.8. The ideas behind [Kan97] can again be used to
eliminate both x-DC and the assumption that every (A+1)-Borel subset
of an analytic Hausdorff space is A-Souslin, and to obtain analogous
generalizations of the corollaries established in this chapter.

THEOREM 5.1.9. Suppose that X is an analytic Hausdorff space, G
s an analytic digraph on X, and R is an analytic quasi-order on X.
Then exactly one of the following holds:

(1) There exists a quasi-order R’ O R that admits a Borel reduc-
tion to Riex | 2% for some a < wy, and for which there is a
Borel Ry-coloring of = N G.

(2) There exists a continuous homomorphism ¢: 28 — X from
(Go(2N),Ho(2N + 1)) to (G, R).

Proor. This follows from Theorem 1.4.10, Proposition 1.6.25, and
the special case of Remark 5.1.6 where k = A\ = N,. X

THEOREM 5.1.10. Suppose that AD holds, n € N, X is an analytic
Hausdorff space, G is a 3, digraph on X, and R is a X}, ., quasi-
order on X. Then exactly one of the following holds:

(1) There exists a quasi-order R’ 2 R that admits a A}, -meas-
urable reduction to Riex | 2% for some k < 83,1, and for which
there is a A}, 1 K, -coloring of =p N G.

(2) There exists a continuous homomorphism ¢: 28 — X from

(Go(2N), Hy(2N + 1)) to (G, R).

Proor. This follows from Proposition 1.6.26 and the special case
of Remark 5.1.7 where k = A = K, ;. <

THEOREM 5.1.11. Suppose that AD holds, n € N, X is an analytic
Hausdorff space, G is a E%nﬁ digraph on X, and R s a E%n” quasi-
order on X. Then exactly one of the following holds:

(1) There exists a quasi-order R' D R for which there are a A3, -
measurable reduction of R to Riex | 2% for some v < (K3,,41)""
and a A}, 5 (K3,.1)T-coloring of =p N G.

(2) There exists a continuous homomorphism ¢: 28 — X from
(Go(2N),Hp(2N + 1)) to (G, R).

Proor. This follows from Proposition 1.6.26 and the special case
of Remark 5.1.7 where k = (K3, ;)" and A = K}, 5. b

THEOREM 5.1.12. Suppose that ADg holds, X is an analytic Haus-
dorff space, G is a digraph on X, and R is a quasi-order on X. Then
exactly one of the following holds:
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(1) There exists a quasi-order R’ O R that admits a reduction to
Riex | 2% for some ordinal o, and for which there is an ordinal-
valued coloring of =p N G.

(2) There exists a continuous homomorphism ¢: 28 — X from
(Go(2N),Ho(2N + 1)) to (G, R).

Proor. This follows from Theorem 1.4.15, Proposition 1.6.26, and
the simplification of the proof of Theorem 5.1.2 in which the use of
Proposition 5.1.1 is eliminated. X
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2. Linearizability of quasi-orders

PROPOSITION 5.2.1. Suppose that k is an aleph for which every (k+
1)-Borel subset of an analytic Hausdorff space is k-Souslin, X is an an-
alytic Hausdorff space, E is a k-Souslin equivalence relation on X, R is
a co-k-Souslin quasi-order on X, and (Ao, A1) is an (E\ R)-independent
pair of k-Souslin sets. Then there is an (E \ R)-independent pair
(Bo, B1) of (k + 1)-Borel sets such that Ay C By, Ay C By, By is
downward (E N R)-invariant, and By is upward (E N R)-invariant.

PROOF. Set Agg = Apand Ao = A;. Givenn € N and an (E\ R)-
independent pair (Ag,,, A1) of k-Souslin sets, appeal to Proposition
4.1.1 to obtain an (E'\ R)-independent pair (By ., Bi.n) of (k+ 1)-Bor-
el sets with the property that Ay, C By, and A;, C B,, and set

Ao,n+1 = [Bo,n]EnR and A1,n+1 = [BLn]EmR. Define By = UnGN Bo,n
and B, = UnEN Bl,n- X

THEOREM 5.2.2. Suppose that k is an aleph for which k-DC holds,
A > K is an aleph for which every (A + 1)-Borel subset of an analytic
Hausdorff space is A-Souslin, X is an analytic Hausdorff space, and
R is an No-universally-Baire bi-k-Souslin quasi-order on X. Then at
least one of the following holds:

(1) There is a quasi-order S O R that admits a (A + 1)-Borel
reduction to Riex | 2% for some a < k* and for which = and
=g coincide.

(2) There is a continuous embedding of Eq or Ry into R.

PROOF. Define G = ~R. Suppose first that there is a quasi-
order R O R that admits a (A + 1)-Borel reduction to Rjx [ 2%
for some o < k™, and for which there is a (A + 1)-Borel k-coloring
¢ of =g N G. Then Proposition 5.2.1 yields (=r \ R)-independent
pairs (Bpa, Bi.a) of (A + 1)-Borel sets such that By, is downward
(=r/NR)-invariant, By , is upward (=x N R)-invariant, and ¢~ ({a}) C
Byo N By, for all o < k. Define ¢: X — (2 x 2)® by ¢(x)(a) =
(1 = XByo (%), XB,..(2)), let S" be the quasi-order on X given by z S’
Yy <= x <g yor (r=pyand ¢(x) Re ¢(y)), and note that R C 5’
and =g N R C =g, thus EN R C =g, where E is the smallest equiv-
alence relation containing =g N R. By Proposition 4.2.1, there are
FE-invariant (=g \ R)-independent Borel sets B, 2 ¢ *({a}). Define
v X — 2% by ¥(z)(a) = xp, (), let S be the quasi-order on X given
by x Sy < 1z <g yor (r =¢ yand ¥(z) R ¥(y)), and observe
that R € S and = and =g coincide.

By Theorem 5.1.2, we can therefore assume that there is a contin-
uous homomorphism ¢: 2V — X from (Gy(2N), Hy(2N +1)) to (G, R).
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Let Dy and Ry be the pullbacks of A(X) and R through ¢ x ¢. As
=r, N Go(2N) = (), Proposition 1.6.25 ensures that =g, is meager,
so R is not comeager. As Hy(2N + 1) C Ry, Proposition 1.6.24
therefore implies that Ry is meager. By Proposition 1.6.31, there is
a continuous homomorphism : 2% — 2N from (~A(2V), graph(o) \
{((1)>=,(0)°)},~Eo) to (~Dy, Ry, ~Rp), in which case ¢ o1 is a homo-
morphism from (~A(2Y), Ry, ~Eg) to (~A(X), R,~R). As the pullback
R} of R through ¢ o % is Nyp-universally Baire and Ry, C R{ C E,,
Proposition 1.6.30 yields a continuous embedding m: 2% — 2N of Ey or
Ry into Ry, in which case ¢ 01 o7 is a continuous embedding of Eq or
Ry into R. X

THEOREM 5.2.3 (Kanovei, Louveau). Suppose that X is an analytic

Hausdorff space and R is a Borel quasi-order on X. Then exactly one
of the following holds:

(1) There is a quasi-order S O R that admits a Borel reduction
¢: X — 2% to Riex | 2% for some o < wy, and for which =g
and =g coincide.

(2) There is a continuous embedding 1: 28 — X of By or Ry into
R.

PROOF. The special case of Theorem 5.2.2, where kK = A\ = N,
ensures that at least one of the conditions holds. To see that they are
mutually exclusive, note that otherwise, the pullback Sy of Ry | 2¢
through (¢ o ¢)) x (¢ o ¢) has the Baire property and is not meager,
since it is linear. As Hy C Ry C Sy, Proposition 1.6.24 ensures that Sy
is comeager, so =g, is comeager. Let Ry be the pullback of R through
¢, and observe that =g, and =g, coincide, thus the former is comeager,
as well. But Ry C Ey, contradicting the fact that £, is meager. X

THEOREM 5.2.4 (Kanovei, Louveau). Suppose that AD holds, n € N,
X is an analytic Hausdorff space, and R is a A%nﬂ quasi-order on X .
Then exactly one of the following holds:

(1) There is a quasi-order S O R that admits a A}, reduction
to Riex | 2% for some k < (Ky,,1)T, and for which =g and =g
coincide.

(2) There is a continuous embedding of Ey or Ry into R.

PRrROOF. Theorem 1.4.14 and Remark 5.1.7 ensure that at least one
of the following conditions hold. To see that they are mutually ex-
clusive, appeal to Theorem 1.5.11 and the second half of the proof of
Theorem 5.2.3. X
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THEOREM 5.2.5 (Kanovei, Louveau). Suppose that AD holds, n € N,
X is an analytic Hausdorff space, and R is a A%n” quasi-order on X .
Then exactly one of the following holds:

(1) There is a quasi-order S O R that admits a A}, 4 reduction
to Riex | 2% for some k < (K}, 1), and for which =g and
=g coincide.

(2) There is a continuous embedding of Ey or Ry into R.

PROOF. As in the proof of Theorem 5.2.4. X

THEOREM 5.2.6 (Kanovei, Louveau). Suppose that ADg holds, X
1s an analytic Hausdorff space, and R is a quasi-order on X. Then
exactly one of the following holds:

(1) There is a quasi-order S O R that admits a reduction to Rjex |
2% for some ordinal o, and for which = and =g coincide.
(2) There is a continuous embedding of Ey or Ry into R.

PROOF. Theorem 1.4.15 and the analog of the proof of Theorem
5.2.2, where the use of Theorem 5.1.2 is replaced with that of Theorem
5.1.12, ensures that at least one of the two conditions holds. The proof
of Theorem 5.2.4 ensures that they are mutually exclusive. X

THEOREM 5.2.7 (Harrington-Kechris-Louveau). Suppose that X is
an analytic Hausdorff space and E is a Borel equivalence relation on
X. Then exactly one of the following holds:

(1) There is a Borel reduction of E to equality on 2.
(2) There is a continuous embedding of Eqy into E.

PROOF. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.3 in which R is an equivalence relation. X

THEOREM 5.2.8 (Harrington-Kechris-Louveau). Suppose that AD
holds, n € N, X s an analytic Hausdorff space, and E is a A%nﬂ
equivalence relation on X. Then exactly one of the following holds:

(1) There is a A}, reduction of E to equality on 2ont1
(2) There is a continuous embedding of Eq into E.

PROOF. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.4 in which R is an equivalence relation. X

THEOREM 5.2.9 (Harrington-Kechris-Louveau). Suppose that AD
holds, n € N, X is an analytic Hausdorff space, and E is a A}, .,
equivalence relation on X. Then exactly one of the following holds:
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(1) There is a A}, ,; reduction of E to equality on 2(k2n )"
(2) There is a continuous embedding of Eq into E.

PROOF. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.5 in which R is an equivalence relation. X

THEOREM 5.2.10 (Harrington-Kechris-Louveau). Suppose that ADg
holds, X is an analytic Hausdorff space, and E is an equivalence rela-
tion on X. Then exactly one of the following holds:

(1) There is a reduction of E to equality on 2% for some aleph k.

(2) There is a continuous embedding of Eq into E.

PROOF. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.6 in which R is an equivalence relation. X

A quasi-order R on a set X is linear if X is an R-chain.

THEOREM 5.2.11 (Harrington-Marker-Shelah). Suppose that X is
an analytic Hausdorff space and R is a linear Borel quasi-order on X.
Then there is a Borel reduction of R to Riex | 2% for some a < wy.

ProOF. Otherwise, Theorem 5.2.3 yields a Borel reduction of Eg
or Ry to a linear Borel quasi-order, which the second part of the proof
of Theorem 5.2.3 rules out. X

THEOREM 5.2.12. Suppose that AD holds, n € N, X is an analytic
Hausdorff space, and R is a linear A}, quasi-order on X . Then there
is a A}, ., reduction of R to Riex | 2% for some a < (K3, 1)".

PROOF. Otherwise, Theorem 5.2.4 yields a reduction of Ey or Ry
to a linear quasi-order, which the proof of Theorem 5.2.4 rules out.

THEOREM 5.2.13. Suppose that AD holds, n € N, X is an analytic
Hausdorff space, and R is a linear A}, 5 quasi-order on X . Then there
is a A}, 5 reduction of R to Riex | 2% for some a < (K3, 1)t

PrROOF. Otherwise, Theorem 5.2.5 yields a reduction of Ey or Ry
to a linear quasi-order, which the proof of Theorem 5.2.5 rules out.

THEOREM 5.2.14. Suppose that ADg holds, X is an analytic Hau-
sdorff space, and R is a linear quasi-order on X. Then there is a
reduction of R to Riex [ 2% for some ordinal «.

PRroOOF. Otherwise, Theorem 5.2.6 yields a reduction of Ey or Ry
to a linear quasi-order, which the proof of Theorem 5.2.6 rules out. X
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