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Introduction

The goal of these notes is to provide a succinct introduction to the
primary structural dichotomy theorems of descriptive set theory. The
only prerequisites are a rudimentary knowledge of point-set topology
and set theory. Working in the base theory ZF + DC, we first discuss
trees, the corresponding representations of closed, Borel, and Souslin
sets, and Baire category. We then consider consequences of the open
dihypergraph dichotomy and variants of the G0 dichotomy. While pri-
marily focused upon Borel structures, we also note that minimal modi-
fications of our arguments can be combined with well-known structural
consequences of determinacy (which we take as a black box) to yield
generalizations into the projective hierarchy and beyond.
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CHAPTER 1

Preliminaries

1. Closed sets

Given a set I, define I<N =
⋃
n∈N I

n and I≤N = I<N ∪ IN. The
length of a sequence t ∈ I≤N is given by |t| = n if t ∈ In, and |t| =∞ if
t ∈ IN. Given sequences s, t ∈ I≤N, we say that s is an initial segment
of t, or t is an extension of s, if |s| ≤ |t| and s = t � |s|, in which case
we write s v t. In the special case that s 6= t, we say that s is a proper
initial segment of t, or t is a proper extension of s, in which case we
write s @ t. A tree on I is a set T ⊆ I<N that is closed under initial
segments , in the sense that ∀t ∈ T∀n < |t| t � n ∈ T . A subtree of T
is a tree S ⊆ T on I. A branch through T is a sequence x ∈ IN such
that ∀n ∈ N x � n ∈ T . We use [T ] to denote the set of all branches
through T , and we say that T is well-founded if [T ] = ∅.

Suppose now that I is a discrete topological space. For each se-
quence s ∈ I<N, let Ns denote the set of extensions of s in IN. These
sets form a basis for the product topology on IN.

Proposition 1.1.1. Suppose that I is discrete space and T is a
tree on I. Then [T ] is closed.

Proof. Observe that if x ∈ [T ], then Nx�n ∩ [T ] 6= ∅ for all n ∈ N,
so x � n ∈ T for all n ∈ N, thus x ∈ [T ].

Given a set X ⊆ IN, we use TX to denote the set of proper initial
segments of elements of X.

Proposition 1.1.2. Suppose that I is a discrete space and X ⊆ IN.
Then X = [TX ].

Proof. Clearly X ⊆ [TX ], so X ⊆ [TX ] by Proposition 1.1.1. Con-
versely, if x ∈ [TX ], then x � n ∈ TX for all n ∈ N, so Nx�n ∩X 6= ∅ for
all n ∈ N, thus x ∈ X.

We use (i) to denote the singleton sequence given by s(0) = i. The
concatenation of sequences s, t ∈ I<N is the extension s a t of s given
by (s a t)(|s|+ n) = t(n) for all n < |t|.
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2 1. PRELIMINARIES

Proposition 1.1.3. Suppose that I is a well-orderable discrete
space and C ⊆ IN is a non-empty closed set. Then there is a func-
tion β : TC → C with the property that ∀t ∈ TC t v β(t).

Proof. Fix a well-ordering � of I, and define ι : TC → I by letting
ι(t) be the �-minimal element of I for which t a (ι(t)) ∈ TC . Define
βn : TC → TC by β0(t) = t and βn+1(t) = βn(t) a ((ι ◦ βn)(t)), and set
β(t) =

⋃
n∈N β

n(t).

A retraction from a set X onto a subset Y is a surjection φ : X � Y
whose restriction to Y is the identity.

Proposition 1.1.4. Suppose that I is a well-orderable discrete
space and C ⊆ IN is a non-empty closed set. Then there is a con-
tinuous retraction φ : IN � C.

Proof. Proposition 1.1.2 ensures that for all sequences x ∈ ∼C,
there is a maximal proper initial segment ι(x) of x in TC , and Proposi-
tion 1.1.3 yields a function β : TC → C such that ∀t ∈ TC t v β(t). Let
φ : IN � C be the retraction agreeing with β ◦ ι off of C. To see that
φ is continuous, it is enough to show that if n ∈ N and x ∈ IN, then
φ(Nx�n) ⊆ Nφ(x)�n. But if x � n ∈ TC then φ(Nx�n) ⊆ Nx�n = Nφ(x)�n,
and if x � n /∈ TC then φ(Nx�n) = {φ(x)} ⊆ Nφ(x)�n.

Now that we have explicitly proven and applied a particular in-
stance of the axiom of choice, it should be noted that the axiom of
determinacy rules out simply assuming the latter:

Theorem 1.1.5 (Solovay). Suppose that AD holds. Then there is
no injective ω1-sequence of elements of NN.

2. Ranks

Suppose that R is a binary relation on X. For all Y ⊆ X, define

Y ′R = {y ∈ Y | ∃x ∈ Y x R y}, Y (0)
R = Y , Y

(α+1)
R = (Y

(α)
R )′R for all

ordinals α, and Y
(λ)
R =

⋂
α<λ Y

(α)
R for all limit ordinals λ. The rank of

R is the least ordinal ρ(R) for which X
(ρ(R))
R = X

(ρ(R)+1)
R .

The relation R is well-founded if Y 6= Y ′R for all non-empty sets
Y ⊆ X. By DC, this is equivalent to the inexistence of a sequence
x ∈ XN with the property that ∀n ∈ N x(n+ 1) R x(n).

Proposition 1.2.1. A binary relation R on a set X is well-founded

if and only if X
(ρ(R))
R = ∅.

Proof. It is clear that if R is well-founded, then X
(ρ(R))
R = ∅.

Conversely, if there is a non-empty set Y ⊆ X for which Y = Y ′, then

a straightforward transfinite induction shows that Y ⊆ X
(ρ(R))
R .
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The rank of a point x ∈ X with respect to R is the largest ordinal

ρR(x) for which x ∈ X(ρR(x))
R , or ∞ if no such ordinal exists. We adopt

the conventions that ∞ =∞+ 1 and α <∞ for all ordinals α.

Proposition 1.2.2. Suppose that R is a binary relation on a set
X. Then ∀x ∈ X ρR(x) = sup{ρR(w) + 1 | w R x}.

Proof. Note that if α is an ordinal, w R x, and w, x ∈ X(α)
R , then

x ∈ X(α+1)
R , so ρR(x) ≥ ρR(w) + 1. But if α ≥ sup{ρR(w) + 1 | w R x}

is an ordinal, then x /∈ X(α+1)
R , so ρR(x) ≤ α.

The horizontal sections of a set R ⊆ X×Y are the sets of the form
Ry = {x ∈ X | x R y}, where y ∈ Y . The vertical sections are the sets
of the form Rx = {y ∈ Y | x R y}, where x ∈ X.

Proposition 1.2.3. Suppose that X and Y are sets, R and S are
binary relations on X and Y , and φ : X → Y is a function.

(1) If ∀x ∈ X φ(Rx) ⊆ Sφ(x), then ∀x ∈ X ρR(x) ≤ ρS(φ(x)).
(2) If ∀x ∈ X Sφ(x) ⊆ φ(Rx), then ∀x ∈ X ρR(x) ≥ ρS(φ(x)).

Proof. To see (1), note that if α is an ordinal for which ρR(x) ≤
ρS(φ(x))) whenever ρR(x) < α, then Proposition 1.2.2 ensures that

ρR(x) = sup{ρR(w) + 1 | w ∈ Rx}
≤ sup{ρS(φ(w)) + 1 | w ∈ Rx}
≤ ρS(φ(x))

whenever ρR(x) = α. Moreover, if ρR(x) = ∞, then x ∈ X(ρ(R))
R , and

since φ(X
(ρ(R))
R ) ⊆ Y

(ρ(S))
S , if follows that ρS(φ(x)) =∞.

To see (2), note that if α is an ordinal for which ρR(x) ≥ ρS(φ(x)))
whenever ρR(x) < α, then Proposition 1.2.2 ensures that

ρR(x) = sup{ρR(w) + 1 | w ∈ Rx}
≥ sup{ρS(φ(w)) + 1 | w ∈ Rx}
≥ ρS(φ(x))

whenever ρR(x) = α.

3. Borel sets

Suppose that κ is an ordinal. A family of sets is a κ-complete
algebra if it is closed under complements and unions of length strictly
less than κ. An algebra is an ℵ0-complete algebra, whereas a σ-algebra
is an ℵ1-complete algebra. A subset of a topological space is κ-Borel
if it is in the smallest κ-complete algebra containing the open sets. A
subset of a topological space is Borel if it is ℵ1-Borel.
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Proposition 1.3.1. Suppose that κ is an ordinal, X is set, and X
is a family of subsets of X that is closed under complements. Then the
closure of X under disjoint unions of length strictly less than κ and
intersections of length strictly less than κ is a κ-complete algebra.

Proof. Let Y denote the family of sets Y ⊆ X for which both
Y and ∼Y are in the desired closure. Clearly X ⊆ Y and Y is closed
under complements, so it is sufficient to show that Y is closed under
unions of length strictly less than κ. Towards this end, suppose that
λ < κ and (Yα)α<λ is a sequence of sets in Y . Then the set Zα =
Yα \

⋃
β<α Yβ = Yα ∩

⋂
β<α

∼Yβ is in the desired closure for all α < λ,

so the sets
⋃
α<λ Yα =

⋃
α<λ Zα and ∼

⋃
α<λ Yα =

⋂
α<λ

∼Yα are in the
desired closure, and therefore in Y .

A code for a (κ + 1)-Borel subset of X is a pair (f, T ), where T is
a well-founded tree on κ × κ and f is a function associating to each
sequence t ∈ ∼T a subset ofX that is closed or open. Given such a code,

we recursively define f (α) on ∼T (α)
A by setting f (0) = f , letting f (α+1) be

the extension of f (α) given by f (α+1)(t) =
⋃
β<κ

⋂
γ<κ f

(α)(t a ((β, γ)))

whenever ρA�T (t) = α for all ordinals α, and defining f (λ) =
⋃
α<λ f

(α)

for all limit ordinals λ. Set f = f (ρ(A�T )). The (κ + 1)-Borel set coded
by (f, T ) is f(∅). While ACκ and Proposition 1.3.1 ensure that every
(κ + 1)-Borel set is of this form, merely being (κ + 1)-Borel is not a
reasonable notion of definability in the absence of ACκ. Although it is
easy to modify our arguments to produce sets which have (κ+1)-Borel
codes, we will focus on (κ+ 1)-Borel sets for the sake of clarity.

4. Souslin sets

A topological space is κ-Souslin if it is a continuous image of a
closed subset of κN, where κ is endowed with the discrete topology. A
topological space is analytic if it is ℵ0-Souslin.

Proposition 1.4.1. Suppose that κ is an aleph and X is non-empty
and κ-Souslin. Then there is a continuous surjection φ : κN � X.

Proof. Fix a closed set C ⊆ κN for which there is a continuous sur-
jection φ′ : C � X, appeal to Proposition 1.1.4 to obtain a continuous
retraction φ′′ : κN � C, and define φ = φ′ ◦ φ′′.

Proposition 1.4.2. Suppose that κ is an aleph, X is a κ-Souslin
space, Y is a topological space, and φ : X → Y is continuous. Then:

(1) The set φ(X) is κ-Souslin.
(2) If Y is Hausdorff and A ⊆ Y is κ-Souslin, then φ−1(A) is κ-Souslin.
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Proof. Clearly we can assume that A and X are non-empty, in
which case Proposition 1.4.1 yields continuous surjections φA : κN � A
and φX : κN � X. To see (1), note that (φ ◦ φX)(κN) = φ(X). To see
(2), let π : κN × κN → κN be the projection onto the left coordinate,
and note that the set C = {(a, b) ∈ κN × κN | (φ ◦ φX)(a) = φA(b)} is
closed and (φX ◦ π)(C) = φ−1(A).

Proposition 1.4.3. Suppose that κ is an aleph, X is a topological
space, φα : κN → X is continuous for all α < κ, and Aα = φα(κN) for
all α < κ. Then:

(1) The set
⋃
α<κAα is κ-Souslin.

(2) The set
∏

n∈NAn is κ-Souslin.
(3) If X is Hausdorff, then

⋂
n∈NAn is κ-Souslin.

Proof. To see (1), note that the function (α) a b 7→ φα(b) is a
continuous surjection from κN onto

⋃
α<κAα.

To see (2), note that the function (bn)n∈N 7→ (φn(bn))n∈N is a con-
tinuous surjection from (κN)N onto

∏
n∈NAn.

To see (3), obtain a continuous surjection φ : κN �
∏

n∈NAn as

above, let π : XN → X be the projection onto the 0th coordinate, and
note that the set C = φ−1({(xn)n∈N ∈

∏
n∈NAn | ∀n ∈ N xm = xn}) is

closed and (π ◦ φ)(C) =
⋂
n∈NAn.

Given a pointclass Γ of subsets of topological spaces, we say that a
subset of a topological space is co-Γ if its complement is Γ, and bi-Γ if
it is both Γ and co-Γ.

Proposition 1.4.4. Suppose that κ is an aleph, X is a κ-Souslin
space, and C ⊆ X is closed. Then C is bi-κ-Souslin.

Proof. By Proposition 1.4.1, we can assume that there is a contin-
uous surjection φ : κN � X. To see that C is κ-Souslin, note that the
set D = φ−1(C) is closed and φ(D) = C. To see that C is co-κ-Souslin,
note that ∼D is open, set S = {s ∈ κ<N | Ns ⊆ ∼D}, and observe that
∼C =

⋃
s∈S φ(Ns), so ∼C is κ-Souslin by Proposition 1.4.3.

Proposition 1.4.5. Suppose that κ is an aleph and X is a κ-Sous-
lin Hausdorff space. Then every Borel subset of X is bi-κ-Souslin.

Proof. By Propositions 1.3.1, 1.4.3, and 1.4.4.

In order to establish a natural strengthening of the converse, we
will need the following simple observation:

Proposition 1.4.6. Suppose that κ is an aleph, X is a Hausdorff
space, and φ, ψ : κN → X are continuous. Then for all c, d ∈ κN such
that φ(c) 6= ψ(d), there exists n ∈ N for which φ(Nc�n) ∩ ψ(Nd�n) = ∅.
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Proof. As X is Hausdorff, there are disjoint open neighborhoods
U and V of φ(c) and ψ(d). As φ and ψ are continuous, there exists
n ∈ N sufficiently large that φ(Nc�n) ⊆ U and ψ(Nd�n) ⊆ V . But then

φ(Nc�n) is contained in ∼V , and therefore disjoint from ψ(Nd�n).

We say that sets A and B are separated by a set C if A ⊆ C and
B ∩ C = ∅.

Theorem 1.4.7 (Lusin). Suppose that κ is an aleph, X is a Haus-
dorff space, and A,B ⊆ X are disjoint κ-Souslin sets. Then there is a
(κ+ 1)-Borel set C ⊆ X separating A from B.

Proof. By Proposition 1.4.1, we can assume that there are con-
tinuous surjections φ : κN � A and ψ : κN � B. Set At = φ(Nt)
and Bt = ψ(Nt) for all t ∈ κ<N, define πi : (κ × κ)<N → κ<N by
πi(t)(n) = t(n)(i) for all i < 2, and let T be the tree on κ × κ of all
sequences t ∈ (κ×κ)<N for which Aπ0(t)∩Bπ1(t) 6= ∅. Proposition 1.4.6

ensures that T is well-founded. Define f on ∼T by f(t) = Aπ0(t), noting
that (f, T ) is a code for a (κ+ 1)-Borel subset of X.

Lemma 1.4.8. Suppose that t ∈ (κ × κ)<N. Then f(t) separates
Aπ0(t) from Bπ1(t).

Proof. The definition of T ensures that f(t) separates Aπ0(t) from

Bπ1(t) for all t ∈ ∼T . But if f(t a ((α, β))) separates Aπ0(t)a(α) from

Bπ1(t)a(β) for all α, β < κ, then
⋂
β<κ f(t a ((α, β))) separates Aπ0(t)a(α)

from Bπ1(t) for all α < κ, so
⋃
α<κ

⋂
β<κ f(t a ((α, β))) separates Aπ0(t)

from Bπ1(t), thus the obvious induction yields the desired result.

The special case of Lemma 1.4.8 where t = ∅ ensures that the
(κ+ 1)-Borel set coded by (f, T ) separates A from B.

Theorem 1.4.9 (Souslin). Suppose that X is a Hausdorff space.
Then every bi-κ-Souslin subset of X is (κ+ 1)-Borel.

Proof. By the special case of Theorem 1.4.7 where A = ∼B.

Theorem 1.4.10 (Souslin). Suppose that X is an analytic Haus-
dorff space. Then the families of bi-analytic and Borel subsets of X
coincide.

Proof. By Proposition 1.4.5 and Theorem 1.4.9.

Proposition 1.4.11. Suppose that X is an ℵ1-Souslin Hausdorff
space and C ⊆ X is co-analytic. Then C is ℵ1-Souslin.
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Proof. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection φ : NN � ∼C. Set Tx = {t ∈ N<N | x ∈ φ(Nt)} for

all x ∈ X, and observe that the set B of all (f, x) ∈ ωN<N
1 × X such

that ∀n ∈ N∀t ∈ N<N (t a (n) /∈ Tx or f(t a (n)) < f(t)) is Borel.

As Proposition 1.4.3 ensures that ωN<N
1 ×X is ℵ1-Souslin, Proposition

1.4.5 implies that so too is B.

Lemma 1.4.12. The sets C and projX(B) coincide.

Proof. If x ∈ ∼C, then Tx is not well-founded, so x /∈ projX(B). If
x ∈ C, then the special case of Proposition 1.4.6 in which ψ is constant
ensures that Tx is well-founded, so Propositions 1.2.1 and 1.2.2 imply
that (f, x) ∈ B if ∀t ∈ Tx f(t) = ρA�Tx(t), thus x ∈ projX(B).

As Proposition 1.4.2 ensures that projX(B) is ℵ1-Souslin, Lemma
1.4.12 implies that so too is C.

A subset of an analytic Hausdorff space is Σ1
1 if it is analytic. More

generally, for each natural number n > 0, a subset of an analytic Haus-
dorff space is Π1

n if its complement is Σ1
n, and Σ1

n+1 if it is a continuous
image of a Π1

n subset of an analytic Hausdorff space. A subset of an
analytic Hausdorff space is ∆1

n if it is both Σ1
n and Π1

n.
A quasi-order on a set X is a reflexive transitive binary relation R

on X. The equivalence relation associated with such a quasi-order is
the binary relation ≡R on X for which x ≡R y if and only if x R y and
y R x. A partial order is a quasi-order for which the corresponding
equivalence relation is equality. For all n > 0, let δ1

n denote the supre-
mum of the lengths of well-orderings of the form R/≡R, where R is a
∆1

n quasi-order on an analytic Hausdorff space.
As strict embeddability of well-orderings of N is an analytic binary

relation on a co-analytic subset of P(N × N), it follows that δ1
2 > ω1.

The following theorem ensures that δ1
1 = ω1, and when combined with

Propositions 1.4.3 and 1.4.11, it also implies that δ1
2 ≤ ω2:

Theorem 1.4.13 (Kunen-Martin). Suppose that κ is an aleph, X
is a Hausdorff space, and R is a well-founded κ-Souslin binary relation
on X. Then ρ(R) < κ+.

Proof. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection (φ, ψ) : κN � R. Let S be the set of non-empty
sequences s ∈ (κN)<N such that ∀n < |s| − 1 φ(s(n)) = ψ(s(n + 1)).
The well-foundedness of R yields that of A � S. Define π : S → X by
π(s) = φ(s(|s| − 1)), and observe that ∀s ∈ S Rπ(s) ⊆ π((A � S)s) and
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π(S) = {x ∈ X | Rx 6= ∅}, so Propositions 1.2.1 – 1.2.3 ensure that

ρ(A � S) + 1 = sup{ρA�S(s) + 1 | s ∈ S}+ 1

≥ sup{ρR(π(s)) + 1 | s ∈ S}+ 1

≥ sup{ρR(x) | x ∈ X}+ 1

≥ sup{ρR(x) + 1 | x ∈ X}
= ρ(R),

thus it is sufficient to show that ρ(A � S) < κ+.
Let T be the set of sequences t ∈

⋃
n>0(κ

n)n with the property that
∀n < |t| − 1 φ(Nt(n)) ∩ ψ(Nt(n+1)) 6= ∅, and let � be the partial order
on T given by s � t ⇐⇒ ∀n < |s| s(n) v t(n). By Proposition 1.4.6,
the well-foundedness of A � S yields that of �. Define π′ : S → T by
π′(s)(n) = s(n) � |s| for all n < |s|. As ∀s ∈ S π′((A � S)s) ⊆ �π′(s),
Propositions 1.2.1 and 1.2.3 ensure that

ρ(A � S) = sup{ρA�S(s) + 1 | s ∈ S}
≤ sup{ρ�(π′(s)) + 1 | s ∈ S}
≤ sup{ρ�(t) + 1 | t ∈ T}
= ρ(�),

so it is sufficient to show that ρ(�) < κ+. But this follows from the
fact that |T | ≤ κ.

The axiom of determinacy provides the primary motivation for
studying κ+-Borel and κ-Souslin sets when κ > ℵ1:

Theorem 1.4.14 (Kechris, Martin, Moschovakis). Suppose that AD
holds and n ∈ N. Then there is an aleph κ1

2n+1 with the property that
δ1
2n+1 = (κ1

2n+1)
+. Moreover:

(1) The ∆1
2n+1 and (κ1

2n+1)
+-Borel subsets of analytic Hausdorff

spaces coincide.
(2) The Σ1

2n+1 and κ1
2n+1-Souslin subsets of analytic Hausdorff

spaces coincide.
(3) The Σ1

2n+2 and (κ1
2n+1)

+-Souslin subsets of analytic Hausdorff
spaces coincide.

Theorem 1.4.15 (Woodin). Suppose that ADR holds, X is an ana-
lytic Hausdorff space, and Y ⊆ X. Then there is an aleph κ for which
Y is κ-Souslin.
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5. Baire category

A subset of a topological space is meager if it is a union of countably-
many nowhere dense sets. A subset of a topological space is comeager
if its complement is meager, or equivalently, if it contains an intersec-
tion of countably-many dense open sets. A Baire space is a topological
space all of whose comeager subsets are dense.

Theorem 1.5.1 (Baire). Every complete metric space X is a Baire
space.

Proof. Suppose that C ⊆ X is comeager and U ⊆ X is non-empty
and open, and fix positive real numbers εn → 0 and dense open sets
Un ⊆ X for which

⋂
n∈N Un ⊆ C. By DC, there is a sequence (Vn)n∈N of

non-empty open subsets of U with the property that diam(Vn) ≤ εn,
Vn ⊆ Un, and Vn+1 ⊆ Vn for all n ∈ N. Then the unique point of⋂
n∈N Vn is in C ∩ U .

Proposition 1.5.2. Suppose that X is a Baire space. Then every
non-empty open set U ⊆ X is a Baire space.

Proof. Suppose that (Un)n∈N is a sequence of dense open subsets
of U , let V be the interior of ∼U , and observe that Un ∪ V is a dense
subset of X for all n ∈ N, so

⋂
n∈N Un ∪ V is also a dense subset of X,

thus
⋂
n∈N Un is a dense subset of U .

Proposition 1.5.3. Suppose that X is a topological space, U ⊆ X
is a non-empty open set, and Y ⊆ U . Then Y is meager in U if and
only if Y is meager in X.

Proof. It is sufficient to show that Y is nowhere dense in U if and
only if Y is nowhere dense in X. As the closure of Y within U is the
intersection of U with the closure of Y within X, it follows that if Y
is somewhere dense in U then it is somewhere dense in X. Conversely,
if Y is somewhere dense in X, then there is a non-empty open set
V ⊆ X contained in the closure of Y within X, and since any such set
is contained in the closure of U within X, it follows that U ∩ V 6= ∅,
thus Y is somewhere dense in U .

The symmetric difference of setsX and Y is the setX 4 Y of points
appearing in exactly one of them. A subset of a topological space has
the Baire property if its symmetric difference with some open subset of
the space is meager.

Proposition 1.5.4. Suppose that X is a topological space and B ⊆
X has the Baire property. Then at least one of the following holds:
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(1) The set B is meager.
(2) There is a non-empty open set U ⊆ X with the property that

B ∩ U is comeager in U .

Moreover, if X is a Baire space, then exactly one of these holds.

Proof. Fix an open set U ⊆ X such that B 4 U is meager. If U
is empty, then B is meager. Otherwise, since U \ B is meager in X,
Proposition 1.5.3 ensures that it is meager in U , in which case B ∩ U
is comeager in U .

To see that conditions (1) and (2) are mutually exclusive when X
is a Baire space, suppose that there is a non-empty open set U ⊆ X
with the property that B ∩ U is comeager in U . If B is meager, then
B ∩ U is meager in U by Proposition 1.5.3, so (B ∩ U) ∩ (U \ B) is
comeager in U , contradicting Proposition 1.5.2.

Proposition 1.5.5. Suppose that X and Y are topological spaces,
φ : X � Y is a continuous open surjection, and D ⊆ Y . Then D is
comeager if and only if the set C = φ−1(D) is comeager.

Proof. Suppose first that D is comeager. Then there are dense
open sets Vn ⊆ Y such that

⋂
n∈N Vn ⊆ D. The fact that φ is continuous

ensures that the sets Un = φ−1(Vn) are open, and the fact that φ is
open implies that they are dense, thus C is comeager.

Conversely, suppose that C is comeager. Then there are dense open
sets Un ⊆ X such that

⋂
n∈N Un ⊆ C. The fact that φ is open ensures

that the sets Vn = φ(Un) are open, and the fact that φ is a continuous
surjection implies that they are dense, thus D is comeager.

Proposition 1.5.6. Suppose that X is a second-countable Baire
space and Y ⊆ X. Then there is a maximal open set U ⊆ X for which
U \ Y is meager. Moreover, every set B ⊆ X with the Baire property
contained in Y \ U is meager.

Proof. Fix a countable basis U for X, and define V = {U ∈ U |
U \ Y is meager} and U =

⋃
V . Then U \ Y =

⋃
V ∈V V \ Y is meager.

To see that U is the maximal such open set, note that if U ′ ⊆ X is an
open set not contained in U , then it contains a non-empty set U ′′ ∈ U
not contained in U , so U ′′ /∈ V , thus U ′′ \Y is not meager, hence U ′ \Y
is not meager.

Suppose, towards a contradiction, that there is a non-meager set
B ⊆ X with the Baire property contained in Y \ U . Proposition 1.5.4
yields a non-empty open set W ⊆ X in which B ∩W is comeager. Fix
a non-empty set V ⊆ W in U . Proposition 1.5.3 ensures that V \ B
is meager, so V \ Y is meager, thus V ∈ V , hence V ⊆ U , in which
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case B is disjoint from V . But Proposition 1.5.3 implies that B ∩ V is
comeager in V , contradicting Proposition 1.5.2.

Let BPX denote the family of subsets of X with the Baire property,
and MX the family of all meager subsets of X. The additivity of a
family F of sets is the least aleph add(F) with the property that there
is a sequence (Fα)α<add(F) of sets in F whose union is not in F , or ∞
if no such aleph exists.

Proposition 1.5.7. Suppose that X is a second-countable Baire
space. Then BPX contains every open subset of X and is closed under
complements, and add(BPX) ≥ add(MX).

Proof. As the empty set is meager, it follows that every open
subset of X has the Baire property.

To see that BPX is closed under complements, suppose that B ⊆ X
has the Baire property, fix an open set U ⊆ X such that B 4 U
is meager, set C = ∼B, let V be the interior of ∼U , and note that
C 4 V ⊆ (C 4 (∼U))∪ ((∼U) 4 V ) = (B 4 U)∪∼(U ∪V ). As U ∪V
is dense and open, it follows that C has the Baire property.

To see that the family of subsets of X with the Baire property
is closed under unions of every length κ < add(MX), suppose that
(Bα)α<κ is a sequence of subsets of X with the Baire property, and note
that if (Uα)α<κ is a sequence of open subsets of X such that Bα 4 Uα
is meager for all α < κ, and B =

⋃
α<κBα and U =

⋃
α<κ Uα, then

B 4 U ⊆
⋃
α<κBα 4 Uα is meager, thus B has the Baire property.

As the existence of such a sequence (Uα)α<κ is clear in the special case
where κ = 2, it follows that Bα \ V = ∼(∼Bα ∪ V ) has the Baire
property for all α < κ and open sets V ⊆ X, so Proposition 1.5.6
yields the existence of such a sequence (Uα)α<κ in the general case.

Proposition 1.5.8. Suppose that X is a second-countable Baire
space and κ < add(MX) is an aleph. Then every κ+-Borel set B ⊆ X
has the Baire property.

Proof. By Proposition 1.5.7.

Theorem 1.5.9 (Lusin-Sierpiński). Suppose that X is a second-
countable Baire Hausdorff space and κ < add(MX) is an aleph. Then
every κ-Souslin set A ⊆ X has the Baire property.

Proof. By Proposition 1.4.1, we can assume that there is a con-
tinuous surjection φ : κN � A. For all t ∈ κ<N, set At = φ(Nt), appeal
to Proposition 1.5.6 to obtain a maximal open set Ut ⊆ X for which
Ut \ ∼At is meager, and define Ct = At \ Ut.
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Lemma 1.5.10. For all t ∈ κ<N, the set At \ Ct is meager.

Proof. Note that At\Ct = At\(At\Ut) = At\∼Ut = Ut\∼At.
As A \

⋃
b∈κN

⋂
n∈NCb�n ⊆

⋃
t∈κ<N At \ Ct and Lemma 1.5.10 en-

sures that the latter set is meager, so too is the former. As the special
case of Proposition 1.4.6 where ψ is a constant function implies that⋃
b∈κN

⋂
n∈NCb�n ⊆ A, it is sufficient to show that

⋃
b∈κN

⋂
n∈NCb�n has

the Baire property. As C∅ \
⋃
b∈κN

⋂
n∈NCb�n ⊆

⋃
t∈κ<N Ct \

⋃
α<κCta(α)

and Proposition 1.5.7 ensures that C∅ has the Baire property, it is suf-
ficient to show that Ct \

⋃
α<κCta(α) is meager for all t ∈ κ<N. As

(Ct \
⋃
α<κCta(α))\ (

⋃
α<κAta(α) \ Cta(α)) ⊆ Ct \

⋃
α<κAta(α) = Ct \At,

Proposition 1.5.7 ensures that Ct \
⋃
α<κCta(α) has the Baire property,

and Lemma 1.5.10 implies that
⋃
α<κAta(α) \ Cta(α) is meager, it only

remains to note that every subset of X with the Baire property con-
tained in Ct \ At is meager, which follows from Proposition 1.5.6 and
the observation that Ct\At = (At\Ut)\At ⊆ (∼Ut)\At = (∼At)\Ut.

Theorem 1.5.11 (Banach-Mazur). Suppose that AD holds and X is
a second-countable complete metric space. Then every set Y ⊆ X has
the Baire property.

Theorem 1.5.12 (Montgomery, Novikov). Suppose that X is a
topological space, Y is a second-countable Baire space, κ < add(MY )
is an aleph, and R ⊆ X × Y is a κ+-Borel set. Then {x ∈ X |
Rx∩V is not meager} is κ+-Borel for all non-empty open sets V ⊆ Y .

Proof. Clearly the family of κ+-Borel sets R ⊆ X × Y with the
desired property contains every κ+-Borel rectangle. To see that it is
closed under unions of length κ, suppose that (Rα)α<κ is a sequence
of κ+-Borel sets, set R =

⋃
α<κRα, suppose that V ⊆ Y is a non-

empty open set, and observe that {x ∈ X | Rx ∩ V is not meager} =⋃
α<κ{x ∈ X | (Rα)x ∩ V is not meager}. To see that it is closed under

complements, suppose that R ⊆ X × Y is a κ+-Borel set, set S = ∼R,
suppose that V ⊆ Y is a non-empty open set, fix a countable basis
W for V consisting solely of non-empty open sets, and observe that
{x ∈ X | Sx ∩ V is not meager} =

⋃
W∈W{x ∈ X | Rx ∩W is meager}

by Propositions 1.5.3, 1.5.4, and 1.5.8.

Theorem 1.5.13 (Kuratowski-Ulam). Suppose that X is a Baire
space, Y is a second-countable Baire space, and R ⊆ X × Y has the
Baire property.

(1) The set {x ∈ X | Rx has the Baire property} is comeager.
(2) The set R is comeager if and only if {x ∈ X | Rx is comeager}

is comeager.
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Proof. We first establish the special case of (=⇒) in (2) where
R is dense and open. For each non-empty open set V ⊆ Y , define
V ′ = projX(R ∩ (X × V )). Note that if U ⊆ X is a non-empty open
set, then R ∩ (U × V ) 6= ∅, so U ∩ V ′ 6= ∅, thus V ′ is dense. Fix a
countable basis V for Y consisting of non-empty sets, and note that the
set C =

⋂
V ∈V V

′ is comeager, and Rx is dense and open for all x ∈ C.
We next establish (=⇒) in (2). Fix dense open sets Rn ⊆ X × Y

with the property that
⋂
n∈NRn ⊆ R, and observe that the sets Cn =

{x ∈ X | (Rn)x is dense and open} are comeager, thus so too is the set
C =

⋂
n∈NCn, and

⋂
n∈N(Rn)x is comeager for all x ∈ C.

To see (1), fix an open set W ⊆ X×Y for which R 4 W is meager,
note that the set C = {x ∈ X | Rx 4 Wx is meager} is comeager, and
observe that Rx has the Baire property for all x ∈ C.

It only remains to establish (⇐=) in (2). Towards this end, note
that W \ (R 4 W ) ⊆ R, so if W is dense, then R is comeager. But
if W is not dense, then there are non-empty open sets U ⊆ X and
V ⊆ Y with the property that (U × V ) ∩W = ∅, and if x ∈ U , then
Rx ∩ V ⊆ Rx \Wx ⊆ Rx 4 Wx, so Proposition 1.5.3 yields comeagerly
many x ∈ U for which Rx∩V is both comeager in V and meager in V ,
contradicting Proposition 1.5.2.

Proposition 1.5.14. Suppose that X is a second-countable Baire
space. Then add(BPX×X) ≤ add(MX).

Proof. Suppose, towards a contradiction, that add(MX) is strictly
less than add(BPX×X), and fix a sequence (Mα)α<add(MX) of meager
subsets of X whose union M is not meager. Associate with each x ∈M
the least ordinal α(x) for which x ∈Mα(x), and let � be the quasi-order
on M given by x � y ⇐⇒ α(x) ≤ α(y). As products of meager sets
are meager, and � is a union of strictly fewer than add(BPX×X)-many
such products, it follows that � has the Baire property. As every hori-
zontal section of � is meager, Theorem 1.5.13 yields a meager vertical
section of �. But M is the union of any such set with the corresponding
horizontal section, and is therefore meager, a contradiction.

6. Canonical objects

A homomorphism from a D-ary relation R on X to a D-ary relation
S on Y is a function φ : X → Y for which φD(R) ⊆ S. The diagonal
on X is given by ∆(X) = {(x, y) ∈ X ×X | x = y}.

Theorem 1.6.1 (Mycielski). Suppose that R is a meager binary
relation on 2N. Then there is a continuous homomorphism φ : 2N → 2N

from ∼∆(2N) to ∼R.
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Proof. Fix a decreasing sequence (Un)n∈N of dense open subsets
of 2N × 2N whose intersection is disjoint from R.

Lemma 1.6.2. Suppose that n ∈ N and φ : 2n → 2<N. Then there
is a function ψ : 2n+1 → 2<N such that:

• ∀t ∈ 2n+1 φ(t � n) @ ψ(t).
• ∀t ∈ ∼∆(2n+1)

∏
i<2Nψ(t(i)) ⊆ Un.

Proof. Fix an enumeration (tk)k<4n+1−2n+1 of ∼∆(2n+1), as well
as ψ0 : 2n+1 → 2<N such that ∀t ∈ 2n+1 φ(t � n) @ ψ0(t), and given
k < 4n+1 − 2n+1 and ψk : 2n+1 → 2<N, fix ψk+1 : 2n+1 → 2<N such that:

• ∀t ∈ 2n+1 ψk(t) v ψk+1(t).
•
∏

i<2Nψk+1(tk(i)) ⊆ Un.

Clearly the function ψ = ψ4n+1−2n+1 is as desired.

By Lemma 1.6.2, there are functions φn : 2n → 2<N such that:

(1) ∀n ∈ N∀t ∈ 2n+1 φn(t � n) @ φn+1(t).
(2) ∀n ∈ N∀t ∈ ∼∆(2n+1)

∏
i<2Nφn+1(t(i)) ⊆ Un.

Condition (1) ensures that we obtain a continuous function φ : 2N → 2N

by setting by φ(c) =
⋃
n∈N φn(c � n) for all c ∈ 2N. To see that φ is a

homomorphism from ∼∆(2N) to ∼R, note that if c ∈ ∼∆(2N), then there
exists n ∈ N such that c(0)(n) 6= c(1)(n), in which case condition (2)
ensures that (φ(c(i)))i<2 ∈

∏
i<2Nφm+1(c(i)�(m+1)) ⊆ Um for all m ≥ n,

thus (φ(c(i)))i<2 ∈ ∼R.

A D-dimensional dihypergraph on a set X is a D-ary binary relation
H on X disjoint from the D-dimensional diagonal on X, given by
∆D(X) = {x ∈ XD | ∀c, d ∈ D x(c) = x(d)}. Given a D-ary relation
H on X, we say that a set Y ⊆ X is H-independent if H � Y = ∅.
The box topology on a product

∏
d∈DXd of topological spaces is the

topology generated by the sets of the form
∏

d∈D Ud, where Ud ⊆ Xd is
open for all d ∈ D.

Proposition 1.6.3. Suppose that D is a countable set of cardinality
at least two, X is a topological space, H is a box-open D-dimensional
dihypergraph on X, and Y ⊆ X is H-independent. Then Y is H-
independent.

Proof. If there exists y ∈ H � Y , then there is an open neighbor-
hood

∏
d∈D Ud of y contained in H. Fix y ∈

∏
d∈D Ud ∩ Y , and observe

that y ∈ H � Y , a contradiction.

The complete D-dimensional dihypergraph on a set X is the com-
plement of the D-dimensional diagonal on X. A κ-coloring of a D-
dimensional dihypergraph H on X is a homomorphism c : X → κ from
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H to the complete D-dimensional dihypergraph on κ. The existence of
a κ-coloring of H is trivially equivalent to the existence of a covering
of X by κ-many H-independent sets.

Proposition 1.6.4. Suppose that AD holds, D is a countable set of
cardinality at least two, X is a subset of an analytic Hausdorff space,
H is a box-open D-dimensional dihypergraph on X, and there is an
ordinal coloring of H. Then there is an ℵ0-coloring of H.

Proof. Fix an analytic Hausdorff space Y ⊇ X. Clearly we can
assume that Y 6= ∅, so Proposition 1.4.1 yields a continuous surjection
φ : NN � Y . Fix an aleph κ for which there is a cover (Xα)α<κ of X by
H-independent sets, and let Cα be the closure of Xα within Y for all
α < κ. As Theorem 1.1.5 ensures that {Tφ−1(Cα) | α < κ} is countable,
Proposition 1.1.2 ensures that {φ−1(Cα) | α < κ} is countable, so the
surjectivity of φ yields that {Cα | α < κ} is countable. But Proposition
1.6.3 implies that Cα ∩X is H-independent for all α < κ.

A subset of a topological space is Fσ if it is a union of countably-
many closed sets, Gδ if it is an intersection of countably-many open sets,
and ∆0

2 if it is both Fσ and Gδ. A function φ : X → Y is Γ-measurable
if φ−1(V ) ∈ Γ for all open sets V ⊆ Y .

Proposition 1.6.5. Suppose that D is a countable set of cardi-
nality at least two, X is a metric space, and H is a D-dimensional
dihypergraph on X. Then the following are equivalent:

(1) There is a cover (Cn)n∈N of X by H-independent closed sets.
(2) There is a ∆0

2-measurable ℵ0-coloring c : X → N of H.

Proof. To see (2) =⇒ (1), observe that c−1({n}) is a union of
countably-many closed sets for all n ∈ N. To see (1) =⇒ (2), set
Bn = Cn \

⋃
m<nCm for all n ∈ N. As every closed subset of a metric

space is the intersection of the ε-balls around it, and therefore Gδ, it
follows that each of the sets Bn is Fσ, so the ℵ0-coloring sending each
point x ∈ X to the unique natural number n ∈ N for which x ∈ Bn is
Fσ-measurable, and therefore ∆0

2-measurable.

When D has cardinality at least two, we use HDN to denote the D-
dimensional dihypergraph on DN given by HDN =

⋃
t∈D<N

∏
d∈DNta(d).

Proposition 1.6.6. Suppose that D is a countable discrete space
of cardinality at least two. Then every HDN-independent set X ⊆ DN

is meager.

Proof. By Proposition 1.6.3, the set C = X is HDN-independent.
As Theorem 1.5.1 ensures that DN is a Baire space, Proposition 1.5.8
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implies that C has the Baire property, so Proposition 1.5.4 yields that
if X is not meager, then there exists t ∈ D<N for which C ∩ Nt is
comeager in Nt, thus Nt ⊆ C. But (t a (d) a b(d))d∈D ∈ HDN � C for
all b ∈ (DN)D, contradicting the HDN-independence of C.

Proposition 1.6.7. Suppose that D is a countable discrete space
of cardinality at least two and κ < add(MDN). Then there is no κ-
coloring of HDN.

Proof. By Theorem 1.5.1 and Proposition 1.6.6.

Proposition 1.6.8. Suppose that AD holds and D is a countable
discrete space of cardinality at least two. Then there is no ordinal-
coloring of HDN.

Proof. By Theorem 1.5.1 and Propositions 1.6.4 and 1.6.7.

A digraph on a set X is an irreflexive binary relation G on X. For
all sequences s ∈ 2<N, define a homeomorphism ιs : Nsa(0) → Nsa(1)
by setting ιs(s a (0) a c) = s a (1) a c for all c ∈ 2N. For all sets
S ⊆ 2<N, define GS =

⋃
s∈S graph(ιs). Following the standard abuse

of language, for each infinite set N ⊆ N, we use G0(N) to denote any
digraph of the form GS, where S ⊆ 2<N contains an extension of every
element of 2<N, but only one sequence of every length in N . Define
G0 = G0(N).

Proposition 1.6.9. Suppose that N ⊆ N is infinite and B ⊆ 2N is
a G0(N)-independent set with the Baire property. Then B is meager.

Proof. Fix a set S ⊆ 2<N for which G0(N) = GS, and suppose,
towards a contradiction, that B is not meager. By Proposition 1.5.4,
there is a sequence r ∈ 2<N for which B is comeager in Nr. Fix an
extension s ∈ S of r. As ιs is a homeomorphism and Proposition 1.5.3
ensures that B is comeager in Ns, Proposition 1.5.5 implies that the set
C = B ∩ Nsa(0) ∩ ι−1s (B ∩ Nsa(1)) is comeager in Nsa(0), and therefore
not empty by Theorem 1.5.1. But (c, ιs(c)) ∈ G0(N) � B for all c ∈ C,
the desired contradiction.

For all sets R ⊆ X × Y and S ⊆ Y × Z, define R−1 = {(y, x) ∈
Y ×X | x R y} and RS = {(x, z) ∈ X × Z | ∃y ∈ Y x R y S z}.

Proposition 1.6.10. Suppose that κ < add(M2N), N ⊆ N is infi-
nite, R is a binary relation on 2N with the Baire property, and there is
a Baire-measurable κ-coloring c of G0(N)∩R−1R. Then R is meager.

Proof. Suppose, towards a contradiction, that R is not meager.
Theorems 1.5.1 and 1.5.13 then yield d ∈ 2N for which Rd has the
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Baire property and is not meager. Fix α < κ for which c−1({α}) ∩ Rd

is not meager. As Rd × Rd ⊆ R−1R, it follows that c−1({α}) ∩ Rd is
G0(N)-independent, contradicting Proposition 1.6.9.

Proposition 1.6.11. Suppose that AD holds, N ⊆ N is infinite,
and R is a binary relation on 2N for which there is an ordinal-coloring
c of G0(N) ∩R−1R. Then R is meager.

Proof. Theorem 1.5.11 ensures that R has the Baire property and
c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14 imply
that add(M2N) =∞, so this follows from Proposition 1.6.10.

The concatenation
⊕

m<n sm of a finite sequence (sm)m<n of finite
sequences is defined recursively by setting

⊕
m<0 sm = ∅ and letting⊕

m<n+1 sm be the concatenation of
⊕

m<n sm and sn. The concate-
nation of an infinite sequence (sn)n∈N of finite sequences is given by⊕

n∈N sn =
⋃
n∈N

⊕
m<n sm.

Proposition 1.6.12. Suppose that R is a non-meager binary rela-
tion on 2N with the Baire property. Then there are continuous homo-
morphisms φi : 2N → 2N from G0 to G0 for which

∏
i<2 φi(2

N) ⊆ R.

Proof. By Proposition 1.5.4, there exists u ∈ 2<N×2<N for which
R∩

∏
i<2Nu(i) is comeager in

∏
i<2Nu(i), in which case there are dense

open sets Un ⊆
∏

i<2Nu(i) such that
⋂
n∈N Un ⊆ R. Fix sequences

sn ∈ 2n with the property that G0 = GS, where S = {sn | n ∈ N}.

Lemma 1.6.13. Suppose that n ∈ N and φi : 2n → 2<N has the
property that u(i) v φi(t) for all i < 2 and t ∈ 2<N. Then there exists
v ∈ 2<N × 2<N such that:

• ∀t ∈ 2n × 2n
∏

i<2Nφi(t)av(i) ⊆ Un.
• ∀i < 2 φi(sn) a v(i) ∈ S.

Proof. Fix an enumeration (tk)k<4n of 2n×2n, and v0 ∈ 2<N×2<N.
Given k < 4n and vk ∈ 2<N × 2<N, fix vk+1 ∈ 2<N × 2<N such that:

• ∀i < 2 vk(i) v vk+1(i).
•
∏

i<2Nφi(tk(i))avk+1(i) ⊆ Un.

Then any pair v ∈ 2<N × 2<N with the property that v4n(i) v v(i) and
φi(sn) a v(i) ∈ S for all i < 2 is as desired.

Fix functions φi,0 : 20 → 2<N such that u(i) v φi,0(∅) for all i < 2,
and appeal to Lemma 1.6.13 to obtain pairs un ∈ 2<N×2<N, from which
we define φi,n+1 : 2n+1 → 2<N by φi,n+1(t) = φi,n(t � n) a un(i) a (t(n))
for all i < 2 and t ∈ 2n+1, such that:

(1) ∀t ∈ 2n+1 × 2n+1
∏

i<2Nφi,n+1(t(i)) ⊆ Un.
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(2) ∀c ∈ 2N (φi,n+1(sn a (j)) a c)i<2 ∈ G0.

As ∀i < 2∀n ∈ N∀t ∈ 2n+1 φi,n(t � n) @ φi,n+1(t), we obtain continuous
functions φi : 2N → 2N by setting φi(c) =

⋃
n∈N φi,n(c � n) for all c ∈ 2N

and i < 2. To see that
∏

i<2 φi(2
N) ⊆ R, note that if c ∈ 2N × 2N, then

∀n ∈ N (φi(c(i)))i<2 ∈
∏

i<2Nφi,n+1(c(i)�(n+1)) ⊆ Un by condition (1). To

see that each φi is a homomorphism from G0 to G0, note that if c ∈ 2N

and n ∈ N, then (φi(sn a (j) a c))j<2 = (φi,n+1(sn a (j)) a d)j<2,
where d =

⊕
m∈N(c(m)) a un+1+m(i), and appeal to condition (2).

The equivalence relation E0 on 2N is given by

c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m).

Proposition 1.6.14. The smallest equivalence relation E on 2N

containing G0 is E0.

Proof. Fix sequences sn ∈ 2n such that G0 = G{sn|n∈N}. It is
enough to show that ∀c ∈ 2N∀u, v ∈ 2n u a (0) a c E v a (1) a c
for all n ∈ N. But if this holds strictly below some n ∈ N, then
u a (0) a c E sn a (0) a c E sn a (1) a c E v a (1) a c for all
c ∈ 2N and u, v ∈ 2n, so it holds at n as well.

An equivalence relation E is generically ergodic if every E-invariant
set with the Baire property is comeager or meager.

Proposition 1.6.15. The relation E0 is generically ergodic.

Proof. Suppose that B ⊆ 2N is an E0-invariant non-meager set
with the Baire property. By Proposition 1.5.4 and the obvious induc-
tion, it is sufficient to show that if i < 2, s ∈ 2<N, and B ∩ Nsa(i) is
comeager in Nsa(i), then B ∩Nsa(1−i) is comeager in Nsa(1−i). As ιs is
a homeomorphism, this follows from Proposition 1.5.5.

Proposition 1.6.16. Suppose that X is a Baire space, Y is a
second-countable T0 space, E is a generically ergodic equivalence rela-
tion on X, and φ : X → Y is a Baire-measurable homomorphism from
E to ∆(Y ). Then there exists y ∈ Y for which φ−1({y}) is comeager.

Proof. Fix a countable basis V for Y , letW be the set of all V ∈ V
with the property that φ−1(V ) is comeager, and observe that the set
C = (

⋂
W∈W φ

−1(W )) \ (
⋃
V ∈V\W φ

−1(V )) is comeager. As Y is T0, it
follows that φ � C is constant.

Given a topological space X, we say that a set Y ⊆ X is ℵ0-
universally Baire if for every continuous function φ : 2N → X, the set
φ−1(Y ) has the Baire property. The incomparability relation associated
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with a quasi-order R on a set X is the binary relation ⊥R on X for
which x ⊥R y if and only if neither x R y nor y R x.

Proposition 1.6.17 (M-Vidnyánszky). Suppose that X is a topo-
logical space and R is an ℵ0-universally-Baire quasi-order on X for
which there is a continuous homomorphism φ : 2N → X from G0 to
⊥R. Then there are continuous homomorphisms φi : 2N → φ(2N) from
G0 to ⊥R � φ(2N) such that

∏
i<2 φi(2

N) ⊆ ⊥R.

Proof. As the quasi-order R0 = (φ×φ)−1(R) has the Baire prop-
erty, so too does ⊥R0 , as does every horizontal and vertical section of
either relation.

Lemma 1.6.18. The relation ⊥R0 is not meager.

Proof. Suppose, towards a contradiction, that ⊥R0 is meager.
Then the set C = {c ∈ 2N | (⊥R0)c is meager} is comeager, by The-
orem 1.5.13. The binary relation R′0 on 2N given by c R′0 d ⇐⇒
∀∗b ∈ 2N (b R0 c =⇒ b R0 d) is clearly a quasi-order. Note that if
(d, c) ∈ (2N × C) \ R′0, then (c, d]R0 is not meager, so c <R0 d. As
G0 ⊆ ⊥R0 , it follows that G0 � C ⊆ ≡R′0 . As Proposition 1.5.5 ensures

that every comeager subset of 2N has an E0-invariant comeager sub-
set, Proposition 1.6.14 yields an E0-invariant comeager set C ′ ⊆ C
for which E0 � C ′ ⊆ ≡R′0 . Observe that for all s ∈ 2N, the set

Bs = {c ∈ 2N | ∀∗b ∈ Ns b R0 c} has the Baire property, by Theo-
rems 1.5.12 and 1.5.13. As Proposition 1.5.4 implies that c ≡R′0 d ⇐⇒
∀s ∈ 2<N (c ∈ Bs ⇐⇒ d ∈ Bs) for all c, d ∈ C, Proposition 1.6.15
ensures that ≡R′0 has a comeager equivalence class. Fixing s, t ∈ 2<N

for which R0∩(Ns×Nt) is comeager inNs×Nt, Theorem 1.5.13 implies
that ∀∗c ∈ Nt∀∗b ∈ Ns b R0 c, so ∀∗b, c ∈ Ns b R0 c, thus ≡R0 has an
equivalence class that is comeager in Ns. But Proposition 1.6.9 then
ensures that ≡R0 ∩G0 6= ∅, the desired contradiction.

By Proposition 1.6.12 and Lemma 1.6.18, there are continuous ho-
momorphisms φ′i : 2N → 2N from G0 to G0 for which

∏
i<2 φ

′
i(2

N) ⊆ ⊥R0 ,
in which case the functions φi = φ ◦ φ′i are as desired.

Proposition 1.6.19 (M-Vidnyánszky). Suppose that X is an an-
alytic Hausdorff space and R is an ℵ0-universally-Baire quasi-order on
X for which there is a continuous homomorphism φ : 2N → X from G0

to ⊥R. Then there is a continuous homomorphism π : 2N → X from
∼∆(2N) to ⊥R.
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Proof. Proposition 1.4.1 yields a continuous surjection ψ : NN �
X. We will recursively construct functions ψn : 2n → Nn and contin-
uous homomorphisms φs : 2N → ψ(Nψn(s)) from G0 to ⊥R � ψ(Nψn(s))
such that:

(1) ∀i < 2∀n ∈ N∀s ∈ 2n ψn(s) v ψn+1(s a (i)).
(2) ∀i < 2∀n ∈ N∀s ∈ 2n φsa(i)(2

N) ⊆ φs(2
N).

(3) ∀n ∈ N∀s ∈ 2n
∏

i<2 φsa(i)(2
N) ⊆ ⊥R.

We begin by setting φ0 = φ and ψ0(∅) = ∅. Suppose that n ∈ N and we
have found (φs)s∈2n and ψn. For all s ∈ 2n, Proposition 1.6.17 yields
continuous homomorphisms φs,i : 2N → φs(2

N) from G0 to ⊥R � φs(2N)
for which

∏
i<2 φs,i(2

N) ⊆ ⊥R. Fix extensions ψn+1(s a (i)) ∈ Nn+1

of ψn(s) such that φ−1s,i (ψ(Nψn+1(sa(i)))) is not meager for all i < 2.
As Proposition 1.4.2 ensures that the latter sets are analytic, Propo-
sition 1.5.9 implies that they have the Baire property, so the special
case of Proposition 1.6.12 where R =

∏
i<2 φ

−1
s,i (ψ(Nψn+1(sa(i)))) yields

continuous homomorphisms φ′s,i : 2N → φ−1s,i (ψ(Nψn+1(sa(i)))) from G0 to

G0 � φ
−1
s,i (ψ(Nψn+1(sa(i)))). Define φsa(i) = φs,i ◦ φ′s,i.

Condition (1) ensures that we obtain a continuous map ψ∞ : 2N →
NN by setting ψ∞(c) =

⋃
n∈N ψn(c � n) for all c ∈ 2N. Define π = ψ◦ψ∞,

and note that for all c ∈ 2N, Proposition 1.4.6 ensures that π(c) is the
unique element of

⋂
n∈N ψ(Nψn(c�n)), and since φc�n(2N) ⊆ ψ(Nψn(c�n))

for all n ∈ N and the former sets have non-empty intersection by condi-
tion (2), it follows that π(c) is also the unique element of

⋂
n∈N φc�n(2N).

To see that π is a homomorphism from ∼∆(2N) to ⊥R, observe that
if c, d ∈ 2N are distinct, then there is a maximal natural number
n ∈ N for which c � n = d � n, and since π(c) ∈ φsa(c(n))(2

N) and
π(d) ∈ φsa(d(n))(2

N), where s = c � n = d � n, condition (3) ensures
that π(c) ⊥R π(d).

Let F0 denote the subequivalence relation of E0 given by

c F0 d ⇐⇒ ∃n ∈ N∀m ≥ n
∑

k<m c(k) ≡
∑

k<m d(k) (mod 2).

Proposition 1.6.20. Suppose that E is an equivalence relation on
2N and F is an index-two subequivalence relation of E with the property
that G0 ⊆ E \ F . Then F0 ⊆ F and E0 \ F0 ⊆ E \ F .

Proof. Note that if c E0 d, then Proposition 1.6.14 yields a G±10 -
path γ from c to d, so the fact that G0 ⊆ E ensures that c E d.
Moreover, the fact that G0 ⊆ E0 \ F0 and F0 has index two below
E0 ensures that c F0 d ⇐⇒ γ has evenly-many edges, whereas the
fact that G0 ⊆ E \ F and F has index two below E implies that
c F d ⇐⇒ γ has evenly-many edges, thus c F0 d ⇐⇒ c F d.
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A partial transversal of an equivalence relation E on X over a sube-
quivalence relation F of E is a set Y ⊆ X for which E � Y = F � Y .

Proposition 1.6.21. Suppose that B ⊆ 2N is a partial transversal
of E0 over F0 with the Baire property. Then B is meager.

Proof. As G0 ⊆ E0 \ F0, it follows that B is G0-independent, so
Proposition 1.6.9 ensures that it is meager.

A homomorphism from a sequence (Ri)i∈I of D-ary relations on X
to a sequence (Si)i∈I of D-ary relations on Y is a function φ : X → Y
that is a homomorphism from Ri to Si for all i ∈ I.

Proposition 1.6.22. Suppose that N is a nowhere dense binary
relation on 2N and R is a meager binary relation on 2N. Then there is a
continuous homomorphism φ : 2N → 2N from (∼∆(2N),F0,E0 \F0,∼E0)
to (∼N,F0,E0 \ F0,∼R).

Proof. Fix a decreasing sequence (Un)n∈N of dense open symmet-
ric subsets of ∼N whose intersection is disjoint from R.

Lemma 1.6.23. Suppose that n ∈ N and φ : 2n → 2<N. Then there
exist ` > 0 and u ∈ 2` × 2` such that:

• ∀t ∈ 2n × 2n
∏

i<2Nφ(t(i))au(i) ⊆ Un.
•
∑

k<` u(0)(k) 6≡
∑

k<` u(1)(k) (mod 2).

Proof. Fix an enumeration (tk)k<4n of 2n×2n, and u0 ∈ 2<N×2<N.
Given k < 4n and uk ∈ 2<N × 2<N, fix uk+1 ∈ 2<N × 2<N such that:

• ∀i < 2 uk(i) v uk+1(i).
•
∏

i<2Nφ(tk(i))auk+1(i) ⊆ Un.

Then any ` > 0 and pair u ∈ 2` × 2` such that u4n(i) v u(i) for all
i < 2 and

∑
k<` u(0)(k) 6≡

∑
k<` u(1)(k) (mod 2) is as desired.

Fix φ0 : 20 → 20, and appeal to Lemma 1.6.23 to obtain `n > 0
and pairs un ∈ 2`n × 2`n , from which we define φn+1 : 2n+1 → 2<N by
φn+1(t) = φn(t � n) a un(t(n)) for all t ∈ 2n+1, such that:

(1) ∀t ∈ 2n × 2n
∏

i<2Nφn+1(t(i)a(i)) ⊆ Un.
(2)

∑
k<`n

un(0)(k) 6≡
∑

k<`n
un(1)(k) (mod 2).

As ∀n ∈ N∀t ∈ 2n+1 φn(t � n) @ φn+1(t), we obtain a continuous
function φ : 2N → 2N by setting φ(c) =

⋃
n∈N φn(c � n) for all c ∈ 2N.

To see that φ is a homomorphism from ∼∆(2N) to ∼N , note that if
c ∈ ∼∆(2N), then there exists n ∈ N for which c(0)(n) 6= c(1)(n), so
(φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆ Un ⊆ ∼N by condition (1). To

see that φ is a homomorphism from (F0,E0 \ F0) to (F0,E0 \ F0), note
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that if c ∈ E0, then there exists n ∈ N such that c(0)(m) = c(1)(m) for
all m ≥ n, and condition (2) ensures that if ` =

∑
m<n `m, then

c(0) F0 c(1)

⇐⇒
∑

m<n c(0)(m) ≡
∑

m<n c(1)(m) (mod 2)

⇐⇒ |{m < n | c(0)(m) 6= c(1)(m)}| is even

⇐⇒ |{m < n | um(c(0)(m)) 6≡ um(c(1)(m)) (mod 2)}| is even

⇐⇒
∑

m<n um(c(0)(m)) ≡
∑

m<n um(c(1)(m)) (mod 2)

⇐⇒
∑

m<` φn(c(0) � n)(m) ≡
∑

m<` φn(c(1) � n)(m) (mod 2)

⇐⇒ φ(c(0)) F0 φ(c(1)).

To see that φ is a homomorphism from ∼E0 to ∼R, note that if c ∈ ∼E0,
then there is an infinite set N ⊆ N such that c(0)(n) 6= c(1)(n) for
all n ∈ N , so ∀n ∈ N (φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆ Un by

condition (1), thus (φ(c(i)))i<2 ∈ ∼R.

For all sequences t ∈
⋃
n∈N 2n × 2n, define ιt : Nt(0)a(0) → Nt(1)a(1)

by setting ιt(t(0) a (0) a c) = t(1) a (1) a c for all c ∈ 2N. For all
sets T ⊆

⋃
n∈N 2n × 2n, define GT =

⋃
t∈T graph(ιt).

Proposition 1.6.24. Suppose that T ⊆
⋃
n∈N 2n × 2n contains an

extension of every element of 2<N × 2<N, and R is a transitive bi-
nary relation on 2N with the Baire property containing GT . Then R is
comeager or meager.

Proof. Suppose, towards a contradiction, that R is neither comea-
ger nor meager. By Proposition 1.5.4, there exist pairs u, v ∈ 2<N×2<N

with the property that R∩ (Nu(1)×Nv(0)) is comeager in Nu(1)×Nv(0)
and R ∩ (Nu(0) × Nv(1)) is meager in Nu(0) × Nv(1). Fix s, t ∈ T with
the property that u(i) v s(i) and v(i) v t(i) for all i < 2. As
(ι−1s × ιt)(R ∩ (Ns(1)a(1) × Nt(0)a(0))) ⊆ R, Proposition 1.5.5 ensures
that R ∩ (Ns(0)a(0) ×Nt(1)a(1)) is comeager in Ns(0)a(0) ×Nt(1)a(1). But
R∩(Ns(0)a(0)×Nt(1)a(1)) is also meager in Ns(0)a(0)×Nt(1)a(1) by Propo-
sition 1.5.3, contradicting Theorem 1.5.1 and Proposition 1.5.2.

For each infinite set N ⊆ N, we use H0(N) to denote any digraph of
the form GT , where T ⊆

⋃
n∈N Nn × Nn contains an extension of every

element of 2<N × 2<N, but only one pair corresponding to each length
in N .

Proposition 1.6.25. Suppose that κ < add(M2N) and R is a linear
quasi-order on 2N with the Baire property containing H0(2N+1). Then
there is no Baire-measurable κ-coloring c of ≡R ∩G0(2N).
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Proof. As Theorem 1.5.1 and Proposition 1.6.24 ensure that R is
comeager, so too is ≡R, contradicting Proposition 1.6.10.

Proposition 1.6.26. Suppose that AD holds and R is a linear quasi-
order on 2N containing H0(2N + 1). Then there is no ordinal-coloring
c of ≡R ∩G0(2N).

Proof. As Theorem 1.5.11 ensures that R has the Baire property
and c is Baire measurable, and Theorem 1.5.11 and Proposition 1.5.14
imply that add(M2N) =∞, this follows from Proposition 1.6.25.

The strict quasi-order associated with a quasi-order R on a set X
is the binary relation <R on X for which x <R y if and only if x R y
but ¬y R x. The partial order R0 on 2N is given by

c <R0 d ⇐⇒ ∃n ∈ N (c(n) < d(n) and ∀m > n c(m) = d(m)).

The odometer is the homeomorphism of 2N given by

σ((1)n a (0) a c) = (0)n a (1) a c.

Proposition 1.6.27. The transitive closure R of graph(σ)\{((1)∞,
(0)∞)} is <R0.

Proof. It is enough to show that ∀c ∈ 2N∀u, v ∈ 2n u a (0) a c R
v a (1) a c for all n ∈ N. But if this holds strictly below some n ∈ N,
then u a (0) a c S (1)n a (0) a c R (0)n a (1) a c S v a (1) a c for
all c ∈ 2N and u, v ∈ 2n, where S = ∆(2N) ∪R, so it holds at n.

A reduction of a D-ary relation R on X to a D-ary relation S on Y
is a homomorphism from (R,∼R) to (S,∼S). An embedding of R into
S is an injective reduction of R to S.

Proposition 1.6.28. Suppose that B ⊆ 2N is a non-meager set
with the Baire property. Then there is a continuous embedding of R0

into R0 � B.

Proof. By Proposition 1.5.4, there is a sequence u ∈ 2<N for which
B ∩ Nu is comeager in Nu, in which case there are dense open sets
Un ⊆ Nu such that

⋂
n∈N Un ⊆ B.

Lemma 1.6.29. Suppose that n ∈ N and φ : 2n → 2<N has the
property that u v φ(s) for all s ∈ 2n. Then there exists v ∈ 2<N such
that ∀s ∈ 2n Nφ(s)av ⊆ Un.

Proof. Fix an enumeration (sk)k<2n of 2n, set v0 = ∅, and given
k < 2n and vk ∈ 2<N, fix vk+1 ∈ 2<N such that vk v vk+1 and
Nφ(sk)avk+1

⊆ Un. Then any v ∈ 2<N such that v2n v v is as desired.



24 1. PRELIMINARIES

Fix φ0 : 20 → 2<N such that u v φ0(∅), and appeal to Lemma 1.6.29
to obtain sequences un ∈ 2<N, from which we define φn+1 : 2n+1 → 2<N

by φn+1(s) = φn(s � n) a un a s(n) for all s ∈ 2n+1, such that
∀s ∈ 2n+1 Nφn+1(s) ⊆ Un. As ∀n ∈ N∀s ∈ 2n+1 φn(s � n) @ φn+1(s), we
obtain a continuous embedding φ : 2N → 2N of R0 into R0 by setting
φ(c) =

⋃
n∈N φn(c � n) for all c ∈ 2N. To see that φ(2N) ⊆ B, observe

that if c ∈ 2N, then ∀n ∈ N φ(c) ∈ Nφn+1(c�(n+1)) ⊆ Un.

Proposition 1.6.30. Suppose that R is an ℵ0-universally Baire
quasi-order on 2N for which R0 ⊆ R ⊆ E0. Then there is a continuous
embedding of R0 or E0 into R.

Proof. Note that the set X = {c ∈ 2N | c <R σ(c)} has the Baire
property, and Proposition 1.6.27 ensures that R � X = R0 � X. If
X is not meager, then Proposition 1.6.28 therefore yields a continu-
ous embedding of R0 into R � X. If X is meager, then Proposition
1.5.5 ensures that

⋃
n∈Z σ

n(X) is meager, so Proposition 1.6.27 implies
that [X]E0 is meager, and since Proposition 1.6.27 also ensures that
R � ∼[X]E0 = E0 � ∼[X]E0 , Proposition 1.6.28 yields a continuous em-
bedding of E0 into R � ∼[X]E0 .

Proposition 1.6.31. Suppose that N is a nowhere dense binary
relation on 2N and R is a meager binary relation on 2N. Then there
is a continuous homomorphism φ : 2N → 2N from (∼∆(2N), graph(σ) \
{((1)∞, (0)∞)},∼E0) to (∼N,H0(2N + 1),∼R).

Proof. Fix a set T ⊆
⋃
n∈N 2n × 2n for which H0(2N+1) = GT , as

well as a decreasing sequence (Un)n∈N of dense open symmetric subsets
of ∼N whose intersection is disjoint from R.

Lemma 1.6.32. Suppose that n ∈ N and φ : 2n → 2<N. Then there
exist ` ∈ N and u ∈ 2` × 2` such that:

• ∀s ∈ 2n × 2n
∏

i<2Nφ(s(i))au(i) ⊆ Un.
• (φ((1− i)n) a u(i))i<2 ∈ T .

Proof. Fix an enumeration (sk)k<4n of 2n×2n, and u0 ∈ 2<N×2<N.
Given k < 4n and uk ∈ 2<N × 2<N, fix uk+1 ∈ 2<N × 2<N such that:

• ∀i < 2 uk(i) v uk+1(i).
•
∏

i<2Nφ(sk(i))auk+1(i) ⊆ Un.

Then any ` ∈ N and u ∈ 2` × 2` with the property that u4n(i) v u(i)
and (φ((1− i)n) a u(i))i<2 ∈ T are as desired.

Fix φ0 : 20 → 2<N, and appeal to Lemma 1.6.32 to obtain `n ∈ N
and pairs un ∈ 2`n × 2`n , from which we define φn+1 : 2n+1 → 2<N by
φn+1(s) = φn(s � n) a un(s(n)) a (s(n)) for all s ∈ 2n+1, such that:
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(1) ∀s ∈ 2n × 2n
∏

i<2Nφn+1(s(i)a(i)) ⊆ Un.
(2) ∀c ∈ 2N (φn+1((1− i)n a (i)) a c)i<2 ∈ H0(2N + 1).

As ∀n ∈ N∀s ∈ 2n+1 φn(s � n) @ φn+1(s), we obtain a continu-
ous function φ : 2N → 2N by setting φ(c) =

⋃
n∈N φn(c � n) for all

c ∈ 2N. To see that φ is a homomorphism from ∼∆(2N) to ∼N ,
note that if c ∈ ∼∆(2N), then there exists n ∈ N with the prop-
erty that c(0)(n) 6= c(1)(n), so (φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆

Un ⊆ ∼N by condition (1). To see that φ is a homomorphism from
graph(σ)\{((1)∞, (0)∞)} to H0(2N+1), note that if c ∈ 2N and n ∈ N,
then (φ((1 − i)n a (i) a c))i<2 = (φn+1((1 − i)n a (i)) a d)i<2, where
d =

⊕
m∈N un+1+m(c(m)) a (c(m)), and appeal to condition (2). To

see that φ is a homomorphism from ∼E0 to ∼R, note that if c ∈ ∼E0,
then there is an infinite set N ⊆ N such that c(0)(n) 6= c(1)(n) for
all n ∈ N , so ∀n ∈ N (φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆ Un by

condition (1), thus (φ(c(i)))i<2 ∈ ∼R.





CHAPTER 2

The box-open dihypergraph dichotomy

1. Colorings of box-open dihypergraphs

Here we consider the circumstances under which a box-open count-
able-dimensional dihypergraph admits an ordinal coloring.

Theorem 2.1.1 (Feng, Carroy-M-Soukup). Suppose that D is a
countable discrete space of cardinality at least two, κ is an aleph, X
is a κ-Souslin Hausdorff space, and H is a box-open D-dimensional
dihypergraph on X. Then at least one of the following holds:

(1) There is a κ-coloring of H.
(2) There is a continuous homomorphism φ : DN → X from HDN to H.

Proof. We can clearly assume that X 6= ∅, in which case Propo-
sition 1.4.1 yields a continuous surjection φX : κN � X. Recursively
define an increasing sequence (Tα)α<κ+ of subsets of κ<N, as well as
a decreasing sequence (Xα)α<κ+ of subsets of X, by setting X0 =
X, Tα = {t ∈ κ<N | φX(Nt) ∩ Xα is H-independent} and Xα+1 =
∼
⋃
t∈Tα φX(Nt) for all α < κ+, and Xλ =

⋂
α<λX

α for all limit ordi-
nals λ < κ+.

Lemma 2.1.2. Suppose that α < κ+ and t ∈ ∼Tα+1. Then there is
a sequence (td)d∈D of proper extensions of t in ∼Tα with the property
that

∏
d∈D φX(Ntd) ⊆ H.

Proof. As t /∈ Tα+1, there exists x ∈ H � (φX(Nt) ∩ Xα+1). As
H is box open, there is an open neighborhood

∏
d∈D Ud of x contained

in H. Fix a sequence b ∈ ND
t such that φDX(b) = x, and for all d ∈ D,

appeal to the continuity of φX to obtain a natural number nd > |t|
such that φX(Nb(d)�nd) ⊆ Ud, noting that the sequence td = b(d) � nd is
in ∼Tα, since x(d) ∈ Xα+1.

As (Tα)α<κ+ is increasing, there is an ordinal α < κ+ with the
property that Tα = Tα+1.

Lemma 2.1.3. If ∅ ∈ Tα, then there is a κ-coloring of H.

Proof. As the sets of the form φX(Nt) ∩ Xβ, where β ≤ α and
t ∈ T β, are H-independent, it is sufficient to show that they cover X.

27



28 2. THE BOX-OPEN DIHYPERGRAPH DICHOTOMY

But if x ∈ X, then there is a least ordinal γ ≤ α+ 1 such that x /∈ Xγ,
and since γ is necessarily the successor of some ordinal β ≤ α, there
exists t ∈ T β such that x ∈ φX(Nt), so x ∈ φX(Nt) ∩Xβ.

By Lemma 2.1.3, we can assume that ∅ /∈ Tα. Lemma 2.1.2 and DC

then yield a sequence of functions φn : Dn → ∼Tα such that:

(a) ∀d ∈ D∀t ∈ Dn φn(t) @ φn+1(t a (d)).
(b) ∀t ∈ Dn

∏
d∈D φX(Nφn+1(ta(d))) ⊆ H.

Condition (a) ensures that we obtain a continuous map φ∞ : DN → κN

by setting φ∞(b) =
⋃
n∈N φn(b � n) for all b ∈ DN. To see that the map

φ = φX ◦ φ∞ is a homomorphism from HDN to H, note that if n ∈ N
and t ∈ Dn, then φD(

∏
d∈DNta(d)) ⊆

∏
d∈D φX(Nφn+1(ta(d))) ⊆ H by

condition (b).

Theorem 2.1.4 (Feng, Carroy-M-Soukup). Suppose that D is a
countable discrete space of cardinality at least two, X is an analytic
Hausdorff space, and H is a box-open D-dimensional dihypergraph on
X. Then exactly one of the following holds:

(1) There is an ℵ0-coloring of H.
(2) There is a continuous homomorphism φ : DN → X from HDN to H.

Proof. Proposition 1.6.7 ensures that the two conditions are mu-
tually exclusive, and the special case of Theorem 2.1.1 where κ = ℵ0
implies that at least one of them holds.

Theorem 2.1.5 (Feng, Carroy-M-Soukup). Suppose that ADR holds,
D is a countable discrete space of cardinality at least two, X is a subset
of an analytic Hausdorff space, and H is a box-open D-dimensional
dihypergraph on X. Then exactly one of the following holds:

(1) There is an ℵ0-coloring of H.
(2) There is a continuous homomorphism φ : DN → X from HDN to H.

Proof. Proposition 1.6.7 ensures that the two conditions are mu-
tually exclusive. Theorem 1.4.15 yields an aleph κ for which X is
κ-Souslin, so Theorem 2.1.1 ensures that there is a κ-coloring of H or
a continuous homomorphism φ : DN → X from HDN to H, thus Propo-
sition 1.6.4 implies that at least one of the two conditions holds.

Remark 2.1.6. Theorem 2.1.5 continues to hold under the weaker
hypothesis that AD holds (see [CMS]), yielding analogous generaliza-
tions of the other consequences of ADR established in this chapter.

The following observation often ensures that the homomorphisms
given by the above results are injective:
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Proposition 2.1.7. Suppose that D is a set of cardinality at least
two, X is a set, H is a D-dimensional dihypergraph on X consisting
solely of injective sequences, and φ : DN → X is a homomorphism from
HDN to H. Then φ is injective.

Proof. Suppose that a, b ∈ DN are distinct, fix c ∈ HDN for which
a, b ∈ c(D), and note that φ ◦ c ∈ H, so φ(a) 6= φ(b).

A digraph on X is an irreflexive binary relation on X, and a graph
is a symmetric digraph. Note that every homomorphism φ : X → Y
from a digraph G on X to a graph H on Y is a homomorphism from
G±1 to H. The complete graph on X is given by KX = ∼∆(X). As
KX = H±1

2N
, it follows that a map φ : 2N → X is a homomorphism from

H2N to a graph G if and only if it is a homomorphism from KX to G.
We next consider the circumstances under which a set can be well-

ordered:

Theorem 2.1.8 (Souslin). Suppose that κ is an aleph and X is a
κ-Souslin Hausdorff space. Then at least one of the following holds:

(1) The cardinality of X is at most κ.
(2) There is a continuous injection φ : 2N ↪→ X.

Proof. As every KX-independent set Y ⊆ X contains at most
one point, this follows from the special cases of Theorem 2.1.1 and
Proposition 2.1.7 where D = 2 and H = KX .

Theorem 2.1.9 (Souslin). Suppose that X is an analytic Hausdorff
space. Then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection φ : 2N ↪→ X.

Proof. As c 6≤ ℵ0, this follows from the special case of Theorem
2.1.8 where κ = ℵ0.

Theorem 2.1.10 (Davis). Suppose that ADR holds and X is a subset
of an analytic Hausdorff space. Then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection φ : 2N ↪→ X.

Proof. As c 6≤ ℵ0 and every KX-independent set Y ⊆ X contains
at most one point, this follows from the analog of the proof of Theo-
rem 2.1.8 in which one replaces the use of Theorem 2.1.1 with that of
Theorem 2.1.5.

Finally, we consider the circumstances under which a space can be
covered by a well-orderable family of compact sets.
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Theorem 2.1.11 (Carroy-M-Soukup). Suppose that κ is an aleph,
X is a metric space, and Y ⊆ X is κ-Souslin. Then at least one of the
following holds:

(1) There is a cover of Y by at most κ-many compact subsets of
X.

(2) There is a closed continuous injection φ : NN ↪→ X with the
property that φ(NN) ⊆ Y .

Proof. Let H be the N-dimensional dihypergraph on X consisting
of all injective sequences x ∈ XN with no convergent subsequence. Note
that if x ∈ H, εn ≤ infm∈N\{n} d(x(m), x(n)) for all n ∈ N, and εn → 0,
then

∏
n∈N B(x(n), εn/2) ⊆ H, so H is box open. As every closed H-

independent set is compact, Proposition 1.6.3 ensures that if there is
a κ-coloring of H � Y , then condition (1) holds. Otherwise, Theorem
2.1.1 yields a continuous homomorphism φ : NN → Y from HNN to H,
and Proposition 2.1.7 ensures that φ is injective. To see that φ sends
closed subsets of NN to closed subsets of X, it is sufficient to show
that every sequence a ∈ (NN)N for which φ ◦ a converges in X has a
convergent subsequence. If there exists b ∈ NN such that a(n)(i) < b(i)
for all i, n ∈ N, then the compactness of

∏
i∈N b(i) yields the desired

subsequence. So suppose, towards a contradiction, that there does not
exist such a b. Then there is a least i ∈ N for which {a(n)(i) | n ∈ N}
is infinite. By passing to a subsequence, we can assume that for all
distinct m,n ∈ N, the sequences a(m) and a(n) differ from one another
for the first time on their ith coordinates. Fix b ∈ HNN for which
a(N) ⊆ b(N), and observe that φ ◦ b ∈ H, contradicting the fact that
φ ◦ a converges.

A subset of a topological space is Kσ if it is a union of countably-
many compact sets.

Theorem 2.1.12 (Hurewicz, Kechris–Saint Raymond). Suppose that
X is a metric space and Y ⊆ X is analytic. Then exactly one of the
following holds:

(1) There is a Kσ subset of X containing Y .
(2) There is a closed continuous injection φ : NN ↪→ X with the

property that φ(NN) ⊆ Y .

Proof. As NN is not Kσ and preimages of compact sets under
continuous closed injections are compact, this follows from the special
case of Theorem 2.1.11 where κ = ℵ0.

Theorem 2.1.13 (Kechris–Saint Raymond). Suppose that ADR holds,
X is an analytic metric space, and Y ⊆ X. Then exactly one of the
following holds:
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(1) There is a Kσ subset of X containing Y .
(2) There is a closed continuous injection φ : NN ↪→ X with the

property that φ(NN) ⊆ Y .

Proof. As NN is not Kσ and preimages of compact sets under
continuous closed injections are compact, this follows from the analog
of the proof of Theorem 2.1.11 in which one replaces the use of Theorem
2.1.1 with that of Theorem 2.1.5.

2. Partial compactifications

Given sets Y ⊆ X<N and Z ⊆ X≤N, let Y a Z denote the set of
sequences of the form y a z, where y ∈ Y and z ∈ Z. Given a sequence
(Xn)n∈N of topological spaces, the product topology on (

∏
n∈NXn) ∪⋃

n∈N
∏

m<nXm is the topology generated by the basic open sets of the
form (

∏
m<n Um) a ((

∏
m∈NXm+n) ∪

⋃
m∈N

∏
`<mX`+n), where n ∈ N

and Um ⊆ Xm is open for all m < n.

Proposition 2.2.1. Suppose that (Xn)n∈N is a sequence of compact
spaces and Un is a proper open subset of Xn for all n ∈ N. Then
(
∏

n∈N Un) ∪
⋃
n∈N(

∏
m<n Um) a (∼Un)1 is compact.

Proof. Suppose that V is a family of open subsets of (
∏

n∈NXn)∪⋃
n∈N

∏
m<nXm covering the space in question. For all n ∈ N, let Vn

be the family of all open hyperrectangles
∏

m<n Vm ⊆
∏

m<nXm such
that (

∏
m<n Vm) a

⋃
m∈N

∏
`<mX`+n is contained in a set in V .

Lemma 2.2.2. Suppose that n ∈ N and Km ⊆ Um is a non-empty
compact set for all m < n. Then there is a compact set Kn ⊆ Un for
which there is a finite set Fn+1 ⊆ Vn+1 covering (

∏
m<nKm) a (∼Kn)1.

Proof. As (
∏

m<nKm) a (∼Un)1 is compact, there is a finite sub-
cover Fn+1 ⊆ Vn+1 of (

∏
m<nKm) a (∼Un)1. Let Fn+1 be the family

of sets F ⊆ Fn+1 for which {Vn |
∏

m<n+1 Vm ∈ F} covers ∼Un, and de-
fine Kn = ∼

⋂
F∈Fn+1

⋃∏
m<n+1 Vm∈F

Vn. As ∼Un ⊆ ∼Kn, it follows that

Kn ⊆ Un. To see that Fn+1 covers (
∏

m<nKm) a (∼Kn)1, suppose
that x ∈ (

∏
m<nKm) a (∼Kn)1, and observe that the corresponding

family F = {
∏

m<n+1 Vm ∈ Fn+1 | x � n ∈
∏

m<n Vm} is in Fn+1, so
the definition of Kn yields a hyperrectangle

∏
m<n+1 Vm ∈ F for which

xn ∈ Vn, thus x ∈
∏

m<n+1 Vm ∈ Fn+1.

Observe that if n ∈ N, Km ⊆ Um is a non-empty compact set for
all m < n, Fm+1 ⊆ Vm+1 is a cover of (

∏
`<mK`) a (∼Km)1 for all

m < n, and Fn+1 ⊆ Vn+1 is a cover of (
∏

m<nKm) a X1, then the
basic open subsets of (

∏
m∈NXm) ∪

⋃
m∈N

∏
`<mXm associated with
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the sets in
⋃
m<n+1Fm+1 cover (

∏
n∈N Un)∪

⋃
n∈N(

∏
m<n Um) a (∼Un)1.

By Lemma 2.2.2 and DC, we can therefore assume that there are non-
empty compact sets Kn ⊆ Un and finite subcovers Fn+1 ⊆ Vn+1 of
(
∏

m<nKm) a (∼Kn)1 for all n ∈ N. Let V∞ be the family of all
basic open subsets of (

∏
n∈NXn) ∪

⋃
n∈N

∏
m<nXm contained in a set

in V . As
∏

n∈NKn is compact, there is a finite subcover F∞ ⊆ V∞
of

∏
n∈NKn. Fix n ∈ N for which every set in F∞ is of the form

(
∏

`<m V`) a ((
∏

`∈NX`+m) ∪
⋃
`∈N

∏
k<`Xk+m), where m < n + 1 and∏

`<m V` ⊆
∏

`<mX` is an open hyperrectangle. Then F∞ is a cover
of (

∏
m<nKm) a

⋃
m∈N

∏
`<mX`+n, so the sets in F∞ along with the

basic open subsets of (
∏

m∈NXm)∪
⋃
m∈N

∏
`<mXm associated with the

sets in
⋃
m<nFm+1 cover (

∏
n∈N Un) ∪

⋃
n∈N(

∏
m<n Um) a (∼Un)1.

An ultrametric on X is a function ρ : X × X → [0,∞) such that
ρ(x, y) = 0 ⇐⇒ x = y and ρ(x, y) = ρ(y, x) for all x, y ∈ X, and
ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} for all x, y, z ∈ X. Given a point x ∈ X
and a set Y ⊆ X, define ρ(x, Y ) = infy∈Y ρ(x, y).

Proposition 2.2.3. Suppose that X is an ultrametric space, x, y ∈
X, Z ⊆ Y , and ρX(x, Z) > ρX(y, Z). Then ρX(x, Z) ≤ ρ(x, y).

Proof. Fix z ∈ Z with the property that ρX(x, Z) > ρX(y, z).
As ρX(x, Z) ≤ ρX(x, z) ≤ max{ρX(x, y), ρX(y, z)}, it follows that
ρX(x, Z) ≤ ρX(x, y).

Proposition 2.2.4. Suppose that (Xn)n∈N is a sequence of (com-
plete) ultrametric spaces and Un ⊆ Xn is open for all n ∈ N. Then
(
∏

n∈N Un)∪
⋃
n∈N(

∏
m<n Um) a (∼Un)1 admits a compatible (complete)

ultrametric.

Proof. Fix compatible (complete) ultrametrics ρn onXn such that
diamρn(Xn) < 1 for all n ∈ N and diamρn(Xn) → 0, and define
ρ : ((

∏
n∈N Un) ∪

⋃
n∈N(

∏
m<n Um) a (∼Un)1)2 → [0,∞) by ρ(x, y) =

maxn<|x|,|y| ρn(x(n), y(n))
∏

m<n max{ρm(x(m),∼Um), ρm(y(m),∼Um)}.
To see that ρ is an ultrametric, suppose that x, y, z ∈ (

∏
n∈N Un) ∪⋃

n∈N(
∏

m<n Um) a (∼Un)1, and fix n ∈ N with the property that ρ(x, z)
= ρn(x(n), z(n))

∏
m<n max{ρm(x(m),∼Um), ρm(z(m),∼Um)}.

Lemma 2.2.5. If m < n, then ρm(x(m),∼Um) = ρm(z(m),∼Um).

Proof. Observe that if ρm(x(m),∼Um) 6= ρm(z(m),∼Um), then
Proposition 2.2.3 ensures that max{ρm(x(m),∼Um), ρm(z(m),∼Um)} ≤
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ρm(x(m), z(m)), so

ρn(x(n), z(n))
∏

`<n max{ρ`(x(`),∼U`), ρ`(z(`),∼U`)}
<

∏
`<m+1 max{ρ`(x(`),∼U`), ρ`(z(`),∼U`)}

≤ ρm(x(m), z(m))
∏

`<m max{ρ`(x(`),∼U`), ρ`(z(`),∼U`)}
≤ ρ(x, z),

contradicting the definition of n.

Observe now that if ρm(x(m),∼Um) = ρm(y(m),∼Um) for allm < n,
then the fact that ρn(x(n), z(n)) ≤ max{ρn(x(n), y(n)), ρn(y(n), z(n))}
ensures that ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)}. Otherwise, there is a least
natural number m < n for which ρm(x(m),∼Um) 6= ρm(y(m),∼Um),
in which case one more application of Proposition 2.2.3 ensures that
ρm(x(m),∼Um) ≤ ρm(x(m), y(m)), so

ρ(x, z) = ρn(x(n), z(n))
∏

`<n ρ`(x(`),∼U`)

<
∏

`<m+1 ρ`(x(`),∼U`)

≤ ρm(x(m), y(m))
∏

`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)}
≤ ρ(x, y).

To see that the topology generated by ρ is coarser than that inher-
ited from the product topology, suppose that ε > 0 and x ∈ (

∏
n∈N Un)∪⋃

n∈N(
∏

m<n Um) a (∼Un)1, and fix n ∈ N such that diamρm(Xm) < ε
for all m ≥ n. Then the intersection of (

∏
m<min{n,|x|} Bρm(x(m), ε)) a

((
∏

m∈NXm+min{n,|x|})∪
⋃
m∈N

∏
`<mX`+min{n,|x|}) with the space in ques-

tion is contained in Bρ(x, ε), for if y is in the aforementioned intersec-
tion and m < min{|x|, |y|}, then either m < min{n, |x|} or m ≥ n, in
which case ρm(x(m), y(m))

∏
`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)} ≤

ρm(x(m), y(m)) < ε, so y ∈ Bρ(x, ε).
To see that the topology generated by ρ is finer than that inherited

from the product topology, observe that if 0 < ε < 1, x ∈ (
∏

n∈N Un) ∪⋃
n∈N(

∏
m<n Um) a (∼Un)1, and 1 ≤ n ≤ |x| is a natural number, then

Bρ(x, ε
∏

m<n−1 ρm(x(m),∼Um)) is contained in (
∏

m<n Bρm(x(m), ε)) a
((
∏

m∈NXm+n) ∪
⋃
m∈N

∏
`<mX`+n), for if y is in the former set and

m < min{n− 1, |y|}, then

ρm(x(m), y(m))
∏

`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)}
<

∏
`<n−1 ρ`(x(`),∼U`)

≤ ρm(x(m),∼Um)
∏

`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)},

so ρm(x(m), y(m)) < ρm(x(m),∼Um), and it follows that y(m) ∈ Um,
hence m + 1 < |y|, in which case the obvious induction ensures that
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n− 1 < |y|, so if m < n, then

ρm(x(m), y(m))
∏

`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)}
< ε

∏
`<n−1 ρ`(x(`),∼U`)

≤ ε
∏

`<m max{ρ`(x(`),∼U`), ρ`(y(`),∼U`)},

thus ρm(x(m), y(m)) < ε, and therefore y ∈ (
∏

m<n Bρm(x(m), ε)) a
((
∏

m∈NXm+n) ∪
⋃
m∈N

∏
`<mX`+n).

To see that the completeness of each ρn yields that of ρ, suppose
that (xk)k∈N is a ρ-Cauchy sequence, and note that if n ∈ N has the
property that |xk| > n for all but finitely many k ∈ N and (xk(m))k∈N
converges to a point of Um for all m < n, then there exists εm > 0
such that ∀∞k ∈ N ρ(xk(m),∼Um) ≥ εm for all m < n, so (xk(n))k∈N
is a ρn-Cauchy sequence, thus the completeness of ρn ensures that it
converges. A straightforward recursive construction therefore yields a
sequence x ∈ (

∏
n∈N Un)∪

⋃
n∈N(

∏
m<n Um) a (∼Un)1 with the property

that xk(n)→ x(n) for all n < |x|, in which case xk → x.

Let Cnvg(X) denote the set of sequences (xn)n∈N of elements of X
that converge to an element of X.

Proposition 2.2.6. Suppose that X and Y are metric spaces, D ⊆
X is dense, and φ : D → Y is a continuous homomorphism from
Cnvg(X) � D to Cnvg(Y ). Then there is a continuous extension
ψ : X → Y of φ.

Proof. Note first that if (wn)n∈N and (xn)n∈N are sequences of
elements of D that converge to the same point of X, then the sequence
(vn)n∈N, given by v2n = wn and v2n+1 = xn, is also convergent, thus
so too is (φ(vn))n∈N, hence (φ(wn))n∈N and (φ(xn))n∈N converge to the
same point of Y . It follows that there is a unique extension ψ : X → Y
of φ such that xn → x =⇒ ψ(xn) → ψ(x) for all (xn)n∈N ∈ DN and
x ∈ X. To see that ψ is continuous, suppose that (xn)n∈N is a sequence
of elements of X converging to some x ∈ X, fix sequences (xm,n)m∈N
of points of D converging to xn for all n ∈ N, fix a sequence (εn)n∈N
of positive real numbers converging to zero, fix a function f : N → N
such that ρX(xf(n),n, xn), ρY (ψ(xf(n),n), ψ(xn)) < εn for all n ∈ N, and
observe that xf(n),n → x, so ψ(xf(n),n)→ ψ(x), thus ψ(xn)→ ψ(x).

3. Separation by unions of closed hyperrectangles

A hyperrectangular homomorphism from a pair (RX , SX) of subsets
of

∏
d∈DXd to a pair (RY , SY ) of subsets of

∏
d∈D Yd is a function

φ :
∏

d∈D projd(RX ∪ SX)→
∏

d∈D Yd of the form φ(x)(d) = (φd◦x)(d),
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where φd : projd(RX ∪ SX)→ Yd for all d ∈ D, with the property that
φ(RX) ⊆ RY and φ(SX) ⊆ SY .

We use N∗ = N ∪ {∞} to denote the one-point compactification
of N, and H(D×N)N,∞ to denote the D-ary relation on the subspace

(D×N)N ∪ ((D×N)<N a (D×{∞})1) of (D×N∗)≤N consisting of all
sequences of the form (t a ((d,∞)))d∈D, where t ∈ (D × N)<N.

Proposition 2.3.1. Suppose that D is a non-empty countable dis-
crete space and C ⊆ (D × N)N ∪ ((D × N)<N a (D × {∞})1) is an
H(D×N)N,∞-independent closed set. Then C is meager.

Proof. As C ∩ (D × N)N is H(D×N)N-independent, (D × N)N is

comeager in (D × N)N ∪ ((D × N)<N a (D × {∞})1), and Theorem
1.5.1 and Proposition 2.2.4 ensure that the latter is a Baire space,
Proposition 1.6.6 ensures that C is meager.

Theorem 2.3.2 (Carroy-M-Soukup). Suppose that D is a non-
empty countable discrete space, κ is an aleph, (Xd)d∈D is a sequence of
metric spaces, R ⊆

∏
d∈DXd is κ-Souslin, and S ⊆ ∼R. Then at least

one of the following holds:

(1) There is a union of at most κ-many closed hyperrectangles
separating R from S.

(2) There exists a continuous hyperrectangular homomorphism φ :∏
d∈D(D × N)N ∪ ((D × N)<N a {((d,∞))})→

∏
d∈DXd from

(∆D((D × N)N),H(D×N)N,∞) to (R, S).

Proof. Let H be the (D×N)-dimensional dihypergraph on R con-
sisting of all sequences (xd,n)(d,n)∈D×N of elements of R for which there
exists y ∈ S with the property that ∀d ∈ D y(d) = limn→∞ xd,n(d).
Observe that if (xd,n)(d,n)∈D×N ∈ H, εn → 0, and Ud,n = {x ∈ R |
ρXd(x(d), xd,n(d)) < εn} for all (d, n) ∈ D × N, then

∏
(d,n)∈D×N Ud,n ⊆

H, so H is box open. Moreover, if Q ⊆ R is H-independent, then
there does not exist y ∈ (

∏
d∈D projd(Q)) ∩ S, since otherwise there

are sequences (xd,n)n∈N of elements of projd(Q) such that xd,n → y(d)
for all d ∈ D, as well as x′d,n ∈ Q such that xd,n = x′d,n(d) for all
(d, n) ∈ D × N, thus x′d,n(d) → y(d) for all d ∈ D. It follows that if

there is a κ-coloring c : R → κ of H, then
⋃
α<κ

∏
d∈D projd(c

−1({α}))
separates R from S. Otherwise, Theorem 2.1.1 yields a continuous ho-
momorphism φ′ : (D × N)N → R from H(D×N)N to H. Note that for
all d ∈ D, the function projd ◦ φ′ is a continuous homomorphism from
Cnvg((D×N)N ∪ ((D×N)<N a {((d,∞))})) � (D×N)N to Cnvg(Xd),
so Proposition 2.2.6 ensures the existence of a continuous extension
φd : (D×N)N ∪ ((D×N)<N a {((d,∞))})→ Xd of projd ◦ φ′, in which
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case the function φ =
∏

d∈D φd is a hyperrectangular homomorphism
from (∆D((D × N)N),H(D×N)N,∞) to (R, S).

Theorem 2.3.3 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that
D is a non-empty countable discrete space, (Xd)d∈D is a sequence of
metric spaces, R ⊆

∏
d∈DXd is analytic, and S ⊆ ∼R. Then exactly

one of the following holds:

(1) There is a union of countably-many closed hyperrectangles sep-
arating R from S.

(2) There exists a continuous hyperrectangular homomorphism φ :∏
d∈D(D × N)N ∪ ((D × N)<N a {((d,∞))})→

∏
d∈DXd from

(∆D((D × N)N),H(D×N)N,∞) to (R, S).

Proof. To see that conditions (1) and (2) are mutually exclusive,
note that if (

∏
d∈D Cd,n)n∈N is a sequence of hyperrectangles whose

union separates ∆D((D × N)N) from H(D×N)N,∞, then (
⋂
d∈D Cd,n)n∈N

is a cover of (D × N)N by H(D×N)N,∞-independent sets, and appeal to

Proposition 2.3.1, noting that (D×N)N ∪ ((D×N)<N a (D× {∞})1)
is a Baire space in which (D×N)N is comeager, by Theorem 1.5.1 and
Proposition 2.2.4. To see that at least one of the two conditions holds,
appeal to the special case of Theorem 2.3.2 where κ = ℵ0.

Theorem 2.3.4 (Carroy-M-Soukup). Suppose that ADR holds, D is
a non-empty countable discrete space, (Xd)d∈D is a sequence of analytic
metric spaces, R ⊆

∏
d∈DXd, and S ⊆ ∼R. Then exactly one of the

following holds:

(1) There is a union of countably-many closed hyperrectangles sep-
arating R from S.

(2) There exists a continuous hyperrectangular homomorphism φ :∏
d∈D(D × N)N ∪ ((D × N)<N a {((d,∞))})→

∏
d∈DXd from

(∆D((D × N)N),H(D×N)N,∞) to (R, S).

Proof. The proof that conditions (1) and (2) are mutually exclu-
sive is exactly the same as in Theorem 2.3.3. The proof that at least
one of the two conditions holds is analogous to that of Theorem 2.3.2,
replacing the use of Theorem 2.1.1 with that of Theorem 2.1.5.

In particular, we obtain a characterization of the circumstances
under which two disjoint sets can be separated by a well-ordered union
of closed sets:

Theorem 2.3.5 (Carroy-M-Soukup). Suppose that κ is an aleph,
X is a metric space, A ⊆ X is κ-Souslin, and Y ⊆ ∼A. Then at least
one of the following holds:
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(1) There is a union of at most κ-many closed sets separating A
from Y .

(2) There is a continuous reduction π : NN ∪ (N<N a {(∞)}) →
A ∪ Y of NN to A.

Proof. This is the special case of Theorem 2.3.2 where D = 1.

Theorem 2.3.6 (Hurewicz, Kechris-Louveau-Woodin). Suppose that
X is a metric space, A ⊆ X is analytic, and Y ⊆ ∼A. Then exactly
one of the following holds:

(1) There is an Fσ subset of X separating A from Y .
(2) There is a continuous reduction π : NN ∪ (N<N a {(∞)}) →

A ∪ Y of NN to A.

Proof. This is the special case of Theorem 2.3.3 where D = 1.

Theorem 2.3.7 (Kechris-Louveau-Woodin). Suppose that ADR holds,
X is an analytic metric space, A ⊆ X, and Y ⊆ ∼A. Then exactly one
of the following holds:

(1) There is an Fσ subset of X separating A from Y .
(2) There is a continuous reduction π : NN ∪ (N<N a {(∞)}) →

A ∪ Y of NN to A.

Proof. This is the special case of Theorem 2.3.4 where D = 1.

We next generalize Theorems 2.1.1, 2.1.4, and 2.1.5 beyond box-
open dihypergraphs:

Theorem 2.3.8 (Carroy-M-Soukup). Suppose that D is a countable
discrete space of cardinality at least two, κ is an aleph, X is a κ-Souslin
metric space, and H is a D-dimensional dihypergraph on X. Then at
least one of the following holds:

(1) There is a cover of X by at most κ-many H-independent closed
sets.

(2) There is a continuous homomorphism φ : (D × N)N ∪ ((D ×
N)<N a (D × {∞})1)→ X from H(D×N)N,∞ to H.

Proof. Observe that if (
∏

d∈D Cα,d)α<κ is a sequence of hyperrect-
angles whose union separates ∆D(X) from H, then (

⋂
d∈D Cα,d)α<κ is

a cover of X by H-independent sets. By Theorem 2.3.2, we can there-
fore assume that there is a continuous hyperrectangular homomorphism∏

d∈D φd from (∆D((D × N)N),H(D×N)N,∞) to (∆D(X), H). But then
the function φ =

⋃
d∈D φd is a homomorphism from H(D×N)N,∞ to H,

and Proposition 2.2.6 ensures that it is continuous.
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Theorem 2.3.9 (Lecomte-Zeleny, Carroy-M-Soukup). Suppose that
D is a countable discrete space of cardinality at least two, X is an ana-
lytic metric space, and H is a D-dimensional dihypergraph on X. Then
exactly one of the following holds:

(1) There is a ∆0
2-measurable ℵ0-coloring of H.

(2) There is a continuous homomorphism φ : (D × N)N ∪ ((D ×
N)<N a (D × {∞})1)→ X from H(D×N)N,∞ to H.

Proof. To see that conditions (1) and (2) are mutually exclusive,
note that (D × N)N ∪ ((D × N)<N a (D × {∞})1) is a Baire space by
Theorem 1.5.1 and Proposition 2.2.4, and appeal to Propositions 1.6.5
and 2.3.1. To see that at least one of them holds, appeal to the special
case of Theorem 2.3.8 where κ = ℵ0.

Theorem 2.3.10 (Carroy-M-Soukup). Suppose that ADR holds, D
is a countable discrete space of cardinality at least two, X is a subset of
an analytic metric space, and H is a D-dimensional dihypergraph on
X. Then exactly one of the following holds:

(1) There is a ∆0
2-measurable ℵ0-coloring of H.

(2) There is a continuous homomorphism φ : (D × N)N ∪ ((D ×
N)<N a (D × {∞})1)→ X from H(D×N)N,∞ to H.

Proof. The proof that conditions (1) and (2) are mutually exclu-
sive is exactly the same as in Theorem 2.3.9. The proof that at least
one of the two conditions holds is analogous to that of Theorem 2.3.8,
replacing the use of Theorem 2.3.2 with that of Theorem 2.3.4.



CHAPTER 3

The G0 dichotomy, I: Abstract colorings

1. Colorings within cliques

Given a binary relation R on X, we say that a set Y ⊆ X is an
R-clique if y R z for all distinct y, z ∈ Y .

Theorem 3.1.1 (Geschke). Suppose that κ is an aleph, X is a Hau-
sdorff space, G is a κ-Souslin digraph on X, and R is a reflexive Gδ

binary relation on X. Then at least one of the following holds:

(1) For every R-clique Y ⊆ X, there is a κ-coloring of G � Y .
(2) There is a continuous homomorphism φ : 2N → X from G0 to

G for which φ(2N) is an R-clique.

Proof. Suppose that condition (1) fails, and fix an R-clique Y ⊆
X for which there is no κ-coloring of G � Y . By Proposition 1.4.1,
we can assume that there is a continuous surjection φG : κN � G.
By Propositions 1.4.1, 1.4.2, and 1.4.3, we can assume that there is
a continuous function φX : κN → X for which φX(κN) is the union of
the left and right projections of G onto X. Fix a decreasing sequence
(Rn)n∈N of open subsets of X ×X whose intersection is R, as well as
sequences sn ∈ 2n for which G0 = G{sn|n∈N}.

We will define a decreasing sequence (Y α)α<κ+ of subsets of Y , off
of which there are κ-colorings of G � Y . We begin by setting Y 0 = Y .
For all limit ordinals λ < κ+, we set Y λ =

⋂
α<λ Y

α. To describe the
construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na),
where na ∈ N, φa : 2n

a → κ<N, ψan : 2n
a−(n+1) → κn

a
for all n < na, and

φX(Nφa(s)) × φX(Nφa(t)) ⊆ Rna for all distinct s, t ∈ 2n
a
. A one-step

extension of an approximation a is an approximation b such that:

(a) nb = na + 1.

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s @ t =⇒ φa(s) @ φb(t)).

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s @ t =⇒ ψan(s) @ ψbn(t)).

Similarly, a configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ),
where nγ ∈ N, φγ : 2n

γ → κN, ψγn : 2n
γ−(n+1) → κN for all n < nγ, and

(φG ◦ ψγn)(t) = ((φX ◦ φγ)(sn a (0) a t), (φX ◦ φγ)(sn a (1) a t)) for

39
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all n < nγ and t ∈ 2n
γ−(n+1). A configuration γ is compatible with an

approximation a if the following conditions hold:

(i) na = nγ.
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

A configuration γ is compatible with a set Y ′ ⊆ Y if (φX◦φγ)(2n
γ
) ⊆ Y ′.

An approximation a is Y ′-terminal if no configuration is compatible
with a one-step extension of a and Y ′. Let A(a, Y ′) denote the set of
points of the form (φX ◦φγ)(sna), where γ varies over all configurations
compatible with a and Y ′.

Lemma 3.1.2. Suppose that Y ′ ⊆ Y and a is a Y ′-terminal approx-
imation. Then A(a, Y ′) is G-independent.

Proof. Suppose, towards a contradiction, that there are configu-
rations γ0 and γ1, both compatible with a and Y ′, with the property
that ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)) ∈ G. Fix a sequence d ∈ κN

such that φG(d) = ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)), and let γ denote
the configuration given by nγ = na + 1, φγ(t a (i)) = φγi(t) for all
i < 2 and t ∈ 2n

a
, ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and

t ∈ 2n
a−(n+1), and ψγna(∅) = d. Then γ is compatible with a one-step

extension of a, contradicting the fact that a is Y ′-terminal.

Define Y α+1 to be the difference of Y α and the union of the sets of
the form A(a, Y α), where a varies over all Y α-terminal approximations.

Lemma 3.1.3. Suppose that α < κ+ and a is a non-Y α+1-terminal
approximation. Then a has a non-Y α-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a config-
uration γ compatible with b and Y α+1. Then (φX ◦ φγ)(snb) ∈ Y α+1,
so b is not Y α-terminal.

Fix α < κ+ such that the families of Y α-terminal approximations
and Y α+1-terminal approximations are one and the same, and let a0
denote the unique approximation for which na0 = 0 and φa0(∅) = ∅.
As A(a0, Y

′) = Y ′ for all Y ′ ⊆ Y , we can assume that a0 is not Y α-
terminal, since otherwise Y α+1 = ∅, so there is a κ-coloring of G � Y .

By recursively applying Lemma 3.1.3, we obtain non-Y α-terminal
one-step extensions an+1 of an for all n ∈ N. Define φ′, ψn : 2N → κN

by φ′(c) =
⋃
n∈N φ

an(c � n) and ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1)))

for all n ∈ N. Clearly these functions are continuous.
To see that the function φ = φX ◦ φ′ is a homomorphism from G0

to G, we will show the stronger fact that if c ∈ 2N and n ∈ N, then

(φG ◦ ψn)(c) = ((φX ◦ φ′)(sn a (0) a c), (φX ◦ φ′)(sn a (1) a c)).
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And for this, it is sufficient to show that if U is an open neighborhood
of ((φX ◦ φ′)(sn a (0) a c), (φX ◦ φ′)(sn a (1) a c)) and V is an
open neighborhood of (φG ◦ ψn)(c), then U ∩ V 6= ∅. Towards this
end, fix m > n such that φX(Nφam (sna(0)as))× φX(Nφam (sna(1)as)) ⊆ U
and φG(Nψamn (s)) ⊆ V , where s = c � (m − (n + 1)). The fact that
am is not Y α-terminal yields a configuration γ compatible with am, in
which case ((φX ◦ φγ)(sn a (0) a s), (φX ◦ φγ)(sn a (1) a s)) ∈ U and
(φG ◦ ψγn)(s) ∈ V , thus U ∩ V 6= ∅.

To see that φ(2N) is an R-clique, observe that if c, d ∈ 2N are
distinct and n ∈ N is sufficiently large that c � n 6= d � n, then
φ(c) ∈ φX(Nφan (c�n)) and φ(d) ∈ φX(Nφan (d�n)), so φ(c) Rn φ(d).

Theorem 3.1.4 (Geschke). Suppose that X is a Hausdorff space,
G is an analytic digraph on X, and R is a reflexive Gδ binary relation
on X. Then at least one of the following holds:

(1) For every R-clique Y ⊆ X, there is an ℵ0-coloring of G � Y .
(2) There is a continuous homomorphism φ : 2N → X from G0 to

G for which φ(2N) is an R-clique.

Proof. This is the special case of Theorem 3.1.1 where κ = ℵ0.

Theorem 3.1.5 (Geschke). Suppose that X is an analytic Haus-
dorff space, G is a Σ1

2 digraph on X, and R is a reflexive Gδ binary
relation on X. Then at least one of the following holds:

(1) For every R-clique Y ⊆ X, there is an ℵ1-coloring of G � Y .
(2) There is a continuous homomorphism φ : 2N → X from G0 to

G for which φ(2N) is an R-clique.

Proof. Note that G is ℵ1-Souslin by Propositions 1.4.2 and 1.4.10,
and appeal to the special case of Theorem 3.1.1 where κ = ℵ1.

Theorem 3.1.6 (Geschke). Suppose that AD holds, n ∈ N, X is
an analytic Hausdorff space, G is a Σ1

2n+1 digraph on X, and R is a
reflexive Gδ binary relation on X. Then exactly one of the following
holds:

(1) For every R-clique Y ⊆ X, there is a κ1
2n+1-coloring of G � Y .

(2) There is a continuous homomorphism φ : 2N → X from G0 to
G for which φ(2N) is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that G
is κ1

2n+1-Souslin by Theorem 1.4.14, and appeal to the special case of
Theorem 3.1.1 where κ = κ1

2n+1.
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Theorem 3.1.7 (Geschke). Suppose that AD holds, n ∈ N, X is
an analytic Hausdorff space, G is a Σ1

2n+2 digraph on X, and R is a
reflexive Gδ binary relation on X. Then exactly one of the following
holds:

(1) For every R-clique Y ⊆ X, there is a (κ1
2n+1)

+-coloring of
G � Y .

(2) There is a continuous homomorphism φ : 2N → X from G0 to
G for which φ(2N) is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that G is
(κ1

2n+1)
+-Souslin by Theorem 1.4.14, and appeal to the special case of

Theorem 3.1.1 where κ = (κ1
2n+1)

+.

Remark 3.1.8. For all n ∈ N, the weakenings of the correspond-
ing special cases of Theorems 3.1.6 and 3.1.7 in which conditions (1)
and (2) are not required to be mutually exclusive are consequences of
Det(∆1

n), yielding analogous generalizations of the other consequences
of AD established in this chapter.

Theorem 3.1.9 (Geschke). Suppose that ADR holds, X is an an-
alytic Hausdorff space, G is a digraph on X, and R is a reflexive Gδ

binary relation on X. Then exactly one of the following holds:

(1) For every R-clique Y ⊆ X, there is an ordinal-coloring of
G � Y .

(2) There is a continuous homomorphism φ : 2N → X from G0 to
G for which φ(2N) is an R-clique.

Proof. Proposition 1.6.11 ensures that the two conditions are mu-
tually exclusive. To see that at least one of them holds, note that there
is an aleph κ for which G is κ-Souslin by Theorem 1.4.14, and appeal
to Theorem 3.1.1.

2. Discrete perfect sets within cliques

An extended-valued quasi-metric on X is a map ρ : X×X → [0,∞]
such that ρ(x, x) = 0 for all x ∈ X, ρ(x, y) = ρ(y, x) for all x, y ∈ X,
and ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X. Given ε ≥ 0, we say
that (X, ρ) is ε-discrete if ρ(x, y) > ε for all distinct x, y ∈ X.

Theorem 3.2.1 (Geschke). Suppose that δ ≥ 0, ε ≥ 2δ, κ is an
aleph, X is a Hausdorff space, ρ is an extended-valued quasi-metric on
X for which ρ−1([0, δ]) is ℵ0-universally Baire and ρ−1([0, ε]) is co-κ-
Souslin, and R is a reflexive Gδ binary relation on X. Then at least
one of the following holds:



2. DISCRETE PERFECT SETS WITHIN CLIQUES 43

(1) Every R-clique Y ⊆ X is a union of at most κ-many sets of
ρ-diameter at most ε.

(2) There is a continuous injection π : 2N ↪→ X for which π(2N) is
an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. Suppose that condition (1) fails, fix an R-clique Y ⊆ X
for which there is no cover of Y by at most κ-many sets of ρ-diameter
at most ε, set G = ρ−1((ε,∞]), and observe that Theorem 3.1.1 yields
a continuous homomorphism φ : 2N → X from G0 to G for which φ(2N)
is an R-clique. Define G′ = (ρ ◦ (φ × φ))−1([0, δ]), and observe that
G0 ∩ (G′)−1G′ = ∅, so Proposition 1.6.10 ensures that G′ is meager,
thus Theorem 1.6.1 yields a continuous homomorphism ψ : 2N → 2N

from ∼∆(2N) to ∼G′. Define π = φ ◦ ψ.

Theorem 3.2.2 (Geschke). Suppose that κ is an aleph, X is a Hau-
sdorff space, ρ is an extended-valued quasi-metric on X for which there
are arbitrarily small δ, ε > 0 such that ρ−1([0, δ]) is ℵ0-universally Baire
and ρ−1([0, ε]) is co-κ-Souslin, and R is a reflexive Gδ binary relation
on X. Then at least one of the following holds:

(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) has a basis of
cardinality at most κ.

(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for
which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. By Theorem 3.2.1, it is enough to note that if εn → 0,
Yn is a cover of Y by sets of ρ-diameter at most εn for all n ∈ N, and
Un = {Bρ(Y ′, εn)∩Y | Y ′ ∈ Yn} for all n ∈ N, then the set U =

⋃
n∈N Un

is a basis for (Y, ρ).

The special case of either of the above theorems, where ρ is the
characteristic function of the complement of an equivalence relation
and R = X ×X, is a version of Harrington-Shelah’s perfect set theo-
rem for co-κ-Souslin equivalence relations. The analogous special cases
of the following results are Silver’s perfect set theorem for co-analytic
equivalence relations, Burgess’s perfect set theorem for analytic equiv-
alence relations, and their generalizations under determinacy.

Theorem 3.2.3 (Harrington-Friedman-Kechris, Geschke). Suppose
that X is an analytic Hausdorff space, ρ is an extended-valued quasi-
metric on X for which there are arbitrarily small ε > 0 such that
ρ−1([0, ε]) is co-analytic, and R is a reflexive Gδ binary relation on X.
Then exactly one of the following holds:

(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) is separable.
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(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for
which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. As Proposition 1.5.9 ensures that there are arbitrarily small
δ > 0 for which ρ−1([0, δ]) is ℵ0-universally Baire, the special case of
Theorem 3.2.2 where κ = ℵ0 yields ¬(1) =⇒ (2). To see that the two
conditions are mutually exclusive, note that condition (2) ensures that
the cardinality of any basis for (X, ρ) is at least c.

Theorem 3.2.4 (Geschke). Suppose that X is an analytic Haus-
dorff space, ρ is an extended-valued quasi-metric on X for which there
are arbitrarily small δ, ε > 0 such that ρ−1([0, δ]) is ℵ0-universally Baire
and ρ−1([0, ε]) is Π1

2, and R is a reflexive Gδ binary relation on X.
Then at least one of the following holds:

(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) has a basis of
cardinality at most ℵ1.

(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for
which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. As Propositions 1.4.2 and 1.4.10 ensure that there are ar-
bitrarily small ε > 0 for which ρ−1([0, ε]) is co-ℵ1-Souslin, this follows
from the special case of Theorem 3.2.2 where κ = ℵ1.

Theorem 3.2.5 (Geschke). Suppose that AD holds, n ∈ N, X is
an analytic Hausdorff space, ρ is an extended-valued quasi-metric on
X for which there are arbitrarily small ε > 0 such that ρ−1([0, ε]) is
Π1

2n+1, and R is a reflexive Gδ binary relation on X. Then exactly one
of the following holds:

(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) has a basis of
cardinality at most κ1

2n+1.
(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for

which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. As Theorem 1.1.5 ensures that 2N cannot be well-ordered,
Theorem 1.5.11 implies that ρ−1([0, δ]) is ℵ0-universally Baire for all
δ > 0, and Theorem 1.4.14 yields arbitrarily small ε > 0 for which
ρ−1([0, ε]) is co-κ1

2n+1-Souslin, this follows from the special case of The-
orem 3.2.2 where κ = κ1

2n+1.

Theorem 3.2.6 (Geschke). Suppose that AD holds, n ∈ N, X is an
analytic Hausdorff space, and ρ is an extended-valued quasi-metric on
X for which there are arbitrarily small ε > 0 such that ρ−1([0, ε]) is
Π1

2n+2, and R is a reflexive Gδ binary relation on X. Then exactly one
of the following holds:
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(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) has a basis of
cardinality at most (κ1

2n+1)
+.

(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for
which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. As Theorem 1.1.5 ensures that 2N cannot be well-ordered,
Theorem 1.5.11 implies that ρ−1([0, δ]) is ℵ0-universally Baire for all
δ > 0, and Theorem 1.4.14 yields arbitrarily small ε > 0 for which
ρ−1([0, ε]) is co-(κ1

2n+1)
+-Souslin, this follows from the special case of

Theorem 3.2.2 where κ = (κ1
2n+1)

+.

Theorem 3.2.7 (Geschke). Suppose that ADR holds, X is an ana-
lytic Hausdorff space, and ρ is an extended-valued quasi-metric on X.
Then exactly one of the following holds:

(1) For every R-clique Y ⊆ X, the space (Y, ρ � Y ) has a well-
orderable basis.

(2) There exist δ > 0 and a continuous injection π : 2N ↪→ X for
which π(2N) is an R-clique and (π(2N), ρ � π(2N)) is δ-discrete.

Proof. As Theorem 1.1.5 ensures that 2N cannot be well-ordered,
Theorem 1.5.11 implies that ρ−1([0, δ]) is ℵ0-universally Baire for all
δ > 0, and Theorem 1.4.15 yields an aleph κ for which there are ar-
bitrarily small ε > 0 such that ρ−1([0, ε]) is co-κ-Souslin, this follows
from Theorem 3.2.2.

3. Scrambled sets

Note that if X is a metric space, φ : X → R, and y ∈ X, then
lim infρX(x,y)→∞ φ(x) and lim supρX(x,y)→∞ φ(x) do not depend on y.
We denote them by lim inf ||x||→∞ φ(x) and lim sup||x||→∞ φ(x).

Suppose that S y X is an action of a metric semigroup on a
metric space. We say that two points x and y of X are proximal if
lim inf ||s||→∞ ρX(s ·x, s · y) = 0, we use PX

S to denote the set of all such
pairs, and we say that a set Y ⊆ X is proximal if it is a PX

S -clique.

Proposition 3.3.1. Suppose that S y X is an action of a metric
semigroup by continuous functions on a metric space. Then PX

S is Gδ.

Proof. The desired result follows from the fact that if r ∈ S, then
PX
S =

⋂
ε>0

⋂
n∈N

⋃
ρS(r,s)≥n{(x, y) ∈ X ×X | ρX(s · x, s · y) < ε}.

Associated with S y X is the function ρXS : X ×X → [0,∞] given
by ρXS (x, y) = lim sup||s||→∞ ρX(s · x, s · y).
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Proposition 3.3.2. Suppose that S y X is an action of a metric
semigroup by continuous functions on a metric space. Then ρXS is Bor-
el.

Proof. It is sufficient to observe that if r ∈ S and δ > 0, then
(ρXS )−1([δ,∞]) =

⋂
ε<δ

⋂
n∈N

⋃
ρS(r,s)≥n{(x, y) | ρX(s · x, s · y) > ε}.

Proposition 3.3.3. Suppose that S y X is an action of a metric
semigroup on a metric space. Then ρXS is an extended-valued quasi-
metric.

Proof. It is sufficient to show that if x, y, z ∈ X and ε > 0, then
ρXS (x, z) ≤ ρXS (x, y) + ρXS (y, z) + ε. Towards this end, suppose that
r ∈ S, fix n ∈ N such that supρS(r,s)≥n ρX(s · x, s · y) ≤ ρXS (x, y) + ε/3

and supρS(r,s)≥n ρX(s ·y, s ·z) ≤ ρXS (y, z)+ε/3, as well as s ∈ S with the

property that ρS(r, s) ≥ n and ρX(s · x, s · z) ≥ ρXS (x, z) − ε/3. Then
ρXS (x, z) ≤ ε/3 + ρX(s · x, s · z) ≤ ε/3 + ρX(s · x, s · y) + ρX(s · y, s · z) ≤
ε/3 + ρXS (x, y) + ε/3 + ρXS (y, z) + ε/3.

We say that a set Y ⊆ X is scrambled if it is proximal but 0-
discrete, and we say that S y X is Li-Yorke chaotic if there is a
scrambled uncountable set Y ⊆ X.

Theorem 3.3.4 (Geschke). Suppose that S y X is a Li-Yorke
chaotic action of a metric semigroup by continuous functions on an
analytic metric space. Then there is a continuous injection π : 2N ↪→ X
for which π(2N) is scrambled.

Proof. This is the special case of Theorem 3.2.1 where δ = ε = 0,
κ = ℵ0, ρ = ρXS , and R = PX

S .

We say that a set Y ⊆ X is uniformly scrambled if it is proximal
but there exists ε > 0 for which (Y, ρXS � Y ) is ε-discrete, and we say
that S y X is uniformly Li-Yorke chaotic if there is a uniformly-
scrambled uncountable set Y ⊆ X. As this rules out the separability
of (Y, ρXS � Y ), the following fact ensures that it yields a uniformly-
scrambled non-empty perfect set:

Theorem 3.3.5 (Geschke). Suppose that S y X is an action of a
metric semigroup by continuous functions on an analytic metric space.
Then exactly one of the following holds:

(1) For every proximal set Y ⊆ X, the space (Y, ρXS � Y ) is sepa-
rable.

(2) There is a continuous injection π : 2N ↪→ X for which π(2N) is
scrambled.
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Proof. This is the special case of Theorem 3.2.3 where ρ = ρXS
and R = PX

S .





CHAPTER 4

The G0 dichotomy, II: Borel colorings

1. Borel colorings

Given a set R ⊆ X × Y , we say that a pair (A,B) of sets is R-
independent if R ∩ (A×B) = ∅.

Proposition 4.1.1. Suppose that κ is an aleph for which every
(κ + 1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X
and Y are analytic Hausdorff spaces, R ⊆ X × Y is κ-Souslin, and
(A,B) is an R-independent pair of κ-Souslin sets. Then there is an
R-independent pair (A′, B′) of (κ+ 1)-Borel sets for which A ⊆ A′ and
B ⊆ B′.

Proof. As A is disjoint from projX(R∩(X×B)), and Propositions
1.4.2 and 1.4.3 ensure that the latter set is κ-Souslin, Theorem 1.4.7
yields a (κ+1)-Borel set A′ ⊆ X separating the former from the latter.
As B is disjoint from projY (R ∩ (A′ × Y )), and Propositions 1.4.2 and
1.4.3 ensure that the latter set is κ-Souslin, Theorem 1.4.7 yields a
(κ+ 1)-Borel set B′ ⊆ X separating the former from the latter.

Proposition 4.1.2. Suppose that κ is an aleph for which every
(κ+1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an
analytic Hausdorff space, G is a κ-Souslin digraph on X, and A ⊆ X is
a G-independent κ-Souslin set. Then there is a G-independent (κ+ 1)-
Borel set B ⊇ A.

Proof. The fact that A is G-independent ensures that (A,A) is a
G-independent pair, so Proposition 4.1.1 yields a G-independent pair
(C,D) of (κ+ 1)-Borel supersets of A. Set B = C ∩D.

Theorem 4.1.3 (Kanovei). Suppose that κ is an aleph for which
κ+-DC holds, λ ≥ κ is an aleph for which every (λ+ 1)-Borel subset of
an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff
space, and G is a κ-Souslin digraph on X. Then at least one of the
following holds:

(1) There is a (λ+ 1)-Borel κ-coloring of G.
(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

49



50 4. THE G0 DICHOTOMY, II: BOREL COLORINGS

Proof. By Proposition 1.4.1, we can assume that there are contin-
uous surjections φG : κN → G and φX : κN → X. Fix sequences sn ∈ 2n

for which G0 = G{sn|n∈N}.
We will recursively a decreasing sequence (Bα)α<κ+ of (λ+ 1)-Bor-

el subsets of X, off of which there are (λ + 1)-Borel κ-colorings of
G. We begin setting B0 = X. For all limit ordinals µ < κ+, we set
Bµ =

⋂
α<µB

α. To describe the construction at successor ordinals, we
require several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na),
where na ∈ N, φa : 2n

a → κn
a
, and ψan : 2n

a−(n+1) → κn
a

for all n < na.
A one-step extension of such an a is an approximation b for which:

(a) nb = na + 1.

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s @ t =⇒ φa(s) @ φb(t)).

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s @ t =⇒ ψan(s) @ ψbn(t)).

Similarly, a configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ),
where nγ ∈ N, φγ : 2n

γ → κN, ψγn : 2n
γ−(n+1) → κN for all n < nγ, and

(φG ◦ ψγn)(t) = ((φX ◦ φγ)(sn a (0) a t), (φX ◦ φγ)(sn a (1) a t)) for
all n < nγ and t ∈ 2n

γ−(n+1). A configuration γ is compatible with an
approximation a if the following conditions hold:

(i) na = nγ.
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

A configuration γ is compatible with a set X ′ ⊆ X if (φX ◦ φγ)(2n
γ
) ⊆

X ′. An approximation a is X ′-terminal if no configuration is com-
patible with a one-step extension of a and X ′. Let A(a,X ′) denote
the set of points of the form (φX ◦ φγ)(sna), where γ varies over all
configurations compatible with a and X ′.

Lemma 4.1.4. Suppose that X ′ ⊆ X and a is a Y -terminal approx-
imation. Then A(a,X ′) is G-independent.

Proof. Suppose, towards a contradiction, that there are configu-
rations γ0 and γ1, both compatible with a and X ′, with the property
that ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)) ∈ G. Fix a sequence d ∈ κN

such that φG(d) = ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)), and let γ denote
the configuration given by nγ = na + 1, φγ(t a (i)) = φγi(t) for all
i < 2 and t ∈ 2n

a
, ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and

t ∈ 2n
a−(n+1), and ψγna(∅) = d. Then γ is compatible with a one-step

extension of a, contradicting the fact that a is X ′-terminal.

For all Bα-terminal approximations a, Proposition 4.1.2 yields a
G-independent (λ + 1)-Borel set B(a,Bα) ⊇ A(a,Bα). Let Bα+1 be
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the set obtained from Bα by subtracting the union of the sets of the
form B(a,Bα), where a varies over all Bα-terminal approximations.

Lemma 4.1.5. Suppose that α < κ+ and a is a non-Bα+1-terminal
approximation. Then a has a non-Bα-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a config-
uration γ compatible with b and Bα+1. Then (φX ◦ φγ)(snb) ∈ Bα+1,
so b is not Bα-terminal.

Fix α < κ+ such that the families of Bα-terminal approximations
and Bα+1-terminal approximations are one and the same, and let a0
denote the unique approximation for which na0 = 0. As A(a0, X

′) =
X ′ for all X ′ ⊆ X, we can assume that a0 is not Bα-terminal, since
otherwise Bα+1 = ∅, so there is a (λ+ 1)-Borel κ-coloring of G.

By recursively applying Lemma 4.1.5, we obtain non-Bα-terminal
one-step extensions an+1 of an for all n ∈ N. Define φ, ψn : 2N → κN by
φ(c) =

⋃
n∈N φ

an(c � n) and ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1))) for

all n ∈ N. Clearly these functions are continuous.
To establish that the function π = φX ◦φ is a homomorphism from

GS to G, we will show the stronger fact that if c ∈ 2N and n ∈ N, then

(φG ◦ ψn)(c) = ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)) and V is an
open neighborhood of (φG ◦ ψn)(c), then U ∩ V 6= ∅. Towards this
end, fix m > n such that φX(Nφam (sna(0)as))× φX(Nφam (sna(1)as)) ⊆ U
and φG(Nψamn (s)) ⊆ V , where s = c � (m − (n + 1)). The fact that
am is not Bα-terminal yields a configuration γ compatible with am.
Then ((φX ◦ φγ)(sn a (0) a s), (φX ◦ φγ)(sn a (1) a s)) ∈ U and
(φG ◦ ψγn)(s) ∈ V , thus U ∩ V 6= ∅.

Remark 4.1.6. The assumption of κ+-DC can be reduced to κ-DC
by first running the above argument without Proposition 4.1.2 (i.e., by
setting B(a,Bα) = A(a,Bα) as in the proof of Theorem 3.1.1) to obtain
an upper bound α′ < κ+ for the least ordinal α < κ+ such that the
families of Bα-terminal and Bα+1-terminal approximations coincide.

Remark 4.1.7. Under the stronger assumption that there is a func-
tion sending each code for a (λ+1)-Borel subset of an analytic Hausdorff
space to a witness that the set is λ-Souslin, the assumption of κ-DC can
be removed by working with codes for the (λ+1)-Borel sets Bα. Under
AD, the existence of such a function follows from Theorem 1.4.14 and
other well-known consequences of determinacy (i.e., the coding lemma
and projective uniformization) when λ = κ1

2n+1.
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Remark 4.1.8. Kanovei has shown that both κ-DC and the assump-
tion that every (λ + 1)-Borel subset of an analytic Hausdorff space is
λ-Souslin can be removed (see [Kan97]), and the ideas underlying his
argument can be used to obtain analogous generalizations of the corol-
laries established in this chapter.

Theorem 4.1.9 (Kechris-Solecki-Todorcevic). Suppose that X is
an analytic Hausdorff space and G is an analytic digraph on X. Then
exactly one of the following holds:

(1) There is a Borel ℵ0-coloring of G.
(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

Proof. This follows from Theorem 1.4.10, Proposition 1.6.10, and
the special case of Remark 4.1.6 where κ = λ = ℵ0.

Theorem 4.1.10 (Kanovei). Suppose that AD holds, n ∈ N, X is
an analytic Hausdorff space, and G is a Σ1

2n+1 digraph on X. Then
exactly one of the following holds:

(1) There is a ∆1
2n+1-measurable κ1

2n+1-coloring of G.
(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

Proof. This follows from Theorem 1.4.14, Proposition 1.6.11, and
the special case of Remark 4.1.7 where κ = λ = κ1

2n+1.

Theorem 4.1.11 (Kanovei). Suppose that AD holds, n ∈ N, X is
an analytic Hausdorff space, and G is a Σ1

2n+2 digraph on X. Then
exactly one of the following holds:

(1) There is a ∆1
2n+3-measurable (κ1

2n+1)
+-coloring of G.

(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

Proof. By Theorem 1.4.14, Proposition 1.6.11, and the special
case of Remark 4.1.7 where κ = (κ1

2n+1)
+ and λ = κ1

2n+3.

Theorem 4.1.12 (Kechris-Solecki-Todorcevic). Suppose that ADR
holds, X is an analytic Hausdorff space, and G is a digraph on X.
Then exactly one of the following holds:

(1) There is an ordinal-valued-coloring of G.
(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

Proof. By the special case of Theorem 3.1.9 where R = X×X.

2. Index two subequivalence relations

Given an equivalence relation E on X, we say that a digraph G on
X is E-invariant if G = EGE.
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Proposition 4.2.1. Suppose that κ is an aleph for which every
(κ + 1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X is
an analytic Hausdorff space, E is a κ-Souslin equivalence relation on
X, G is an E-invariant κ-Souslin digraph on X, and B ⊆ X is a G-
independent (κ+ 1)-Borel set. Then B is contained in an E-invariant
G-independent (κ+ 1)-Borel set.

Proof. Set B0 = B, and given n ∈ N and a G-independent (κ+1)-
Borel set Bn ⊆ X, define An+1 = [Bn]E, and appeal to Proposition
4.1.2 to obtain a G-independent (κ+1)-Borel set Bn+1 ⊇ An+1. It only
remains to note that

⋃
n∈NBn is E-invariant and G-independent.

A transversal of an equivalence relation E on X over a subequiva-
lence relation F is a maximal set Y ⊆ X for which E � Y = F � Y .

Theorem 4.2.2. Suppose that κ is an aleph for which κ-DC holds
and every (κ + 1)-Borel subset of an analytic Hausdorff space is κ-
Souslin, X is an analytic Hausdorff space, E is a κ-Souslin equivalence
relation on X, and F is a ℵ0-universally-Baire co-κ-Souslin index-two
subequivalence relation of E. Then at least one of the following holds:

(1) There is a (κ+ 1)-Borel transversal of E over F .
(2) There exists a continuous homomorphism φ : 2N → X from

(F0 \∆(2N),E0 \ F0,∼E0) to (F \∆(X), E \ F,∼E).

Proof. Define G = E \F . If there is a (κ+1)-Borel κ-coloring c of
G, then each of the sets c−1({α}) is a (κ+ 1)-Borel partial transversal
of E over F . As x F y ⇐⇒ (E \ F )x ∩ (E \ F )y 6= ∅ for all x, y ∈ X,
it follows that F is κ-Souslin, so Proposition 4.2.1 yields F -invariant
(κ + 1)-Borel partial transversals Bα ⊆ X of E over F containing
c−1({α}). As [Bα]E can be expressed as {x ∈ X | ∃y ∈ [x]E y ∈ Bα}
and Bα ∪ {x ∈ X | ∀y ∈ X (y /∈ (E \ F )x or y ∈ Bα)}, Theorem 1.4.9
ensures that it is (κ+ 1)-Borel, thus so too is the transversal of E over
F given by

⋃
α<κBα \

⋃
β<α[Bβ]E. By Remark 4.1.6, we can therefore

assume that there is a continuous homomorphism φ : 2N → X from G0

to G. Let D′, E ′, and F ′ be the pullbacks of the diagonal on X, E, and
F through φ × φ. As G0 ∩ (F ′)−1F ′ = ∅, Proposition 1.6.10 ensures
that F ′ is meager. As E ′ = F ′ ∪ (id× (ι∅ ∪ ι−1∅ ))(F ′), Proposition 1.5.5
implies that E ′ has the Baire property. As G0 ⊆ E ′ \ F ′, Proposition
1.6.20 ensures that F0 ⊆ F ′ and E0 \ F0 ⊆ E ′ \ F ′, in which case
Proposition 1.6.22 yields a continuous homomorphism ψ : 2N → 2N

from (F0\∆(2N),E0\F0,∼E0) to (F ′\D′, E ′\F ′,∼E ′). Set π = φ◦ψ.

Theorem 4.2.3 (Louveau). Suppose that X is an analytic Haus-
dorff space, E is an analytic equivalence relation on X, and F is a
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co-analytic index-two subequivalence relation of E. Then exactly one
of the following holds:

(1) There is a Borel transversal of E over F .
(2) There exists a continuous homomorphism φ : 2N → X from

(F0 \∆(2N),E0 \ F0,∼E0) to (F \∆(X), E \ F,∼E).

Proof. This follows from Theorems 1.4.10 and 1.5.9, Proposition
1.6.22, and the special case of Theorem 4.2.2 where κ = ℵ0.

Theorem 4.2.4. Suppose that AD holds, n ∈ N, X is an analytic
Hausdorff space, E is a Σ1

2n+1 equivalence relation on X, and F is a
Π1

2n+1 index-two subequivalence relation of E. Then exactly one of the
following holds:

(1) There is a ∆1
2n+1 transversal of E over F .

(2) There exists a continuous homomorphism φ : 2N → X from
(F0 \∆(2N),E0 \ F0,∼E0) to (F \∆(X), E \ F,∼E).

Proof. This follows from Remark 4.1.7, Theorem 1.5.9, Proposi-
tion 1.6.22, and the proof of the special case of Theorem 4.2.2 where
κ = κ1

2n+1.

Theorem 4.2.5. Suppose that ADR holds, X is an analytic Haus-
dorff space, E is an equivalence relation on X, and F is an index-two
subequivalence relation of E. Then exactly one of the following holds:

(1) There is a transversal of E over F .
(2) There exists a continuous homomorphism φ : 2N → X from

(F0 \∆(2N),E0 \ F0,∼E0) to (F \∆(X), E \ F,∼E).

Proof. This follows from Theorem 1.5.9, Proposition 1.6.22, and
the analog of the proof of the special case of Theorem 4.2.2 for F ⊆ E
where the use of Proposition 4.2.1 is removed and the use of Theorem
4.1.3 is replaced with that of Theorem 4.1.12.

3. Perfect antichains

We say that a set Y ⊆ X is an R-antichain if it is an ⊥R-clique,
and an R-chain if it is ⊥R-independent.

Theorem 4.3.1 (M-Vidnyánszky). Suppose that κ is an aleph for
which κ-DC holds, λ ≥ κ is an aleph for which every (λ+1)-Borel subset
of an analytic Hausdorff space is λ-Souslin, X is an analytic Hausdorff
space, and R is an ℵ0-universally Baire quasi-order on X for which ⊥R
is κ-Souslin. Then at least one of the following holds:

(1) There is a cover of X by at most κ-many (λ + 1)-Borel R-
chains.
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(2) There is a continuous injection φ : 2N ↪→ X for which φ(2N) is
an R-antichain.

Proof. If condition (1) fails, then Remark 4.1.6 yields a continuous
homomorphism φ : 2N → X from G0 to ⊥R, in which case Proposition
1.6.19 ensures that condition (2) holds.

Theorem 4.3.2 (M-Vidnyánszky). Suppose that X is an analytic
Hausdorff space and R is an ℵ0-universally Baire quasi-order on X for
which ⊥R is analytic. Then exactly one of the following holds:

(1) There is a cover of X by countably-many Borel R-chains.
(2) There is a continuous injection φ : 2N ↪→ X for which φ(2N) is

an R-antichain.

Proof. The special case of Theorem 4.3.1 where κ = λ = ℵ0
ensures that at least one of the two conditions holds, and the fact that
c 6≤ ℵ0 implies that they are mutually exclusive.

Theorem 4.3.3 (M-Vidnyánszky). Suppose that AD holds, n ∈ N,
X is an analytic Hausdorff space, and R is a quasi-order on X for
which ⊥R is Σ1

2n+1. Then exactly one of the following holds:

(1) There is a cover of X by at most κ1
2n+1-many ∆1

2n+1 R-chains.
(2) There is a continuous injection φ : 2N ↪→ X for which φ(2N) is

an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is ℵ0-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where
κ = λ = κ1

2n+1 ensure that (1) or (2) holds, and Theorem 1.1.5 and the
fact that c 6≤ ℵ0 imply that they are mutually exclusive.

Theorem 4.3.4 (M-Vidnyánszky). Suppose that AD holds, n ∈ N,
X is an analytic Hausdorff space, and R is a quasi-order on X for
which ⊥R is Σ1

2n+2. Then exactly one of the following holds:

(1) There is a cover of X by at most (κ1
2n+1)

+-many ∆1
2n+3 R-

chains.
(2) There is a continuous injection φ : 2N ↪→ X for which φ(2N) is

an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is ℵ0-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.3.1 where
κ = (κ1

2n+1)
+ and λ = κ1

2n+3 ensure that (1) or (2) holds, and they are
mutually exclusive by Theorem 1.1.5 and the fact that c 6≤ ℵ0.

Theorem 4.3.5 (Foreman). Suppose that ADR holds, X is an ana-
lytic Hausdorff space, and R is a quasi-order on X. Then exactly one
of the following holds:
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(1) There is a cover of X by a well-ordered sequence of R-chains.
(2) There is a continuous injection φ : 2N ↪→ X for which φ(2N) is

an R-antichain.

Proof. As Theorem 1.5.11 ensures that R is ℵ0-universally Baire,
the analog of the proof of Theorem 4.3.1, where the use of Theorem
4.1.3 is replaced with that of Theorem 4.1.12, ensures that at least one
of the two conditions holds, and Theorem 1.1.5 and the fact that c 6≤ ℵ0
imply that they are mutually exclusive.

4. Parametrization and uniformization

Theorem 4.4.1 (M-Vidnyánszky). Suppose that κ is an aleph for
which κ-DC holds, λ ≥ κ is an aleph for which every (λ+1)-Borel subset
of an analytic Hausdorff space is λ-Souslin, X and Y are analytic Hau-
sdorff spaces, R is an ℵ0-universally Baire quasi-order on Y for which
⊥R is κ-Souslin, and S ⊆ X×Y is κ-Souslin. Then at least one of the
following holds:

(1) The set S is a union of at most κ-many (λ + 1)-Borel-in-S
sets whose vertical sections are R-chains.

(2) There exist x ∈ X and a continuous injection π : 2N ↪→ Sx for
which π(2N) is an R-antichain.

Proof. Suppose that condition (1) fails, let G be the graph on
X×Y with respect to which (x, y) and (x′, y′) are neighbors if and only
if they are both in S, x = x′, and y ⊥R y′, and observe that if a set
T ⊆ S is G-independent, then its vertical sections are R-chains, so by
Remark 4.1.6, we can assume that there is a continuous homomorphism
φ : 2N → X×Y from G0 to G. Then projX ◦φ is a homomorphism from
G0 to equality, so Proposition 1.6.14 ensures that it is a homomorphism
from E0 to equality, hence Propositions 1.6.15 and 1.6.16 imply that it
is constant. Let x denote its constant value, and observe that projY ◦φ
is a homomorphism from G0 to ⊥R. As

⋃
i<2 proji(G0) = 2N, it follows

that (projY ◦ φ)(2N) ⊆ Sx, so the proof of Proposition 1.6.19 yields a
continuous injection π : 2N ↪→ Sx for which π(2N) is an R-antichain.

Theorem 4.4.2 (M-Vidnyánszky). Suppose that X and Y are an-
alytic Hausdorff spaces, R is an ℵ0-universally Baire quasi-order on
Y for which ⊥R is analytic, and S ⊆ X × Y is an analytic set whose
vertical sections are unions of countably-many R-chains. Then S is
a union of countably-many Borel-in-S sets whose vertical sections are
R-chains.

Proof. The special case of Theorem 4.4.1 where κ = λ = ℵ0
ensures that if the conclusion fails, then there exist x ∈ X and a
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continuous injection π : 2N ↪→ Sx for which π(2N) is an R-antichain. As
c 6≤ ℵ0, this contradicts the fact that Sx is a union of countably-many
R-chains.

Theorem 4.4.3 (M-Vidnyánszky). Suppose that AD holds, n ∈ N,
X and Y are analytic Hausdorff spaces, R is a quasi-order on Y for
which ⊥R is Σ1

2n+1, and S ⊆ X × Y is a Σ1
2n+1 set whose vertical

sections are unions of at most κ1
2n+1-many R-chains. Then S is a

union of at most κ1
2n+1-many ∆1

2n+1-in-S sets whose vertical sections
are R-chains.

Proof. As Theorem 1.5.11 ensures that R is ℵ0-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where
κ = λ = κ1

2n+1 ensure that if the conclusion fails, then there exist
x ∈ X and a continuous injection π : 2N ↪→ Sx for which π(2N) is an
R-antichain. As Theorem 1.1.5 ensures that c 6≤ κ1

2n+1, this contradicts
the fact that Sx is a union of at most κ1

2n+1-many R-chains.

Theorem 4.4.4 (M-Vidnyánszky). Suppose that AD holds, n ∈ N,
X and Y are analytic Hausdorff spaces, R is a quasi-order on Y for
which ⊥R is Σ1

2n+2, and S ⊆ X × Y is a Σ1
2n+2 set whose vertical

sections are unions of at most (κ1
2n+1)

+-many R-chains. Then S is a
union of at most (κ1

2n+1)
+-many ∆1

2n+3-in-S sets whose vertical sec-
tions are R-chains.

Proof. As Theorem 1.5.11 ensures that R is ℵ0-universally Baire,
Remark 4.1.7 and the proof of the special case of Theorem 4.4.1 where
κ = (κ1

2n+1)
+ and λ = κ1

2n+3 ensure that if the conclusion fails, then
there exist x ∈ X and a continuous injection π : 2N ↪→ Sx for which
π(2N) is an R-antichain. As Theorem 1.1.5 ensures that c 6≤ (κ1

2n+1)
+,

this contradicts the fact that Sx is a union of at most (κ1
2n+1)

+-many
R-chains.

Theorem 4.4.5. Suppose that ADR holds, X and Y are analytic
Hausdorff spaces, R is a quasi-order on Y , and S ⊆ X × Y is a set
whose vertical sections are well-ordered unions of R-chains. Then S is
a well-ordered union of sets whose vertical sections are R-chains.

Proof. The analog of the proof of the special case of Theorem 4.4.1
in which the use of Theorem 4.1.3 is replaced with that of Theorem
4.1.12 ensures that if the conclusion fails, then there exist x ∈ X and
a continuous injection π : 2N ↪→ Sx for which π(2N) is an R-antichain.
As Theorem 1.1.5 ensures that there is no well-ordering of c, this con-
tradicts the fact that Sx is a well-ordered union of R-chains.
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In particular, we obtain generalizations of the Lusin-Novikov uni-
formization theorem for sets with countable vertical sections:

Theorem 4.4.6 (Lusin-Novikov, Conley-M). Suppose that X and
Y are analytic Hausdorff spaces, F is a Borel equivalence relation on
Y , and S ⊆ X×Y is an analytic set whose vertical sections are unions
of countably-many F -classes. Then S is a union of countably-many
Borel-in-S sets whose non-empty vertical sections are F -classes.

Proof. By the special case of Theorem 4.4.2 where R = F , it
is enough to show that every Borel-in-S subset of S whose vertical
sections are contained in F -classes is contained in a Borel-in-S subset
of S whose non-empty vertical sections are F -classes. But this follows
from Proposition 4.2.1.

Theorem 4.4.7 (Conley-M). Suppose that AD holds, n ∈ N, X and
Y are analytic Hausdorff spaces, F is a ∆1

2n+1 equivalence relation on
Y , and S ⊆ X×Y is a Σ1

2n+1 set whose vertical sections are unions of
at most κ1

2n+1-many F -classes. Then S is a union of at most κ1
2n+1-

many ∆1
2n+1-in-S sets whose non-empty vertical sections are F -classes.

Proof. By the proof of the special case of Theorem 4.4.3 where
R = F , it is enough to show that there is a function sending each code
for a (κ1

2n+1 + 1)-Borel-in-S subset of S whose vertical sections are
contained in F -classes to a code for a (κ1

2n+1 + 1)-Borel-in-S superset
contained in S whose non-empty vertical sections are F -classes. But
this follows Remark 4.1.7 and the proof of Proposition 4.2.1.

Theorem 4.4.8 (Conley-M). Suppose that AD holds, n ∈ N, X and
Y are analytic Hausdorff spaces, F is a ∆1

2n+2 equivalence relation on
Y , and S ⊆ X × Y is a Σ1

2n+2 set whose vertical sections are unions
of at most (κ1

2n+1)
+-many F -classes. Then S is a union of at most

(κ1
2n+1)

+-many ∆1
2n+3-in-S sets whose non-empty vertical sections are

F -classes.

Proof. By the proof of the special case of Theorem 4.4.4 where
R = F , it is enough to show that there is a function sending each code
for a (κ1

2n+3 + 1)-Borel-in-S subset of S whose vertical sections are
contained in F -classes to a code for a (κ1

2n+3 + 1)-Borel-in-S superset
contained in S whose vertical sections are F -classes. But this follows
Remark 4.1.7 and the proof of Proposition 4.2.1.

Theorem 4.4.9 (Conley-M). Suppose that ADR holds, X and Y
are analytic Hausdorff spaces, F is an equivalence relation on Y , and
S ⊆ X × Y is a set whose vertical sections are well-ordered unions of
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F -classes. Then S is a well-ordered union of sets whose non-empty
vertical sections are F -classes.

Proof. This is a trivial consequence of Theorem 4.4.5.

Given an equivalence relation E on X, we say that a set S ⊆ X×Y
is E-invariant if the vertical sections of E-related points coincide. Note
that if X = Y = 2N and E = E0, then the non-empty vertical sections
of the E-invariant set S = E0 are countable, but Proposition 1.6.9
ensures that S is not a union of countably-many E-invariant Borel sets
whose non-empty vertical sections are singletons.

Theorem 4.4.10. Suppose that X and Y are analytic Hausdorff
spaces, E and F are Borel equivalence relations on X and Y , and
S ⊆ X × Y is an E-invariant analytic set whose vertical sections are
unions of countably-many F -classes. Then exactly one of the following
holds:

(1) The set S is a union of countably-many E-invariant Borel-
in-S sets whose vertical sections are unions of finitely-many
F -classes.

(2) There are continuous embeddings φ : 2N → X of E0 into E and
ψ : 2N → Y of ∆(2N) into F for which (φ× ψ)(E0) ⊆ S.

Proof. This is a straightforward corollary of Theorem 4.4.6 and
[CCM16, Theorem 1].

Theorem 4.4.11. Suppose that AD holds, n ∈ N, X and Y are
analytic Hausdorff spaces, E and F are ∆1

2n+1 equivalence relations
on X and Y , and S ⊆ X × Y is an E-invariant Σ1

2n+1 whose vertical
sections are unions of at most κ1

2n+1-many F -classes. Then exactly one
of the following holds:

(1) The set S is a union of at most κ1
2n+1-many E-invariant ∆1

2n+1-
in-S sets whose vertical sections are unions of finitely-many
F -classes.

(2) There are continuous embeddings φ : 2N → X of E0 into E and
ψ : 2N → Y of ∆(2N) into F for which (φ× ψ)(E0) ⊆ S.

Proof. This is a straightforward corollary of Theorem 4.4.7 and
the analog of [CCM16, Theorem 1] for ∆1

2n+1 equivalence relations.

Theorem 4.4.12. Suppose that AD holds, n ∈ N, X and Y are
analytic Hausdorff spaces, E and F are ∆1

2n+2 equivalence relations
on X and Y , and S ⊆ X × Y is an E-invariant Σ1

2n+2 whose vertical
sections are unions of at most (κ1

2n+1)
+-many F -classes. Then exactly

one of the following holds:
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(1) The set S is a union of at most (κ1
2n+1)

+-many E-invariant
∆1

2n+3-in-S sets whose vertical sections are unions of finitely-
many F -classes.

(2) There are continuous embeddings φ : 2N → X of E0 into E and
ψ : 2N → Y of ∆(2N) into F for which (φ× ψ)(E0) ⊆ S.

Proof. This is a straightforward corollary of Theorem 4.4.7 and
the analog of [CCM16, Theorem 1] for ∆1

2n+2 equivalence relations.

Theorem 4.4.13. Suppose that ADR holds, X and Y are analytic
Hausdorff spaces, E and F are equivalence relations on X and Y , and
S ⊆ X×Y is an E-invariant set whose vertical sections are well-ordered
unions of F -classes. Then exactly one of the following holds:

(1) The set S is a well-ordered union of E-invariant sets whose
vertical sections are unions of finitely-many F -classes.

(2) There are continuous embeddings φ : 2N → X of E0 into E and
ψ : 2N → Y of ∆(2N) into F for which (φ× ψ)(E0) ⊆ S.

Proof. This is a straightforward corollary of Theorem 4.4.9 and
the analog of [CCM16, Theorem 1] under ADR.



CHAPTER 5

The (G0,H0) dichotomy

1. Borel local colorings

Given a binary relation R on X, the downward R-saturation of a set
Y ⊆ X is given by [Y ]R = {x ∈ X | ∃y ∈ Y x R y}, and the upward R-
saturation of a set Y ⊆ X is given by [Y ]R = {x ∈ X | ∃y ∈ Y y R x}.
We say that Y is downward R-invariant if Y = [Y ]R, and upward
R-invariant if Y = [Y ]R.

Proposition 5.1.1. Suppose that κ is an aleph for which every
(κ + 1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X is
an analytic Hausdorff space, R is a κ-Souslin quasi-order on X, and
(A0, A1) is an R-independent pair of κ-Souslin sets. Then there is an
R-independent pair (B0, B1) of (κ + 1)-Borel sets such that A0 ⊆ B0,
A1 ⊆ B1, B0 is upward R-invariant, and B1 is downward R-invariant.

Proof. Set A0,0 = A0 and A1,0 = A1. Given n ∈ N and an R-
independent pair (A0,n, A1,n) of κ-Souslin sets, appeal to Proposition
4.1.1 to obtain an R-independent pair (B0,n, B1,n) of (κ+ 1)-Borel sets
such that A0,n ⊆ B0,n and A1,n ⊆ B1,n, and set A0,n+1 = [B0,n]R and
A1,n+1 = [B1,n]R. Define B0 =

⋃
n∈NB0,n and B1 =

⋃
n∈NB1,n.

The lexicographical ordering of 2α is the partial order given by
c <Rlex�2α d ⇐⇒ ∃β < α (c � [0, β) = d � [0, β) and c(β) < d(β)).

Theorem 5.1.2. Suppose that κ is an aleph for which κ+-DC holds,
λ ≥ κ is an aleph for which every (λ + 1)-Borel subset of an analytic
Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, G is a
κ-Souslin digraph on X, and R is a κ-Souslin quasi-order on X. Then
at least one of the following holds:

(1) There exist a quasi-order R′ ⊇ R that admits a (λ + 1)-Borel
reduction to Rlex � 2α for some α < κ+, and for which there is
a (λ+ 1)-Borel κ-coloring of ≡R′ ∩G.

(2) There exists a continuous homomorphism φ : 2N → X from
(G0(2N),H0(2N + 1)) to (G,R).

Proof. By Proposition 1.4.1, we can assume that there are con-
tinuous surjections φG : κN � G, φR : κN � R, and φX : κN � X. Fix

61
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s2n ∈ 22n and t2n+1 ∈ 22n+1× 22n+1 for which G0(2N) = G{s2n|n∈N} and
H0(2N + 1) = G{t2n+1|n∈N}.

We will construct decreasing sequences (Bα)α<κ+ of (λ + 1)-Bor-
el subsets of X and (Rα)α<κ+ of quasi-orders containing R such that
for all α < κ+, there exist β < κ+ for which there is a (λ + 1)-Borel
reduction of Rα to Rlex � 2β, and a (λ+ 1)-Borel κ-coloring of ≡Rα ∩G
off of Bα. We begin by setting B0 = X and R0 = X × X. For all
limit ordinals µ < κ+, we set Bµ =

⋂
α<µB

α and Rµ =
⋂
α<µR

α.
To describe the construction at successor ordinals, we require several
preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na),
where na ∈ N, φa : 2n

a → κn
a
, and ψan : 2n

a−(n+1) → κn
a

for all n < na.
A one-step extension of such an a is an approximation b for which:

(a) nb = na + 1.

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s @ t =⇒ φa(s) @ φb(t)).

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s @ t =⇒ ψan(s) @ ψbn(t)).

An approximation a is even if na is even, and odd if na is odd.
A configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ), such

that nγ ∈ N, φγ : 2n
γ → κN, ψγn : 2n

γ−(n+1) → κN for all n < nγ,
(φG ◦ψγn)(s) = ((φX ◦φγ)(sn a (0) a s), (φX ◦φγ)(sn a (1) a s)) for all
even n < nγ and s ∈ 2n

γ−(n+1), and along similar lines, (φR ◦ ψγn)(t) =
((φX ◦ φγ)(tn(0) a (0) a t), (φX ◦ φγ)(tn(1) a (1) a t)) for all odd
n < nγ and t ∈ 2n

γ−(n+1). A configuration γ is compatible with an
approximation a if the following conditions hold:

(i) na = nγ.
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

A configuration γ is compatible with a set X ′ ⊆ X if (φX ◦ φγ)(2n
γ
) ⊆

X ′, and compatible with a quasi-order R′ ⊇ R on X if (φX ◦ φγ)(2n
γ
)

is contained in a single ≡R′-class. An approximation a is (X ′, R′)-
terminal if no configuration is compatible with a one-step extension of
a, X ′, and R′. For all even approximations a, let A(a,X ′, R′) be the set
of points of the form (φX ◦φγ)(sna), where γ varies over configurations
compatible with a, X ′, and R′. For all odd approximations a and i < 2,
let Ai(a,X

′, R′) be the set of points of the form (φX ◦φγ)(tna(i)), where
γ varies over all configurations compatible with a, X ′, and R′.

Lemma 5.1.3. Suppose that X ′ ⊆ X, R′ ⊇ R is a quasi-order on X,
and a is an (X ′, R′)-terminal even approximation. Then A(a,X ′, R′)
is (≡R′ ∩G)-independent.
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Proof. Suppose, towards a contradiction, that there are configura-
tions γ0 and γ1, both compatible with a, X ′, and R′, with the property
that ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)) ∈ G. Fix a sequence d ∈ κN

such that φG(d) = ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)), and let γ denote
the configuration given by nγ = na + 1, φγ(t a (i)) = φγi(t) for all
i < 2 and t ∈ 2n

a
, ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and

t ∈ 2n
a−(n+1), and ψγna(∅) = d. Then γ is compatible with a one-step

extension of a, contradicting the fact that a is (X ′, R′)-terminal.

Lemma 5.1.4. Suppose that X ′ ⊆ X, R′ ⊇ R is a quasi-order on X,
and a is an (X ′, R′)-terminal odd approximation. Then (A0(a,X

′, R′),
A1(a,X

′, R′)) is an (≡R′ ∩R)-independent pair.

Proof. Suppose, towards a contradiction, that there are configura-
tions γ0 and γ1, both compatible with a, X ′, and R′, with the property
that ((φX ◦ φγ0)(tna(0)), (φX ◦ φγ1)(tna(1))) ∈ ≡R′ ∩R. Fix a sequence
d ∈ κN such that φR(d) = ((φX ◦ φγ0)(tna(0)), (φX ◦ φγ1)(tna(1))), and
let γ denote the configuration given by nγ = na+1, φγ(t a (i)) = φγi(t)
for all i < 2 and t ∈ 2n

a
, ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and

t ∈ 2n
a−(n+1), and ψγna(∅) = d. Then γ is compatible with a one-step

extension of a, contradicting the fact that a is (X ′, R′)-terminal.

For all (Bα, Rα)-terminal even approximations a, Proposition 4.1.2
gives rise to a (≡Rα ∩G)-independent (λ+ 1)-Borel set B(a,Bα, Rα) ⊇
A(a,Bα, Rα). Let Bα+1 be the difference of Bα and the union of the
sets of the form B(a,Bα, Rα), where a varies over all (Bα, Rα)-terminal
even approximations.

For all (Bα, Rα)-terminal odd approximations a and i < 2, another
application of Proposition 5.1.1 yields an (≡R′ ∩ R)-independent pair
(B0(a,B

α, Rα), B1(a,B
α, Rα)) of (λ + 1)-Borel sets with the property

that Ai(a,B
α, Rα) ⊆ Bi(a,B

α, Rα) for all i < 2. Fix an injective
enumeration (aαβ)β<βα of the family of all (Bα, Rα)-terminal odd ap-

proximations, define πα : X → 2βα by πα(x)(β) = χB0(aβ ,Bα,Rα)(x) for
all β < βα, and let Rα+1 be the subquasiorder of Rα with respect to
which x Rα+1 y ⇐⇒ (x <Rα y or (x ≡Rα y and πα(x) Rlex π

α(y))).

Lemma 5.1.5. Suppose that α < κ+ and a is a non-(Bα+1, Rα+1)-
terminal approximation. Then a has a non-(Bα, Rα)-terminal one-step
extension.

Proof. Fix a one-step extension b of a for which there is a con-
figuration γ compatible with b, Bα+1, and Rα+1. If a is odd, then
(φX ◦ φγ)(snb) ∈ Bα+1, so b is not (Bα, Rα)-terminal. If a is even,
then (φX ◦ φγ)(tnb(0)) ≡Rα+1 (φX ◦ φγ)(tnb(1)), so b is not (Bα, Rα)-
terminal.
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Fix α < κ+ such that the families of (Bα, Rα)-terminal approxima-
tions and (Bα+1, Rα+1)-terminal approximations are one and the same,
and let a0 denote the unique approximation for which na0 = 0. Then
A(a0, X

′, R′) = X ′ for all X ′ ⊆ X and quasi-orders R′ ⊇ R on X, so we
can assume that a0 is not (Bα, Rα)-terminal, since otherwise Bα+1 = ∅,
in which case there is a (λ+ 1)-Borel κ-coloring of ≡Rα ∩G.

By recursively applying Lemma 5.1.5, we obtain non-(Bα, Rα)-ter-
minal one-step extensions an+1 of an for all n ∈ N. Define φ, ψn : 2N →
κN by φ(c) =

⋃
n∈N φ

an(c � n) and ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1)))

for all n ∈ N. Clearly these functions are continuous.
To establish that the function π = φX ◦φ is a homomorphism from

G0(2N) to G, we will show that if c ∈ 2N and n ∈ 2N, then

(φG ◦ ψn)(c) = ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)) and V is an open
neighborhood of (φG ◦ ψn)(c), then U ∩ V 6= ∅. Towards this end,
fix m > n such that φX(Nφam (sna(0)as)) × φX(Nφam (sna(1)as)) ⊆ U and
φG(Nψamn (s)) ⊆ V , where s = c � (m − (n + 1)). The fact that am
is not (Bα, Rα)-terminal yields a configuration γ compatible with am.
Then ((φX ◦ φγ)(sn a (0) a s), (φX ◦ φγ)(sn a (1) a s)) ∈ U and
(φG ◦ ψγn)(s) ∈ V , thus U ∩ V 6= ∅.

To establish that the function π = φX ◦φ is a homomorphism from
H0(2N + 1) to R, we will show that if c ∈ 2N and n ∈ 2N + 1, then

(φR ◦ ψn)(c) = ((φX ◦ φ)(tn(0) a (0) a c), (φX ◦ φ)(tn(1) a (1) a c)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((φX ◦ φ)(tn(0) a (0) a c), (φX ◦ φ)(tn(1) a (1) a c)) and V is an
open neighborhood of (φG ◦ψn)(c), then U ∩V 6= ∅. Towards this end,
fix m > n such that φX(Nφam (tn(0)a(0)at)) × φX(Nφam (tn(1)a(1)at)) ⊆ U
and φG(Nψamn (t)) ⊆ V , where t = c � (m − (n + 1)). The fact that am
is not (Bα, Rα)-terminal yields a configuration γ compatible with am.
Then ((φX ◦ φγ)(tn(0) a (0) a t), (φX ◦ φγ)(tn(1) a (1) a t)) ∈ U and
(φG ◦ ψγn)(t) ∈ V , thus U ∩ V 6= ∅.

Remark 5.1.6. The assumption of κ+-DC can again be reduced to
κ-DC by first running the argument without Proposition 5.1.1.

Remark 5.1.7. Under the stronger assumption that there is a func-
tion sending each code for a (λ+1)-Borel subset of an analytic Hausdorff
space to a witness that the set is λ-Souslin, the assumption of κ-DC can
again be removed by working with codes for (λ+ 1)-Borel sets.
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Remark 5.1.8. The ideas behind [Kan97] can again be used to
eliminate both κ-DC and the assumption that every (λ+1)-Borel subset
of an analytic Hausdorff space is λ-Souslin, and to obtain analogous
generalizations of the corollaries established in this chapter.

Theorem 5.1.9. Suppose that X is an analytic Hausdorff space, G
is an analytic digraph on X, and R is an analytic quasi-order on X.
Then exactly one of the following holds:

(1) There exists a quasi-order R′ ⊇ R that admits a Borel reduc-
tion to Rlex � 2α for some α < ω1, and for which there is a
Borel ℵ0-coloring of ≡R′ ∩G.

(2) There exists a continuous homomorphism φ : 2N → X from
(G0(2N),H0(2N + 1)) to (G,R).

Proof. This follows from Theorem 1.4.10, Proposition 1.6.25, and
the special case of Remark 5.1.6 where κ = λ = ℵ0.

Theorem 5.1.10. Suppose that AD holds, n ∈ N, X is an analytic
Hausdorff space, G is a Σ1

2n+1 digraph on X, and R is a Σ1
2n+1 quasi-

order on X. Then exactly one of the following holds:

(1) There exists a quasi-order R′ ⊇ R that admits a ∆1
2n+1-meas-

urable reduction to Rlex � 2κ for some κ < δ1
2n+1, and for which

there is a ∆1
2n+1 κ1

2n+1-coloring of ≡R′ ∩G.
(2) There exists a continuous homomorphism φ : 2N → X from

(G0(2N),H0(2N + 1)) to (G,R).

Proof. This follows from Proposition 1.6.26 and the special case
of Remark 5.1.7 where κ = λ = κ1

2n+1.

Theorem 5.1.11. Suppose that AD holds, n ∈ N, X is an analytic
Hausdorff space, G is a Σ1

2n+2 digraph on X, and R is a Σ1
2n+2 quasi-

order on X. Then exactly one of the following holds:

(1) There exists a quasi-order R′ ⊇ R for which there are a ∆1
2n+3-

measurable reduction of R′ to Rlex � 2α for some α < (κ1
2n+1)

++

and a ∆1
2n+3 (κ1

2n+1)
+-coloring of ≡R′ ∩G.

(2) There exists a continuous homomorphism φ : 2N → X from
(G0(2N),H0(2N + 1)) to (G,R).

Proof. This follows from Proposition 1.6.26 and the special case
of Remark 5.1.7 where κ = (κ1

2n+1)
+ and λ = κ1

2n+3.

Theorem 5.1.12. Suppose that ADR holds, X is an analytic Haus-
dorff space, G is a digraph on X, and R is a quasi-order on X. Then
exactly one of the following holds:
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(1) There exists a quasi-order R′ ⊇ R that admits a reduction to
Rlex � 2α for some ordinal α, and for which there is an ordinal-
valued coloring of ≡R′ ∩G.

(2) There exists a continuous homomorphism φ : 2N → X from
(G0(2N),H0(2N + 1)) to (G,R).

Proof. This follows from Theorem 1.4.15, Proposition 1.6.26, and
the simplification of the proof of Theorem 5.1.2 in which the use of
Proposition 5.1.1 is eliminated.
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2. Linearizability of quasi-orders

Proposition 5.2.1. Suppose that κ is an aleph for which every (κ+
1)-Borel subset of an analytic Hausdorff space is κ-Souslin, X is an an-
alytic Hausdorff space, E is a κ-Souslin equivalence relation on X, R is
a co-κ-Souslin quasi-order on X, and (A0, A1) is an (E\R)-independent
pair of κ-Souslin sets. Then there is an (E \ R)-independent pair
(B0, B1) of (κ + 1)-Borel sets such that A0 ⊆ B0, A1 ⊆ B1, B0 is
downward (E ∩R)-invariant, and B1 is upward (E ∩R)-invariant.

Proof. Set A0,0 = A0 and A1,0 = A1. Given n ∈ N and an (E\R)-
independent pair (A0,n, A1,n) of κ-Souslin sets, appeal to Proposition
4.1.1 to obtain an (E \R)-independent pair (B0,n, B1,n) of (κ+ 1)-Bor-
el sets with the property that A0,n ⊆ B0,n and A1,n ⊆ B1,n, and set
A0,n+1 = [B0,n]E∩R and A1,n+1 = [B1,n]E∩R. Define B0 =

⋃
n∈NB0,n

and B1 =
⋃
n∈NB1,n.

Theorem 5.2.2. Suppose that κ is an aleph for which κ-DC holds,
λ ≥ κ is an aleph for which every (λ + 1)-Borel subset of an analytic
Hausdorff space is λ-Souslin, X is an analytic Hausdorff space, and
R is an ℵ0-universally-Baire bi-κ-Souslin quasi-order on X. Then at
least one of the following holds:

(1) There is a quasi-order S ⊇ R that admits a (λ + 1)-Borel
reduction to Rlex � 2α for some α < κ+ and for which ≡R and
≡S coincide.

(2) There is a continuous embedding of E0 or R0 into R.

Proof. Define G = ∼R. Suppose first that there is a quasi-
order R′ ⊇ R that admits a (λ + 1)-Borel reduction to Rlex � 2α

for some α < κ+, and for which there is a (λ + 1)-Borel κ-coloring
c of ≡R′ ∩ G. Then Proposition 5.2.1 yields (≡R′ \ R)-independent
pairs (B0,α, B1,α) of (λ + 1)-Borel sets such that B0,α is downward
(≡R′∩R)-invariant, B1,α is upward (≡R′∩R)-invariant, and c−1({α}) ⊆
B0,α ∩ B1,α for all α < κ. Define φ : X → (2 × 2)κ by φ(x)(α) =
(1 − χB0,α(x), χB1,α(x)), let S ′ be the quasi-order on X given by x S ′

y ⇐⇒ x <R′ y or (x ≡R′ y and φ(x) Rlex φ(y)), and note that R ⊆ S ′

and ≡S′ ∩ R ⊆ ≡R, thus E ∩ R ⊆ ≡R, where E is the smallest equiv-
alence relation containing ≡S′ ∩ R. By Proposition 4.2.1, there are
E-invariant (≡S′ \ R)-independent Borel sets Bα ⊇ c−1({α}). Define
ψ : X → 2κ by ψ(x)(α) = χBα(x), let S be the quasi-order on X given
by x S y ⇐⇒ x <S′ y or (x ≡S′ y and ψ(x) Rlex ψ(y)), and observe
that R ⊆ S and ≡R and ≡S coincide.

By Theorem 5.1.2, we can therefore assume that there is a contin-
uous homomorphism φ : 2N → X from (G0(2N),H0(2N+ 1)) to (G,R).
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Let D0 and R0 be the pullbacks of ∆(X) and R through φ × φ. As
≡R0 ∩ G0(2N) = ∅, Proposition 1.6.25 ensures that ≡R0 is meager,
so R0 is not comeager. As H0(2N + 1) ⊆ R0, Proposition 1.6.24
therefore implies that R0 is meager. By Proposition 1.6.31, there is
a continuous homomorphism ψ : 2N → 2N from (∼∆(2N), graph(σ) \
{((1)∞, (0)∞)},∼E0) to (∼D0, R0,∼R0), in which case φ ◦ ψ is a homo-
morphism from (∼∆(2N),R0,∼E0) to (∼∆(X), R,∼R). As the pullback
R′0 of R through φ ◦ ψ is ℵ0-universally Baire and R0 ⊆ R′0 ⊆ E0,
Proposition 1.6.30 yields a continuous embedding π : 2N → 2N of E0 or
R0 into R′0, in which case φ ◦ ψ ◦ π is a continuous embedding of E0 or
R0 into R.

Theorem 5.2.3 (Kanovei, Louveau). Suppose that X is an analytic
Hausdorff space and R is a Borel quasi-order on X. Then exactly one
of the following holds:

(1) There is a quasi-order S ⊇ R that admits a Borel reduction
φ : X → 2α to Rlex � 2α for some α < ω1, and for which ≡R
and ≡S coincide.

(2) There is a continuous embedding ψ : 2N ↪→ X of E0 or R0 into
R.

Proof. The special case of Theorem 5.2.2, where κ = λ = ℵ0,
ensures that at least one of the conditions holds. To see that they are
mutually exclusive, note that otherwise, the pullback S0 of Rlex � 2α

through (φ ◦ ψ) × (φ ◦ ψ) has the Baire property and is not meager,
since it is linear. As H0 ⊆ R0 ⊆ S0, Proposition 1.6.24 ensures that S0

is comeager, so ≡S0 is comeager. Let R0 be the pullback of R through
φ, and observe that ≡R0 and ≡S0 coincide, thus the former is comeager,
as well. But R0 ⊆ E0, contradicting the fact that E0 is meager.

Theorem 5.2.4 (Kanovei, Louveau). Suppose that AD holds, n ∈ N,
X is an analytic Hausdorff space, and R is a ∆1

2n+1 quasi-order on X.
Then exactly one of the following holds:

(1) There is a quasi-order S ⊇ R that admits a ∆1
2n+1 reduction

to Rlex � 2κ for some κ < (κ1
2n+1)

+, and for which ≡R and ≡S
coincide.

(2) There is a continuous embedding of E0 or R0 into R.

Proof. Theorem 1.4.14 and Remark 5.1.7 ensure that at least one
of the following conditions hold. To see that they are mutually ex-
clusive, appeal to Theorem 1.5.11 and the second half of the proof of
Theorem 5.2.3.
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Theorem 5.2.5 (Kanovei, Louveau). Suppose that AD holds, n ∈ N,
X is an analytic Hausdorff space, and R is a ∆1

2n+2 quasi-order on X.
Then exactly one of the following holds:

(1) There is a quasi-order S ⊇ R that admits a ∆1
2n+3 reduction

to Rlex � 2κ for some κ < (κ1
2n+1)

++, and for which ≡R and
≡S coincide.

(2) There is a continuous embedding of E0 or R0 into R.

Proof. As in the proof of Theorem 5.2.4.

Theorem 5.2.6 (Kanovei, Louveau). Suppose that ADR holds, X
is an analytic Hausdorff space, and R is a quasi-order on X. Then
exactly one of the following holds:

(1) There is a quasi-order S ⊇ R that admits a reduction to Rlex �
2α for some ordinal α, and for which ≡R and ≡S coincide.

(2) There is a continuous embedding of E0 or R0 into R.

Proof. Theorem 1.4.15 and the analog of the proof of Theorem
5.2.2, where the use of Theorem 5.1.2 is replaced with that of Theorem
5.1.12, ensures that at least one of the two conditions holds. The proof
of Theorem 5.2.4 ensures that they are mutually exclusive.

Theorem 5.2.7 (Harrington-Kechris-Louveau). Suppose that X is
an analytic Hausdorff space and E is a Borel equivalence relation on
X. Then exactly one of the following holds:

(1) There is a Borel reduction of E to equality on 2N.
(2) There is a continuous embedding of E0 into E.

Proof. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.3 in which R is an equivalence relation.

Theorem 5.2.8 (Harrington-Kechris-Louveau). Suppose that AD

holds, n ∈ N, X is an analytic Hausdorff space, and E is a ∆1
2n+1

equivalence relation on X. Then exactly one of the following holds:

(1) There is a ∆1
2n+1 reduction of E to equality on 2κ1

2n+1.
(2) There is a continuous embedding of E0 into E.

Proof. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.4 in which R is an equivalence relation.

Theorem 5.2.9 (Harrington-Kechris-Louveau). Suppose that AD

holds, n ∈ N, X is an analytic Hausdorff space, and E is a ∆1
2n+2

equivalence relation on X. Then exactly one of the following holds:
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(1) There is a ∆1
2n+3 reduction of E to equality on 2(κ1

2n+1)
+

.
(2) There is a continuous embedding of E0 into E.

Proof. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.5 in which R is an equivalence relation.

Theorem 5.2.10 (Harrington-Kechris-Louveau). Suppose that ADR
holds, X is an analytic Hausdorff space, and E is an equivalence rela-
tion on X. Then exactly one of the following holds:

(1) There is a reduction of E to equality on 2κ for some aleph κ.
(2) There is a continuous embedding of E0 into E.

Proof. As the class of equivalence relations is closed downward
under embeddability, this follows from the special case of Theorem
5.2.6 in which R is an equivalence relation.

A quasi-order R on a set X is linear if X is an R-chain.

Theorem 5.2.11 (Harrington-Marker-Shelah). Suppose that X is
an analytic Hausdorff space and R is a linear Borel quasi-order on X.
Then there is a Borel reduction of R to Rlex � 2α for some α < ω1.

Proof. Otherwise, Theorem 5.2.3 yields a Borel reduction of E0

or R0 to a linear Borel quasi-order, which the second part of the proof
of Theorem 5.2.3 rules out.

Theorem 5.2.12. Suppose that AD holds, n ∈ N, X is an analytic
Hausdorff space, and R is a linear ∆1

2n+1 quasi-order on X. Then there
is a ∆1

2n+1 reduction of R to Rlex � 2α for some α < (κ1
2n+1)

+.

Proof. Otherwise, Theorem 5.2.4 yields a reduction of E0 or R0

to a linear quasi-order, which the proof of Theorem 5.2.4 rules out.

Theorem 5.2.13. Suppose that AD holds, n ∈ N, X is an analytic
Hausdorff space, and R is a linear ∆1

2n+2 quasi-order on X. Then there
is a ∆1

2n+3 reduction of R to Rlex � 2α for some α < (κ1
2n+1)

++.

Proof. Otherwise, Theorem 5.2.5 yields a reduction of E0 or R0

to a linear quasi-order, which the proof of Theorem 5.2.5 rules out.

Theorem 5.2.14. Suppose that ADR holds, X is an analytic Hau-
sdorff space, and R is a linear quasi-order on X. Then there is a
reduction of R to Rlex � 2α for some ordinal α.

Proof. Otherwise, Theorem 5.2.6 yields a reduction of E0 or R0

to a linear quasi-order, which the proof of Theorem 5.2.6 rules out.
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