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Introduction

These are the notes accompanying a course on Borel reducibility
of countable Borel equivalence relations at the University of Vienna in
Fall 2018. T am grateful to all of the participants for their interest and
participation.
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1. The perfect set theorem for measures

When D is a discrete space, we endow DY with the complete ultra-
metric given by dpn(a,b) = 1/27@ for all distinct a,b € DV, where
n(a,b) is the least coordinate at which a and b differ. The underlying
topology is generated by the sets of the form N, = {c € DY | s C ¢},
where s € D<M,

A topological space is analytic if it is a continuous image of a closed
subset of NN, Polish if it is second countable and completely metrizable,
K, if it is a countable union of compact sets, and zero-dimensional if it
has a clopen basis. A subset of a metric space is d-bounded if it can be
covered by finitely-many balls of radius strictly less than d, and totally
bounded if it is d-bounded for all § > 0.

A Borel space is a set X equipped with a o-algebra of Borel sets. A
Borel measure on such a space is a measure defined on the Borel sets.
Two such Borel measures p and v are orthogonal if there is a p-conull
Borel set that is also v-null. When X is a zero-dimensional Polish
space, we use P(X) to denote the set of Borel probability measures on
X, equipped with the (Polish) topology generated by the sets of the
form {p | p(U) € V}, where U C X is clopen and V' C [0, 1] is open.

We will slightly abuse language by saying that a sequence (B;);er
of subsets of a space X is in a pointclass I' if the corresponding set
{(i,z) e I x X |z € B;} isin T

THEOREM 1.1 (Burgess-Mauldin). Suppose that X is a zero-dimen-
sional Polish space and A C P(X) is an analytic set of pairwise or-
thogonal measures. Then exactly one of the following holds:

(1) The set A is countable.
(2) There is a continuous injection w: 2% — A for which there is

a K, sequence (K.).con of pairwise disjoint subsets of X such
that w(c)(K.) =1 for all c € 2N,

PRrOOF. Fix a compatible complete metric dx on X. By the perfect
set theorem for analytic Hausdorff spaces, it is sufficient to show that
if there is a continuous injection ¢: 2N — A, then condition (2) holds.
Towards this end, fix real numbers 6,,,¢, > 0 such that 6, — 0 and
ZneN €n < 00. We will recursively construct k, € N, 1,: 2% — 2
and sequences (Us)geon of open subsets of X such that:

(a) Vi < 2Vn € NVs € 2" ¢),(s) ~ (i) C ¢p11(s ~ (7).
(b) Vn € NVs € 2" U, is §,-bounded.

(c) Vn e NVs € 2" € ¢(Ny, 1 (5) 1(Us) > 1 — e,
(d)

d) Vn € NVs,t € 2"t (s A1 = U, N U, = 0).
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We begin by setting kg = 0, () = 0, and Uy = X. Suppose now
that n € N and we have already found k, and ¢,. For all © < 2
and s € 2", set o)y = O(Yn(s) ~ (i) ~ (0)>). For all distinct
s,t € 2" fix a Borel set B+ € X that is pts-conull and p;-null. Then
the sets of the form B, = ﬂt62n+1\{8} Bg: \ By are pairwise disjoint,
and p4(Bs) = 1 for all s € 2L, By the tightness of Borel probability
measures on Polish spaces, there are compact sets K, C B, with the
property that p,(K,) > 1 — ¢, for all s € 2""!. By compactness, there
exists 0 < &), < d,, such that d(z, y) > 24, for all distinct s,¢ € 2! and
(z,9) € K, x K;. Compactness also ensures that for all s € 2""! there
is a finite set F, C K for which K is contained in the ¢,,-bounded open
set U, = B(F,,0"). Note that U, N U; = () for all distinct s,t € 2"+,
By the regularity of Borel probability measures on Polish spaces and
the fact that X is second countable and zero-dimensional, there are
clopen sets V, C U, such that us(V;) > 1 —¢, for all s € 2", As ¢
is continuous, there exists k,41 > k;, such that pu(Vi.4) > 1 — ¢, for
all i <2, 5€2" and p1 € SN, (i)~ (0)ntr-tn+n ). For all i <2 and
s € 2", define ¢,11(s ~ (i) = ¥a(s) ~ (i) ~ (0)fmrr= b,

Condition (a) ensures that we obtain a continuous injection ¢: 2% —
2V by setting ¢ (c) = U, ey ¥nlc [ n) for all ¢ € 2¥, in which case the
function m = ¢ o 1) is also a continuous injection. Condition (b) and
the fact that 6, — 0 ensure that the sets K, = (0,5, Uscom Ns x U
are totally bounded, and therefore compact, in which case the set
K = U,enKn is K, For all ¢ € 2N condition (c) and the fact
that > _y€n < 0o ensures that jic((),,s, Ucm) — 1, so the fact that
Ke = U,en Nion Ueim implies that p.(K.) = 1. Finally, for all dis-
tinct ¢,d € 2 and n € N, condition (d) ensures that (1, ., Usm and

ﬂmzn Uqm are disjoint for all n € N, thus so too are K, and Kj. X

2. Compressibility

Given an equivalence relation £ on X, we say that a set Y C X
is FE-complete if it intersects every FE-class. A compression of E is
an injection ¢: X — X such that graph(¢) C E and X \ ¢(X) is
E-complete. A Borel space is standard if its Borel sets coincide with
those of a Polish topology. We say that a Borel equivalence relation
on a standard Borel space is compressible if it admits a Borel compres-
sion. Following the usual abuse of language, we say that an equivalence
relation is countable if all of its classes are countable.
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PROPOSITION 2.1. Suppose that X s a standard Borel space, E
15 a countable Borel equivalence relation on X, and B C X is an E-
complete Borel set for which E | B is compressible. Then there is a
Borel injection m: X — B whose graph is contained in E.

Proor. Fix a Borel compression ¢: B — B of E | B, and appeal
to the Lusin-Novikov uniformization theorem to obtain a Borel function
: X — B\ ¢(B) whose graph is contained in F, as well as a partition
(Bn)nen of X into Borel sets on which 1 is injective. Then the function
T =U,en(@" 0¥) | By, is as desired. X

Given a group G, we say that a function p: F — G is a cocycle
if p(x,2) = p(z,y)p(y,2) for all v E y E z. When G = (0,00), we
set [S[f = > cop(y,z) for all z € X and S C [z]p. We say that a
function ¢: X — X whose graph is contained in F is p-increasing at S
if |¢~1(S)|2 < |S|L, and strictly p-increasing at S if |¢~1(S)]2 < |S|°.
A compression of p over a subequivalence relation F' of F is a function
¢: X — X, whose graph is contained in F, that is p-increasing at ev-
ery F-class, and for which the set of F-classes at which it is strictly
p-increasing is (E/F)-complete. Again following the usual abuse of lan-
guage, we say that an equivalence relation is finite if all of its classes
are finite. We say that a Borel cocycle p: E — (0,00) is compressible
over a finite Borel subequivalence relation of E if there is a Borel com-
pression of p over a finite Borel subequivalence relation of E. We say
that a Borel cocycle p: E — (0,00) is u-nowhere compressible over a
finite Borel subequivalence relation of E if there is no u-positive Borel
set B C X for which p | (E | B) is compressible over a finite Borel
subequivalence relation of £ | B.

A Borel measure pon X is E-ergodic if every E-invariant Borel set is
p~conull or p-null, E-quasi-invariant if the family of p-null sets is closed
under E-saturation, p-invariant if (T(B)) = [5 p(T(x), ) du(x) for
all Borel sets B C X and Borel automorphisms 7: X — X whose
graphs are contained in F, and E-invariant if it is invariant with re-
spect to the constant cocycle.

THEOREM 2.2 (Hopf). Suppose that X is a standard Borel space,
E is a countable Borel equivalence relation on X, u is an E-quasi-
invariant Borel probability measure on X, and p: E — (0,00) is a
Borel cocycle that is p-nowhere compressible over a finite Borel sube-
quivalence relation of E. Then there is a p-invariant Borel probability
measure vV ~ [i.
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PROOF. As there is no Borel compression of p over a finite Borel
subequivalence relation of F, the generalization of Nadkarni’s char-
acterization of the existence of invariant Borel probability measures
to Borel cocycles ensures the existence of a p-invariant Borel proba-
bility measure on X. Ditzen’s generalization of the Farrell-Varadar-
ajan uniform ergodic decomposition theorem therefore yields an FE-
invariant Borel function ¢: X — P(X) that is a decomposition of
the set of all p-invariant Borel probability measures into E-ergodic
p-invariant Borel probability measures, in the sense that ¢(z) is E-
ergodic and p-invariant for all z € X, ¢~'({u}) is p-conull for all
E- ergodic p—invariant Borel probability measures p on X, and v(B) =
[ o(x (x) for all p—mvarlant Borel probability measures v on X
and Borel sets B C X. Let v/ be the Borel probability measure on X
given by v/(B) = [ ¢(z)(B) dp(x).

LEMMA 2.3. The measure V' is p-invariant.

PROOF Note that if ¢ X —> (0,00) is a Borel function, then

[o(x) dv(z) = [ [(y (y) du(z) by countable additivity. So
if B C X is a Borel set and T X —> X is a Borel automorphism
whose graph is Contained in E then v/( = [ ¢(x)(T(B)) du(z) =

J [T ) do(z)(y = [p(T dv'(z). 3

LEMMA 2.4. The measure [ 18 absolutely continuous with respect
to the measure v'.

PRrROOF. Suppose that B C X is a u-positive Borel set, and define
N = {z € X | ¢(x)(B) = 0}. Observe now that if x € ~N, then
o(z) # ¢(y) for all y € N, in which case ¢(x)(N) = 0. In particular, it
follows that if v is a p-invariant Borel probability measure on X, then
v(BNN) < [y é(x)(B) dv(z)+ [\ ¢(x)(N) dv(xz) = 0, thus [BNN]g
is v-null. One more application of the generalization of Nadkarni’s
theorem to Borel cocycles therefore ensures that p [ (E | [B N N|g) is
compressible over a finite Borel subequivalence relation of £ [ [BNN]|g,
so [BN N]g is p-null, thus B \ N is p-positive, and it follows that

(B) > [y 9(2)(B) du(z) > 0.
Fix an E-invariant p-null Borel set N C X of maximal v/-measure,

and observe that the normalization of the p-invariant Borel measure v
on X given by v(B) =v/(B\ N) is as desired. X

3. Increasing unions

Given a class £ of equivalence relations, we use hyper-£€ to denote
the class of equivalence relations of the form (J, . £n, where (E;,)nen
is an increasing sequence of equivalence relations in £.
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QUESTION 3.1. Is every hyperhyperfinite Borel equivalence relation
on a standard Borel space hyperfinite?

Given a Borel measure i on a standard Borel space X, we say that
a Borel equivalence relation £ on X is pu-& if its restriction to some
p~conull Borel set is in £.

PROPOSITION 3.2. Suppose that £ is a class of countable Borel
equivalence relations on standard Borel spaces that is closed under Bor-
el restrictions and countable intersections, X s a standard Borel space,
E is a countable Borel equivalence relation on X, ® is a countable set
of Borel partial functions from X to X such that £ = |J e graph(¢),
and i is an E-quasi-invariant finite Borel measure on X. Then the
following are equivalent:

(1) The equivalence relation E is p-hyper-E.

(2) Foralle > 0 and Borel sets R C E with finite vertical sections,
there exists E' C E in & with p({x € X | R, € [x]p'}) <e.

(3) For all e > 0 and finite sets ®" C &, there exists E' C E in €
such that p(Uycq{z € dom(¢') | ~x B ¢/(2)}) < e.

Proor. To see (1) = (2), fix a p-conull Borel set C' C X for
which E | C is hyper-&, as well as an increasing sequence (FE,,),en of
equivalence relations in £ such that £ [ C' = |J,cn En- As pis E-
quasi-invariant, the set N = [~C]g is p-null. But ife >0, RC Eis a
Borel set with finite vertical sections, and B, = {r € X | R, € [z]g, }
for all n € N, then (), .y Bn € N, so u(B,) < € for some n € N.

To see (2) = (3), note that if £’ C F is an equivalence relation and
@' C @ is finite, then R = [J, .4 graph(¢’) has finite vertical sections
and {z € X | By ¢ [2]r} = Upeo Lz € dom(6) | o B ¢/(2)}.

To see (3) = (1), fix real numbers €,, > 0 with > €, < 00, an
enumeration (@ )ren of @, and equivalence relations E,,, C E in £ such
that the set A, = {J,_,,{z € dom(¢x) | ~x E,, éx(x)} has p-measure
at most €, for all m € N. Then the set B, =J,,~,, An has p-measure
at most >, . €, forall n € N, so the set N = (1), By is p-null. Note
that if # F y, then there exists & € N such that ¢ (z) = y, and ifz ¢ N,
then there exists n > k for which x ¢ B, so z ((),,>,, £m) vy, thus
(Nyyon B T ~N)nen is an increasing sequence of equivalence relations
in & whose union is F | ~N, hence E is pu-hyper-£. b

We say that pis B-€ if E is p-€.
PROPOSITION 3.3 (Dye-Krieger). Suppose that € is a class of count-

able Borel equivalence relations on standard Borel spaces that is closed
under Borel restrictions and countable intersections, X s a standard
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Borel space, E s a countable Borel equivalence relation on X, and p
1s an E-hyper-hyper-€ E-quasi-invariant finite Borel measure on X.
Then p is E-hyper-E.

PROOF. Suppose that ¢ > 0 and R C E is a Borel set with finite
vertical sections. By Proposition 3.2, there is a hyper-€ equivalence
relation E' C E for which the set B = {# € X | R, € [z]g} has
p-measure at most €/2. Set R = RN (~B x X), and appeal again to
Proposition 3.2 to obtain an equivalence relation E” C E’ in £ with
p{z € X | R, € [2]pr}) < €/2, 80 p({x € X | R, € [z]pr}) < €. One
last application of Proposition 3.2 then ensures that E' is py-hyper-£€. X

In the special case that £ is the class of finite Borel equivalence
relations on standard Borel spaces, we obtain the following.

THEOREM 3.4 (Segal). Suppose that X is a standard Borel space
and E is a countable Borel equivalence relation on X. Then the set of
E-hyperfinite E-quasi-invariant Borel probability measures is Borel.

PrROOF. We can assume, without loss of generality, that X is a
Polish space. Fix a countable basis B for X that is closed under finite
unions, appeal to the Lusin-Novikov uniformization theorem to obtain
a countable set ® of Borel functions from X to X with the property
that £ = (J,cqp graph(¢), and set ¥ = {¢ [ U | ¢ € ® and U € B}.
For each finite set W' C W, let By be the Borel set of x € X such that:

(1) W eV z=¢'(x).
(2) VY € V' (z € dom(¢') = " € V' = (" o)')(x)).
(3) Vo', 9" € W' (2 € dom(y)') N (¢) " (dom(y")) =>
Hw/// E \Dl w///(x) — (w// o w/)(x))
Then the restriction Fys of J,cq graph(y’) to By is a finite Borel
equivalence relation.

LEMMA 3.5. Suppose that E' C E is a finite Borel partial equiva-
lence relation on X, p is a finite Borel measure on X, and € > 0. Then
there is a finite set W' C U for which p({x € X | [x]p # [z]p, }) <€

PROOF. Fix an enumeration (¢ )ren of ®, as well as a natural num-
ber n sufficiently large that the pu-measure of the complement of the
set A ={x € X |Vy,z € [z]pIk < n ¢p(y) = 2} is at most €/2.
Set B, = {x € X | ¢ E' ¢,(x)} and appeal to the regularity of fi-
nite Borel measures on Polish spaces to obtain sets U,, € B such that
Y ken(@)ept(Bm A Uy) < €/2n for all m < n. To see that the set
V' = {¢p [ Uy | k <n} is as desired, set B = A\ U,,.,,[Bm & Unlpe,
and note that if € B, then [x]p = {¢/(x) | ¥/ € W'}, so the fact
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that B is E’-invariant ensures that [y|m = {¢'(y) | ¢/ € V'} for

all y € [z]g, thus [z]p € By, hence [z]g = [2]F,,, so it only re-
mains to observe that u(~B) < pu(~A)+ >, (AN [By A Uple) <
€/2+ Zk,m<n(¢k)*:“(3m AU, <e. =

Proposition 3.2 and Lemma 3.5 ensure that an E-quasi-invariant
finite Borel measure p on X is FE-hyperfinite if and only if for all
€ > 0 and finite sets &’ C &, there is a finite set ¥/ C ¥ such that
1(Ugeq{z € dom(¢') | =z Fyr ¢/(2)}) < €. The desired result is there-
fore a consequence of the fact that the set of E-quasi-invariant Borel
probability measures on X is Borel. X

4. Smooth-to-one homomorphisms

The diagonal on X is given by A(X) = {(z,z) | * € X}, and
we use Eq to denote the equivalence relation on 2N with respect to
which ¢ Eg d <= 3dn € NVm > n ¢(m) = d(m). We identify
the product of equivalence relations £ on X and F on Y with the
equivalence relation on X x Y for which two pairs (x,y) and (2,/)
are equivalent if and only if x £ 2’ and y F' 3/. A homomorphism from
a binary relation R on X to a binary relation S on Y is a function
¢: X — Y such that (¢ x ¢)(R) C S, a reduction of R to S is a
homomorphism from R to S that is also a homomorphism from ~R to
~S, and an embedding of R into S is an injective reduction of R to
S. We say that a Borel equivalence relation E on a standard Borel
space X is smooth if there is a Borel reduction of E to equality on
a standard Borel space. A partial transversal of E is a set Y C X
whose intersection with each FE-class consists of at most one point.
The Lusin-Novikov uniformization theorem ensures that when E is
countable, the smoothness of E is equivalent to the existence of cover
of X by countably-many Borel partial transversals of E. Given a class
& of countable Borel equivalence relations on standard Borel spaces, a

standard Borel space X, and a countable Borel equivalence relation £
on X, we say that a Borel set BC X is E-£if E | Beé.

PROPOSITION 4.1. Suppose that X andY are standard Borel spaces,
E s a countable Borel equivalence relation on X, and ¢: X — Y s
Borel. Then the following are equivalent:

(1) The function ¢ is E-smooth-to-one.

(2) The graph of ¢ is (E x A(Y'))-smooth.

(3) There is a cover (Bp)nen of X by Borel sets with the property
that ¢ is injective on each (E | By,)-class for all n € N.
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ProoF. To see =(2) = —(1), note that if the graph of ¢ is not
(E x A(Y'))-smooth, then the Eq dichotomy yields a continuous em-
bedding v : 2% — graph(¢) of Ey into £ x A(Y). Then projy o % is a
continuous homomorphism from E; to equality, and is therefore con-
stant. Let y € Y be its constant value, and observe that projy o ¢ is
an embedding of Eq into £ | ¢~ *({y}), thus the latter is non-smooth.

To see (2) = (3), fix Borel partial transversals R,, of E x A(Y)
with the property that graph(¢) = J,,cy £2n, and observe that the Bor-
el sets of the form B,, = projy(R,,) cover X and ¢ is injective on each
(E | By)-class for all n € N.

To see (3) = (1), note that for all y € Y, the sets of the form
B, N ¢~ ({y}) are partial transversals of E and cover ¢—'({y}), so
¢~ '({y}) is E-smooth. b

PROPOSITION 4.2. Suppose that X andY are standard Borel spaces,
E and F are countable Borel equivalence relation on X and Y, and
¢: X — Y is a Borel homomorphism from E to F. Then ¢ is E-
smooth-to-one if and only if there is an E-complete Borel set B C X
such that ¢ is injective on each (E | B)-class.

PRrROOF. If ¢ is smooth-to-one, then Proposition 4.1 yields a cover
(Bn)nen of X by Borel sets such that ¢ is injective on each (E | B,)-
class for all n € N, so the Borel set B = J,cny Bn \ Uppen!Bmle is
E-complete and ¢ is injective on each (E | B)-class. Conversely, if
B C X is an E-complete Borel set such that ¢ is injective on each
(E | B)-class and y € Y, then ¢~ '({y}) C U.e[BN o '{z}))e. As
each BN¢~'({z}) is a partial transversal of E, the fact that the family
of Borel sets on which E is smooth is closed under countable unions
and E-saturations yields that ¢~'({y}) is E-smooth. X

5. Structurability

Suppose that N is a countable set, L = (R,)nen is a relational
language, and k,, is the arity of R, for all n € N. An L-structuring of
an equivalence relation E on X is an E-invariant function assigning an
L-structure M* = ([x]g, (R:),en) to each z € X. We say that such an
assignment is Borel if {(x, (x;)i<k,) € X x X* | (2;)i<r, € R%} is Bor-
el for all n € N. Given a class M of L-structures, an M-structuring
of F is an L-structuring of E such that M* € M for all x € X.
We say that a Borel equivalence relation on a standard Borel space is
M-structurable if it admits a Borel M-structuring. In particular, the
following observation ensures that the classes of smooth and hyperfi-
nite countable Borel equivalence relations on standard Borel spaces are
closed downward under smooth-to-one Borel homomorphisms.
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PROPOSITION 5.1. Suppose that L is a countable relational lan-
guage and M is an isomorphism-invariant class of countable L-struc-
tures for which the class of M-structurable countable Borel equivalence
relations on standard Borel spaces is closed under Borel restrictions
and saturations. Then it is downward closed under smooth-to-one Bor-
el homomorphisms.

PROOF. Suppose that X and Y are standard Borel spaces, F and
F' are countable Borel equivalence relations on X and Y, ¢: X — Y
is an E-smooth-to-one Borel homomorphism from F to F, and F is
M-structurable. By Proposition 4.2, there is an E-complete Borel set
B C X such that ¢ | B is injective on (F | B)-classes.

LEMMA 5.2. There is a Borel partial function ¢¥: X x N — Y
bijectively sending dom(v) N ([z]g x N) to [¢p(z)|p for all z € X.

PRrROOF. Appeal to the Feldman-Moore theorem to obtain a count-
able group G = {g, | n € N} of Borel automorphisms of Y such that
F = E}, set ¢, = g, 0 ¢ and B, = BN ¢, (¢n(B) \ U, <, &m(B)) for
all n € N, define A = |J,,cy Bn X {n}, and observe that the function
: A=Y given by ¥(z,n) = ¢,(x) is as desired. =

For each set N, let I(N) denote the equivalence relation N x N.
As F'is M-structurable, so too is (F x I(N)) | dom(%)). The closure of
M-structurability under saturations therefore ensures that £ x I(N)
is M-structurable, so the closure of M-structurability under Borel re-
strictions implies that F is M-structurable. X

We say that an element F' of a class &£ is universal for £ under
a quasi-order < if £ < F for all £ € £ We say that a class M
of countable L-structures is Borel-on-Borel if for all standard Borel
spaces X, countable Borel equivalence relations £ on X, and Borel
L-structurings x — M? of E, the set {x € X | M* € M} is Bor-
el. An invariant embedding of an equivalence relation £ on X into an
equivalence relation F' on Y is an embedding 7: X — Y of F into F
with the property that 7([z|g) = [7(2)]F for all z € X.

PROPOSITION 5.3. Suppose that L is a countable relational language
and M is an isomorphism-invariant Borel-on-Borel class of countable
L-structures. Then there is a universal M-structurable countable Borel
equivalence relation on a standard Borel space under Borel invariant
embeddability.

ProoOF. The Feldman-Moore theorem ensures that every countable
Borel equivalence relation on a standard Borel space is generated by a
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Borel action of the free group G = Fy,. Fix a countable set N disjoint
from N for which there is an injective enumeration (R,),en of the
relation symbols of L, and let k, be the arity of R, for all n € N.

The right Bernoulli shift of G on [], .y 26" is the map from G x
[Ten 29" t0 TTen 297 given by (g-2)(n)((9:)i<k,) = 2(n)((9:9)i<k,)-
Note that if z € X, then (1 - 2)(n)((9i)i<k,) = (n)((g:)i<k,) for all
n € N and (g;)i<k, € G*, thus 1g - = z. Similarly, if g,h € G and
x € X, then

for all n € N and (g;)i<, € G*, thus g - (h-x) = (gh) - .

Let X be the set of all x € ], .y 26" with the property that
(95 * @)ick, = (hi - T)ick, = 2(n)((9)i<k,) = ©(n)((hi)ick,) for all
n € N and (g;)i<k,, (hi)ick, € G*. Observe that if ¢ € G and x €
X, then (gi - (9 - 2))i<k, = (hi - (9 2))ick, = (n)((9:9)i<r,) =
(1) (hig)ickn) = (9 - 2)(W)((g)ies) = (9 - 2)(m)((hi)ick,) for all
n € N and (gi)i<k,, (hi)i<k, € G*, 50 g- 1 € XJ.

The definition of X, ensures that for all n € N and = € X, we
obtain a ky-ary relation R* on Gz by setting (g; - ©)i<g, € RE <=
z(n)((gi)i<k,) = 1 for all (g;)i<r, € G*". Note that if g € G, n € N,
(9i)i<k, € G*, and ¥ € X then

(9i - ®)ick, € RI" <= (99" - (9 ¥))i<k, € RI”
= (g-2)(n)((gg™)ick,) =1
= 2(n)((9i)i<k,) =1
= (9i" 7)<k, € Ry

It follows that the assignment x — M* = (Gz,(R})nen) is an L-
structuring of EgL, in which case the restriction of this assignment to
the set X = {z € X | M® € M} is an M-structuring of E5™.

A homomorphism from an action G ~ X to an action G ~ Y
is a function ¢: X — Y such that ¢(g-x) = g - ¢(x) for all x € X.
Given a standard Borel space X, a Borel action G ~ X, and a Bor-
el L-structuring = — M® = (Gz,(R%),en) of E, define a function
¢: X = [Len 29 by ¢()(n)((9:)i<k,) = 1 <= (gi*@)ick, € RE for
all n € N, (gi)ick, € G*, and x € X, and observe that if ¢ € G and
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r € X, then

(g -2)(n)((9i)i<k,) =1 == (99" T)i<k, € R,
= ¢(x)(n)((9:9)i<k,) =1
= (g9-0(x))(n)((gi)i<k.) = 1,

so ¢(g-x) = g- ¢(x), thus ¢ is a homomorphism of G-actions.

An embedding of an action G ~ X into an action G ~ Y is an
injective homomorphism from G ~ X to G ~ Y. Let L' be the
language obtained from L by adding unary function symbols S,, for all
n € N. Let M’ be the class of L'-structures whose L-reducts are in M.

Suppose now that X is a standard Borel space, G ~ X is a Bor-
el action, and x — M* = (Gx, (R%),en) is a Borel M-structuring of
E¥, fix a sequence (By)nen of Borel subsets of X separating points,
and let z — (M")* = (Gz, (RE)pnen U (S¥)nen) be the M'-structuring
of EY with respect to which (M’)” is the expansion of M® such that
ye St «<— yeB,foralln e N, ze X, and y € Gx. Let ¢ be
the homomorphism from G ~ X to G ~ [],cn 26" % (26)N from the
previous paragraph.

To see that ¢ is injective, note that if x,y € X are distinct, then
there exists n € N such that x € S¥ but y ¢ SY, so ¢(x)(n)(lg) #
¢(y)(n)(1c), thus ¢(x) # G(y).

To see that ¢(X) C X/, note thatif n € N, (¢;)i<k,, (hi)i<k, € G*n,
and z € X has the property that (¢; - ¢(x))ick, = (hi - ¢(x))i<k,,
then the fact that ¢ is a homomorphism ensures that (¢(g; - z))i<r, =
(¢(h; - ))i<k,, so the fact that ¢ is injective implies that (g; - )<k, =
(hi * @)ick,, thus ¢(x)(n)((9i)i<k,) =1 <= (gi " ¥)ick, € R
(hi - ©)i<ck, € RE <= ¢(x)(n)((h)ick,) = 1. Of course, the same
argument shows that if n € N, g,h € GG, and x € X has the property
that g - ¢(x) = h - ¢(x), then ¢(x)(n)(g) = ¢(x)(n)(h).

The fact that z — (M')* is an M'-structuring of F now implies that
d(X) C Xar, thus G ~ Xy is a universal Borel G-action on a stan-
dard Borel space whose orbit equivalence relation is M-structurable
under Borel embeddability. As every embedding of G-actions is an in-
variant embedding of orbit equivalence relations, it follows that Eg/""
is a universal M-structurable countable Borel equivalence relation on
a standard Borel space under Borel invariant embeddability. X

6. Treeability

A graphing of an equivalence relation is a graph whose connected
components coincide with the equivalence classes. A treeing of an
equivalence relation is an acyclic graphing. We say that a countable
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Borel equivalence relation E on a standard Borel space is treeable if
there is a Borel treeing of E.

PROPOSITION 6.1 (Jackson-Kechris-Louveau). The class of tree-
able countable Borel equivalence relations on standard Borel spaces is
downward closed under smooth-to-one Borel homomorphisms.

ProoF. By Proposition 5.1, we need only establish closure under
saturations and Borel restrictions.

To establish closure under saturations, suppose that X is a standard
Borel space, E is a countable Borel equivalence relation on X, B C X
is Borel, and T is a Borel treeing of £ | B, appeal to the Lusin-Novikov
uniformization theorem to obtain a Borel function ¢: [B]p \ B — B
whose graph is contained in F, and observe that graph(¢)*' U T is a
Borel treeing of E' [ [B]g.

To establish closure under Borel restrictions, suppose that X is a
standard Borel space, E is a countable Borel equivalence relation on
X, T is a Borel treeing of F, and B C X is Borel. For all z € [B]|g,
let dr(x, B) be the minimal number of edges along a T-path from x
to B. By the Lusin-Novikov uniformization theorem, there is a Borel
function ¢: [B]g \ B — B such that dr(¢(z), B) < dr(z, B) for all
v € [B]g \ B. Define v: [B]g — B by ¢(x) = ¢¥7(®8) (), let F be the
subequivalence relation of £ | [B]g given by  F'y <= ¥(z) = ¢(y),
and observe that (¢ X ¥)(T'\ F) is a treeing of E [ B. X

7. Cost

We begin this section with a basic fact concerning integration.

PROPOSITION 7.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, R C E s Borel, and p is

an E-invariant Borel measure. Then [|R,| du(z) = [ |RY] du(y).

Proor. By the Lusin-Novikov uniformization theorem, there are
Borel partial injections ¢, : X — X whose graphs partition R. Then

JIRY du(y) = [ 32 en Xou(domsn)) (4) dp(y)
= > nen H(@n(dom(ey)))
= _nen #(dom(ey,))
=[S e Xdom(on) (z) dpu(z)
= [|R.| du(x),

which completes the proof. X
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Suppose that X is a standard Borel space, GG is a Borel graph on
X, and p is a Borel measure on X. The cost of G with respect to pu is
given by C,(G) = 3 [ |G,| du(z).

PROPOSITION 7.2. Suppose that X 1is a standard Borel space, E
15 a countable Borel equivalence relation on X, ¢: X — X is a Bor-
el partial function whose graph is contained in E with the property
that x ¢ {f(x), f*(x)} for all z € X, and p is an E-invariant Borel
measure. Then C,,(graph(¢)*) = u(dom(¢)).

PROOF. As graph(¢) Ngraph(¢)~! =0 and Proposition 7.1 ensures

that [ lgraph(9).| du(z) = [ \graph )| du(y) = [ |graph(e);"| du(),
it follows that C' (graph((b = [ |graph(¢),| du(z) = p(dom(¢)). ®

PROPOSITION 7.3 (Lev1tt). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, B C X 1is
a Borel transversal of E, T is a Borel treeing of E, and u is an E-
invariant Borel measure on X. Then C,(T) = p(~B).

PRrROOF. For all x € X, let dy(x, B) denote the number of edges
along the unique injective T-path from x to a point of B, and define
¢: ~B — X by ¢(x) = the unique T-neighbor of = with the property
that dp(¢(x), B) < dp(x, B). Then T = graph(¢)*!, so Proposition
7.2 ensures that C,(T") = p(dom(¢)) = u(~B). X

We say that a set Y C X is G-connected if G | Y has a single
connected component.

PROPOSITION 7.4. Suppose that X is a standard Borel space, E is a
hyperfinite Borel equivalence relation on X, and G is a Borel graphing
of E. Then E is the union of an increasing sequence (Ey,)nen of finite
Borel subequivalence relations whose classes are G-connected.

PRrOOF. Fix an increasing sequence (F,),ey of finite Borel equiva-
lence relations whose union is F/, and define z F,, y if and only if x E' y
and there is a G-path from z to y that lies within a single F),-class. ®

An equivalence relation is aperiodic if all of its classes are infinite.

PRrOPOSITION 7.5 (Levitt). Suppose that X is a standard Borel
space, E is an aperiodic hyperfinite Borel equivalence relation on X, T
15 a Borel treeing of E, and p is an E-invariant finite Borel measure

on X. Then C,(T) = p(X).

PROOF. By Proposition 7.4, there is an increasing sequence (E,,)nen
of finite Borel subequivalence relatlons of E such that E = |, .y En
and each equivalence class of each FE,, is T-connected. Fix a decreasmg
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sequence of Borel transversals B,, C X of F,,. Proposition 7.3 ensures
that C,(E, NT) = u(~B,) for all n € N. As the set B =, .y Bn is a
partial transversal of F/, F is aperiodic, and p is F-invariant, it follows
that B is p-null, so u(B,,) — 0, thus the fact that C,,(E,NT) — C,(T)
implies that C,(T") = pu(X). =

A graph G is n-regular if |G,| = n for all x € X.

PROPOSITION 7.6. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and there is a two-reqular

Borel graphing G of E. Then E is hyperfinite.

PRrROOF. We can clearly assume that every equivalence class of F
is infinite, and therefore that G is acyclic. By the Lusin-Novikov uni-
formization theorem, there is a Borel function ¢: X — X whose graph
is contained in G. Let dg denote the (extended-valued) graph metric
on X induced by G, and let F' be the subequivalence relation of F
consisting of all (z,y) € E for which dg(x,y) = da(o(z), p(y)). As
every F-class is the union of two F'-classes, it only remains to show
that F' is hyperfinite. Define 7: X — X by T'(z) = the first point of
[z]F \ {2} along the injective G-ray (z, ¢(z),...). By throwing out an
F-invariant Borel set on which F' is smooth, we can assume that 7' is
a Borel automorphism. But then F'is the orbit equivalence relation
induced by T, and is therefore hyperfinite. X

We say that G is p-acyclic if there is a p-conull Borel set C' C X
for which G | C is acyclic.

PROPOSITION 7.7 (Levitt). Suppose that X is a standard Borel
space, E is an aperiodic countable Borel equivalence relation on X, G is
a Borel graphing of E, and u is an E-invariant finite Borel measure on
X. Then C,(G) > p(X), and if equality holds, then E is pu-hyperfinite
and G is p-acyclic.

PrOOF. As C,(G) < oo and p is E-quasi-invariant, by throwing
out an E-invariant p-null Borel set, we can assume that G is locally
finite. We say that a set Y C X is G-conver if every injective G-path
between elements of Y lies entirely within Y. The pruning derivative
on the family of all G-convex sets Y C X is the function given by
Y ={yeY ||G,NY| > 2}. The G-convexity of Y yields that of
Y’. Note that if every (E [ Y)-class has at least two elements, then
every point of Y \ Y’ has a unique (G | Y)-neighbor, and if every
(E T Y)-class has at least three elements, then this (G | Y)-neighbor is
necessarily in Y. Letting ¢: Y\ Y' — Y” be the function sending each
point of Y\ Y’ to this (G [ Y)-neighbor, it follows that G | Y is the
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disjoint union of G | Y’ with graph(¢)*!. The fact that G is locally
finite ensures that if £ [ Y is aperiodic, then so toois £ | Y.

By starting with Y = X and recursively applying the pruning de-
rivative, we obtain a decreasing sequence (B, )nen of G-convex Borel
subsets of X and Borel functions ¢,: B, \ Bu+1 — Bns1 such that
By = X and G | B, is the disjoint union of G | B, with graph(¢,)*!
for all n € N. Then the set B = [, .y B is G-convex, and G is the
disjoint union of G | B with graph(¢)*!, where ¢: ~B — X is given
by ¥ = U,en @n- As G is locally finite, the pruning derivative termi-
nates after w-many steps, that is, every point of B has at least two
(G | B)-neighbors.

Proposition 7.2 ensures that C,(G) = p(~B)+C,(G | B) > pu(X),
so it only remains to show that if C\,(G | B) = u(B), then E is p-
hyperfinite and G is p-acyclic. The fact that ¢ sends points of ~B
to points of strictly larger pruning rank ensures that every simple G-
cycle lies entirely within B (since it would otherwise contain a point of
minimal pruning rank). It follows that the restriction of G to the set
A={z e X | Bn[x]g =0} is acyclic, and since E | A = E,(¢ [ A),
it follows that E | A is hypersmooth, and therefore hyperfinite. So we
can assume that u(A) < u(X). As p is E-quasi-invariant, it follows
that u(B) > 0. As the family of Borel subsets of X on which E
is hyperfinite is closed under E-saturations, it only remains to show
that £ | B is (i | B)-hyperfinite and G | B is (u | B)-acyclic. By
throwing out an (F [ B)-invariant (x [ B)-null Borel subset of B, we
can assume that G | B is a two-regular Borel graph, and therefore
generates a hyperfinite equivalence relation by Proposition 7.6. To see
that G' | B is acyclic, note that otherwise there exists x € B for which
(2| g1p is finite, and the fact that ¢ is finite-to-one yields n € N for
which B,, N w_l([x]ErB) = (Z), thus [;U]E = Um<n w_m([x]ErB) is ﬁnite,
contradicting the aperiodicity of E. - X

The cost of a countable Borel equivalence relation F on a standard
Borel space X with respect to an F-invariant finite Borel measure p
on X is given by C,(F) = inf{C,(G) | G is a Borel graphing of E}.

PROPOSITION 7.8 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, B C X s an
E-complete Borel set, and p s an E-invariant finite Borel measure on

X. Then C\(E) — n(X) =Cu(E | B) — pu(B).

PrOOF. Tosee that C,(E)—u(X) < Cu5(E | B)—p(B), note that
if € > 0, then there is a Borel graphing H of F | B with the property
that C,(H) < C,5(E | B) + ¢, and the Lusin-Novikov uniformization
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theorem yields a Borel function ¢: ~B — B whose graph is contained in
E. As the graph G = graph(¢)*' U H generates E, and Proposition 7.2
ensures that C,(G) = u(~B)+ C,(H), it follows that C\,(E) — pu(X) <
CulG) — u(X) = CulH) — (B) < Coip(E | B) — u(B) +¢.

To see that C,p(E | B) — u(B) < CL(E) — pu(X), note that if
€ > 0, then there is a Borel graphing G of E with the property that
C.(G) < Cu(E) + ¢, and the Lusin-Novikov uniformization theorem
yields a Borel function ¢: ~B — X whose graph is contained in G and
has the property that dg(¢(z), B) < dg(x, B) for all € ~B. Define
Y: X — B by ¢(z) = ¢%¢@B)(g), and let F be the subequivalence
relation of F given by x F' y <= ¢(x) = ¥(y). Then the graph
H = (¢ x¢)(G\ F) generates F [ B and

Cu(H) = L [ |H] da)
< 5 Jp Xy, G\ F)yl du()
=5 JIG\ F)a| dp(z)
=Cu(G\F).
As graph(¢)*! C F NG, it follows from Proposition 7.2 that C,(H)

<

C,(G) — p(~B), in which case Cp(E | B) — u(B) < C,(H) — pu(B) <
Cu(G) = p(X) < Cu(E) — u(X) + e
REMARK 7.9. Proposition 7.8 ensures that if C,(E) > p(X), then

Cojux)(E) < Cupyws)(E | B), with equality holding if and only if
B is p-conull.

Given sets RC X xY and S CY x Z, let RS denote the set of
pairs (z,z) € X x Z for which there exists y € Y such that x Ry S z.

X

PROPOSITION 7.10 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, I is a Bor-
el subequivalence relation of E whose classes have bounded finite size,
B C X is a Borel transversal of F', G is a Borel graphing of E disjoint
from F for which FGF | B is acyclic, and p s an E-invariant finite
Borel measure on X. Then C,(FGF | B) — u(B) < C,(G) — p(X).

PROOF. Let (X)% denote the space of injective triples of pairwise
E-related points of X, and fix a Borel coloring c¢: (X)3, — N of the
graph on (X)3, in which two triples are related if and only if their images
intersect, as well as an infinite-to-one function d: N — N. We will
define an increasing sequence of finite Borel subequivalence relations
F,, of F and a decreasing sequence of Borel transversals B,, O B of F,,
such that CH<Fn+1GFn+1 r Bn+1)—/L(Bn+1) S CH<FnGFn r Bn)—,u(Bn)
for all n € N. We begin by setting By = X and Fy = A(X), so
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that C,(G) — u(X) = C.(FoGFy | By) — pu(By). Given n € N for
which we have already found B, and F,,, let R, be the set of triples
(x,y,2) € (B, \ B) X B, X B,, with the property that c(z,y, z) = d(n),
r F,GF, y F,GF, z, and x (F\ F,) z, define ¢,,: B, \ B — B, by
on(z) = 2 <= 3y € B, (x,y,2) € Ry, let F, 1 be the equivalence
relation generated by F, and graph(¢,), set B,,1 = B, \ dom(¢,),
and define v,,: dom(¢,) — B, by ¥, (z) =y < (x,y,¢.(2)) € R,.

Proposition 7.2 then ensures that
Cu(Fns1GFop1 | Bya)
=35 J5,., |Bor1t N (Fon1GFopa)o] dp()
<3 anH\%(dOm (ém)) |B N (FaGFy)x| du(z) +
]B N(F.GF,):| du(x) +
Cu(graph(wn) )

=3 [, |Bu N (F,GF,).| dp(x) — p(dom(yy,))
= Cu(FWGE, | By) — (W(Bn) — #(Bp1)),

2 fqﬁn dom(¢

thus C,,(Fr1GFoy1 | Buy1) — i(Buy1) < Cu(FLGF, | Bn) — p(By).
This completes the recursive construction.

Define By, = (,,eny Bn and Foo = J,,cn - The fact that F is finite
ensures that for all z € X, there exists n € N such that [z|g, = [z]F,,
80 B N [x]p, = B, N [2]E,, thus By, is a transversal of F..

LEMMA 7.11. The relations F' and F,, coincide on Bs.

PROOF. Suppose, towards a contradiction, that F' | Bs, € Fy, and

let k& be the minimal natural number with the property that there is
n (FooGFy | Boo)-path (z;);<k such that g ¢ B and z¢ (F'\ Fio) Tk
Define ¢: X — B by ¢(x) = the unique element of B N [z]p, and
note that (¢(z;))i<k is an (FGF | B)-path whose initial and terminal
points coincide, so the acyclicity of FGF | B yields 0 < i < k with
the property that ¢(x;_1) = ¢(z;41). As the minimality of & ensures
that z;1 (F'\ Fx) 11, it follows that £ = 2. Fix m € N for which
xo F,GF,, 1 F,,GF,, ©2, as well as n > m with the property that
c(xg, 1, 9) = d(n), and observe that xy F, 1 xs, a contradiction. &

Lemma 7.11 ensures that B = B, thus F' = F,, in which case
FGF | B = U, ey FnGE, | B. Set k = max,cx |[z]r|, and observe

neN
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that if H C F is a Borel graph, then Proposition 7.1 ensures that
CuFHUHF) < fzye[x]F |Hy| dp(z)

<k [ e Hyl/lz]el du(z)
=k [ |H,| dp(z)
= 2kC,,(H).

As F(FGUGF)U (FGUGF)F = FGF, it follows that C,(FGF) <
2kC,(FGUGF) < 4k*C,(G). In particular, as we can clearly assume
that C,(G) < oo, it follows that C,(FGF) < oco. Then the measure
v on X given by v(A) = [, |(FGF),| du(z) is finite, so the fact that
Myen Bn \ B = 0 ensures that v(B,,\ B) — 0. As one more application
of Proposition 7.1 yields that

Cul(FaGF, 1 Bp) \ (FuGF, | B)) = Cu(F.GF, 0 (B, \ B) x B)*)
< Jpn (FLGF)| du(e)
< V<Bn \ B),

the fact that C,(F,GF, | B) — C,(FGF | B) therefore implies that
C.(F,GF, | B,)—u(B,) = C,(FGF | B) — u(B), and it follows that
CW(FGF | B) = u(B) < C,(G) — (). %

THEOREM 7.12 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, T is a Borel

treeing of E, and p is an E-invariant finite Borel measure on X for
which C,(T) < co. Then C,(E) = C,(T).

Proor. It is sufficient to show that if e > 0 and G is a Borel graph-
ing of E, then C,(T) < C,(G) + €. By the Lusin-Novikov uniformiza-
tion theorem, there are countable sets & and &7 of Borel partial injec-
tions of X into X such that (graph(¢)").¢)e(+1}xa, partitions H for all
H € {G,T}. By replacing each ¢ € & with countably-many restric-
tions, we can assume that for all ¢ € ®¢, there is a ®p-word w, such
that ¢ = wy [ dom(¢). The fact that C,(T") < oo ensures the existence
of a finite set W of ®g-words such that C,,(T\ U,y graph(w)=) <e.
Let ®¢ [ W be the set of ¢ € Py appearing in some w € W, set
Dy ={p € g | W | |wy| > 2}, define H = [J,eq, graph(¢)™" and
U =Uspc@amnasy graph(¢)* U (T'\ U ew graph(w)*'), and observe
that H UU is a graphing of £ and C,(HUU) < C,(G) +e.

For all ¢ € @y, set Xy = {1,...,|wg| — 1} x {¢} x dom(¢) and
define ¢: dom(¢) U X, — X4 U ¢(dom(e)) by é(z) = (1,¢,) for
all z € dom(e), é(i,,7) = (i + 1,¢,7) for all 1 < i < |wy| — 2
and x € dom(¢), and ¢(|wy| — 1,¢,2) = ¢(x) for all z € dom(g).
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Define X = X U Usca,, Xo» let 7 X — X be the extension of the
identity function on X given by 7 (i, ¢, x) = (wy [ i)(z) for all ¢ € Dy,
1 <i<|wg| — 1, and x € dom(¢), let E be the pullback of E through
7, set H = Usca, graph(¢)*!, and let 7 be the extension of y to an E-
invariant finite Borel measure on X given by zi({i} x {¢} x B) = u(B)
for all ¢ € @y, 1 <i < |wy| — 1, and Borel sets B C dom().

Let F be the pullback of equality on X through 7. As 7 is injective
on {i} x {¢} x dom(¢) for all p € &y and 1 < i < |wy| — 1, it follows
that the classes of F' have bounded finite cardinality.

LEMMA 7.13. The graphs F(HUU)F | X and T coincide.

PROOF. As FHF | X = (7 x 7)(H) and FUF | X = U, their
union is contained in 7. To see that 7' C F(H U U)F, suppose that
Ty If (z,y) ¢ U, graph(v)™!, then 2 U y. Otherwise, fix v e W
for which (z,y) € graph(v)*'. As T is acyclic, there exist i < |v| and
J < |wy()| with the property that (x,y) € graph(w,(j))*", in which
case (Wyy| =1 =2 U y and |wyy| > 2= x FHF y. 53

As HUU is clearly a graphing of E, Proposition 7.10 ensures that
Cu(T) — u(X) < Cr(HUU) — @(X). As the fact that

Cu(H) = 3 jeq,, Crlgraph(9)*)

= Z¢€¢’H ﬁ(dom((b))
= 2 geay, H(dom(g))|ws]

= Cu(H) + [i(X) — p(X)
implies that C,(HUU) — u(X) = Cx(H UU) — (X)), it follows that
C.(T)<C,HUU)<C,G)+e. X

REMARK 7.14 (Gaboriau). Conversely, if G is a non-pu-acyclic Bor-
el graphing of E for which C,(G) < oo, then C,(E) < C,(G). To
see this, let C'¢ be the standard Borel space of simple G-cycles, fix a
Borel coloring c¢: Cg — N of the graph on Cg in which two simple
G-cycles are related if and only if they pass through a common point,
and define ¢,,: X — X by ¢,(z) =y <= Iy e c'({n}) (z,y) E~
for all n € N. As p is E-quasi-invariant, the fact that G is not u-
acyclic yields n € N for which the domain of ¢,, is u-positive. Then the
graph H = G \ graph(¢,)*! also generates E, and since Proposition
7.2 ensures that C,(H) < C,(G), it follows that C,(E) < C,(G).

REMARK 7.15 (Gaboriau). Theorem 7.12 implies its generalization
in which the hypothesis that C,(T") < oo is removed. To see this, it
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is sufficient to show that if GG is a Borel graphing of F, r € R, and
C,(T) > r, then C,(G) > r. Towards this end, again fix countable
sets ®; and Pr of Borel partial injections of X into X such that
(graph(¢)").¢)efr1yxa, partitions H for all H € {G,T}, and note
once more that by replacing each ¢ € ¥y with countably-many re-
strictions, we can assume that for all ¢ € ®g, there is a $p-word
we such that ¢ = w, | dom(¢). Fix a finite set Up C Pp such
that C,(H) > r, where H = ey, graph(¢)*', as well as a fi-
nite set Vg C &g such that C,(H) — C,(H \ F) > r, where F
is the equivalence relation generated by ey, graph(¢)*!. Define
U =UrU{p € &7 | I € Vg ¢ appears in wy}, and observe that
U¢Eq,,T graph(¢)*! and Uwe%u(%\%) graph(¢)*' U (H \ F) generate
the same equivalence relation, so Theorem 7.12 ensures that the cost of
the former is at most that of the latter, thus C,(U, ey, graph(¢)*!) <

Oﬂ(U¢e@G graph(y)*")+C,(H\ I"), hence Cu(Uwe\pG graph(¢)*) > r.

8. Codes

Given a compact space X and a metric space Y, let C'(X,Y") denote
the space of continuous functions from X to Y, equipped with the

metric dc(X,y)(f, g) = SUPgex dy(f(l‘), g((L’))

PROPOSITION 8.1. Suppose that X is a compact Polish space and
Y is a Polish metric space. Then C(X,Y") is Polish.

Proor. To see that C(X,Y’) is separable, fix a countable basis U
for X and a countable dense set D C Y. For all rational ¢ > 0, finite
covers V C U of X, and functions ¢p: V — D for which it is possible, fix
a continuous function f.y 4: X — Y such that dy (¢(V), feyo(z)) <€
for all V€ V and x € V. To see that the set of all f.y 4 is dense, note
that if e > 0 and f: X — Y is continuous, then there is a finite cover
YV C U such that diam(f(V)) < e for all V' € V, as well as a function
¢:V — D such that dy(¢(V), f(z)) < 2c¢ for all V € V and = € V.
But then foc v, exists and dex,v)(f, faev,g) < 4e.

To see that C(X,Y) is complete, note that if (f,)nen is Cauchy,
then we obtain a function f: X — Y by setting f(z) = lim,, o fn(z).
To see that f is continuous, observe that if € > 0 and z € X, then
there exists n € N such that de(x,y)(fm, fn) < € for all m > n, thus
dy (fn(x), f(x)) < eforall z € X, soif U is an open neighborhood of x
such that f,(U) C B(fn(x),€), then f(U) C B(fn(x),2¢) C B(f(x), 3¢).
To see that f, — f, note that if ¢ > 0 and n € N is sufficiently large
that do(x,y)(fm, fn) < € for all m > n, then do(x vy (fn, f) < e X
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PROPOSITION 8.2. Suppose that X is a compact space and Y 1is
a metric space. Then the function ¢: C(X,Y) x X — Y given by
o(f,x) = f(x) is continuous.

PROOF. Given € > 0, f € C(X,Y), and z € X, fix 0 < § < € and
an open neighborhood U C X of x such that f(U) C B(f(x),d), and
observe that ¢(B(f,e — ) x U) C B(f(x),e). X

A code for a partial function is a sequence ¢ € C(X,Y)Y. The
partial function 7.: X — Y coded by such a sequence is given by
T(r) =y <= V°n € N ¢(n)(z) = y. We identify each partial
function 7: X — Y with the extension 7: X — Y U {0} given by
T(x) = 0 for all x € ~dom(¢).

ProPOSITION 8.3. Suppose that X is a zero-dimensional Polish
space, Y is a metric space of cardinality at least two, u is a finite Bor-
el measure on X, and m: X — Y is a p-measurable partial function.
Then there is a code ¢ for a partial function such that 7(x) = 7.(x) for
p-almost all v € X.

PRrROOF. Fix a sequence (€,),en of positive real numbers for which
Y nen €n < 00, as well as closed sets C), € dom(m) on which 7 is
continuous and clopen sets U,, C X such that u(dom(r)\ C,) < €, and
p(dom(m) A U,) < ¢, for all n € N, in which case the corresponding
set N = (e Upsn dom(m) \ C) U (N, e Uppsy dom(m) A Uy, is -
null. Fix continuous retractions m,: X — C,,, as well as points y, € Y
with the property that (y,)nen is not eventually constant, and let ¢
be the code for a partial function given by ¢(n) [ U, = (mom,) | U,
and c(n) | ~U, =y, for all n € N. It only remains to observe that
if x € ~N, then x € dom(nr) = In € NVm >nz € C,,NU,, =
dn € NYm > n ¢(m)(z) = (momy)(z) = 7(z) = 7(z) = 7(x),
and x ¢ dom(nr) = In € NVm > nzx ¢ U, = In € NVYm > n
co(m)(x) = ym = T(x) = Te(2). 2

A subset of a topological space is F, if it is a union of countably-
many closed sets.

PROPOSITION 8.4. Suppose that X is a compact Polish space and'Y
is a Polish metric space. Then the partial function ¢: C(X,Y)Nx X —
Y given by ¢(c,z) = m.(x) is Borel.

PROOF. The domain of ¢ is the set of (c,z) € C(X,Y)N x X for
which ¢(n)(z) is eventually constant, which is F, by Proposition 8.2.
Similarly, the graph of ¢ is the set of ((c,z),y) € (C(X,Y)Nx X) xY
for which ¢(n)(x) is eventually constant with value y, which is also F,
by Proposition 8.2. X
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PROPOSITION 8.5. Suppose that X is a compact Polish space and
Y is a Polish metric space. Then the partial function ¢: C(X,Y)N x
P(X) — P(Y) given by ¢(c,n) = (me)wpt is Borel.

PROOF. Suppose that B C Y and C' C R are Borel. As Proposition
8.4 ensures that the set of (c,z) € C(X,Y)N x X for which z € 7, !(B)
is Borel, it follows that so too is the set of (¢, u) € C(X,Y)N x P(X)
for which u(7,!(B)) € C and p(dom(w.)) = 1. b

A code for a subset of X is a code c¢ for a partial function 7.: X — 2.
The set B. C X coded by such a sequence is the support of ..

9. Measure-hyper-£-to-one homomorphisms

Suppose that £ is the downward closure of a countable Borel equiv-
alence relation E¢ on a Polish metric space Xg under smooth-to-one
Borel homomorphisms. A code for a partial witness to the hyper-&-
ness of a partial equivalence relation £ on a compact Polish space X
is a pair (¢,d) € (C(X, Xe)MN x (C(X,2)M)N. The E-scope of such a
code is the set of x € dom(F) for which the partial equivalence rela-
tions E, = (Te(n) X Tem))~H(Eg) | [2]g are increasing and their union is
(2] % [x]g, the sets B,, = By, Ndom(E,) are E,-complete, and each
Te(n) Is injective on each (E, [ B,)-class.

ProprOSITION 9.1. Suppose that £ is the downward closure of a
countable Borel equivalence relation Ee¢ on a Polish metric space X¢
under smooth-to-one Borel homomorphisms, X is a compact Polish
space, and E is a countable Borel partial equivalence relation on X for
which there is a Borel homomorphism ¢: dom(E) — (C(X, Xg)MN x
(C(X, 2N from E to equality such that x is in the E-scope of ¢(x)
for all x € dom(FE). Then E is hyper-E.

PROOF. Define (c;,d,) = ¢(x) for all z € dom(FE), as well as
Ty o dom(E) = X¢ by m,(2) = e n)(2), En = EN (1, X m,) ' (Ee),
and B, = {z € dom(F) | € Bq, ()} for all n € N. Then (E,),en
is an increasing sequence of Borel equivalence relations whose union
is E, and each 7, is a Borel homomorphism from FE, to Eg¢. As each
B, is E,-complete and each m, is injective on each (F, [ B,)-class,
Proposition 4.2 ensures that each 7, is F-smooth-to-one, so each E,, is
in £, thus F is hyper-&. X

PROPOSITION 9.2. Suppose that £ is the downward closure of a
countable Borel equivalence relation E¢ on a Polish metric space X¢ un-
der smooth-to-one Borel homomorphisms, X is a compact zero-dimen-
sional Polish space, E is a countable Borel partial equivalence relation
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on X, and p 1s an E-hyper-E finite Borel measure on X. Then there
1s a code for a partial witness to the hyper-E-ness of E whose E-scope
1S pu-conull.

Proor. Fix a p-conull Borel set C C X such that £ [ C is
hyper-€, an increasing sequence (F,),en of equivalence relations in
&€ whose union is £ [ C, and smooth-to-one Borel homomorphisms
7 dom(E,) — Xg from E, to Eg for all n € N. By the Lusin-No-
vikov uniformization theorem, there is a Borel function 7: [C|g — C
whose graph is contained in E. By replacing C' with [C]g, E, with
(rx 7)Y E,), and 7, with 7, om, we can assume that C'is E-invariant.
Fix an E-quasi-invariant finite Borel measure v such that y < v and
the two measures agree on every E-invariant Borel set. By Proposition
4.2 there are E,-complete Borel sets B,, C dom(F,) such that 7, is
injective on each (E, | B,)-class for all n € N, and by Proposition 8.3,
there exists (c,d) € (C(X, Xe)M)N x (C(X, 2)M)N for which the set D =
{x € C|VYn e N (T,(x) = Tom(x) and (x € B, <= 2z € Byw))}
is v-conull. As v is E-quasi-invariant, the set ~[~D]g is v-conull, thus
p~conull. But ~[~D]g is contained in the E-scope of (¢, d). b

PROPOSITION 9.3. Suppose that € is the downward closure of a
countable Borel equivalence relation Eg on a standard Borel space Xg
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, and E is a countable Borel equivalence relation on X. Then the
set of E-hyper-E Borel probability measures is analytic.

PROOF. By the isomorphism theorem for standard Borel spaces,
we can assume that X is a compact zero-dimensional Polish space.
We can clearly assume that X¢ is a Polish metric space. As the set
R of ((¢,d),z) € ((C(X, Xe)"N x (C(X,2)M)N) x X for which z is
in the E-scope of (c¢,d) is Borel, so too is the set S of (u,(c,d)) €
P(X) x ((C(X, Xe)MN x (C(X,2)M)N) for which pu(R(q) = 1. But if
1 is a finite Borel measure on X, then the special case of Proposition
9.1 for constant homomorphisms ensures that if u € projp x)(S) then
E is p-hyper-&€, and conversely, Proposition 9.2 implies that if £ is
p-hyper-& then p € projp x)(S). X

A partial witness to the E-hyper-E-to-one-ness of a partial function
¢: X — Y is a partial function m: Y — (C(X, Xg)M)N x (C(X,2)N)N.
The scope of such a partial witness is the set of © € dom(¢) for which
é(x) € dom(r) and z is in the (E | ¢~ ({¢(z)}))-scope of (70 ¢)(x).

A disintegration of a Borel probability measure g on X through
a Borel function ¢: X — Y is a function ¥: Y — P(X) with the
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property that ¢! ({y}) is ¥(y)-conull for (¢, u)-almost all y € YV, and
w(B) = [¥(y)(B) dp.u(y) for all Borel sets B C X.

PROPOSITION 9.4. Suppose that € is the downward closure of a
countable Borel equivalence relation Ee on a Polish metric space Xe un-
der smooth-to-one Borel homomorphisms, X is a compact zero-dimen-
stonal Polish space, Y 1s a standard Borel space, E is a countable
Borel equivalence relation on X, i 1s a Borel probability measure on
X, ¢: X =Y s a Borel partial function whose domain is p-conull,
and there is a Borel disintegration 1: Y — P(X) of p through ¢ such
that E | ¢~ ({y}) is ¥ (y)-hyper-E for (¢p.u)-almost all y € Y. Then
there is a Borel partial witness to the E-hyper-E-to-one-ness of ¢ whose
scope is p-conull.

PROOF. Astheset Rof ((¢,d),x) € ((C(X, Xe)M)Nx(C(X,2)N)N)x
dom(¢) for which z is in the (E | ¢~ ({¢(x)}))-scope of (c,d) is Borel,
so too is the set S of (y,(c,d)) € Y x ((C(X, Xg)MN x (C(X, 2)MN)
for which 1 (y)(Rcq)) = 1, thus the Jankov-von Neumann uniformiza-
tion theorem yields a o(X7)-measurable uniformization m: projy (S) —
(C(X, Xe)N x (C(X,2)MN of S. As Proposition 9.2 ensures that
projy (S) is (¢.p)-conull, there is a (¢, pu)-conull Borel set D C dom()
on which 7 is Borel. Let C' be the set of z € ¢~!(D) in the E |
¢ ({¢(x)})-scope of (o ¢p)(x). Then u(C) = [¢(y)(C) dowp(y) =1,
so 7 | D is a Borel partial witness to the E-hyper-£-to-one-ness of ¢
whose scope is p-conull. X

PROPOSITION 9.5. Suppose that £ is the downward closure of a
countable Borel equivalence relation Ee on a standard Borel space Xg
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, E is a countable Borel equivalence relation on X, and p: E —
(0,00) is a Borel cocycle for which every E-ergodic p-invariant Bor-
el probability measure is E-hyper-E. Then so too is every p-invariant
Borel probability measure.

PrRoOOF. By the isomorphism theorem for standard Borel spaces,
we can assume that X is a compact zero-dimensional Polish space.
We can clearly assume that Xg is a Polish metric space. Given a p-
invariant Borel probability measure p, fix an E-invariant Borel function
¢: X — P(X) that is a decomposition of u into E-ergodic p-invariant
Borel probability measures, in the sense that ¢(z) is E-ergodic and
p-invariant for all z € X, ¢~'({v}) is v-conull for all v € ¢(X), and
w(B) = [¢(x)(B) du(z) for all Borel sets B C X. As the identity
function on P(X) is a disintegration of p through ¢, Proposition 9.4
yields a Borel partial witness 7: P(X) — (C(X, X¢)")N x (C(X,2)M)N



9. MEASURE-HYPER-£-TO-ONE HOMOMORPHISMS 25

to the E-hyper-£-to-one-ness of ¢ whose scope C' C X is p-conull, and
since (mo¢) | C'is a Borel homomorphism from E | C' to equality such
that « is in the E-scope of (7 o ¢)(z) for all x € C, Proposition 9.1
ensures that E [ C' is hyper-&, thus p is E-hyper-€. X

Given any class & of countable Borel equivalence relations on stan-
dard Borel spaces, we say that a countable Borel equivalence relation
on a standard Borel space X is measure-€ if it is p-& for all Borel
probability measures p on X.

QUESTION 9.6. Is a countable Borel equivalence relation hyperfinite
if and only if it is measure hyperfinite?

PROPOSITION 9.7. Suppose that € is the downward closure of a
countable Borel equivalence relation Ee on a standard Borel space Xg
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, E is a countable Borel equivalence relation on X, and there is an
E-measure-hyper-E-to-one Borel homomorphism from E to a measure-
hyperfinite countable Borel equivalence relation on a standard Borel
space. Then E is measure-hyper-E.

Proor. We will first show that if there is an E-measure-hyper-
&-to-one Borel homomorphism ¢: X — Y from E to equality on a
standard Borel space, then E is measure-hyper-£. By the isomorphism
theorem for standard Borel spaces, we can assume that X and Y are
compact zero-dimensional Polish spaces. Clearly we can assume that
X¢ is a Polish metric space. But given any Borel probability measure
1 on X, Proposition 9.4 yields a Borel partial witness m to the E-
hyper-£-to-one-ness of ¢ whose scope C' C X is pu-conull, in which case
(mo¢) | C is a Borel homomorphism from E | C to equality with
the property that x is in the E-scope of (w0 ¢)(x) for all x € C, thus
Proposition 9.1 ensures that F | C' is hyper-£.

Suppose now that Y is a standard Borel space, F' is a measure-
hyperfinite countable Borel equivalence relation on Y, and ¢: X — Y
is an E-measure-hyper-£-to-one Borel homomorphism from E to F.
Given a Borel probability measure p on X, fix a (¢, pu)-conull Borel set
D C Y on which F' is hyperfinite, as well as an increasing sequence
(Fy)nen of finite Borel equivalence relations whose union is F' | D.
Then the Borel set C' = ¢~!(D) is p-conull, and for all n € N, the
function ¢ [ C' is an E-measure-hyper-£-to-one Borel homomorphism
from the equivalence relation E, = (E N (¢ x ¢)"(F,)) | C to F,,
so the previous paragraph ensures that F,, is u-hyper-€. As F | C =
U,en Ens Proposition 3.3 implies that E is y-hyper-€. X
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A code for an E-hyper-E-to-one partial homomorphism from an
equivalence relation £ on X to a partial equivalence relation F' on Y
is a pair (c,d) € C(X,Y)Nx O(Y, (C(X, X¢))N x (C(X, 2)MM)N. The
scope of such a code (¢, d) is the set of all x € X with the property
that [z]g C dom(m.), m.([z]g) C dom(my) N dom(F) N [7.(z)]r, and y
is in the E | 7. '({7.(y)})-scope of (740 7.)(y) for all y € [z]g.

PROPOSITION 9.8. Suppose that £ is the downward closure of a
countable Borel equivalence relation Ee on a Polish metric space X¢
under smooth-to-one Borel homomorphisms, X and Y are compact
zero-dimensional Polish spaces, D C 'Y s a Borel set, E and F are
countable Borel equivalence relations on X and Y, and p is a finite
Borel measure on X. Then the following are equivalent:

(1) There exists a code (c,d) for an E-hyper-E-to-one partial ho-
momorphism from E to F | D whose scope is p-conull.

(2) There exist a p-conull Borel set C' C X and an E-hyper-E-to-
one Borel homomorphism from E | C to F' | D.

(3) There exist a p-conull Borel set C' C X and an E-measure-
hyper-E-to-one Borel homomorphism from E | C to F' | D.

PrOOF. To see (1) = (2), note that if (¢,d) is a code for an
E-hyper-E-to-one partial homomorphism from E to F' | D with scope
C C X, then «, [ C is an E-hyper-&-to-one Borel homomorphism from
E [ CtoF | D. As (2) = (3) is clear, it only remains to establish
(3) = (1). Towards this end, suppose that there is a p-conull Bor-
el set ' C X for which there is an E-measure-hyper-£-to-one Borel
homomorphism ¢: C'— D from E | C'to F' | D. By the Lusin-Novikov
uniformization theorem, there is a Borel function ¢: [C]g — C whose
graph is contained in E. By replacing C with [C]|g and ¢ with ¢ov), we
can assume that C'is F-invariant. Fix an E-quasi-invariant finite Borel
measure v such that p < v and the two measures agree on every FE-
invariant Borel set. By Proposition 9.4, there is a Borel partial witness
T Y = (C(X, Xe)M¥x (C(X,2)M)N to the E-hyper-E-to-one-ness of ¢
whose scope is v-conull. By Proposition 8.3, there are codes ¢ and d for
partial functions m.: X — Y and 7y: Y — (C(X, X))V x (C(X,2)N)N
such that ¢(z) = 7.(z) and (7o ¢)(z) = (7mg 0 ¢)(z) for v-almost all
x € X. Then the E-quasi-invariance of v ensures that (¢, d) is a code
for an E-hyper-E-to-one partial homomorphism from E to F' [ D whose
scope is v-conull, and therefore p-conull. X

PROPOSITION 9.9. Suppose that £ is the downward closure of a
countable Borel equivalence relation Ee on a standard Borel space Xg
under smooth-to-one Borel homomorphisms, I, X, andY are standard
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Borel spaces, (D;)icr is a Borel sequence of subsets of Y, and E and F
are countable Borel equivalence relations on X and Y. Then the set of
(u,1) € P(X) x I for which there exist a p-conull Borel set C C X and
an E-hyper-E-to-one Borel homomorphism from E | C to F | D; is
analytic and coincides with the set of (u,1) € P(X) x I for which there
exist a p-conull Borel set C C X and an E-measure-hyper-E-to-one
Borel homomorphism from E | C to F' | D;.

PRrROOF. By the isomorphism theorem for standard Borel spaces,
we can assume that X and Y are compact zero-dimensional Polish
spaces. Clearly we can assume that X¢ and Y are Polish metric
spaces. Astheset R of ((c,d,i),x) € (C(X,Y)NxC(Y, (C(X, X¢)¥)Nx
(C(X,2)MMN % I) x X for which z is in the D;-scope of (¢, d) is Bor-
el, so too is the set S of ((u,4),(c,d)) € (P(X) x I) x (C(X,Y)N x
C(Y, (C(X, Xe)MN x (C(X,2)M)M)N) for which p(R(caq) = 1. But
Proposition 9.8 ensures that (u,7) € projp x(S) if and only if there
exist a p-conull Borel set C' C X and an FE-hyper-£-to-one Borel ho-
momorphism from E | C to F' | D; if and only if there exist a u-conull
Borel set ¢' € X and an E-measure-hyper-£-to-one Borel homomor-
phism from F [ C' to F' | D;. X

10. Productive hyperfiniteness

Suppose that I' is a countable group. We say that a Borel action of I'
on a standard Borel space is hyperfinite if the induced orbit equivalence
relation is hyperfinite. We say that I is hyperfinite if every Borel action
of I' on a standard Borel space is hyperfinite.

The diagonal product of actions I' ~ X and I' ~ Y is the action
' »~ X xY given by v (z,y) = (v-z,7-y). We say that a Bor-
el action of I on a standard Borel space is productively hyperfinite if
its diagonal product with every Borel action of I" on a standard Borel
space is hyperfinite.

ProPOSITION 10.1. Suppose that ' is a countable group, X is a
standard Borel space, and I' ~ X 1is a hyperfinite Borel action such
that the stabilizer of every point is hyperfinite and only countably-many
points have infinite stabilizers. Then I' ~ X is productively hyperfinite.

PRrROOF. Let C be the set of x € X whose stabilizers are infinite,
fix an increasing sequence (E,)nen of finite Borel equivalence relations
whose union is EX, and suppose that Y is a standard Borel space and
I' ~ Y is a Borel action. As each Ef ™Y | ({z} x Y) is generated by
the stabilizer of x, and therefore hyperfinite, we need only show that
Egvc)xy is hyperfinite. But if F}, is the subequivalence relation with
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respect to which two E(NC)XY—equivalent pairs (z,y) and (2/,y') are
related exactly when x E,, x’ for all n € N, then each F}, is finite and
their union is E( Oy X

11. Actions of SLy(Z)

Define ~ on R?\ {(0,0)} by v ~ w <= Ir > 0 rv = w, set
T = (R?\ {(0,0)})/~, and define projy: R?\ {(0,0)} — T by setting
projp(v) = [v]~. Note that if A € GLy(Z), r > 0, and v € R?\ {(0,0)},
then A(rv) = r(Av), so the usual action GLy(Z) ~ R?\ {(0,0)} by

matrix multiplication factors over ~ to an action GLy(Z) ~ T.

PropoSITION 11.1 (Jackson-Kechris-Louveau). The action GLa(Z)
~ T is hyperfinite.

PROOF. Define an action GLy(Z) ~ R U {co} by (24) -z =

% (where % = 2), let ¢: R\ Q — Z" be the function send-

ing each irrational number to its continued fraction expansion, and
recall that the unilateral shift on Z" is the function s: ZN — ZN given
by s(z)(n) = z(n 4+ 1). Tt is well-known that if z,y € R\ Q, then

x ERU{EX? y <= o(x) Ei(s) ¢(y) (see, for example, Theorem 175 of

The Theory of Numbers by Hardy-Wright). As Fy(s) is hyperfinite, so

too is ERU{(OC’;

As the set X = {(z,y) e R* | y > 0and (y = 0 = x > 0)}

is EEL\{((ZO) 0)}-complete, we need only show that EELQ(Z) [ projp(X) is

hyperfinite. Define 7: X — R U {oo} by 7(z,y) = x/y, and note that
(a8)-m(y) = Sl = = = w((2) (7)) for all (¢4) € SLy(2)

c(z/y)+d cr+dy
and (z,y) € X, thus 7 induces an embedding of EgLZ(Z) [ projr(X)

into ERU{?O)} X

PrOPOSITION 11.2 (Conley-Miller). The action SLo(Z) ~ T is
productively hyperfinite.

ProoF. Note that if # € T has a non-trivial stabilizer, then it is
the equivalence class of an eigenvector of a non-trivial matrix in SLy(Z)
whose corresponding eigenvector is positive. As SL(Z) is countable
and every such matrix admits at most two such classes of eigenvectors,
there are only countably-many such . By Propositions 10.1 and 11.1,
it only remains to show that the stabilizer of each 6 € T is cyclic.

We first consider the case that # N 7Z2 # ). Let v denote the unique
element of N Z? of minimal length. Note that the stabilizers of # and
v coincide, for if A is in the stabilizer of @, then v is an eigenvector of
A, so minimality ensures that Av = v. Minimality also ensures that
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the coordinates of v are relatively prime, so there exists a € Z? such
that a - v = 1, in which case the matrix B = (%) 3}) is in SLy(Z)
and Bv = (}), thus conjugation by B yields an isomorphism of the
stabilizer of v with that of (§). Butif (2%) € SLa(Z), then (25%)(}) =
(}) <= (%) = (§1) for some n € Z, thus the group of such
matrices is cyclic.

It remains to consider the case that 6 N Z? = (.

LEMMA 11.3. The stabilizer of each v = (x,y) in 0 is trivial.

PROOF. Suppose, towards a contradiction, that there is a matrix
A = (2%)in SLy(Z) \ {(§9)} such that such that Av = v. Then
(a—1)x+by =cx+ (d—1)y = 0, so there exists (a’, V') € Z*\ {(0,0)}
such that o’z + by = 0. As ONZ? # (), it follows that neither z nor y is
zero, so neither a’ nor b’ is zero, thus y = —(a’/V’)x, in which case there
exist 4,5 € {1} for which (i0/, ja') € 0, the desired contradiction. &

Note that the set A of eigenvalues of matrices in the stabilizer of 0
is a group under multiplication.

LEMMA 11.4. The group A is cyclic.

PROOF. It is sufficient to show that 1 is isolated in A N [1,00).
Towards this end, suppose that A is in the stabilizer of § and v is an
eigenvector of A with eigenvalue A > 1. If p is the other eigenvalue
of A, then Ay = det(A) = 1, so tr(A) = A+ pu = A+ 1/ As
tr(A) € Z, it follows that A + 1/\ = n for some n > 2, in which case
A = (n++v/n? —4)/2. The fact that A > 1 therefore ensures that n # 2,
thus A > (3 ++/5)/2. I

By Lemma 11.4, there is a matrix A in the stabilizer of 6 which
has an eigenvalue A\ generating A. If B is any matrix in the stabilizer
of 6, then there exists n € Z for which v is an eigenvector of B with
eigenvalue A", in which case A" B~ is in the stabilizer of v, so B = A",
thus A generates the stabilizer of 6, hence the latter is cyclic. X

Let Z? xSLy(Z) denote the group of all functions T': R? — R? of the
form T'(x) = Az+b (under composition), where A € SLy(Z) and b € Z2,
and define projsy, z: Z* X SLy(Z) — SLy(Z) by projgy,z) (Az+b) = A.
Set T? = R?/Z?, let projr= denote the projection from R? to T?, and
let m? denote the usual Lebesgue probability measure on T2. Note that
if Ae SLy(Z),beZ? veR? and w e Z? then A(v+w) +b= Av +
(Aw+10), so Z* x SLy(Z) ~ R? factors to an action Z? x SLy(Z) ~ T2.

PROPOSITION 11.5. There is an m>-treeable Borel subequivalence
relation E of E;TEQ(Z) that is not m?-hyperfinite.
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PROOF. We first note that the free part of the action SLy(Z) ~ T?
is m?-conull.

LEMMA 11.6. The non-free part of SLa(Z) ~ T? is contained in the
Eg;(z)-satumtion of projr2(Q x R).

PROOF. If projp(z,y) is in the non-free part, then there exists
(2%) € SLo(Z) \ {($9)} for which ((a — 1)z + by, cx + (d — 1)y) € Z?,
so there exists (a/,b') € Z?\ {(0,0)} such that o’z + b'y € Z. If either
a or b is zero, then y or x is rational, so (2¢) = (% 3') (3) or ()
is in Q x R. Otherwise, there are relatively prime a”,b” € 7Z such
that a”x + 0"y € Q, in which case there are ¢’,d” € 7Z such that

d'd" — V' =1, thus (% %) € SLy(Z) and (4 2) () €Qx R, &
We next observe that SLy(Z) contains a copy F» of the free group
on two generators.

LEMMA 11.7. The group generated by the matrices A = (}3) and
B = (1Y) is free.
PROOF. Note that if n # 0, z,y € R, (y4) = A" (y) = ("),
and (y5) = B" () = (sna+y ), then
|z <[yl = |zal > BInl = Dy = 2ly| = |zal = lyal > [y| = |2]
and
lyl < || = lys| > Bln| = D)z = 2|z] = [ys| — |zs| > |2| = |yl.

A straightforward induction therefore ensures that if W is a non-trivial
reduced word in A and B, |z| < |y| if and only if the rightmost entry of
Wis a power of A, and (yy ) = W (y), then [[zw|—[ywl| > ||z =]yl
so (g ) 7# (), thus W (59). =

Note that the push-forward G of the Cayley graph of F, through
Fy ~ T? is acyclic on the free part B C X of F, ~ T2, so E}% is
treeable. Moreover, as Cpz(G) = 2, Proposition 7.5 ensures that E}ryj
is not m2-hyperfinite. X

REMARK 11.8. Jackson-Kechris-Louveau have shown that Eg;(z)
is itself treeable, but we will not need this stronger result.

12. Projective rigidity

Given sets X and Y, a binary relation R on X, a countable group
A, an action A ~ Y, and a function p: R — A, we say that a function
¢: X — Y is p-invariant if x1 R 1y = ¢(x1) = p(x1, x2) - p(2) for all
xr1, 9 € X. Given a class £ of countable Borel equivalence relations on
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standard Borel spaces, we say that a Borel action A ~ Y is projectively
E-rigid if whenever X is a standard Borel space, E' is a countable Borel
equivalence relation on X, p: E — A is a Borel function, ¢,9: X — Y
are p-invariant Borel functions, and ¢ is E-E-to-one, the difference set

D(¢, ) ={z € X | ¢(x) # ¢(x)} is E-E.

THEOREM 12.1 (Conley-Miller). Suppose that £ is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms. Then Z?xSLy(Z)
R? is projectively measure-hyper-E rigid.

PROOF. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, p: E — Z* x SLy(Z) is a Bor-
el function, ¢,9: X — R? are p-invariant Borel functions, and ¢
is F-measure-hyper-E-to-one, and define functions 7: D(¢,¢) — T

and o: B | D(¢,¢) — SLy(Z) by 7(x) = projp(¢(z) — ¢(z)) and
o (21, 22) = (Projsp,(z) © p)(T1, T2).

LEMMA 12.2. The function m is o-invariant.

PROOF. Simply observe that if z1, 25 € D(¢, 1) are E-related, then
m(x1) = projp(d(z1) — ¥(z1))

= projp(p(z1, ¥2) - P(w2) — p(21,22) - P(72))
= projp(o(z1, ¥2) - d(x2) — o(21, 72) - P(72))
= projp(o (1, 22) - (¢(x2) — ¥(x2)))

(
(
o (21, 22) - projp(¢(r2) — ¥ (x2))
) - m(22),

thus 7 is o-invariant. =

= (931,$2

As (projp2 0 @) | D(¢,1) is also o-invariant, it follows that 7 x
(projrz0¢) [ D(¢,1)) is a measure-hyper-E-to-one homomorphism from
E | D(¢,1) to the orbit equivalence relation induced by SLy(Z) ~ T x
T2. As Proposition 11.2 ensures that the latter relation is hyperfinite,
Proposition 9.7 implies that the former is measure-hyper-£. X

QUESTION 12.3. Is there a more combinatorial way of producing
projectively-measure-hyper-E-rigid Borel actions?
13. Projective separability and products

Suppose that £ is a class of countable Borel equivalence relations
on standard Borel spaces. A u-homomorphism from E to F' is a Borel
homomorphism from F | C to F, where C C X is a p-conull Borel set.
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We say that a countable Borel equivalence relation F' on a standard
Borel space is projectively €-separable if for every standard Borel space
X, countable Borel equivalence relation £ on X, and E-quasi-invariant
non-F-£ finite Borel measure o on X, there is a countable set ® of E-
E-to-one p-homomorphisms from E to F' such that every E-E-to-one
p-homomorphism from E to F' agrees with a function in ® on a set of
positive p-measure.

THEOREM 13.1 (Conley-Miller). Suppose that £ is the downward
closure of a countable Borel equivalence relation on a standard Bor-
el space under smooth-to-one Borel homomorphisms, A is a countable
group, Y is a standard Borel space, and A ~ Y is a projectively-
measure-hyper-E-rigid Borel action. Then EYX is projectively measure-
hyper-E-separable.

PROOF. Suppose that X is a standard Borel space, E is a countable
Borel equivalence relation on X, and p is an F-quasi-invariant non- £-
hyper-£ finite Borel measure on X. Clearly we can assume that X is a
Polish space. Fix a countable basis U for X closed under finite unions,
as well as a countable group I' of Borel automorphisms of X generating
E. By Proposition 3.3, there is a finite set S C I' for which the equiva-
lence relation £’ = Ei; is non-p-hyper-£, and therefore non-p-hyper-
hyper-£. For each Borel set B C X, let Ep denote the equivalence
relation on X generated by the set Rp = UveS graph(y [ B).

LEMMA 13.2. There exists € > 0 such that Eg is non-p-hyper-E for
all Borel sets B C X of p-measure at least u(X) — e.

ProOOF. Fix real numbers ¢, > 0 such that ZneN €, < 0o, and
suppose, towards a contradiction, that there are Borel sets B,, C X of
p-measure at least u(X) — €, with the property that Ep, is p-hyper-&
for all n € N. Setting C,, = (,,>,, Bm for all n € N, it follows that
w(Cp) — u(X). As p is E'-quasi-invariant, the E’-invariant Borel set
C = ~[~U,en Cnlr is p-conull. But (E¢, [ C)pen is an increasing se-
quence of u-hyper-£€ countable Borel equivalence relations whose union
is ' | C, contradicting the fact that £’ is non-u-hyper-hyper-£. =

Observe that if ¢: X — Y is a g-homomorphism from E to EX,
then there is a finite set 7" C A for which the set B,r of all z €
Myes) v~ }(dom(¢)) such that Vy € S36 € T ¢(z) = & - ¢(7 - ) has u-
measure strictly greater than p(X)—e/2, as well as a function U: T° —
U for which the set Byry of all x € By such that x € U(f) <=
Vy € S ¢(z) = f(7) - é(y- ) for all f € TS has p-measure at least
wu(X)—e€/2. Now suppose that ¢p: X — Y is another g-homomorphism
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from E to EX for which the corresponding set By, 7 has y-measure at
least pu(X) —€/2, so that the set B = By N By ry has p-measure at
least ;1(X) —e. Fix linear orderings of S and T, and observe that both
¢ and 1 are invariant with respect to the function o: Rg — A given by
o(x,y) = f(v), where f is the least element of T such that x € U(f),
and +y is the least element of S such that v-x = y. Let @ be the extension
of o to RE" given by & (v, y) = o(z,y) ! for all (x,y) € R5'\ Rp, appeal
to the Lusin-Novikov uniformization theorem to obtain a Borel function
0: Ep — X<Nsending each pair (z,y) € Ep to an Rg-path from z to y,
and observe that both ¢ and ) are invariant with respect to the function
p: Ep — A given by p(z,y) =[],y zy)-1 7(0n(2,9), Ont1(2,y)), so if
¢ is E-measure-hyper-E-to-one, then D(¢ | B,v | B) is not (¢ | B)-
conull. But there are only countably-many possibilities for T"and U. X

PropoOSITION 13.3 (Conley-Miller). Suppose that £ is a class of
countable Borel equivalence relations on standard Borel spaces such
that the family of Borel sets on which any equivalence relation is in £ is
closed under countable unions. Then the projectively & -separable count-
able Borel equivalence relations on standard Borel spaces are closed
downward under countable-to-one Borel homomorphisms.

PROOF. Suppose that Y and Y’ are standard Borel spaces, F' and
F' are countable Borel equivalence relations on Y and Y’, F’ is pro-
jectively £-separable, and there is a countable-to-one Borel homomor-
phism ¢: Y — Y’ from F to F’. By the Lusin-Novikov uniformization
theorem, there is a countable set ® of Borel functions ¢: ¥(Y) — Y
such that graph(¢)) ™" = (J ¢ graph(¢). Given a standard Borel space
X, a countable Borel equivalence relation £ on X, and an E-quasi-
invariant non-FE-& finite Borel measure 1 on X, fix a countable set @’
of E-E-to-one p-homomorphisms from E to F’ such that every E-E-
to-one p-homomorphism from E to F’ agrees with a function in ¢’ on
a set of positive py-measure. Then every E-E-to-one p-homomorphism
from E to F' agrees with a function of the form ¢ o ¢', where ¢ € ®
and ¢’ € &', on a set of positive y-measure. X

REMARK 13.4 (Conley-Miller). If E is a non-measure-€ countable
Borel equivalence relation on a standard Borel space, then £ x A(R)
is not projectively E-separable. It follows that if E is projectively
measure-E-separable, then there is no countable-to-one Borel homo-
morphism from E x A(R) to E.

REMARK 13.5 (Conley-Miller). We say that E is £-to-one measure
homomorphible to F' if there is an £-to-one p-homomorphism from F
to F' for every Borel probability measure g on X. Under the above
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assumptions, it is not difficult to see that if v is a continuous finite
Borel measure on R and B C X x R is a (u x v)-positive Borel set,
then (E x A(R)) | B is not projectively E-separable, so there is no
countable-to-one Borel homomorphism from (E x A(R)) | B to E,
thus £ x A(R) is not countable-to-one measure homomorphible to F'

REMARK 13.6 (Conley-Miller). If F is a class of countable Borel
equivalence relations on standard Borel spaces that is closed down-
ward under smooth-to-one Borel homomorphisms, then again under
the above assumptions, E cannot be a maximal element of F under
any quasi-order between countable-to-one measure homomorphibility
and continuous embeddability.

14. Measures and products

Let <% 5 denote the set of (p,v) € P(X) x P(Y) for which y is
FE-ergodic and F-quasi-invariant, v is F-ergodic and F-quasi-invariant,
and there is an F-E-to-one p-homomorphism ¢: X — Y from E to F
such that ¢.pu < v.

PROPOSITION 14.1 (Conley-Miller). Suppose that £ is a class of
countable Borel equivalence relations on standard Borel spaces, X and
Y are standard Borel spaces, EE and F' are countable Borel equivalence
relations on X and Y, p is an E-ergodic E-quasi-invariant non-E-
& Borel probability measure on X, and F is projectively &-separable.
Then the u'™ wvertical section of <<§E7F is a union of countably-many
measure-equivalence classes.

PrROOF. As any two F-ergodic F-quasi-invariant Borel measures
are either equivalent or orthogonal, it follows that any non-zero Borel
measure on Y is absolutely continuous with respect to at most one such
measure. As F' is projectively E-separable, it is therefore sufficient to
show that if C' C X is a p-conull Borel set, ¢,¢: C — Y are Borel
homomorphisms from E | C to F for which ~D(¢,1) is p-positive,
and v is an F-quasi-invariant Borel measure on Y for which ¢,u < v,
then ¢, < v. Towards this end, suppose that B C Y is a (.u)-
positive Borel set. The E-ergodicity of u then ensures that [v~'(B)|g
is p-conull. As the fact that ¢ is a homomorphism from F | C' to F
implies that [¢py~}(B)]g N C is contained in ¢ ~'([B]r), the latter set
is also p-conull. In particular, it follows that ¢ ~!([B]r) \ D(¢,v) is
p-positive, thus so too is ¢~1([B]r). The fact that ¢.u < v therefore
ensures that [B]r is v-positive, in which case the F-quasi-invariance of
v implies that B is v-positive. X
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A p-reduction of E to F' is a Borel reduction of £ | C to F, where
C C X is a p-conull Borel set. A p-embedding is an injective pu-
reduction. We say that E is measure reducible to F' if there is a u-
reduction of F to F' for every Borel probability measure p on X. We
say that E is measure embeddable into F' if there is a p-embedding of
E into F for every Borel probability measure p on X.

We say that £ is dichotomous if it is strictly contained in hyper-&
but every hyper-£ countable Borel equivalence relation on a standard
Borel space is measure embeddable into every non-£ countable Bor-
el equivalence relation on a standard Borel space. Given such an &,
we use EF to denote any hyper-€ non-€ countable Borel equivalence
relation on a standard Borel space.

QUESTION 14.2. Is there a dichotomous class containing the hyper-
finite Borel equivalence relations on standard Borel spaces?

We say that a Borel measure p on X is (E, F')-ergodic if for every
Borel homomorphism ¢: X — Y from F to F, there exists y € Y for
which ¢~ ([y]r) is p-conull.

QUESTION 14.3. Is the measure hyper-E-ness of E equivalent to
the inexistence of an (E, Ef )-ergodic Borel probability measure?

PROPOSITION 14.4 (Conley-Miller). Suppose that £ is a class of
countable Borel equivalence relations on standard Borel spaces con-
taining all equivalence relations on countable standard Borel spaces,
X and Y are standard Borel spaces, E and F are countable Borel
equivalence relations on X and Y, u is an E-ergodic E-quasi-invariant
non-E-E Borel probability measure on X, and v is an F-ergodic F'-
quasi-invariant F'-projectively-E -separable Borel probability measure on
Y. Then there is a v-conull Borel set D C'Y with the property that
whenever X' and Y’ are standard Borel spaces, E' and F' are count-
able Borel equivalence relations on X' andY', p is (E, F')-ergodic, and
W' is a Borel probability measure on X' for which there is a (u x u')-
reduction of Ex E' to (F | D) x F', then there is also a p'-reduction
of E' to F'.

ProOF. By Proposition 14.1, there is an F-invariant F-projectively-
E-separable v-conull Borel set D C Y with the property that the "
vertical section of <5 1, is contained in the measure-equivalence class
of v [ D. To see that this set is desired, suppose that C' C X x X' is
a (p x p')-conull Borel set and 7: C' — D x Y’ is a Borel reduction
of (Ex E") | Cto (F | D)x F'. Then the set R = {(z,(2',y)) €
X x (X' xY') | (projy, o m)(x,2’") F' y'} is Borel, thus so too is
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the set S = {(«,y) € X' xY' | w(R®¥)) = 1}. Fubini’s theo-
rem ensures that {2/ € X' | u(C¥) = 1} is itself y/-conull, and if
x’ is in this set, then the (FE,F’)-ergodicity of u and the fact that
(projy: o 7)(-,2') is a homomorphism from E | C* to I’ ensure that
x' € projy/(5), thus projy.(S) is a p'-conull Borel set. As S has count-
able vertical sections, the Lusin-Novikov uniformization theorem yields
a Borel uniformization ¢: projy,(S) — Y’ of S. Set B = {(z,2') €
C'N (X xprojx.(S)) | (projy, o m)(z,z") F" ¢(x')}, and note that if
w',x" € projy,(S), then there exists € BY N B*, and if w' E'
then ¢(w’) F' (projyom)(x,w’) F' (projy,om)(x,z") F" ¢(x'), thus ¢ is
a homomorphism from E’ | projy,(S) to F’. Suppose, towards a con-
tradiction, that there are E’-inequivalent points w’, ' € proj(S) such
that ¢(w’) F' ¢(a), and for both v’ € {w', '}, fix an F-quasi-invariant
Borel probability measure v, on Y such that (projy o m)(-, v')spt < vy
and the two measures agree on all F-invariant Borel sets. As the func-
tions of the form (projy om)(-,v’) | BY are p-reductions of £ to F and
[(projy o m)(BY x {w'})]r N [(projy o m)(B¥ x {z'})]r = 0, it follows
that v,, and v, are orthogonal measures in the u'* vertical section of
<<‘,€3,F[D, a contradiction. X

REMARK 14.5 (Conley-Miller). Proposition 9.5 ensures that if &£
is the downward closure of a countable Borel equivalence relation on
a standard Borel space under smooth-to-one Borel homomorphisms,
and F is non-measure-hyper-&, then there is an FE-ergodic E-quasi-
invariant non-E-hyper-£€ Borel probability measure on X, so if F is
projectively measure-hyper-&-separable, then Proposition 14.4 yields
an F-non-measure-hyper-£ Borel set D C X with the property that for
non € Z" is (E | D) x A(n+ 1) measure reducible to (E [ D) x A(n).

REMARK 14.6 (Conley-Miller). Even if the existence of a (u x u')-
reduction of £ x E' to (F | D) x F' is weakened to the existence of
a (u x p')-reduction of E x E' to F' x F’, the above argument still
yields a countable-to-one p-homomorphism from E’ to F’. In par-
ticular, it follows that if F is non-measure-hyper-€ but projectively
measure-hyper-E-separable, E’ is non-measure-£, and F’ is measure &,
then ' x E’ is not measure reducible to E x F".

REMARK 14.7 (Conley-Miller). Under the additional assumption
that &£ is dichotomous, the above argument shows that if there is an
(E, E})-ergodic Borel probability measure, E is projectively measure-
hyper-E-separable, E’ is non-measure-hyper-£, and F’ is measure-hyper-
£, then F x E' is not measure reducible to E x F’.
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15. Reducibility without embeddability

We say that E is invariant-measure-E if E | B is (u [ B)-E for all
Borel sets B C X and (F | B)-invariant Borel probability measures p
on B.

QUESTION 15.1. Are measure hyperfiniteness and invariant-measure
hyperfiniteness equivalent?

QUESTION 15.2. Is invariant-measure hyperfiniteness closed down-
ward under passage to Borel subequivalence relations?

ProposITION 15.3 (Conley-Miller). Suppose that £ is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, £ is dichoto-
mous, X andY are standard Borel spaces, E/ is an invariant-measure-
hyper-E countable Borel equivalence relation on X, and F is a non-&
countable Borel equivalence relation on'Y . Then E is measure reducible
to F if and only if E is measure embeddable into F.

PRrOOF. It is sufficient to show that if i is a Borel probability mea-
sure on X for which there is a p-reduction of E to F', then there is
a p-embedding of E into F. Towards this end, suppose that C' C X
is a p-conull Borel set and ¢: C' — Y is a Borel reduction of £ | C
to F. As E is countable, the Lusin-Novikov uniformization theorem
yields a Borel function from [C]g to C' whose graph is contained in E.
Replacing C by [C]g, ¢ by its composition with such a function, and p
with an F-quasi-invariant Borel probability measure v on X for which
i < v and the two measures agree on all E-invariant Borel sets, we
can assume that C' is E-invariant and p is E-quasi-invariant.

As ¢ is countable-to-one, the Lusin-Novikov uniformization theo-
rem yields an (E | C')-complete Borel set B C C' on which ¢ is injective.
Fix a y-maximal Borel set A C B for which E | A is compressible. Re-
placing A by [A]g N B, we can assume that A is (F | B)-invariant.
Proposition 2.1 then yields a Borel injection ¢: [A]p — A whose graph
is contained in E.

If [A] g is p~conull, then set A’ = ). Otherwise, Theorem 2.2 ensures
that u [ (B\A) is equivalent to an F | (B\ A)-invariant Borel probabil-
ity measure v on B\ A. As E is invariant-measure hyper-&, there is an
E-hyper-& v-conull Borel set B' C B\ A. As ((E' | B') x I(N)) x A(N)
is hyper-&, the fact that £ is dichotomous ensures that there is a v-
conull Borel set A’ C B’ and a Borel embedding ¢': (A’ xN) xN =Y
of ((E ] A)xI(N))x A(N) into F. By the Lusin-Novikov uniformiza-
tion theorem, there is a Borel injection ¢': [Alp — (A’ x N) x {0}
for which the graph of projy o projy,y © %' is contained in E. Let
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m:Y — Y be the function supported on ¢'((A’ x N) x N) given by
(mrod')((xz,m),n) = ¢'((x,m),n+1), and note that (mropop)U(¢' or)’)
is a p-embedding of £ | [AU A'|g into F. =

REMARK 15.4 (Conley-Miller). As projy is a Borel reduction of
E x I(N) to E, Proposition 15.3 ensures that if F is invariant-measure-
hyper-€ and non-FE-£, then E x I(N) is measure embeddable into F.

We say that E is invariant-measure embeddable into F' if there is a
p~embedding of E [ B into F' for all Borel sets B C X and (E | B)-
invariant Borel probability measures p on B.

PROPOSITION 15.5 (Conley-Miller). Suppose that £ is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, X is a stan-
dard Borel space, and E is a non-invariant-measure-hyper-E projec-
tively-measure-hyper-E-separable treeable countable Borel equivalence
relation on X. Then there is a non-invariant-measure-hyper-E Bor-
el equivalence relation F C E with the property that for no n € Z% is
F x I(n+ 1) invariant-measure embeddable into F x I(n).

ProOF. By passing to a Borel subset of X, we can assume that
there is an FE-invariant non-E-hyper-£€ Borel probability measure p
on X. As the Lusin-Novikov uniformization theorem ensures that FE
is the union of countably-many graphs of Borel functions, Proposi-
tion 3.3 yields a non-p-hyper-€ Borel subequivalence relation £’ of E
that is generated by finitely-many graphs of Borel functions, so that
C,(E") < oo for all E'-invariant Borel probability measures v on X.
By Proposition 9.5, there is an E’-ergodic E’-invariant non-E’-hyper-£
Borel probability measure v on X. As Proposition 13.3 ensures that
E' is projectively measure-hyper-E-separable, there is an E’-invariant
v-conull Borel set C' C X that is null with respect to every measure in
the v* vertical section of <<1g;7>§-5 orthogonal to v. Set F = E' | C,
and let m,, denote the uniform probability measure on n for all n € Z™.

Suppose, towards a contradiction, that there exists n € N for which
there is a (v xmy,41)-conull Borel set B C C'x(n+1) and a Borel embed-
dingm: B — Cxnof (FxI(n+1)) | Binto FxI(n). Foralli < n+1
and j < n, let m;; be the restriction of the function (projy o m)(-,1)
to projy ((C' x {i}) N7 1(C x {j})), and if this set is v-positive, then
fix an F-quasi-invariant Borel probability measure v; ; on C' such that
(mij)«v < v;; and the two measures agree on all F-invariant Borel sets.
Our choice of C' ensures that v; ; < v. Observe that if a set D C C'xn
is . (v X my41)-positive, then there exist i < n+1 and j < n for which
projy (D N (C x {j})) is (m;).«v-positive, and therefore v-positive, so
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D is (v x my,)-positive, thus m,(v X my11) K v X m,. As the uniform
ergodic decomposition theorem ensures that any two ergodic invariant
Borel probability measures are either the same or orthogonal, it fol-
lows that 7. (v X my,41) | m(B) and (v x m,,) [ 7(B) have the same
normalizations. As F' is non-v-hyperfinite and therefore v-aperiodic,
Proposition 7.7 yields that C,(F) > 1, in which case Remark 7.9 en-
sures that Cluxm,,1)/m+n)(F X 1(n 4+ 1)) < Cusm,)m(F x I(n)) and
Cloxmn)n(F x1(n)) < Crosmn)/(wxma) (=) (F x I(n)) | 7(B)), contra-
dicting the fact that the first and last quantities are the same. X

16. Minimality

A minimal element of a set X under a quasi-order < is a point
x € X such that Vy € X (y <z = = < y). We say that E is measure-
minimal non-E if it is a minimal non-& countable Borel equivalence
relation on a standard Borel space under measure reducibility.

PropOSITION 16.1 (Conley-Miller). Suppose that £ is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, £ is dichoto-
mous, X is a standard Borel space, and E is a countable Borel equiv-
alence relation on X. If the set of E-ergodic E-quasi-invariant non-
measure-hyper-E Borel probability measures on X is a measure-equiv-
alence class, then E is measure-minimal non-measure-hyper-£.

PROOF. Suppose that Y is a standard Borel space and F' is a non-
measure-hyper-£ countable Borel equivalence relation on Y that is mea-
sure reducible to . As in the proof of Proposition 15.3, the fact that
£ is dichotomous ensures that there is a Borel embedding ¢: Y — Y
of Finto F for which ~[¢(Y)]r is non-F-& but F-hyper-£. By Propo-
sition 9.5, there is an F-ergodic F-quasi-invariant non-hyper-€ Borel
probability measure v on Y. Fix a v-conull Borel set D C [¢(Y)]|r
and a Borel reduction ¢: D — X of F' | D to FE, as well as an E-
quasi-invariant Borel probability measure g on X such that ¥,v < u
but the two measures agree on all E-invariant Borel sets. Then p
is E-ergodic and non- E-measure-hyper-&, and the Lusin-Novikov uni-
formization ensures that there is a Borel reduction 7: [¢(D)|g — D of
E | [(D)]g to F | D.

Suppose now that u' is a Borel probability measure on X. As
usual, we can assume that ' is E-quasi-invariant. Fix a p/-maximal
E-invariant E-hyper-£ Borel set B C ~[¢)(D)]g. As € is dichotomous,
there exist a (' [ B)-conull Borel set C' C B and a Borel embedding
7 C = ~[o(Y)|g of E | CtoF | ~[¢(Y)r. As Proposition 9.5
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ensures that u' [ ~B < p, it follows that 7 U’ is a p/-reduction of E
to F. =

PROPOSITION 16.2 (Conley-Miller). Suppose that € is a class of
countable Borel equivalence relations on standard Borel spaces, X is
a standard Borel space, and E is a measure-minimal non-measure-
E projectively-E-separable countable Borel equivalence relation on X.
Then the set of E-ergodic E-quasi-invariant non-E-E Borel probability
measures on X is a measure-equivalence class.

PROOF. Suppose, towards a contradiction, that there are orthogo-
nal E-ergodic F-quasi-invariant non-FE£-&€ Borel probability measures p
and v on X. As F is projectively £-separable, Proposition 14.1 yields
an F-invariant p-conull Borel set C' C X that is null with respect
to every measure in the union of the p'™ and v*" vertical sections of
<<%’ i orthogonal to . By measure minimality, there exist a (u + v)-
conull Borel set B C X and a Borel reduction 7: B — C of £ | B
to £/ | C'. Then m,pu, m,v < pu, so the E-ergodicity of pu ensures that
[m(BNC)]gN[m(B\ C)]g is p-conull, thus there exist x € BN C and
y € B\ C for which n(x) F 7(y). As z and y are E-inequivalent, this
contradicts the fact that 7 is a reduction of £' | B to £ | C. X

QUESTION 16.3. Is there a measure-minimal non-measure-hyper-&
countable Borel equivalence relation on a standard Borel space?

QUESTION 16.4. Is there a non—E’gEQ(Z)—hyperﬁnite Borel probability
measure orthogonal to m??

PROPOSITION 16.5. Suppose that £ is the downward closure of a
countable Borel equivalence relation on a standard Borel space under
smooth-to-one Borel homomorphisms, X is a standard Borel space, and
E is a countable Borel equivalence relation on X for which the set of
E-ergodic E-quasi-invariant non-E-hyper-E Borel probability measures
on X 1s a measure-equivalence class. Then every E-ergodic non-E-
hyper-E Borel probability measure on X is (F,Eq)-ergodic.

PROOF. Suppose that p is an E-ergodic non-(E, Eg)-ergodic Borel
probability measure on X, and fix a p-null-to-one Borel homomorphism
¢: X — 2Y from E to Ey. Then there exists ¢ € 2 with the property
that for all d € ~[c]g,, every E-ergodic E-quasi-invariant Borel prob-
ability measure on ¢~!([d]g,) is E-hyper-£, in which case Proposition
9.5 ensures that ¢~'([d]g,) is F-measure-hyper-£. It then follows from
Proposition 9.7 that ~¢~!([c|g,) is F-measure-hyper-£, so the fact that
¢~ ([c]g,) is p-null yields that E is py-hyper-&. b
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REMARK 16.6. Remark 14.6 and Propositions 16.2 and 16.5 en-
sure that if £ is the downward closure of a countable Borel equiva-
lence relation on a standard Borel space under smooth-to-one Borel
homomorphisms, and E is measure-minimal non-measure-hyper-£ and
projectively-measure-hyper-E-separable, then there is no non-measure-
hyper-£ countable Borel equivalence relation F' on a standard Borel
space for which E' x F'is measure reducible to £ X E,.

17. Bases

An external basis for a set Y C X under a quasi-order < on X is a
set B C X such that Vy e Ydbe B b <y.

QUESTION 17.1. Suppose that E is non-measure-hyper-£ but pro-
jectively measure-hyper-£-separable, and F is the set of restrictions of
E to E-invariant non- E-measure-hyper-& Borel sets. Is there an exter-
nal basis for F under measure-hyper-£-to-one measure homomorphism
whose elements are measure-minimal non-measure-hyper-£?

REMARK 17.2. Proposition 16.5 ensures that a positive answer to
the special case of Question 17.1 in which £ is the family of smooth
countable Borel equivalence relations would yield a positive answer to
the corresponding special case of Question 14.3. It would also allow
one to drop the assumption that £ is measure-minimal in Remark 16.6.

THEOREM 17.3 (Conley-Miller). Suppose that € is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms, £ is dichotomous,
X is a standard Borel space, E is a non-measure-hyper-E projectively-
measure-hyper-€ -separable countable Borel equivalence relation on X,
the set M of non-E-hyper-E Borel probability measures on X is ana-
lytic, F is the set of restrictions of E to E-invariant non-E-measure-
hyper-E Borel sets, B is an external basis for F under measure-hyper-
E-to-one measure homomorphism consisting of non-measure-hyper-E
countable Borel equivalence relations on standard Borel spaces, and 2%
is not a union of B-many countable sets. Then E is a disjoint union of
countably-many measure-minimal non-measure-hyper-E countable Bor-
el equivalence relations on standard Borel spaces.

ProoF. By Proposition 16.1, it is sufficient to show that M is a
union of countably-many measure-equivalence classes. Suppose, to-
wards a contradiction, that this is not the case. The perfect set the-
orem for co-analytic equivalence relations on Hausdorff spaces then
yields a non-empty perfect set P C M of pairwise-orthogonal mea-
sures. By Theorem 1.1, there exist a continuous injection 7: 2% — P
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and a K, sequence (K.).con of pairwise disjoint subsets of X such that
7(c)(K.) = 1 for all ¢ € 2Y. As FE is projectively measure-hyper-€-
separable, it follows that for each F' € B, the set of ¢ € 2V for which
there is an F-measure-hyper-€-to-one 7(c¢)-homomorphism from F' to
E | K, is countable, thus 2V is the union of B-many countable sets,
the desired contradiction. X

REMARK 17.4 (Conley-Miller). Under the stronger assumption that
B is a countable external basis for F under smooth-to-one measure
homomorphism, it is not difficult to see that the hypothesis that M is
analytic is superfluous, as Proposition 4.2 easily implies that the family
of smooth-to-one Borel homomorphisms is closed under composition.

REMARK 17.5 (Conley-Miller). Even without the assumption that
M is analytic, if the union of Nj-many meager sets is always meager,
then we can still conclude that there is a basis for F under measure
embeddability consisting of (< W;)-many minimal non-measure-hyper-
& countable Borel equivalence relations on standard Borel spaces under
measure reducibility. To see this, appeal to Proposition 9.3 to see that
M is co-analytic, and use the perfect set theorem for analytic equiva-
lence relations in place of that for co-analytic equivalence relations.

18. Antichains
We have essentially already seen one way of building antichains.

THEOREM 18.1 (Conley-Miller). Suppose that & is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms, &€ is dichotomous,
X is a standard Borel space, E is a non-measure-hyper-E projectively-
measure-hyper-E-separable countable Borel equivalence relation on X
that is not a disjoint union of countably-many measure-minimal non-
measure-hyper-&E countable Borel equivalence relations on standard Bor-
el spaces, and the set M of non-E-hyper-E Borel probability measures
on X is analytic. Then there exist a continuous injection m: 2% — M
and a K, sequence (K.).con of pairwise disjoint subsets of X such that
7(c)(K.) =1 for all c € 2~ and for no two distinct sequences c,d € 2N is
there a measure-hyper-E-to-one 7(c)-homomorphism from E to E | K.

PRroOOF. By the proof of Theorem 17.3, we can assume that there
exist a continuous injection ¢: 28 — M and a K, sequence (K.).con
of pairwise disjoint subsets of X such that ¢(c)(K,.) =1 for all ¢ € 2N
As F is projectively measure-hyper-&, the vertical sections of the set
(¢ x ¢)_1(<<}g‘}er'g) are countable. As Proposition 9.9 ensures that
this set is analytic, and therefore meager, Mycielski’s theorem yields a
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continuous injection 1 : 2% — 2% such that for no two distinct sequences
c,d € 2V is there a measure-hyper-£-to-one (¢ o 1)(c)-homomorphism
from E to E | Kya), thus ¢ o9 and (Ky())eecan are as desired. X

REMARK 18.2. This reduces the problem of building antichains to
the case that E is measure-minimal non-measure-hyper-£. When E
is treeable, it is known that there is an increasing sequence (E,),cr
of measure-minimal non-measure-hyper-£ subequivalence relations of
E that are pairwise incomparable under measure reducibility. How-
ever, the existence of antichains (within the treeable countable Borel
equivalence relations) under countable-to-one measure homomorphism
remains open.
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