Reducibility of countable equivalence relations

Benjamin Miller Kurt Gödel Institute for Mathematical Logic Universität Wien

Winter Semester, 2018

Introduction

These are the notes accompanying a course on Borel reducibility of countable Borel equivalence relations at the University of Vienna in Fall 2018. I am grateful to all of the participants for their interest and participation.

Contents

Introduction		iii
1.	The perfect set theorem for measures	1
2.	Compressibility	2
3.	Increasing unions	4
4.	Smooth-to-one homomorphisms	7
5.	Structurability	8
6.	Treeability	11
7.	Cost	12
8.	Codes	20
9.	Measure-hyper- \mathcal{E} -to-one homomorphisms	22
10.	Productive hyperfiniteness	27
11.	Actions of $SL_2(\mathbb{Z})$	28
12.	Projective rigidity	30
13.	Projective separability and products	31
14.	Measures and products	34
15.	Reducibility without embeddability	37
16.	Minimality	39
17.	Bases	41
18.	Antichains	42
Index		45

1. The perfect set theorem for measures

When D is a discrete space, we endow $D^{\mathbb{N}}$ with the complete ultrametric given by $d_{D^{\mathbb{N}}}(a,b) = 1/2^{n(a,b)}$ for all distinct $a,b \in D^{\mathbb{N}}$, where n(a,b) is the least coordinate at which a and b differ. The underlying topology is generated by the sets of the form $\mathcal{N}_s = \{c \in D^{\mathbb{N}} \mid s \sqsubseteq c\}$, where $s \in D^{<\mathbb{N}}$.

A topological space is *analytic* if it is a continuous image of a closed subset of $\mathbb{N}^{\mathbb{N}}$, *Polish* if it is second countable and completely metrizable, K_{σ} if it is a countable union of compact sets, and *zero-dimensional* if it has a clopen basis. A subset of a metric space is δ -bounded if it can be covered by finitely-many balls of radius strictly less than δ , and *totally bounded* if it is δ -bounded for all $\delta > 0$.

A Borel space is a set X equipped with a σ -algebra of Borel sets. A Borel measure on such a space is a measure defined on the Borel sets. Two such Borel measures μ and ν are orthogonal if there is a μ -conull Borel set that is also ν -null. When X is a zero-dimensional Polish space, we use P(X) to denote the set of Borel probability measures on X, equipped with the (Polish) topology generated by the sets of the form $\{\mu \mid \mu(U) \in V\}$, where $U \subseteq X$ is clopen and $V \subseteq [0, 1]$ is open.

We will slightly abuse language by saying that a sequence $(B_i)_{i \in I}$ of subsets of a space X is *in* a pointclass Γ if the corresponding set $\{(i, x) \in I \times X \mid x \in B_i\}$ is in Γ .

THEOREM 1.1 (Burgess-Mauldin). Suppose that X is a zero-dimensional Polish space and $A \subseteq P(X)$ is an analytic set of pairwise orthogonal measures. Then exactly one of the following holds:

- (1) The set A is countable.
- (2) There is a continuous injection $\pi: 2^{\mathbb{N}} \to A$ for which there is a K_{σ} sequence $(K_c)_{c \in 2^{\mathbb{N}}}$ of pairwise disjoint subsets of X such that $\pi(c)(K_c) = 1$ for all $c \in 2^{\mathbb{N}}$.

PROOF. Fix a compatible complete metric d_X on X. By the perfect set theorem for analytic Hausdorff spaces, it is sufficient to show that if there is a continuous injection $\phi: 2^{\mathbb{N}} \to A$, then condition (2) holds. Towards this end, fix real numbers $\delta_n, \epsilon_n > 0$ such that $\delta_n \to 0$ and $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$. We will recursively construct $k_n \in \mathbb{N}, \psi_n: 2^n \to 2^{k_n}$, and sequences $(U_s)_{s \in 2^n}$ of open subsets of X such that:

- (a) $\forall i < 2 \forall n \in \mathbb{N} \forall s \in 2^n \ \psi_n(s) \frown (i) \sqsubseteq \psi_{n+1}(s \frown (i)).$
- (b) $\forall n \in \mathbb{N} \forall s \in 2^{n+1} U_s$ is δ_n -bounded.
- (c) $\forall n \in \mathbb{N} \forall s \in 2^{n+1} \forall \mu \in \phi(\mathcal{N}_{\psi_{n+1}(s)}) \ \mu(U_s) > 1 \epsilon_n.$
- (d) $\forall n \in \mathbb{N} \forall s, t \in 2^{n+1} \ (s \neq t \Longrightarrow \overline{U_s} \cap \overline{U_t} = \emptyset).$

We begin by setting $k_0 = 0$, $\psi_0(\emptyset) = \emptyset$, and $U_{\emptyset} = X$. Suppose now that $n \in \mathbb{N}$ and we have already found k_n and ψ_n . For all i < 2and $s \in 2^n$, set $\mu_{s \cap (i)} = \phi(\psi_n(s) \cap (i) \cap (0)^\infty)$. For all distinct $s, t \in 2^{n+1}$, fix a Borel set $B_{s,t} \subseteq X$ that is μ_s -conull and μ_t -null. Then the sets of the form $B_s = \bigcap_{t \in 2^{n+1} \setminus \{s\}} B_{s,t} \setminus B_{t,s}$ are pairwise disjoint, and $\mu_s(B_s) = 1$ for all $s \in 2^{n+1}$. By the tightness of Borel probability measures on Polish spaces, there are compact sets $K_s \subseteq B_s$ with the property that $\mu_s(K_s) > 1 - \epsilon_n$ for all $s \in 2^{n+1}$. By compactness, there exists $0 < \delta'_n < \delta_n$ such that $d(x, y) > 2\delta'_n$ for all distinct $s, t \in 2^{n+1}$ and $(x,y) \in K_s \times K_t$. Compactness also ensures that for all $s \in 2^{n+1}$, there is a finite set $F_s \subseteq K_s$ for which K_s is contained in the δ_n -bounded open set $U_s = \mathcal{B}(F_s, \delta'_n)$. Note that $U_s \cap U_t = \emptyset$ for all distinct $s, t \in 2^{n+1}$. By the regularity of Borel probability measures on Polish spaces and the fact that X is second countable and zero-dimensional, there are clopen sets $V_s \subseteq U_s$ such that $\mu_s(V_s) > 1 - \epsilon_n$ for all $s \in 2^{n+1}$. As ϕ is continuous, there exists $k_{n+1} > k_n$ such that $\mu(V_{s \frown (i)}) > 1 - \epsilon_n$ for all $i < 2, s \in 2^n$, and $\mu \in \phi(\mathcal{N}_{\psi_n(s) \frown (0)^{k_{n+1}-(k_n+1)}})$. For all i < 2 and $s \in 2^n$, define $\psi_{n+1}(s \frown (i)) = \psi_n(s) \frown (i) \frown (0)^{k_{n+1}-(k_n+1)}$.

Condition (a) ensures that we obtain a continuous injection $\psi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ by setting $\psi(c) = \bigcup_{n \in \mathbb{N}} \psi_n(c \upharpoonright n)$ for all $c \in 2^{\mathbb{N}}$, in which case the function $\pi = \phi \circ \psi$ is also a continuous injection. Condition (b) and the fact that $\delta_n \to 0$ ensure that the sets $K_n = \bigcap_{m \geq n} \bigcup_{s \in 2^m} \mathcal{N}_s \times \overline{U_s}$ are totally bounded, and therefore compact, in which case the set $K = \bigcup_{n \in \mathbb{N}} K_n$ is K_{σ} . For all $c \in 2^{\mathbb{N}}$, condition (c) and the fact that $\sum_{n \in \mathbb{N}} \kappa_n < \infty$ ensures that $\mu_c(\bigcap_{m \geq n} U_{c \restriction m}) \to 1$, so the fact that $K_c = \bigcup_{n \in \mathbb{N}} \bigcap_{m \geq n} \overline{U_{c \restriction m}}$ implies that $\mu_c(K_c) = 1$. Finally, for all distinct $c, d \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, condition (d) ensures that $\bigcap_{m \geq n} \overline{U_{c \restriction m}}$ and $\bigcap_{m \geq n} \overline{U_{d \restriction m}}$ are disjoint for all $n \in \mathbb{N}$, thus so too are K_c and K_d .

2. Compressibility

Given an equivalence relation E on X, we say that a set $Y \subseteq X$ is E-complete if it intersects every E-class. A compression of E is an injection $\phi: X \to X$ such that graph $(\phi) \subseteq E$ and $X \setminus \phi(X)$ is E-complete. A Borel space is standard if its Borel sets coincide with those of a Polish topology. We say that a Borel equivalence relation on a standard Borel space is compressible if it admits a Borel compression. Following the usual abuse of language, we say that an equivalence relation is countable if all of its classes are countable.

2. COMPRESSIBILITY

PROPOSITION 2.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $B \subseteq X$ is an Ecomplete Borel set for which $E \upharpoonright B$ is compressible. Then there is a Borel injection $\pi: X \to B$ whose graph is contained in E.

PROOF. Fix a Borel compression $\phi: B \to B$ of $E \upharpoonright B$, and appeal to the Lusin-Novikov uniformization theorem to obtain a Borel function $\psi: X \to B \setminus \phi(B)$ whose graph is contained in E, as well as a partition $(B_n)_{n \in \mathbb{N}}$ of X into Borel sets on which ψ is injective. Then the function $\pi = \bigcup_{n \in \mathbb{N}} (\phi^n \circ \psi) \upharpoonright B_n$ is as desired. \boxtimes

Given a group G, we say that a function $\rho: E \to G$ is a *cocycle* if $\rho(x,z) = \rho(x,y)\rho(y,z)$ for all $x \in y \in z$. When $G = (0,\infty)$, we set $|S|_x^{\rho} = \sum_{y \in S} \rho(y, x)$ for all $x \in X$ and $S \subseteq [x]_E$. We say that a function $\phi: X \to X$ whose graph is contained in E is ρ -increasing at S if $|\phi^{-1}(S)|_x^{\rho} \leq |S|_x^{\rho}$, and strictly ρ -increasing at S if $|\phi^{-1}(S)|_x^{\rho} < |S|_x^{\rho}$. A compression of ρ over a subequivalence relation F of E is a function $\phi: X \to X$, whose graph is contained in E, that is ρ -increasing at every F-class, and for which the set of F-classes at which it is strictly ρ -increasing is (E/F)-complete. Again following the usual abuse of language, we say that an equivalence relation is *finite* if all of its classes are finite. We say that a Borel cocycle $\rho: E \to (0, \infty)$ is compressible over a finite Borel subequivalence relation of E if there is a Borel compression of ρ over a finite Borel subequivalence relation of E. We say that a Borel cocycle $\rho: E \to (0, \infty)$ is μ -nowhere compressible over a finite Borel subequivalence relation of E if there is no μ -positive Borel set $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is compressible over a finite Borel subequivalence relation of $E \upharpoonright B$.

A Borel measure μ on X is *E*-ergodic if every *E*-invariant Borel set is μ -conull or μ -null, *E*-quasi-invariant if the family of μ -null sets is closed under *E*-saturation, ρ -invariant if $\mu(T(B)) = \int_B \rho(T(x), x) d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel automorphisms $T: X \to X$ whose graphs are contained in *E*, and *E*-invariant if it is invariant with respect to the constant cocycle.

THEOREM 2.2 (Hopf). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, μ is an E-quasiinvariant Borel probability measure on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle that is μ -nowhere compressible over a finite Borel subequivalence relation of E. Then there is a ρ -invariant Borel probability measure $\nu \sim \mu$. REDUCIBILITY OF COUNTABLE EQUIVALENCE RELATIONS

PROOF. As there is no Borel compression of ρ over a finite Borel subequivalence relation of E, the generalization of Nadkarni's characterization of the existence of invariant Borel probability measures to Borel cocycles ensures the existence of a ρ -invariant Borel probability measure on X. Ditzen's generalization of the Farrell-Varadarajan uniform ergodic decomposition theorem therefore yields an Einvariant Borel function $\phi: X \to P(X)$ that is a *decomposition* of the set of all ρ -invariant Borel probability measures into E-ergodic ρ -invariant Borel probability measures, in the sense that $\phi(x)$ is Eergodic and ρ -invariant for all $x \in X$, $\phi^{-1}(\{\mu\})$ is μ -conull for all E-ergodic ρ -invariant Borel probability measures μ on X, and $\nu(B) = \int \phi(x)(B) d\nu(x)$ for all ρ -invariant Borel probability measures μ on Xand Borel sets $B \subseteq X$. Let ν' be the Borel probability measure on Xgiven by $\nu'(B) = \int \phi(x)(B) d\mu(x)$.

LEMMA 2.3. The measure ν' is ρ -invariant.

PROOF. Note that if $\psi: X \to (0, \infty)$ is a Borel function, then $\int \psi(x) \ d\nu'(x) = \int \int \psi(y) \ d\phi(x)(y) \ d\mu(x)$ by countable additivity. So if $B \subseteq X$ is a Borel set and $T: X \to X$ is a Borel automorphism whose graph is contained in E, then $\nu'(T(B)) = \int \phi(x)(T(B)) \ d\mu(x) = \int \int \rho(T(y), y) \ d\phi(x)(y) \ d\mu(x) = \int \rho(T(x), x) \ d\nu'(x).$

LEMMA 2.4. The measure μ is absolutely continuous with respect to the measure ν' .

PROOF. Suppose that $B \subseteq X$ is a μ -positive Borel set, and define $N = \{x \in X \mid \phi(x)(B) = 0\}$. Observe now that if $x \in \sim N$, then $\phi(x) \neq \phi(y)$ for all $y \in N$, in which case $\phi(x)(N) = 0$. In particular, it follows that if ν is a ρ -invariant Borel probability measure on X, then $\nu(B \cap N) \leq \int_N \phi(x)(B) d\nu(x) + \int_{\sim N} \phi(x)(N) d\nu(x) = 0$, thus $[B \cap N]_E$ is ν -null. One more application of the generalization of Nadkarni's theorem to Borel cocycles therefore ensures that $\rho \upharpoonright (E \upharpoonright [B \cap N]_E)$ is compressible over a finite Borel subequivalence relation of $E \upharpoonright [B \cap N]_E$, so $[B \cap N]_E$ is μ -null, thus $B \setminus N$ is μ -positive, and it follows that $\nu'(B) \geq \int_{B \setminus N} \phi(x)(B) d\mu(x) > 0$.

Fix an *E*-invariant μ -null Borel set $N \subseteq X$ of maximal ν' -measure, and observe that the normalization of the ρ -invariant Borel measure ν on *X* given by $\nu(B) = \nu'(B \setminus N)$ is as desired.

3. Increasing unions

Given a class \mathcal{E} of equivalence relations, we use *hyper-\mathcal{E}* to denote the class of equivalence relations of the form $\bigcup_{n \in \mathbb{N}} E_n$, where $(E_n)_{n \in \mathbb{N}}$ is an increasing sequence of equivalence relations in \mathcal{E} .

QUESTION 3.1. Is every hyperhyperfinite Borel equivalence relation on a standard Borel space hyperfinite?

Given a Borel measure μ on a standard Borel space X, we say that a Borel equivalence relation E on X is μ - \mathcal{E} if its restriction to some μ -conull Borel set is in \mathcal{E} .

PROPOSITION 3.2. Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces that is closed under Borel restrictions and countable intersections, X is a standard Borel space, E is a countable Borel equivalence relation on X, Φ is a countable set of Borel partial functions from X to X such that $E = \bigcup_{\phi \in \Phi} \operatorname{graph}(\phi)$, and μ is an E-quasi-invariant finite Borel measure on X. Then the following are equivalent:

- (1) The equivalence relation E is μ -hyper- \mathcal{E} .
- (2) For all $\epsilon > 0$ and Borel sets $R \subseteq E$ with finite vertical sections, there exists $E' \subseteq E$ in \mathcal{E} with $\mu(\{x \in X \mid R_x \nsubseteq [x]_{E'}\}) < \epsilon$.
- (3) For all $\epsilon > 0$ and finite sets $\Phi' \subseteq \Phi$, there exists $E' \subseteq E$ in \mathcal{E} such that $\mu(\bigcup_{\phi' \in \Phi'} \{x \in \operatorname{dom}(\phi') \mid \neg x \; E' \; \phi'(x)\}) < \epsilon$.

PROOF. To see (1) \implies (2), fix a μ -conull Borel set $C \subseteq X$ for which $E \upharpoonright C$ is hyper- \mathcal{E} , as well as an increasing sequence $(E_n)_{n \in \mathbb{N}}$ of equivalence relations in \mathcal{E} such that $E \upharpoonright C = \bigcup_{n \in \mathbb{N}} E_n$. As μ is Equasi-invariant, the set $N = [\sim C]_E$ is μ -null. But if $\epsilon > 0$, $R \subseteq E$ is a Borel set with finite vertical sections, and $B_n = \{x \in X \mid R_x \nsubseteq [x]_{E_n}\}$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} B_n \subseteq N$, so $\mu(B_n) < \epsilon$ for some $n \in \mathbb{N}$.

To see (2) \Longrightarrow (3), note that if $E' \subseteq E$ is an equivalence relation and $\Phi' \subseteq \Phi$ is finite, then $R = \bigcup_{\phi' \in \Phi'} \operatorname{graph}(\phi')$ has finite vertical sections and $\{x \in X \mid R_x \nsubseteq [x]_{E'}\} = \bigcup_{\phi' \in \Phi'} \{x \in \operatorname{dom}(\phi') \mid \neg x E' \phi'(x)\}.$

To see (3) \Longrightarrow (1), fix real numbers $\epsilon_m > 0$ with $\sum_{m \in \mathbb{N}} \epsilon_m < \infty$, an enumeration $(\phi_k)_{k \in \mathbb{N}}$ of Φ , and equivalence relations $E_m \subseteq E$ in \mathcal{E} such that the set $A_m = \bigcup_{k < m} \{x \in \operatorname{dom}(\phi_k) \mid \neg x \ E_m \ \phi_k(x)\}$ has μ -measure at most ϵ_m for all $m \in \mathbb{N}$. Then the set $B_n = \bigcup_{m \ge n} A_m$ has μ -measure at most $\sum_{m \ge n} \epsilon_m$ for all $n \in \mathbb{N}$, so the set $N = \bigcap_{n \in \mathbb{N}} B_n$ is μ -null. Note that if $x \ E \ y$, then there exists $k \in \mathbb{N}$ such that $\phi_k(x) = y$, and if $x \notin N$, then there exists n > k for which $x \notin B_n$, so $x \ (\bigcap_{m \ge n} E_m) \ y$, thus $(\bigcap_{m \ge n} E_m \upharpoonright \sim N)_{n \in \mathbb{N}}$ is an increasing sequence of equivalence relations in \mathcal{E} whose union is $E \upharpoonright \sim N$, hence E is μ -hyper- \mathcal{E} .

We say that μ is E- \mathcal{E} if E is μ - \mathcal{E} .

PROPOSITION 3.3 (Dye-Krieger). Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces that is closed under Borel restrictions and countable intersections, X is a standard Borel space, E is a countable Borel equivalence relation on X, and μ is an E-hyper-hyper- \mathcal{E} E-quasi-invariant finite Borel measure on X. Then μ is E-hyper- \mathcal{E} .

PROOF. Suppose that $\epsilon > 0$ and $R \subseteq E$ is a Borel set with finite vertical sections. By Proposition 3.2, there is a hyper- \mathcal{E} equivalence relation $E' \subseteq E$ for which the set $B = \{x \in X \mid R_x \notin [x]_{E'}\}$ has μ -measure at most $\epsilon/2$. Set $R' = R \cap (\sim B \times X)$, and appeal again to Proposition 3.2 to obtain an equivalence relation $E'' \subseteq E'$ in \mathcal{E} with $\mu(\{x \in X \mid R'_x \notin [x]_{E''}\}) < \epsilon/2$, so $\mu(\{x \in X \mid R_x \notin [x]_{E''}\}) < \epsilon$. One last application of Proposition 3.2 then ensures that E is μ -hyper- \mathcal{E} .

In the special case that \mathcal{E} is the class of finite Borel equivalence relations on standard Borel spaces, we obtain the following.

THEOREM 3.4 (Segal). Suppose that X is a standard Borel space and E is a countable Borel equivalence relation on X. Then the set of E-hyperfinite E-quasi-invariant Borel probability measures is Borel.

PROOF. We can assume, without loss of generality, that X is a Polish space. Fix a countable basis \mathcal{B} for X that is closed under finite unions, appeal to the Lusin-Novikov uniformization theorem to obtain a countable set Φ of Borel functions from X to X with the property that $E = \bigcup_{\phi \in \Phi} \operatorname{graph}(\phi)$, and set $\Psi = \{\phi \upharpoonright U \mid \phi \in \Phi \text{ and } U \in \mathcal{B}\}$. For each finite set $\Psi' \subseteq \Psi$, let $B_{\Psi'}$ be the Borel set of $x \in X$ such that:

- (1) $\exists \psi' \in \Psi' \ x = \psi'(x).$
- (2) $\forall \psi' \in \Psi' \ (x \in \operatorname{dom}(\psi') \Longrightarrow \exists \psi'' \in \Psi' \ x = (\psi'' \circ \psi')(x)).$
- (3) $\forall \psi', \psi'' \in \Psi' \ (x \in \operatorname{dom}(\psi') \cap (\psi')^{-1}(\operatorname{dom}(\psi'')) \Longrightarrow \exists \psi''' \in \Psi' \ \psi'''(x) = (\psi'' \circ \psi')(x)).$

Then the restriction $F_{\Psi'}$ of $\bigcup_{\psi' \in \Psi'} \operatorname{graph}(\psi')$ to $B_{\Psi'}$ is a finite Borel equivalence relation.

LEMMA 3.5. Suppose that $E' \subseteq E$ is a finite Borel partial equivalence relation on X, μ is a finite Borel measure on X, and $\epsilon > 0$. Then there is a finite set $\Psi' \subseteq \Psi$ for which $\mu(\{x \in X \mid [x]_{E'} \neq [x]_{F_{\Psi'}}\}) < \epsilon$.

PROOF. Fix an enumeration $(\phi_k)_{k\in\mathbb{N}}$ of Φ , as well as a natural number n sufficiently large that the μ -measure of the complement of the set $A = \{x \in X \mid \forall y, z \in [x]_{E'} \exists k < n \ \phi_k(y) = z\}$ is at most $\epsilon/2$. Set $B_m = \{x \in X \mid x \ E' \ \phi_m(x)\}$ and appeal to the regularity of finite Borel measures on Polish spaces to obtain sets $U_m \in \mathcal{B}$ such that $\sum_{k < n} (\phi_k)_* \mu(B_m \ \Delta \ U_m) < \epsilon/2n$ for all m < n. To see that the set $\Psi' = \{\phi_k \upharpoonright U_k \mid k < n\}$ is as desired, set $B = A \setminus \bigcup_{m < n} [B_m \ \Delta \ U_m]_{E'}$, and note that if $x \in B$, then $[x]_{E'} = \{\psi'(x) \mid \psi' \in \Psi'\}$, so the fact that B is E'-invariant ensures that $[y]_{E'} = \{\psi'(y) \mid \psi' \in \Psi'\}$ for all $y \in [x]_{E'}$, thus $[x]_{E'} \subseteq B_{\Psi'}$, hence $[x]_{E'} = [x]_{F_{\Psi'}}$, so it only remains to observe that $\mu(\sim B) \leq \mu(\sim A) + \sum_{m < n} \mu(A \cap [B_m \bigtriangleup U_m]_{E'}) \leq \epsilon/2 + \sum_{k,m < n} (\phi_k)_* \mu(B_m \bigtriangleup U_m) < \epsilon$.

Proposition 3.2 and Lemma 3.5 ensure that an *E*-quasi-invariant finite Borel measure μ on *X* is *E*-hyperfinite if and only if for all $\epsilon > 0$ and finite sets $\Phi' \subseteq \Phi$, there is a finite set $\Psi' \subseteq \Psi$ such that $\mu(\bigcup_{\phi' \in \Phi'} \{x \in \operatorname{dom}(\phi') \mid \neg x F_{\Psi'} \phi'(x)\}) < \epsilon$. The desired result is therefore a consequence of the fact that the set of *E*-quasi-invariant Borel probability measures on *X* is Borel.

4. Smooth-to-one homomorphisms

The diagonal on X is given by $\Delta(X) = \{(x, x) \mid x \in X\}$, and we use \mathbb{E}_0 to denote the equivalence relation on $2^{\mathbb{N}}$ with respect to which $c \mathbb{E}_0 d \iff \exists n \in \mathbb{N} \forall m \ge n \ c(m) = d(m)$. We identify the product of equivalence relations E on X and F on Y with the equivalence relation on $X \times Y$ for which two pairs (x, y) and (x', y')are equivalent if and only if $x \in x'$ and $y \in y'$. A homomorphism from a binary relation R on X to a binary relation S on Y is a function $\phi: X \to Y$ such that $(\phi \times \phi)(R) \subseteq S$, a reduction of R to S is a homomorphism from R to S that is also a homomorphism from $\sim R$ to $\sim S$, and an *embedding* of R into S is an injective reduction of R to S. We say that a Borel equivalence relation E on a standard Borel space X is *smooth* if there is a Borel reduction of E to equality on a standard Borel space. A partial transversal of E is a set $Y \subseteq X$ whose intersection with each *E*-class consists of at most one point. The Lusin-Novikov uniformization theorem ensures that when E is countable, the smoothness of E is equivalent to the existence of cover of X by countably-many Borel partial transversals of E. Given a class \mathcal{E} of countable Borel equivalence relations on standard Borel spaces, a standard Borel space X, and a countable Borel equivalence relation Eon X, we say that a Borel set $B \subseteq X$ is $E \cdot \mathcal{E}$ if $E \upharpoonright B \in \mathcal{E}$.

PROPOSITION 4.1. Suppose that X and Y are standard Borel spaces, E is a countable Borel equivalence relation on X, and $\phi: X \to Y$ is Borel. Then the following are equivalent:

- (1) The function ϕ is E-smooth-to-one.
- (2) The graph of ϕ is $(E \times \Delta(Y))$ -smooth.
- (3) There is a cover $(B_n)_{n \in \mathbb{N}}$ of X by Borel sets with the property that ϕ is injective on each $(E \upharpoonright B_n)$ -class for all $n \in \mathbb{N}$.

PROOF. To see $\neg(2) \Longrightarrow \neg(1)$, note that if the graph of ϕ is not $(E \times \Delta(Y))$ -smooth, then the \mathbb{E}_0 dichotomy yields a continuous embedding $\psi: 2^{\mathbb{N}} \to \operatorname{graph}(\phi)$ of \mathbb{E}_0 into $E \times \Delta(Y)$. Then $\operatorname{proj}_Y \circ \psi$ is a continuous homomorphism from \mathbb{E}_0 to equality, and is therefore constant. Let $y \in Y$ be its constant value, and observe that $\operatorname{proj}_X \circ \psi$ is an embedding of \mathbb{E}_0 into $E \upharpoonright \phi^{-1}(\{y\})$, thus the latter is non-smooth.

To see (2) \implies (3), fix Borel partial transversals R_n of $E \times \Delta(Y)$ with the property that graph $(\phi) = \bigcup_{n \in \mathbb{N}} R_n$, and observe that the Borel sets of the form $B_n = \operatorname{proj}_X(R_n)$ cover X and ϕ is injective on each $(E \upharpoonright B_n)$ -class for all $n \in \mathbb{N}$.

To see (3) \implies (1), note that for all $y \in Y$, the sets of the form $B_n \cap \phi^{-1}(\{y\})$ are partial transversals of E and cover $\phi^{-1}(\{y\})$, so $\phi^{-1}(\{y\})$ is E-smooth.

PROPOSITION 4.2. Suppose that X and Y are standard Borel spaces, E and F are countable Borel equivalence relation on X and Y, and $\phi: X \to Y$ is a Borel homomorphism from E to F. Then ϕ is Esmooth-to-one if and only if there is an E-complete Borel set $B \subseteq X$ such that ϕ is injective on each $(E \upharpoonright B)$ -class.

PROOF. If ϕ is smooth-to-one, then Proposition 4.1 yields a cover $(B_n)_{n\in\mathbb{N}}$ of X by Borel sets such that ϕ is injective on each $(E \upharpoonright B_n)$ class for all $n \in \mathbb{N}$, so the Borel set $B = \bigcup_{n\in\mathbb{N}} B_n \setminus \bigcup_{m<n} [B_m]_E$ is E-complete and ϕ is injective on each $(E \upharpoonright B)$ -class. Conversely, if $B \subseteq X$ is an E-complete Borel set such that ϕ is injective on each $(E \upharpoonright B)$ -class and $y \in Y$, then $\phi^{-1}(\{y\}) \subseteq \bigcup_{z \in [y]_F} [B \cap \phi^{-1}(\{z\})]_E$. As each $B \cap \phi^{-1}(\{z\})$ is a partial transversal of E, the fact that the family of Borel sets on which E is smooth is closed under countable unions and E-saturations yields that $\phi^{-1}(\{y\})$ is E-smooth.

5. Structurability

Suppose that N is a countable set, $L = (R_n)_{n \in N}$ is a relational language, and k_n is the arity of R_n for all $n \in \mathbb{N}$. An *L*-structuring of an equivalence relation E on X is an E-invariant function assigning an L-structure $M^x = ([x]_E, (R_n^x)_{n \in N})$ to each $x \in X$. We say that such an assignment is Borel if $\{(x, (x_i)_{i < k_n}) \in X \times X^{k_n} \mid (x_i)_{i < k_n} \in R_n^x\}$ is Borel for all $n \in N$. Given a class \mathcal{M} of L-structures, an \mathcal{M} -structuring of E is an L-structuring of E such that $M^x \in \mathcal{M}$ for all $x \in X$. We say that a Borel equivalence relation on a standard Borel space is \mathcal{M} -structurable if it admits a Borel \mathcal{M} -structuring. In particular, the following observation ensures that the classes of smooth and hyperfinite countable Borel equivalence relations on standard Borel spaces are closed downward under smooth-to-one Borel homomorphisms.

5. STRUCTURABILITY

PROPOSITION 5.1. Suppose that L is a countable relational language and \mathcal{M} is an isomorphism-invariant class of countable L-structures for which the class of \mathcal{M} -structurable countable Borel equivalence relations on standard Borel spaces is closed under Borel restrictions and saturations. Then it is downward closed under smooth-to-one Borel homomorphisms.

PROOF. Suppose that X and Y are standard Borel spaces, E and F are countable Borel equivalence relations on X and Y, $\phi: X \to Y$ is an E-smooth-to-one Borel homomorphism from E to F, and F is \mathcal{M} -structurable. By Proposition 4.2, there is an E-complete Borel set $B \subseteq X$ such that $\phi \upharpoonright B$ is injective on $(E \upharpoonright B)$ -classes.

LEMMA 5.2. There is a Borel partial function $\psi: X \times \mathbb{N} \to Y$ bijectively sending dom $(\psi) \cap ([x]_E \times \mathbb{N})$ to $[\phi(x)]_F$ for all $x \in X$.

PROOF. Appeal to the Feldman-Moore theorem to obtain a countable group $G = \{g_n \mid n \in \mathbb{N}\}$ of Borel automorphisms of Y such that $F = E_G^Y$, set $\phi_n = g_n \circ \phi$ and $B_n = B \cap \phi_n^{-1}(\phi_n(B) \setminus \bigcup_{m < n} \phi_m(B))$ for all $n \in \mathbb{N}$, define $A = \bigcup_{n \in \mathbb{N}} B_n \times \{n\}$, and observe that the function $\psi \colon A \to Y$ given by $\psi(x, n) = \phi_n(x)$ is as desired.

For each set N, let I(N) denote the equivalence relation $N \times N$. As F is \mathcal{M} -structurable, so too is $(E \times I(\mathbb{N})) \upharpoonright \operatorname{dom}(\psi)$. The closure of \mathcal{M} -structurability under saturations therefore ensures that $E \times I(\mathbb{N})$ is \mathcal{M} -structurable, so the closure of \mathcal{M} -structurability under Borel restrictions implies that E is \mathcal{M} -structurable.

We say that an element F of a class \mathcal{E} is universal for \mathcal{E} under a quasi-order \leq if $E \leq F$ for all $E \in \mathcal{E}$. We say that a class \mathcal{M} of countable *L*-structures is *Borel-on-Borel* if for all standard Borel spaces X, countable Borel equivalence relations E on X, and Borel *L*-structurings $x \mapsto M^x$ of E, the set $\{x \in X \mid M^x \in \mathcal{M}\}$ is Borel. An *invariant embedding* of an equivalence relation E on X into an equivalence relation F on Y is an embedding $\pi: X \to Y$ of E into Fwith the property that $\pi([x]_E) = [\pi(x)]_F$ for all $x \in X$.

PROPOSITION 5.3. Suppose that L is a countable relational language and \mathcal{M} is an isomorphism-invariant Borel-on-Borel class of countable L-structures. Then there is a universal \mathcal{M} -structurable countable Borel equivalence relation on a standard Borel space under Borel invariant embeddability.

PROOF. The Feldman-Moore theorem ensures that every countable Borel equivalence relation on a standard Borel space is generated by a Borel action of the free group $G = \mathbb{F}_{\aleph_0}$. Fix a countable set N disjoint from \mathbb{N} for which there is an injective enumeration $(R_n)_{n \in \mathbb{N}}$ of the relation symbols of L, and let k_n be the arity of R_n for all $n \in \mathbb{N}$.

The right Bernoulli shift of G on $\prod_{n \in N} 2^{G^{k_n}}$ is the map from $G \times \prod_{n \in N} 2^{G^{k_n}}$ to $\prod_{n \in N} 2^{G^{k_n}}$ given by $(g \cdot x)(n)((g_i)_{i < k_n}) = x(n)((g_ig)_{i < k_n})$. Note that if $x \in X$, then $(1_G \cdot x)(n)((g_i)_{i < k_n}) = x(n)((g_i)_{i < k_n})$ for all $n \in N$ and $(g_i)_{i < k_n} \in G^{k_n}$, thus $1_G \cdot x = x$. Similarly, if $g, h \in G$ and $x \in X$, then

$$(g \cdot (h \cdot x))(n)((g_i)_{i < k_n}) = (h \cdot x)(n)((g_ig)_{i < k_n})$$

= $x(n)((g_igh)_{i < k_n})$
= $((gh) \cdot x)(n)((g_i)_{i < k_n})$

for all $n \in N$ and $(g_i)_{i < k_n} \in G^{k_n}$, thus $g \cdot (h \cdot x) = (gh) \cdot x$.

Let X_L be the set of all $x \in \prod_{n \in N} 2^{G^{k_n}}$ with the property that $(g_i \cdot x)_{i < k_n} = (h_i \cdot x)_{i < k_n} \Longrightarrow x(n)((g_i)_{i < k_n}) = x(n)((h_i)_{i < k_n})$ for all $n \in N$ and $(g_i)_{i < k_n}, (h_i)_{i < k_n} \in G^{k_n}$. Observe that if $g \in G$ and $x \in X_L$, then $(g_i \cdot (g \cdot x))_{i < k_n} = (h_i \cdot (g \cdot x))_{i < k_n} \Longrightarrow x(n)((g_ig)_{i < k_n}) = x(n)((h_ig)_{i < k_n}) \Longrightarrow (g \cdot x)(n)((g_i)_{i < k_n}) = (g \cdot x)(n)((h_i)_{i < k_n})$ for all $n \in N$ and $(g_i)_{i < k_n}, (h_i)_{i < k_n} \in G^{k_n}$, so $g \cdot x \in X_L$.

The definition of X_L ensures that for all $n \in N$ and $x \in X_L$, we obtain a k_n -ary relation R_n^x on Gx by setting $(g_i \cdot x)_{i < k_n} \in R_n^x \iff x(n)((g_i)_{i < k_n}) = 1$ for all $(g_i)_{i < k_n} \in G^{k_n}$. Note that if $g \in G$, $n \in N$, $(g_i)_{i < k_n} \in G^{k_n}$, and $x \in X$ then

$$(g_i \cdot x)_{i < k_n} \in R_n^{g \cdot x} \iff (g_i g^{-1} \cdot (g \cdot x))_{i < k_n} \in R_n^{g \cdot x}$$
$$\iff (g \cdot x)(n)((g_i g^{-1})_{i < k_n}) = 1$$
$$\iff x(n)((g_i)_{i < k_n}) = 1$$
$$\iff (g_i \cdot x)_{i < k_n} \in R_n^x.$$

It follows that the assignment $x \mapsto M^x = (Gx, (R_n^x)_{n \in N})$ is an *L*-structuring of $E_G^{X_L}$, in which case the restriction of this assignment to the set $X_{\mathcal{M}} = \{x \in X_L \mid M^x \in \mathcal{M}\}$ is an \mathcal{M} -structuring of $E_G^{X_{\mathcal{M}}}$.

A homomorphism from an action $G \curvearrowright X$ to an action $G \curvearrowright Y$ is a function $\phi: X \to Y$ such that $\phi(g \cdot x) = g \cdot \phi(x)$ for all $x \in X$. Given a standard Borel space X, a Borel action $G \curvearrowright X$, and a Borel L-structuring $x \mapsto M^x = (Gx, (R_n^x)_{n \in N})$ of E_G^X , define a function $\phi: X \to \prod_{n \in N} 2^{G^{k_n}}$ by $\phi(x)(n)((g_i)_{i < k_n}) = 1 \iff (g_i \cdot x)_{i < k_n} \in R_n^x$ for all $n \in N, (g_i)_{i < k_n} \in G^{k_n}$, and $x \in X$, and observe that if $g \in G$ and $x \in X$, then

$$\phi(g \cdot x)(n)((g_i)_{i < k_n}) = 1 \iff (g_i g \cdot x)_{i < k_n} \in R_n^x$$
$$\iff \phi(x)(n)((g_i g)_{i < k_n}) = 1$$
$$\iff (g \cdot \phi(x))(n)((g_i)_{i < k_n}) = 1$$

so $\phi(g \cdot x) = g \cdot \phi(x)$, thus ϕ is a homomorphism of *G*-actions.

An embedding of an action $G \curvearrowright X$ into an action $G \curvearrowright Y$ is an injective homomorphism from $G \curvearrowright X$ to $G \curvearrowright Y$. Let L' be the language obtained from L by adding unary function symbols S_n for all $n \in \mathbb{N}$. Let \mathcal{M}' be the class of L'-structures whose L-reducts are in \mathcal{M} .

Suppose now that X is a standard Borel space, $G \cap X$ is a Borel action, and $x \mapsto M^x = (Gx, (R_n^x)_{n \in N})$ is a Borel \mathcal{M} -structuring of E_G^X , fix a sequence $(B_n)_{n \in \mathbb{N}}$ of Borel subsets of X separating points, and let $x \mapsto (M')^x = (Gx, (R_n^x)_{n \in N} \cup (S_n^x)_{n \in \mathbb{N}})$ be the \mathcal{M}' -structuring of E_G^X with respect to which $(\mathcal{M}')^x$ is the expansion of \mathcal{M}^x such that $y \in S_n^x \iff y \in B_n$ for all $n \in \mathbb{N}, x \in X$, and $y \in Gx$. Let ϕ be the homomorphism from $G \cap X$ to $G \cap \prod_{n \in \mathbb{N}} 2^{G^{k_n}} \times (2^G)^{\mathbb{N}}$ from the previous paragraph.

To see that ϕ is injective, note that if $x, y \in X$ are distinct, then there exists $n \in \mathbb{N}$ such that $x \in S_n^x$ but $y \notin S_n^y$, so $\phi(x)(n)(1_G) \neq \phi(y)(n)(1_G)$, thus $\phi(x) \neq \phi(y)$.

To see that $\phi(X) \subseteq X_{L'}$, note that if $n \in N$, $(g_i)_{i < k_n}$, $(h_i)_{i < k_n} \in G^{k_n}$, and $x \in X$ has the property that $(g_i \cdot \phi(x))_{i < k_n} = (h_i \cdot \phi(x))_{i < k_n}$, then the fact that ϕ is a homomorphism ensures that $(\phi(g_i \cdot x))_{i < k_n} = (\phi(h_i \cdot x))_{i < k_n}$, so the fact that ϕ is injective implies that $(g_i \cdot x)_{i < k_n} = (h_i \cdot x)_{i < k_n}$, thus $\phi(x)(n)((g_i)_{i < k_n}) = 1 \iff (g_i \cdot x)_{i < k_n} \in R_n^x \iff (h_i \cdot x)_{i < k_n} \in R_n^x \iff \phi(x)(n)((h_i)_{i < k_n}) = 1$. Of course, the same argument shows that if $n \in \mathbb{N}$, $g, h \in G$, and $x \in X$ has the property that $g \cdot \phi(x) = h \cdot \phi(x)$, then $\phi(x)(n)(g) = \phi(x)(n)(h)$.

The fact that $x \mapsto (M')^x$ is an \mathcal{M}' -structuring of E now implies that $\phi(X) \subseteq X_{\mathcal{M}'}$, thus $G \curvearrowright X_{\mathcal{M}'}$ is a universal Borel G-action on a standard Borel space whose orbit equivalence relation is \mathcal{M} -structurable under Borel embeddability. As every embedding of G-actions is an invariant embedding of orbit equivalence relations, it follows that $E_G^{X_{\mathcal{M}'}}$ is a universal \mathcal{M} -structurable countable Borel equivalence relation on a standard Borel space under Borel invariant embeddability. \boxtimes

6. Treeability

A graphing of an equivalence relation is a graph whose connected components coincide with the equivalence classes. A *treeing* of an equivalence relation is an acyclic graphing. We say that a countable Borel equivalence relation E on a standard Borel space is *treeable* if there is a Borel treeing of E.

PROPOSITION 6.1 (Jackson-Kechris-Louveau). The class of treeable countable Borel equivalence relations on standard Borel spaces is downward closed under smooth-to-one Borel homomorphisms.

PROOF. By Proposition 5.1, we need only establish closure under saturations and Borel restrictions.

To establish closure under saturations, suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $B \subseteq X$ is Borel, and T is a Borel treeing of $E \upharpoonright B$, appeal to the Lusin-Novikov uniformization theorem to obtain a Borel function $\phi \colon [B]_E \setminus B \to B$ whose graph is contained in E, and observe that $\operatorname{graph}(\phi)^{\pm 1} \cup T$ is a Borel treeing of $E \upharpoonright [B]_E$.

To establish closure under Borel restrictions, suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, T is a Borel treeing of E, and $B \subseteq X$ is Borel. For all $x \in [B]_E$, let $d_T(x, B)$ be the minimal number of edges along a T-path from x to B. By the Lusin-Novikov uniformization theorem, there is a Borel function $\phi: [B]_E \setminus B \to B$ such that $d_T(\phi(x), B) < d_T(x, B)$ for all $x \in [B]_E \setminus B$. Define $\psi: [B]_E \to B$ by $\psi(x) = \phi^{d_T(x,B)}(x)$, let F be the subequivalence relation of $E \upharpoonright [B]_E$ given by $x F y \iff \psi(x) = \psi(y)$, and observe that $(\psi \times \psi)(T \setminus F)$ is a treeing of $E \upharpoonright B$.

7. Cost

We begin this section with a basic fact concerning integration.

PROPOSITION 7.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $R \subseteq E$ is Borel, and μ is an E-invariant Borel measure. Then $\int |R_x| d\mu(x) = \int |R^y| d\mu(y)$.

PROOF. By the Lusin-Novikov uniformization theorem, there are Borel partial injections $\phi_n \colon X \to X$ whose graphs partition R. Then

$$\int |R^{y}| d\mu(y) = \int \sum_{n \in \mathbb{N}} \chi_{\phi_{n}(\operatorname{dom}(\phi_{n}))}(y) d\mu(y)$$
$$= \sum_{n \in \mathbb{N}} \mu(\phi_{n}(\operatorname{dom}(\phi_{n})))$$
$$= \sum_{n \in \mathbb{N}} \mu(\operatorname{dom}(\phi_{n}))$$
$$= \int \sum_{n \in \mathbb{N}} \chi_{\operatorname{dom}(\phi_{n})}(x) d\mu(x)$$
$$= \int |R_{x}| d\mu(x),$$

which completes the proof.

7. COST

Suppose that X is a standard Borel space, G is a Borel graph on X, and μ is a Borel measure on X. The *cost* of G with respect to μ is given by $C_{\mu}(G) = \frac{1}{2} \int |G_x| d\mu(x)$.

PROPOSITION 7.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\phi: X \to X$ is a Borel partial function whose graph is contained in E with the property that $x \notin \{f(x), f^2(x)\}$ for all $x \in X$, and μ is an E-invariant Borel measure. Then $C_{\mu}(\operatorname{graph}(\phi)^{\pm 1}) = \mu(\operatorname{dom}(\phi))$.

PROOF. As graph(ϕ) \cap graph(ϕ)⁻¹ = \emptyset and Proposition 7.1 ensures that $\int |\operatorname{graph}(\phi)_x| d\mu(x) = \int |\operatorname{graph}(\phi)^y| d\mu(y) = \int |\operatorname{graph}(\phi)^{-1}_x| d\mu(x)$, it follows that $C_{\mu}(\operatorname{graph}(\phi)^{\pm 1}) = \int |\operatorname{graph}(\phi)_x| d\mu(x) = \mu(\operatorname{dom}(\phi))$. \boxtimes

PROPOSITION 7.3 (Levitt). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $B \subseteq X$ is a Borel transversal of E, T is a Borel treeing of E, and μ is an Einvariant Borel measure on X. Then $C_{\mu}(T) = \mu(\sim B)$.

PROOF. For all $x \in X$, let $d_T(x, B)$ denote the number of edges along the unique injective *T*-path from *x* to a point of *B*, and define $\phi: \sim B \to X$ by $\phi(x) =$ the unique *T*-neighbor of *x* with the property that $d_T(\phi(x), B) < d_T(x, B)$. Then $T = \operatorname{graph}(\phi)^{\pm 1}$, so Proposition 7.2 ensures that $C_{\mu}(T) = \mu(\operatorname{dom}(\phi)) = \mu(\sim B)$.

We say that a set $Y \subseteq X$ is *G*-connected if $G \upharpoonright Y$ has a single connected component.

PROPOSITION 7.4. Suppose that X is a standard Borel space, E is a hyperfinite Borel equivalence relation on X, and G is a Borel graphing of E. Then E is the union of an increasing sequence $(E_n)_{n\in\mathbb{N}}$ of finite Borel subequivalence relations whose classes are G-connected.

PROOF. Fix an increasing sequence $(F_n)_{n \in \mathbb{N}}$ of finite Borel equivalence relations whose union is E, and define $x \in E_n y$ if and only if $x \in y$ and there is a G-path from x to y that lies within a single F_n -class.

An equivalence relation is *aperiodic* if all of its classes are infinite.

PROPOSITION 7.5 (Levitt). Suppose that X is a standard Borel space, E is an aperiodic hyperfinite Borel equivalence relation on X, T is a Borel treeing of E, and μ is an E-invariant finite Borel measure on X. Then $C_{\mu}(T) = \mu(X)$.

PROOF. By Proposition 7.4, there is an increasing sequence $(E_n)_{n\in\mathbb{N}}$ of finite Borel subequivalence relations of E such that $E = \bigcup_{n\in\mathbb{N}} E_n$ and each equivalence class of each E_n is T-connected. Fix a decreasing sequence of Borel transversals $B_n \subseteq X$ of E_n . Proposition 7.3 ensures that $C_{\mu}(E_n \cap T) = \mu(\sim B_n)$ for all $n \in \mathbb{N}$. As the set $B = \bigcap_{n \in \mathbb{N}} B_n$ is a partial transversal of E, E is aperiodic, and μ is E-invariant, it follows that B is μ -null, so $\mu(B_n) \to 0$, thus the fact that $C_{\mu}(E_n \cap T) \to C_{\mu}(T)$ implies that $C_{\mu}(T) = \mu(X)$.

A graph G is *n*-regular if $|G_x| = n$ for all $x \in X$.

PROPOSITION 7.6. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and there is a two-regular Borel graphing G of E. Then E is hyperfinite.

PROOF. We can clearly assume that every equivalence class of E is infinite, and therefore that G is acyclic. By the Lusin-Novikov uniformization theorem, there is a Borel function $\phi: X \to X$ whose graph is contained in G. Let d_G denote the (extended-valued) graph metric on X induced by G, and let F be the subequivalence relation of E consisting of all $(x, y) \in E$ for which $d_G(x, y) = d_G(\phi(x), \phi(y))$. As every E-class is the union of two F-classes, it only remains to show that F is hyperfinite. Define $T: X \to X$ by T(x) = the first point of $[x]_F \setminus \{x\}$ along the injective G-ray $(x, \phi(x), \ldots)$. By throwing out an F-invariant Borel set on which F is smooth, we can assume that T is a Borel automorphism. But then F is the orbit equivalence relation induced by T, and is therefore hyperfinite.

We say that G is μ -acyclic if there is a μ -conull Borel set $C \subseteq X$ for which $G \upharpoonright C$ is acyclic.

PROPOSITION 7.7 (Levitt). Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, G is a Borel graphing of E, and μ is an E-invariant finite Borel measure on X. Then $C_{\mu}(G) \geq \mu(X)$, and if equality holds, then E is μ -hyperfinite and G is μ -acyclic.

PROOF. As $C_{\mu}(G) < \infty$ and μ is *E*-quasi-invariant, by throwing out an *E*-invariant μ -null Borel set, we can assume that *G* is locally finite. We say that a set $Y \subseteq X$ is *G*-convex if every injective *G*-path between elements of *Y* lies entirely within *Y*. The pruning derivative on the family of all *G*-convex sets $Y \subseteq X$ is the function given by $Y' = \{y \in Y \mid |G_y \cap Y| \ge 2\}$. The *G*-convexity of *Y* yields that of *Y'*. Note that if every $(E \upharpoonright Y)$ -class has at least two elements, then every point of $Y \setminus Y'$ has a unique $(G \upharpoonright Y)$ -neighbor, and if every $(E \upharpoonright Y)$ -class has at least three elements, then this $(G \upharpoonright Y)$ -neighbor is necessarily in *Y'*. Letting $\phi: Y \setminus Y' \to Y'$ be the function sending each point of $Y \setminus Y'$ to this $(G \upharpoonright Y)$ -neighbor, it follows that $G \upharpoonright Y$ is the 7. COST

disjoint union of $G \upharpoonright Y'$ with graph $(\phi)^{\pm 1}$. The fact that G is locally finite ensures that if $E \upharpoonright Y$ is aperiodic, then so too is $E \upharpoonright Y'$.

By starting with Y = X and recursively applying the pruning derivative, we obtain a decreasing sequence $(B_n)_{n\in\mathbb{N}}$ of *G*-convex Borel subsets of *X* and Borel functions $\phi_n \colon B_n \setminus B_{n+1} \to B_{n+1}$ such that $B_0 = X$ and $G \upharpoonright B_n$ is the disjoint union of $G \upharpoonright B_{n+1}$ with graph $(\phi_n)^{\pm 1}$ for all $n \in \mathbb{N}$. Then the set $B = \bigcap_{n \in \mathbb{N}} B_n$ is *G*-convex, and *G* is the disjoint union of $G \upharpoonright B$ with graph $(\psi)^{\pm 1}$, where $\psi \colon \sim B \to X$ is given by $\psi = \bigcup_{n \in \mathbb{N}} \phi_n$. As *G* is locally finite, the pruning derivative terminates after ω -many steps, that is, every point of *B* has at least two $(G \upharpoonright B)$ -neighbors.

Proposition 7.2 ensures that $C_{\mu}(G) = \mu(\sim B) + C_{\mu}(G \upharpoonright B) \ge \mu(X)$, so it only remains to show that if $C_{\mu}(G \upharpoonright B) = \mu(B)$, then E is μ hyperfinite and G is μ -acyclic. The fact that ψ sends points of $\sim B$ to points of strictly larger pruning rank ensures that every simple Gcycle lies entirely within B (since it would otherwise contain a point of minimal pruning rank). It follows that the restriction of G to the set $A = \{x \in X \mid B \cap [x]_E = \emptyset\}$ is acyclic, and since $E \upharpoonright A = E_t(\psi \upharpoonright A)$, it follows that $E \upharpoonright A$ is hypersmooth, and therefore hyperfinite. So we can assume that $\mu(A) < \mu(X)$. As μ is E-quasi-invariant, it follows that $\mu(B) > 0$. As the family of Borel subsets of X on which E is hyperfinite is closed under *E*-saturations, it only remains to show that $E \upharpoonright B$ is $(\mu \upharpoonright B)$ -hyperfinite and $G \upharpoonright B$ is $(\mu \upharpoonright B)$ -acyclic. By throwing out an $(E \upharpoonright B)$ -invariant $(\mu \upharpoonright B)$ -null Borel subset of B, we can assume that $G \upharpoonright B$ is a two-regular Borel graph, and therefore generates a hyperfinite equivalence relation by Proposition 7.6. To see that $G \upharpoonright B$ is acyclic, note that otherwise there exists $x \in B$ for which $[x]_{E \mid B}$ is finite, and the fact that ψ is finite-to-one yields $n \in \mathbb{N}$ for which $B_n \cap \psi^{-1}([x]_{E \upharpoonright B}) = \emptyset$, thus $[x]_E = \bigcup_{m \le n} \psi^{-m}([x]_{E \upharpoonright B})$ is finite, contradicting the aperiodicity of E. \boxtimes

The *cost* of a countable Borel equivalence relation E on a standard Borel space X with respect to an E-invariant finite Borel measure μ on X is given by $C_{\mu}(E) = \inf\{C_{\mu}(G) \mid G \text{ is a Borel graphing of } E\}.$

PROPOSITION 7.8 (Gaboriau). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $B \subseteq X$ is an E-complete Borel set, and μ is an E-invariant finite Borel measure on X. Then $C_{\mu}(E) - \mu(X) = C_{\mu \upharpoonright B}(E \upharpoonright B) - \mu(B)$.

PROOF. To see that $C_{\mu}(E) - \mu(X) \leq C_{\mu \upharpoonright B}(E \upharpoonright B) - \mu(B)$, note that if $\epsilon > 0$, then there is a Borel graphing H of $E \upharpoonright B$ with the property that $C_{\mu}(H) \leq C_{\mu \upharpoonright B}(E \upharpoonright B) + \epsilon$, and the Lusin-Novikov uniformization theorem yields a Borel function $\phi \colon \sim B \to B$ whose graph is contained in *E*. As the graph $G = \operatorname{graph}(\phi)^{\pm 1} \cup H$ generates *E*, and Proposition 7.2 ensures that $C_{\mu}(G) = \mu(\sim B) + C_{\mu}(H)$, it follows that $C_{\mu}(E) - \mu(X) \leq C_{\mu}(G) - \mu(X) = C_{\mu}(H) - \mu(B) \leq C_{\mu \upharpoonright B}(E \upharpoonright B) - \mu(B) + \epsilon$.

To see that $C_{\mu \upharpoonright B}(E \upharpoonright B) - \mu(B) \leq C_{\mu}(E) - \mu(X)$, note that if $\epsilon > 0$, then there is a Borel graphing G of E with the property that $C_{\mu}(G) \leq C_{\mu}(E) + \epsilon$, and the Lusin-Novikov uniformization theorem yields a Borel function $\phi \colon \sim B \to X$ whose graph is contained in G and has the property that $d_G(\phi(x), B) < d_G(x, B)$ for all $x \in \sim B$. Define $\psi \colon X \to B$ by $\psi(x) = \phi^{d_G(x,B)}(x)$, and let F be the subequivalence relation of E given by $x \vdash y \iff \psi(x) = \psi(y)$. Then the graph $H = (\psi \times \psi)(G \setminus F)$ generates $E \upharpoonright B$ and

$$C_{\mu}(H) = \frac{1}{2} \int |H_x| \ d\mu(x)$$

$$\leq \frac{1}{2} \int_B \sum_{y \in [x]_F} |(G \setminus F)_y| \ d\mu(x)$$

$$= \frac{1}{2} \int |(G \setminus F)_x| \ d\mu(x)$$

$$= C_{\mu}(G \setminus F).$$

As graph $(\phi)^{\pm 1} \subseteq F \cap G$, it follows from Proposition 7.2 that $C_{\mu}(H) \leq C_{\mu}(G) - \mu(\sim B)$, in which case $C_{\mu \upharpoonright B}(E \upharpoonright B) - \mu(B) \leq C_{\mu}(H) - \mu(B) \leq C_{\mu}(G) - \mu(X) \leq C_{\mu}(E) - \mu(X) + \epsilon$.

REMARK 7.9. Proposition 7.8 ensures that if $C_{\mu}(E) > \mu(X)$, then $C_{\mu/\mu(X)}(E) \leq C_{(\mu \upharpoonright B)/\mu(B)}(E \upharpoonright B)$, with equality holding if and only if B is μ -conull.

Given sets $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, let RS denote the set of pairs $(x, z) \in X \times Z$ for which there exists $y \in Y$ such that x R y S z.

PROPOSITION 7.10 (Gaboriau). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, F is a Borel subequivalence relation of E whose classes have bounded finite size, $B \subseteq X$ is a Borel transversal of F, G is a Borel graphing of E disjoint from F for which FGF $\upharpoonright B$ is acyclic, and μ is an E-invariant finite Borel measure on X. Then $C_{\mu}(FGF \upharpoonright B) - \mu(B) \leq C_{\mu}(G) - \mu(X)$.

PROOF. Let $(X)_E^3$ denote the space of injective triples of pairwise *E*-related points of *X*, and fix a Borel coloring $c: (X)_E^3 \to \mathbb{N}$ of the graph on $(X)_E^3$ in which two triples are related if and only if their images intersect, as well as an infinite-to-one function $d: \mathbb{N} \to \mathbb{N}$. We will define an increasing sequence of finite Borel subequivalence relations F_n of *F* and a decreasing sequence of Borel transversals $B_n \supseteq B$ of F_n such that $C_{\mu}(F_{n+1}GF_{n+1} \upharpoonright B_{n+1}) - \mu(B_{n+1}) \leq C_{\mu}(F_nGF_n \upharpoonright B_n) - \mu(B_n)$ for all $n \in \mathbb{N}$. We begin by setting $B_0 = X$ and $F_0 = \Delta(X)$, so

7. COST

that $C_{\mu}(G) - \mu(X) = C_{\mu}(F_0GF_0 \upharpoonright B_0) - \mu(B_0)$. Given $n \in \mathbb{N}$ for which we have already found B_n and F_n , let R_n be the set of triples $(x, y, z) \in (B_n \setminus B) \times B_n \times B_n$ with the property that c(x, y, z) = d(n), $x \ F_nGF_n \ y \ F_nGF_n \ z$, and $x \ (F \setminus F_n) \ z$, define $\phi_n \colon B_n \setminus B \to B_n$ by $\phi_n(x) = z \iff \exists y \in B_n \ (x, y, z) \in R_n$, let F_{n+1} be the equivalence relation generated by F_n and $\operatorname{graph}(\phi_n)$, set $B_{n+1} = B_n \setminus \operatorname{dom}(\phi_n)$, and define $\psi_n \colon \operatorname{dom}(\phi_n) \to B_n$ by $\psi_n(x) = y \iff (x, y, \phi_n(x)) \in R_n$. Proposition 7.2 then ensures that

$$C_{\mu}(F_{n+1}GF_{n+1} \upharpoonright B_{n+1})$$

$$= \frac{1}{2} \int_{B_{n+1}} |B_{n+1} \cap (F_{n+1}GF_{n+1})_{x}| d\mu(x)$$

$$\leq \frac{1}{2} \int_{B_{n+1} \setminus \phi_{n}(\operatorname{dom}(\phi_{n}))} |B_{n} \cap (F_{n}GF_{n})_{x}| d\mu(x) +$$

$$\frac{1}{2} \int_{\phi_{n}(\operatorname{dom}(\phi_{n}))} |B_{n} \cap (F_{n}GF_{n})_{x}| d\mu(x) +$$

$$\frac{1}{2} \int_{\phi_{n}(\operatorname{dom}(\phi_{n}))} |B_{n} \cap (F_{n}GF_{n})_{\phi_{n}^{-1}(x)}| d\mu(x) -$$

$$C_{\mu}(\operatorname{graph}(\psi_{n})^{\pm 1})$$

$$= \frac{1}{2} \int_{B_{n}} |B_{n} \cap (F_{n}GF_{n})_{x}| d\mu(x) - \mu(\operatorname{dom}(\psi_{n}))$$

$$= C_{\mu}(F_{n}GF_{n} \upharpoonright B_{n}) - (\mu(B_{n}) - \mu(B_{n+1})),$$

thus $C_{\mu}(F_{n+1}GF_{n+1} \upharpoonright B_{n+1}) - \mu(B_{n+1}) \leq C_{\mu}(F_nGF_n \upharpoonright B_n) - \mu(B_n)$. This completes the recursive construction.

Define $B_{\infty} = \bigcap_{n \in \mathbb{N}} B_n$ and $F_{\infty} = \bigcup_{n \in \mathbb{N}} F_n$. The fact that F is finite ensures that for all $x \in X$, there exists $n \in \mathbb{N}$ such that $[x]_{F_{\infty}} = [x]_{F_n}$, so $B_{\infty} \cap [x]_{F_{\infty}} = B_n \cap [x]_{F_n}$, thus B_{∞} is a transversal of F_{∞} .

LEMMA 7.11. The relations F and F_{∞} coincide on B_{∞} .

PROOF. Suppose, towards a contradiction, that $F \upharpoonright B_{\infty} \not\subseteq F_{\infty}$, and let k be the minimal natural number with the property that there is an $(F_{\infty}GF_{\infty} \upharpoonright B_{\infty})$ -path $(x_i)_{i \leq k}$ such that $x_0 \notin B$ and $x_0 (F \setminus F_{\infty}) x_k$. Define $\phi: X \to B$ by $\phi(x) =$ the unique element of $B \cap [x]_F$, and note that $(\phi(x_i))_{i \leq k}$ is an $(FGF \upharpoonright B)$ -path whose initial and terminal points coincide, so the acyclicity of $FGF \upharpoonright B$ yields 0 < i < k with the property that $\phi(x_{i-1}) = \phi(x_{i+1})$. As the minimality of k ensures that x_{i-1} $(F \setminus F_{\infty}) x_{i+1}$, it follows that k = 2. Fix $m \in \mathbb{N}$ for which $x_0 \ F_m GF_m \ x_1 \ F_m GF_m \ x_2$, as well as n > m with the property that $c(x_0, x_1, x_2) = d(n)$, and observe that $x_0 \ F_{n+1} \ x_2$, a contradiction.

Lemma 7.11 ensures that $B = B_{\infty}$, thus $F = F_{\infty}$, in which case $FGF \upharpoonright B = \bigcup_{n \in \mathbb{N}} F_n GF_n \upharpoonright B$. Set $k = \max_{x \in X} |[x]_F|$, and observe

that if $H \subseteq E$ is a Borel graph, then Proposition 7.1 ensures that

$$C_{\mu}(FH \cup HF) \leq \int \sum_{y \in [x]_F} |H_y| \ d\mu(x)$$

$$\leq k \int \sum_{y \in [x]_F} |H_y| / |[x]_F| \ d\mu(x)$$

$$= k \int |H_x| \ d\mu(x)$$

$$= 2kC_{\mu}(H).$$

As $F(FG \cup GF) \cup (FG \cup GF)F = FGF$, it follows that $C_{\mu}(FGF) \leq 2kC_{\mu}(FG \cup GF) \leq 4k^2C_{\mu}(G)$. In particular, as we can clearly assume that $C_{\mu}(G) < \infty$, it follows that $C_{\mu}(FGF) < \infty$. Then the measure ν on X given by $\nu(A) = \int_{A} |(FGF)_x| d\mu(x)$ is finite, so the fact that $\bigcap_{n \in \mathbb{N}} B_n \setminus B = \emptyset$ ensures that $\nu(B_n \setminus B) \to 0$. As one more application of Proposition 7.1 yields that

$$C_{\mu}((F_nGF_n \upharpoonright B_n) \setminus (F_nGF_n \upharpoonright B)) = C_{\mu}(F_nGF_n \cap ((B_n \setminus B) \times B)^{\pm 1})$$

$$\leq \int_{B_n \setminus B} |(F_nGF_n)_x| \ d\mu(x)$$

$$\leq \nu(B_n \setminus B),$$

the fact that $C_{\mu}(F_nGF_n \upharpoonright B) \to C_{\mu}(FGF \upharpoonright B)$ therefore implies that $C_{\mu}(F_nGF_n \upharpoonright B_n) - \mu(B_n) \to C_{\mu}(FGF \upharpoonright B) - \mu(B)$, and it follows that $C_{\mu}(FGF \upharpoonright B) - \mu(B) \leq C_{\mu}(G) - \mu(X)$.

THEOREM 7.12 (Gaboriau). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, T is a Borel treeing of E, and μ is an E-invariant finite Borel measure on X for which $C_{\mu}(T) < \infty$. Then $C_{\mu}(E) = C_{\mu}(T)$.

PROOF. It is sufficient to show that if $\epsilon > 0$ and G is a Borel graphing of E, then $C_{\mu}(T) \leq C_{\mu}(G) + \epsilon$. By the Lusin-Novikov uniformization theorem, there are countable sets Φ_G and Φ_T of Borel partial injections of X into X such that $(\operatorname{graph}(\phi)^i)_{(i,\phi)\in\{\pm 1\}\times\Phi_H}$ partitions H for all $H \in \{G, T\}$. By replacing each $\phi \in \Phi_G$ with countably-many restrictions, we can assume that for all $\phi \in \Phi_G$, there is a Φ_T -word w_{ϕ} such that $\phi = w_{\phi} \upharpoonright \operatorname{dom}(\phi)$. The fact that $C_{\mu}(T) < \infty$ ensures the existence of a finite set W of Φ_G -words such that $C_{\mu}(T \setminus \bigcup_{w \in W} \operatorname{graph}(w)^{\pm 1}) \leq \epsilon$. Let $\Phi_G \upharpoonright W$ be the set of $\phi \in \Phi_G$ appearing in some $w \in W$, set $\Phi_H = \{\phi \in \Phi_G \upharpoonright W \mid |w_{\phi}| \geq 2\}$, define $H = \bigcup_{\phi \in \Phi_H} \operatorname{graph}(\phi)^{\pm 1}$ and $U = \bigcup_{\phi \in (\Phi_G \upharpoonright W) \setminus \Phi_H} \operatorname{graph}(\phi)^{\pm 1} \cup (T \setminus \bigcup_{w \in W} \operatorname{graph}(w)^{\pm 1})$, and observe that $H \cup U$ is a graphing of E and $C_{\mu}(H \cup U) \leq C_{\mu}(G) + \epsilon$.

For all $\phi \in \Phi_H$, set $X_{\phi} = \{1, \ldots, |w_{\phi}| - 1\} \times \{\phi\} \times \operatorname{dom}(\phi)$ and define $\overline{\phi} : \operatorname{dom}(\phi) \cup X_{\phi} \to X_{\phi} \cup \phi(\operatorname{dom}(\phi))$ by $\overline{\phi}(x) = (1, \phi, x)$ for all $x \in \operatorname{dom}(\phi)$, $\overline{\phi}(i, \phi, x) = (i + 1, \phi, x)$ for all $1 \le i \le |w_{\phi}| - 2$ and $x \in \operatorname{dom}(\phi)$, and $\overline{\phi}(|w_{\phi}| - 1, \phi, x) = \phi(x)$ for all $x \in \operatorname{dom}(\phi)$.

7. COST

Define $\overline{X} = X \cup \bigcup_{\phi \in \Phi_H} X_{\phi}$, let $\pi : \overline{X} \to X$ be the extension of the identity function on X given by $\pi(i, \phi, x) = (w_{\phi} \upharpoonright i)(x)$ for all $\phi \in \Phi_H$, $1 \leq i \leq |w_{\phi}| - 1$, and $x \in \operatorname{dom}(\phi)$, let \overline{E} be the pullback of E through π , set $\overline{H} = \bigcup_{\phi \in \Phi_H} \operatorname{graph}(\overline{\phi})^{\pm 1}$, and let $\overline{\mu}$ be the extension of μ to an \overline{E} -invariant finite Borel measure on \overline{X} given by $\overline{\mu}(\{i\} \times \{\phi\} \times B) = \mu(B)$ for all $\phi \in \Phi_H$, $1 \leq i \leq |w_{\phi}| - 1$, and Borel sets $B \subseteq \operatorname{dom}(\phi)$.

Let \overline{F} be the pullback of equality on X through π . As π is injective on $\{i\} \times \{\phi\} \times \operatorname{dom}(\phi)$ for all $\phi \in \Phi_H$ and $1 \leq i \leq |w_{\phi}| - 1$, it follows that the classes of \overline{F} have bounded finite cardinality.

LEMMA 7.13. The graphs $\overline{F}(\overline{H} \cup U)\overline{F} \upharpoonright X$ and T coincide.

PROOF. As $\overline{FHF} \upharpoonright X = (\pi \times \pi)(\overline{H})$ and $\overline{FUF} \upharpoonright X = U$, their union is contained in T. To see that $T \subseteq \overline{F}(\overline{H} \cup U)\overline{F}$, suppose that x T y. If $(x, y) \notin \bigcup_{v \in W} \operatorname{graph}(v)^{\pm 1}$, then x U y. Otherwise, fix $v \in W$ for which $(x, y) \in \operatorname{graph}(v)^{\pm 1}$. As T is acyclic, there exist i < |v| and $j < |w_{v(i)}|$ with the property that $(x, y) \in \operatorname{graph}(w_{v(i)}(j))^{\pm 1}$, in which case $|w_{v(i)}| = 1 \Longrightarrow x U y$ and $|w_{v(i)}| \ge 2 \Longrightarrow x \overline{FHF} y$.

As $\overline{H} \cup U$ is clearly a graphing of \overline{E} , Proposition 7.10 ensures that $C_{\mu}(T) - \mu(X) \leq C_{\overline{\mu}}(\overline{H} \cup U) - \overline{\mu}(\overline{X})$. As the fact that

$$C_{\overline{\mu}}(\overline{H}) = \sum_{\phi \in \Phi_H} C_{\overline{\mu}}(\operatorname{graph}(\overline{\phi})^{\pm 1})$$
$$= \sum_{\phi \in \Phi_H} \overline{\mu}(\operatorname{dom}(\overline{\phi}))$$
$$= \sum_{\phi \in \Phi_H} \mu(\operatorname{dom}(\phi)) |w_{\phi}|$$
$$= C_{\mu}(H) + \overline{\mu}(\overline{X}) - \mu(X)$$

implies that $C_{\mu}(H \cup U) - \mu(X) = C_{\overline{\mu}}(\overline{H} \cup U) - \overline{\mu}(\overline{X})$, it follows that $C_{\mu}(T) \leq C_{\mu}(H \cup U) \leq C_{\mu}(G) + \epsilon$.

REMARK 7.14 (Gaboriau). Conversely, if G is a non- μ -acyclic Borel graphing of E for which $C_{\mu}(G) < \infty$, then $C_{\mu}(E) < C_{\mu}(G)$. To see this, let C_G be the standard Borel space of simple G-cycles, fix a Borel coloring $c: C_G \to \mathbb{N}$ of the graph on C_G in which two simple G-cycles are related if and only if they pass through a common point, and define $\phi_n: X \to X$ by $\phi_n(x) = y \iff \exists \gamma \in c^{-1}(\{n\}) (x, y) \sqsubseteq \gamma$ for all $n \in \mathbb{N}$. As μ is E-quasi-invariant, the fact that G is not μ acyclic yields $n \in \mathbb{N}$ for which the domain of ϕ_n is μ -positive. Then the graph $H = G \setminus \operatorname{graph}(\phi_n)^{\pm 1}$ also generates E, and since Proposition 7.2 ensures that $C_{\mu}(H) < C_{\mu}(G)$, it follows that $C_{\mu}(E) < C_{\mu}(G)$.

REMARK 7.15 (Gaboriau). Theorem 7.12 implies its generalization in which the hypothesis that $C_{\mu}(T) < \infty$ is removed. To see this, it 20

is sufficient to show that if G is a Borel graphing of $E, r \in \mathbb{R}$, and $C_{\mu}(T) > r$, then $C_{\mu}(G) > r$. Towards this end, again fix countable sets Φ_G and Φ_T of Borel partial injections of X into X such that $(\operatorname{graph}(\phi)^i)_{(i,\phi)\in\{\pm 1\}\times\Phi_H}$ partitions H for all $H \in \{G,T\}$, and note once more that by replacing each $\phi \in \Phi_G$ with countably-many restrictions, we can assume that for all $\phi \in \Phi_G$, there is a Φ_T -word w_{ϕ} such that $\phi = w_{\phi} \upharpoonright \operatorname{dom}(\phi)$. Fix a finite set $\Psi_T \subseteq \Phi_T$ such that $C_{\mu}(H) > r$, where $H = \bigcup_{\psi \in \Psi_T} \operatorname{graph}(\psi)^{\pm 1}$, as well as a finite set $\Psi_G \subseteq \Phi_G$ such that $C_{\mu}(H) - C_{\mu}(H \setminus F) > r$, where F is the equivalence relation generated by $\bigcup_{\psi \in \Psi_G} \operatorname{graph}(\psi)^{\pm 1}$. Define $\Psi'_T = \Psi_T \cup \{\phi \in \Phi_T \mid \exists \psi \in \Psi_G \phi \text{ appears in } w_{\psi}\}$, and observe that $\bigcup_{\psi \in \Psi'_T} \operatorname{graph}(\psi)^{\pm 1}$ and $\bigcup_{\psi \in \Psi_G \cup (\Psi'_T \setminus \Psi_T)} \operatorname{graph}(\psi)^{\pm 1} \cup (H \setminus F)$ generate the same equivalence relation, so Theorem 7.12 ensures that the cost of the former is at most that of the latter, thus $C_{\mu}(\bigcup_{\psi \in \Psi_G} \operatorname{graph}(\psi)^{\pm 1}) > r$.

8. Codes

Given a compact space X and a metric space Y, let C(X, Y) denote the space of continuous functions from X to Y, equipped with the metric $d_{C(X,Y)}(f,g) = \sup_{x \in X} d_Y(f(x),g(x)).$

PROPOSITION 8.1. Suppose that X is a compact Polish space and Y is a Polish metric space. Then C(X, Y) is Polish.

PROOF. To see that C(X, Y) is separable, fix a countable basis \mathcal{U} for X and a countable dense set $D \subseteq Y$. For all rational $\epsilon > 0$, finite covers $\mathcal{V} \subseteq \mathcal{U}$ of X, and functions $\phi: \mathcal{V} \to D$ for which it is possible, fix a continuous function $f_{\epsilon,\mathcal{V},\phi}\colon X \to Y$ such that $d_Y(\phi(V), f_{\epsilon,\mathcal{V},\phi}(x)) < \epsilon$ for all $V \in \mathcal{V}$ and $x \in V$. To see that the set of all $f_{\epsilon,\mathcal{V},\phi}$ is dense, note that if $\epsilon > 0$ and $f: X \to Y$ is continuous, then there is a finite cover $\mathcal{V} \subseteq \mathcal{U}$ such that diam $(f(V)) < \epsilon$ for all $V \in \mathcal{V}$, as well as a function $\phi: \mathcal{V} \to D$ such that $d_Y(\phi(V), f(x)) < 2\epsilon$ for all $V \in \mathcal{V}$ and $x \in V$. But then $f_{2\epsilon,\mathcal{V},\phi}$ exists and $d_{C(X,Y)}(f, f_{2\epsilon,\mathcal{V},\phi}) < 4\epsilon$.

To see that C(X, Y) is complete, note that if $(f_n)_{n \in \mathbb{N}}$ is Cauchy, then we obtain a function $f: X \to Y$ by setting $f(x) = \lim_{n \to \infty} f_n(x)$. To see that f is continuous, observe that if $\epsilon > 0$ and $x \in X$, then there exists $n \in \mathbb{N}$ such that $d_{C(X,Y)}(f_m, f_n) < \epsilon$ for all $m \ge n$, thus $d_Y(f_n(x), f(x)) \le \epsilon$ for all $x \in X$, so if U is an open neighborhood of xsuch that $f_n(U) \subseteq \mathcal{B}(f_n(x), \epsilon)$, then $f(U) \subseteq \mathcal{B}(f_n(x), 2\epsilon) \subseteq \mathcal{B}(f(x), 3\epsilon)$. To see that $f_n \to f$, note that if $\epsilon > 0$ and $n \in \mathbb{N}$ is sufficiently large that $d_{C(X,Y)}(f_m, f_n) < \epsilon$ for all $m \ge n$, then $d_{C(X,Y)}(f_n, f) \le \epsilon$.

8. CODES

PROPOSITION 8.2. Suppose that X is a compact space and Y is a metric space. Then the function $\phi: C(X,Y) \times X \to Y$ given by $\phi(f,x) = f(x)$ is continuous.

PROOF. Given $\epsilon > 0$, $f \in C(X, Y)$, and $x \in X$, fix $0 < \delta < \epsilon$ and an open neighborhood $U \subseteq X$ of x such that $f(U) \subseteq \mathcal{B}(f(x), \delta)$, and observe that $\phi(\mathcal{B}(f, \epsilon - \delta) \times U) \subseteq \mathcal{B}(f(x), \epsilon)$.

A code for a partial function is a sequence $c \in C(X,Y)^{\mathbb{N}}$. The partial function $\pi_c \colon X \to Y$ coded by such a sequence is given by $\pi_c(x) = y \iff \forall^{\infty} n \in \mathbb{N}$ c(n)(x) = y. We identify each partial function $\pi \colon X \to Y$ with the extension $\overline{\pi} \colon X \to Y \sqcup \{\emptyset\}$ given by $\overline{\pi}(x) = \emptyset$ for all $x \in \sim \operatorname{dom}(\phi)$.

PROPOSITION 8.3. Suppose that X is a zero-dimensional Polish space, Y is a metric space of cardinality at least two, μ is a finite Borel measure on X, and $\pi: X \to Y$ is a μ -measurable partial function. Then there is a code c for a partial function such that $\overline{\pi}(x) = \overline{\pi_c}(x)$ for μ -almost all $x \in X$.

PROOF. Fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of positive real numbers for which $\sum_{n\in\mathbb{N}}\epsilon_n < \infty$, as well as closed sets $C_n \subseteq \operatorname{dom}(\pi)$ on which π is continuous and clopen sets $U_n \subseteq X$ such that $\mu(\operatorname{dom}(\pi) \setminus C_n) \leq \epsilon_n$ and $\mu(\operatorname{dom}(\pi) \bigtriangleup U_n) \leq \epsilon_n$ for all $n \in \mathbb{N}$, in which case the corresponding set $N = (\bigcap_{n\in\mathbb{N}} \bigcup_{m\geq n} \operatorname{dom}(\pi) \setminus C_m) \cup (\bigcap_{n\in\mathbb{N}} \bigcup_{m\geq n} \operatorname{dom}(\pi) \bigtriangleup U_m)$ is μ -null. Fix continuous retractions $\pi_n \colon X \to C_n$, as well as points $y_n \in Y$ with the property that $(y_n)_{n\in\mathbb{N}}$ is not eventually constant, and let c be the code for a partial function given by $c(n) \upharpoonright U_n = (\pi \circ \pi_n) \upharpoonright U_n$ and $c(n) \upharpoonright \sim U_n = y_n$ for all $n \in \mathbb{N}$. It only remains to observe that if $x \in \sim N$, then $x \in \operatorname{dom}(\pi) \Longrightarrow \exists n \in \mathbb{N} \forall m \geq n \ x \in C_m \cap U_m \Longrightarrow \exists n \in \mathbb{N} \forall m \geq n \ c(m)(x) = (\pi \circ \pi_m)(x) = \pi(x) \Longrightarrow \overline{\pi}(x) = \overline{\pi_c}(x)$, and $x \notin \operatorname{dom}(\pi) \Longrightarrow \exists n \in \mathbb{N} \forall m \geq n \ x \notin U_m \Longrightarrow \exists n \in \mathbb{N} \forall m \geq n \ c(m)(x) = y_m \Longrightarrow \overline{\pi}(x) = \overline{\pi_c}(x)$.

A subset of a topological space is F_{σ} if it is a union of countablymany closed sets.

PROPOSITION 8.4. Suppose that X is a compact Polish space and Y is a Polish metric space. Then the partial function $\phi: C(X,Y)^{\mathbb{N}} \times X \rightarrow Y$ given by $\phi(c,x) = \pi_c(x)$ is Borel.

PROOF. The domain of ϕ is the set of $(c, x) \in C(X, Y)^{\mathbb{N}} \times X$ for which c(n)(x) is eventually constant, which is F_{σ} by Proposition 8.2. Similarly, the graph of ϕ is the set of $((c, x), y) \in (C(X, Y)^{\mathbb{N}} \times X) \times Y$ for which c(n)(x) is eventually constant with value y, which is also F_{σ} by Proposition 8.2. PROPOSITION 8.5. Suppose that X is a compact Polish space and Y is a Polish metric space. Then the partial function $\phi: C(X,Y)^{\mathbb{N}} \times P(X) \rightarrow P(Y)$ given by $\phi(c,\mu) = (\pi_c)_*\mu$ is Borel.

PROOF. Suppose that $B \subseteq Y$ and $C \subseteq \mathbb{R}$ are Borel. As Proposition 8.4 ensures that the set of $(c, x) \in C(X, Y)^{\mathbb{N}} \times X$ for which $x \in \pi_c^{-1}(B)$ is Borel, it follows that so too is the set of $(c, \mu) \in C(X, Y)^{\mathbb{N}} \times P(X)$ for which $\mu(\pi_c^{-1}(B)) \in C$ and $\mu(\operatorname{dom}(\pi_c)) = 1$.

A code for a subset of X is a code c for a partial function $\pi_c \colon X \to 2$. The set $B_c \subseteq X$ coded by such a sequence is the support of π_c .

9. Measure-hyper- \mathcal{E} -to-one homomorphisms

Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a Polish metric space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms. A code for a partial witness to the hyper- \mathcal{E} ness of a partial equivalence relation E on a compact Polish space Xis a pair $(c,d) \in (C(X,X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X,2)^{\mathbb{N}})^{\mathbb{N}}$. The *E*-scope of such a code is the set of $x \in \text{dom}(E)$ for which the partial equivalence relations $E_n = (\pi_{c(n)} \times \pi_{c(n)})^{-1}(E_{\mathcal{E}}) \upharpoonright [x]_E$ are increasing and their union is $[x]_E \times [x]_E$, the sets $B_n = B_{d(n)} \cap \text{dom}(E_n)$ are E_n -complete, and each $\pi_{c(n)}$ is injective on each $(E_n \upharpoonright B_n)$ -class.

PROPOSITION 9.1. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a Polish metric space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a compact Polish space, and E is a countable Borel partial equivalence relation on X for which there is a Borel homomorphism $\phi: \operatorname{dom}(E) \to (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$ from E to equality such that x is in the E-scope of $\phi(x)$ for all $x \in \operatorname{dom}(E)$. Then E is hyper- \mathcal{E} .

PROOF. Define $(c_x, d_x) = \phi(x)$ for all $x \in \text{dom}(E)$, as well as $\pi_n : \text{dom}(E) \to X_{\mathcal{E}}$ by $\pi_n(x) = \pi_{c_x(n)}(x)$, $E_n = E \cap (\pi_n \times \pi_n)^{-1}(E_{\mathcal{E}})$, and $B_n = \{x \in \text{dom}(E) \mid x \in B_{d_x(n)}\}$ for all $n \in \mathbb{N}$. Then $(E_n)_{n \in \mathbb{N}}$ is an increasing sequence of Borel equivalence relations whose union is E, and each π_n is a Borel homomorphism from E_n to $E_{\mathcal{E}}$. As each B_n is E_n -complete and each π_n is injective on each $(E_n \upharpoonright B_n)$ -class, Proposition 4.2 ensures that each π_n is E-smooth-to-one, so each E_n is in \mathcal{E} , thus E is hyper- \mathcal{E} .

PROPOSITION 9.2. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a Polish metric space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a compact zero-dimensional Polish space, E is a countable Borel partial equivalence relation

on X, and μ is an E-hyper- \mathcal{E} finite Borel measure on X. Then there is a code for a partial witness to the hyper- \mathcal{E} -ness of E whose E-scope is μ -conull.

PROOF. Fix a μ -conull Borel set $C \subseteq X$ such that $E \upharpoonright C$ is hyper- \mathcal{E} , an increasing sequence $(E_n)_{n\in\mathbb{N}}$ of equivalence relations in \mathcal{E} whose union is $E \upharpoonright C$, and smooth-to-one Borel homomorphisms $\pi_n : \operatorname{dom}(E_n) \to X_{\mathcal{E}}$ from E_n to $E_{\mathcal{E}}$ for all $n \in \mathbb{N}$. By the Lusin-Novikov uniformization theorem, there is a Borel function $\pi: [C]_E \to C$ whose graph is contained in E. By replacing C with $[C]_E$, E_n with $(\pi \times \pi)^{-1}(E_n)$, and π_n with $\pi_n \circ \pi$, we can assume that C is E-invariant. Fix an E-quasi-invariant finite Borel measure ν such that $\mu \ll \nu$ and the two measures agree on every *E*-invariant Borel set. By Proposition 4.2, there are E_n -complete Borel sets $B_n \subseteq \operatorname{dom}(E_n)$ such that π_n is injective on each $(E_n \upharpoonright B_n)$ -class for all $n \in \mathbb{N}$, and by Proposition 8.3, there exists $(c,d) \in (C(X,X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X,2)^{\mathbb{N}})^{\mathbb{N}}$ for which the set D = $\{x \in C \mid \forall n \in \mathbb{N} \ (\overline{\pi_n}(x) = \overline{\pi_{c(n)}}(x) \text{ and } (x \in B_n \iff x \in B_{d(n)}))\}$ is ν -conull. As ν is E-quasi-invariant, the set $\sim [\sim D]_E$ is ν -conull, thus μ -conull. But $\sim [\sim D]_E$ is contained in the E-scope of (c, d). \boxtimes

PROPOSITION 9.3. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a standard Borel space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a standard Borel space, and E is a countable Borel equivalence relation on X. Then the set of E-hyper- \mathcal{E} Borel probability measures is analytic.

PROOF. By the isomorphism theorem for standard Borel spaces, we can assume that X is a compact zero-dimensional Polish space. We can clearly assume that $X_{\mathcal{E}}$ is a Polish metric space. As the set R of $((c,d),x) \in ((C(X,X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X,2)^{\mathbb{N}})^{\mathbb{N}}) \times X$ for which x is in the E-scope of (c,d) is Borel, so too is the set S of $(\mu,(c,d)) \in$ $P(X) \times ((C(X,X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X,2)^{\mathbb{N}})^{\mathbb{N}})$ for which $\mu(R_{(c,d)}) = 1$. But if μ is a finite Borel measure on X, then the special case of Proposition 9.1 for constant homomorphisms ensures that if $\mu \in \operatorname{proj}_{P(X)}(S)$ then E is μ -hyper- \mathcal{E} , and conversely, Proposition 9.2 implies that if E is μ -hyper- \mathcal{E} then $\mu \in \operatorname{proj}_{P(X)}(S)$.

A partial witness to the *E*-hyper- \mathcal{E} -to-one-ness of a partial function $\phi \colon X \to Y$ is a partial function $\pi \colon Y \to (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$. The scope of such a partial witness is the set of $x \in \text{dom}(\phi)$ for which $\phi(x) \in \text{dom}(\pi)$ and x is in the $(E \upharpoonright \phi^{-1}(\{\phi(x)\}))$ -scope of $(\pi \circ \phi)(x)$.

A disintegration of a Borel probability measure μ on X through a Borel function $\phi: X \to Y$ is a function $\psi: Y \to P(X)$ with the property that $\phi^{-1}(\{y\})$ is $\psi(y)$ -conull for $(\phi_*\mu)$ -almost all $y \in Y$, and $\mu(B) = \int \psi(y)(B) \ d\phi_*\mu(y)$ for all Borel sets $B \subseteq X$.

PROPOSITION 9.4. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a Polish metric space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a compact zero-dimensional Polish space, Y is a standard Borel space, E is a countable Borel equivalence relation on X, μ is a Borel probability measure on X, $\phi: X \to Y$ is a Borel partial function whose domain is μ -conull, and there is a Borel disintegration $\psi: Y \to P(X)$ of μ through ϕ such that $E \upharpoonright \phi^{-1}(\{y\})$ is $\psi(y)$ -hyper- \mathcal{E} for $(\phi_*\mu)$ -almost all $y \in Y$. Then there is a Borel partial witness to the E-hyper- \mathcal{E} -to-one-ness of ϕ whose scope is μ -conull.

PROOF. As the set R of $((c, d), x) \in ((C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}) \times \operatorname{dom}(\phi)$ for which x is in the $(E \upharpoonright \phi^{-1}(\{\phi(x)\}))$ -scope of (c, d) is Borel, so too is the set S of $(y, (c, d)) \in Y \times ((C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}})$ for which $\psi(y)(R_{(c,d)}) = 1$, thus the Jankov-von Neumann uniformization theorem yields a $\sigma(\Sigma_1^1)$ -measurable uniformization $\pi \colon \operatorname{proj}_Y(S) \to (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$ of S. As Proposition 9.2 ensures that $\operatorname{proj}_Y(S)$ is $(\phi_*\mu)$ -conull, there is a $(\phi_*\mu)$ -conull Borel set $D \subseteq \operatorname{dom}(\pi)$ on which π is Borel. Let C be the set of $x \in \phi^{-1}(D)$ in the $E \upharpoonright \phi^{-1}(\{\phi(x)\})$ -scope of $(\pi \circ \phi)(x)$. Then $\mu(C) = \int \psi(y)(C) \ d\phi_*\mu(y) = 1$, so $\pi \upharpoonright D$ is a Borel partial witness to the E-hyper- \mathcal{E} -to-one-ness of ϕ whose scope is μ -conull.

PROPOSITION 9.5. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a standard Borel space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle for which every E-ergodic ρ -invariant Borel probability measure is E-hyper- \mathcal{E} . Then so too is every ρ -invariant Borel probability measure.

PROOF. By the isomorphism theorem for standard Borel spaces, we can assume that X is a compact zero-dimensional Polish space. We can clearly assume that $X_{\mathcal{E}}$ is a Polish metric space. Given a ρ invariant Borel probability measure μ , fix an *E*-invariant Borel function $\phi: X \to P(X)$ that is a *decomposition* of μ into *E*-ergodic ρ -invariant Borel probability measures, in the sense that $\phi(x)$ is *E*-ergodic and ρ -invariant for all $x \in X$, $\phi^{-1}(\{\nu\})$ is ν -conull for all $\nu \in \phi(X)$, and $\mu(B) = \int \phi(x)(B) \ d\mu(x)$ for all Borel sets $B \subseteq X$. As the identity function on P(X) is a disintegration of μ through ϕ , Proposition 9.4 yields a Borel partial witness $\pi: P(X) \to (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$ to the *E*-hyper- \mathcal{E} -to-one-ness of ϕ whose scope $C \subseteq X$ is μ -conull, and since $(\pi \circ \phi) \upharpoonright C$ is a Borel homomorphism from $E \upharpoonright C$ to equality such that x is in the *E*-scope of $(\pi \circ \phi)(x)$ for all $x \in C$, Proposition 9.1 ensures that $E \upharpoonright C$ is hyper- \mathcal{E} , thus μ is *E*-hyper- \mathcal{E} .

Given any class \mathcal{E} of countable Borel equivalence relations on standard Borel spaces, we say that a countable Borel equivalence relation on a standard Borel space X is *measure-* \mathcal{E} if it is μ - \mathcal{E} for all Borel probability measures μ on X.

QUESTION 9.6. Is a countable Borel equivalence relation hyperfinite if and only if it is measure hyperfinite?

PROPOSITION 9.7. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a standard Borel space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X is a standard Borel space, E is a countable Borel equivalence relation on X, and there is an E-measure-hyper- \mathcal{E} -to-one Borel homomorphism from E to a measure-hyperfinite countable Borel equivalence relation on a standard Borel space. Then E is measure-hyper- \mathcal{E} .

PROOF. We will first show that if there is an *E*-measure-hyper- \mathcal{E} -to-one Borel homomorphism $\phi: X \to Y$ from *E* to equality on a standard Borel space, then *E* is measure-hyper- \mathcal{E} . By the isomorphism theorem for standard Borel spaces, we can assume that *X* and *Y* are compact zero-dimensional Polish spaces. Clearly we can assume that $X_{\mathcal{E}}$ is a Polish metric space. But given any Borel probability measure μ on *X*, Proposition 9.4 yields a Borel partial witness π to the *E*-hyper- \mathcal{E} -to-one-ness of ϕ whose scope $C \subseteq X$ is μ -conull, in which case $(\pi \circ \phi) \upharpoonright C$ is a Borel homomorphism from $E \upharpoonright C$ to equality with the property that *x* is in the *E*-scope of $(\pi \circ \phi)(x)$ for all $x \in C$, thus Proposition 9.1 ensures that $E \upharpoonright C$ is hyper- \mathcal{E} .

Suppose now that Y is a standard Borel space, F is a measurehyperfinite countable Borel equivalence relation on Y, and $\phi: X \to Y$ is an E-measure-hyper- \mathcal{E} -to-one Borel homomorphism from E to F. Given a Borel probability measure μ on X, fix a $(\phi_*\mu)$ -conull Borel set $D \subseteq Y$ on which F is hyperfinite, as well as an increasing sequence $(F_n)_{n\in\mathbb{N}}$ of finite Borel equivalence relations whose union is $F \upharpoonright D$. Then the Borel set $C = \phi^{-1}(D)$ is μ -conull, and for all $n \in \mathbb{N}$, the function $\phi \upharpoonright C$ is an E-measure-hyper- \mathcal{E} -to-one Borel homomorphism from the equivalence relation $E_n = (E \cap (\phi \times \phi)^{-1}(F_n)) \upharpoonright C$ to F_n , so the previous paragraph ensures that E_n is μ -hyper- \mathcal{E} . As $E \upharpoonright C = \bigcup_{n \in \mathbb{N}} E_n$, Proposition 3.3 implies that E is μ -hyper- \mathcal{E} . A code for an *E*-hyper- \mathcal{E} -to-one partial homomorphism from an equivalence relation *E* on *X* to a partial equivalence relation *F* on *Y* is a pair $(c, d) \in C(X, Y)^{\mathbb{N}} \times C(Y, (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}})$. The scope of such a code (c, d) is the set of all $x \in X$ with the property that $[x]_E \subseteq \operatorname{dom}(\pi_c), \pi_c([x]_E) \subseteq \operatorname{dom}(\pi_d) \cap \operatorname{dom}(F) \cap [\pi_c(x)]_F$, and *y* is in the $E \upharpoonright \pi_c^{-1}(\{\pi_c(y)\})$ -scope of $(\pi_d \circ \pi_c)(y)$ for all $y \in [x]_E$.

PROPOSITION 9.8. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a Polish metric space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, X and Y are compact zero-dimensional Polish spaces, $D \subseteq Y$ is a Borel set, E and F are countable Borel equivalence relations on X and Y, and μ is a finite Borel measure on X. Then the following are equivalent:

- (1) There exists a code (c, d) for an *E*-hyper- \mathcal{E} -to-one partial homomorphism from *E* to $F \upharpoonright D$ whose scope is μ -conull.
- (2) There exist a μ -conull Borel set $C \subseteq X$ and an E-hyper- \mathcal{E} -toone Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D$.
- (3) There exist a μ -conull Borel set $C \subseteq X$ and an E-measurehyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D$.

PROOF. To see (1) \implies (2), note that if (c, d) is a code for an *E*-hyper- \mathcal{E} -to-one partial homomorphism from *E* to $F \upharpoonright D$ with scope $C \subseteq X$, then $\pi_c \upharpoonright C$ is an E-hyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D$. As (2) \Longrightarrow (3) is clear, it only remains to establish $(3) \implies (1)$. Towards this end, suppose that there is a μ -conull Borel set $C \subseteq X$ for which there is an *E*-measure-hyper- \mathcal{E} -to-one Borel homomorphism $\phi \colon C \to D$ from $E \upharpoonright C$ to $F \upharpoonright D$. By the Lusin-Novikov uniformization theorem, there is a Borel function $\psi \colon [C]_E \to C$ whose graph is contained in E. By replacing C with $[C]_E$ and ϕ with $\phi \circ \psi$, we can assume that C is E-invariant. Fix an E-quasi-invariant finite Borel measure ν such that $\mu \ll \nu$ and the two measures agree on every Einvariant Borel set. By Proposition 9.4, there is a Borel partial witness $\pi: Y \rightharpoonup (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$ to the *E*-hyper- \mathcal{E} -to-one-ness of ϕ whose scope is ν -conull. By Proposition 8.3, there are codes c and d for partial functions $\pi_c \colon X \to Y$ and $\pi_d \colon Y \to (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}$ such that $\phi(x) = \pi_c(x)$ and $(\pi \circ \phi)(x) = (\pi_d \circ \phi)(x)$ for ν -almost all $x \in X$. Then the E-quasi-invariance of ν ensures that (c, d) is a code for an *E*-hyper- \mathcal{E} -to-one partial homomorphism from *E* to $F \upharpoonright D$ whose scope is ν -conull, and therefore μ -conull. \boxtimes

PROPOSITION 9.9. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation $E_{\mathcal{E}}$ on a standard Borel space $X_{\mathcal{E}}$ under smooth-to-one Borel homomorphisms, I, X, and Y are standard

Borel spaces, $(D_i)_{i \in I}$ is a Borel sequence of subsets of Y, and E and Fare countable Borel equivalence relations on X and Y. Then the set of $(\mu, i) \in P(X) \times I$ for which there exist a μ -conull Borel set $C \subseteq X$ and an E-hyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D_i$ is analytic and coincides with the set of $(\mu, i) \in P(X) \times I$ for which there exist a μ -conull Borel set $C \subseteq X$ and an E-measure-hyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D_i$.

PROOF. By the isomorphism theorem for standard Borel spaces, we can assume that X and Y are compact zero-dimensional Polish spaces. Clearly we can assume that $X_{\mathcal{E}}$ and Y are Polish metric spaces. As the set R of $((c, d, i), x) \in (C(X, Y)^{\mathbb{N}} \times C(Y, (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}} \times I) \times X$ for which x is in the D_i -scope of (c, d) is Borel, so too is the set S of $((\mu, i), (c, d)) \in (P(X) \times I) \times (C(X, Y)^{\mathbb{N}} \times C(Y, (C(X, X_{\mathcal{E}})^{\mathbb{N}})^{\mathbb{N}} \times (C(X, 2)^{\mathbb{N}})^{\mathbb{N}}))^{\mathbb{N}}$ for which $\mu(R_{(c,d,i)}) = 1$. But Proposition 9.8 ensures that $(\mu, i) \in \operatorname{proj}_{P(X)}(S)$ if and only if there exist a μ -conull Borel set $C \subseteq X$ and an E-hyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D_i$ if and only if there exist a μ -conull Borel set $C \subseteq X$ and an E-measure-hyper- \mathcal{E} -to-one Borel homomorphism from $E \upharpoonright C$ to $F \upharpoonright D_i$.

10. Productive hyperfiniteness

Suppose that Γ is a countable group. We say that a Borel action of Γ on a standard Borel space is *hyperfinite* if the induced orbit equivalence relation is hyperfinite. We say that Γ is *hyperfinite* if every Borel action of Γ on a standard Borel space is hyperfinite.

The diagonal product of actions $\Gamma \curvearrowright X$ and $\Gamma \curvearrowright Y$ is the action $\Gamma \curvearrowright X \times Y$ given by $\gamma \cdot (x, y) = (\gamma \cdot x, \gamma \cdot y)$. We say that a Borel action of Γ on a standard Borel space is *productively hyperfinite* if its diagonal product with every Borel action of Γ on a standard Borel space is hyperfinite.

PROPOSITION 10.1. Suppose that Γ is a countable group, X is a standard Borel space, and $\Gamma \curvearrowright X$ is a hyperfinite Borel action such that the stabilizer of every point is hyperfinite and only countably-many points have infinite stabilizers. Then $\Gamma \curvearrowright X$ is productively hyperfinite.

PROOF. Let C be the set of $x \in X$ whose stabilizers are infinite, fix an increasing sequence $(E_n)_{n\in\mathbb{N}}$ of finite Borel equivalence relations whose union is E_{Γ}^X , and suppose that Y is a standard Borel space and $\Gamma \curvearrowright Y$ is a Borel action. As each $E_{\Gamma}^{X\times Y} \upharpoonright (\{x\} \times Y)$ is generated by the stabilizer of x, and therefore hyperfinite, we need only show that $E_{\Gamma}^{(\sim C)\times Y}$ is hyperfinite. But if F_n is the subequivalence relation with respect to which two $E_{\Gamma}^{(\sim C) \times Y}$ -equivalent pairs (x, y) and (x', y') are related exactly when $x \in E_n x'$ for all $n \in \mathbb{N}$, then each F_n is finite and their union is $E_{\Gamma}^{(\sim C) \times Y}$.

11. Actions of $SL_2(\mathbb{Z})$

Define \sim on $\mathbb{R}^2 \setminus \{(0,0)\}$ by $v \sim w \iff \exists r > 0 \ rv = w$, set $\mathbb{T} = (\mathbb{R}^2 \setminus \{(0,0)\})/\sim$, and define $\operatorname{proj}_{\mathbb{T}} : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{T}$ by setting $\operatorname{proj}_{\mathbb{T}}(v) = [v]_{\sim}$. Note that if $A \in \operatorname{GL}_2(\mathbb{Z}), r > 0$, and $v \in \mathbb{R}^2 \setminus \{(0,0)\}$, then A(rv) = r(Av), so the usual action $\operatorname{GL}_2(\mathbb{Z}) \curvearrowright \mathbb{R}^2 \setminus \{(0,0)\}$ by matrix multiplication factors over \sim to an action $\operatorname{GL}_2(\mathbb{Z}) \curvearrowright \mathbb{T}$.

PROPOSITION 11.1 (Jackson-Kechris-Louveau). The action $\operatorname{GL}_2(\mathbb{Z})$ $\curvearrowright \mathbb{T}$ is hyperfinite.

PROOF. Define an action $\operatorname{GL}_2(\mathbb{Z}) \curvearrowright \mathbb{R} \cup \{\infty\}$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$ (where $\frac{a\infty+b}{c\infty+d} = \frac{a}{c}$), let $\phi \colon \mathbb{R} \setminus \mathbb{Q} \to \mathbb{Z}^{\mathbb{N}}$ be the function sending each irrational number to its continued fraction expansion, and recall that the *unilateral shift* on $\mathbb{Z}^{\mathbb{N}}$ is the function $s \colon \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$ given by s(x)(n) = x(n+1). It is well-known that if $x, y \in \mathbb{R} \setminus \mathbb{Q}$, then $x \mathrel{E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{R} \cup \{\infty\}}} y \iff \phi(x) \mathrel{E_t(s)} \phi(y)$ (see, for example, Theorem 175 of *The Theory of Numbers* by Hardy-Wright). As $\mathrel{E_t(s)}$ is hyperfinite, so too is $\mathrel{E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{R} \cup \{\infty\}}}$.

As the set $X = \{(x, y) \in \mathbb{R}^2 \mid y \geq 0 \text{ and } (y = 0 \Longrightarrow x > 0)\}$ is $E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{R}^2 \setminus \{(0,0)\}}$ -complete, we need only show that $E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{T}} \upharpoonright \operatorname{proj}_{\mathbb{T}}(X)$ is hyperfinite. Define $\pi \colon X \to \mathbb{R} \cup \{\infty\}$ by $\pi(x, y) = x/y$, and note that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \pi\begin{pmatrix} x \\ y \end{pmatrix} = \frac{a(x/y)+b}{c(x/y)+d} = \frac{ax+by}{cx+dy} = \pi(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix})$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ and $(x, y) \in X$, thus π induces an embedding of $E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{T}} \upharpoonright \operatorname{proj}_{\mathbb{T}}(X)$ into $E_{\operatorname{GL}_2(\mathbb{Z})}^{\mathbb{R} \cup \{\infty\}}$.

PROPOSITION 11.2 (Conley-Miller). The action $SL_2(\mathbb{Z}) \curvearrowright \mathbb{T}$ is productively hyperfinite.

PROOF. Note that if $\theta \in \mathbb{T}$ has a non-trivial stabilizer, then it is the equivalence class of an eigenvector of a non-trivial matrix in $\mathrm{SL}_2(\mathbb{Z})$ whose corresponding eigenvector is positive. As $\mathrm{SL}_2(\mathbb{Z})$ is countable and every such matrix admits at most two such classes of eigenvectors, there are only countably-many such θ . By Propositions 10.1 and 11.1, it only remains to show that the stabilizer of each $\theta \in \mathbb{T}$ is cyclic.

We first consider the case that $\theta \cap \mathbb{Z}^2 \neq \emptyset$. Let v denote the unique element of $\theta \cap \mathbb{Z}^2$ of minimal length. Note that the stabilizers of θ and v coincide, for if A is in the stabilizer of θ , then v is an eigenvector of A, so minimality ensures that Av = v. Minimality also ensures that the coordinates of v are relatively prime, so there exists $a \in \mathbb{Z}^2$ such that $a \cdot v = 1$, in which case the matrix $B = \begin{pmatrix} a_0 & a_1 \\ -v_1 & v_0 \end{pmatrix}$ is in $\operatorname{SL}_2(\mathbb{Z})$ and $Bv = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, thus conjugation by B yields an isomorphism of the stabilizer of v with that of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. But if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$, then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for some $n \in \mathbb{Z}$, thus the group of such matrices is cyclic.

It remains to consider the case that $\theta \cap \mathbb{Z}^2 = \emptyset$.

LEMMA 11.3. The stabilizer of each v = (x, y) in θ is trivial.

PROOF. Suppose, towards a contradiction, that there is a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\operatorname{SL}_2(\mathbb{Z}) \setminus \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\}$ such that such that Av = v. Then (a-1)x + by = cx + (d-1)y = 0, so there exists $(a',b') \in \mathbb{Z}^2 \setminus \{(0,0)\}$ such that a'x + b'y = 0. As $\theta \cap \mathbb{Z}^2 \neq \emptyset$, it follows that neither x nor y is zero, so neither a' nor b' is zero, thus y = -(a'/b')x, in which case there exist $i, j \in \{\pm 1\}$ for which $(ib', ja') \in \theta$, the desired contradiction.

Note that the set Λ of eigenvalues of matrices in the stabilizer of θ is a group under multiplication.

LEMMA 11.4. The group Λ is cyclic.

PROOF. It is sufficient to show that 1 is isolated in $\Lambda \cap [1, \infty)$. Towards this end, suppose that A is in the stabilizer of θ and v is an eigenvector of A with eigenvalue $\lambda > 1$. If μ is the other eigenvalue of A, then $\lambda \mu = \det(A) = 1$, so $\operatorname{tr}(A) = \lambda + \mu = \lambda + 1/\lambda$. As $\operatorname{tr}(A) \in \mathbb{Z}$, it follows that $\lambda + 1/\lambda = n$ for some $n \ge 2$, in which case $\lambda = (n + \sqrt{n^2 - 4})/2$. The fact that $\lambda > 1$ therefore ensures that $n \ne 2$, thus $\lambda \ge (3 + \sqrt{5})/2$.

By Lemma 11.4, there is a matrix A in the stabilizer of θ which has an eigenvalue λ generating Λ . If B is any matrix in the stabilizer of θ , then there exists $n \in \mathbb{Z}$ for which v is an eigenvector of B with eigenvalue λ^n , in which case $A^n B^{-1}$ is in the stabilizer of v, so $B = A^n$, thus A generates the stabilizer of θ , hence the latter is cyclic.

Let $\mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z})$ denote the group of all functions $T : \mathbb{R}^2 \to \mathbb{R}^2$ of the form T(x) = Ax + b (under composition), where $A \in \operatorname{SL}_2(\mathbb{Z})$ and $b \in \mathbb{Z}^2$, and define $\operatorname{proj}_{\operatorname{SL}_2(\mathbb{Z})} : \mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z})$ by $\operatorname{proj}_{\operatorname{SL}_2(\mathbb{Z})}(Ax+b) = A$. Set $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, let $\operatorname{proj}_{\mathbb{T}^2}$ denote the projection from \mathbb{R}^2 to \mathbb{T}^2 , and let \mathbb{m}^2 denote the usual Lebesgue probability measure on \mathbb{T}^2 . Note that if $A \in \operatorname{SL}_2(\mathbb{Z}), b \in \mathbb{Z}^2, v \in \mathbb{R}^2$, and $w \in \mathbb{Z}^2$, then A(v+w) + b = Av + (Aw+b), so $\mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z}) \curvearrowright \mathbb{R}^2$ factors to an action $\mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z}) \curvearrowright \mathbb{T}^2$.

PROPOSITION 11.5. There is an \mathbb{m}^2 -treeable Borel subequivalence relation E of $E_{\mathrm{SL}_2(\mathbb{Z})}^{\mathbb{T}^2}$ that is not \mathbb{m}^2 -hyperfinite.

PROOF. We first note that the free part of the action $SL_2(\mathbb{Z}) \curvearrowright \mathbb{T}^2$ is \mathbb{m}^2 -conull.

LEMMA 11.6. The non-free part of $\mathrm{SL}_2(\mathbb{Z}) \curvearrowright \mathbb{T}^2$ is contained in the $E^{\mathbb{T}^2}_{\mathrm{SL}_2(\mathbb{Z})}$ -saturation of $\mathrm{proj}_{\mathbb{T}^2}(\mathbb{Q} \times \mathbb{R})$.

PROOF. If $\operatorname{proj}_{\mathbb{T}^2}(x, y)$ is in the non-free part, then there exists $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \setminus \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\}$ for which $((a-1)x + by, cx + (d-1)y) \in \mathbb{Z}^2$, so there exists $(a', b') \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ such that $a'x + b'y \in \mathbb{Z}$. If either a' or b' is zero, then y or x is rational, so $\begin{pmatrix} -y \\ x \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ or $\begin{pmatrix} x \\ y \end{pmatrix}$ is in $\mathbb{Q} \times \mathbb{R}$. Otherwise, there are relatively prime $a'', b'' \in \mathbb{Z}$ such that $a''x + b''y \in \mathbb{Q}$, in which case there are $c'', d'' \in \mathbb{Z}$ such that a''d'' - b''c'' = 1, thus $\begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ and $\begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{Q} \times \mathbb{R}$.

We next observe that $SL_2(\mathbb{Z})$ contains a copy F_2 of the free group on two generators.

LEMMA 11.7. The group generated by the matrices $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ is free.

PROOF. Note that if $n \neq 0, x, y \in \mathbb{R}$, $\binom{x_A}{y_A} = A^n \binom{x}{y} = \binom{x+3ny}{y}$, and $\binom{x_B}{y_B} = B^n \binom{x}{y} = \binom{x}{3nx+y}$, then

$$|x| < |y| \Longrightarrow |x_A| > (3|n|-1)|y| \ge 2|y| \Longrightarrow |x_A| - |y_A| > |y| - |x|$$

and

$$|y| < |x| \Longrightarrow |y_B| > (3|n|-1)|x| \ge 2|x| \Longrightarrow |y_B| - |x_B| > |x| - |y|$$

A straightforward induction therefore ensures that if W is a non-trivial reduced word in A and B, |x| < |y| if and only if the rightmost entry of W is a power of A, and $\begin{pmatrix} x_W \\ y_W \end{pmatrix} = W\begin{pmatrix} x \\ y \end{pmatrix}$, then $||x_W| - |y_W|| > ||x| - |y||$, so $\begin{pmatrix} x_W \\ y_W \end{pmatrix} \neq \begin{pmatrix} x \\ y \end{pmatrix}$, thus $W \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Note that the push-forward G of the Cayley graph of F_2 through $F_2 \curvearrowright \mathbb{T}^2$ is acyclic on the free part $B \subseteq X$ of $F_2 \curvearrowright \mathbb{T}^2$, so $E_{F_2}^B$ is treeable. Moreover, as $C_{\mathbb{m}^2}(G) = 2$, Proposition 7.5 ensures that $E_{F_2}^{\mathbb{T}^2}$ is not \mathbb{m}^2 -hyperfinite.

REMARK 11.8. Jackson-Kechris-Louveau have shown that $E_{\mathrm{SL}_2(\mathbb{Z})}^{\mathbb{T}^2}$ is itself treeable, but we will not need this stronger result.

12. Projective rigidity

Given sets X and Y, a binary relation R on X, a countable group Δ , an action $\Delta \curvearrowright Y$, and a function $\rho: R \to \Delta$, we say that a function $\phi: X \to Y$ is ρ -invariant if $x_1 R x_2 \Longrightarrow \phi(x_1) = \rho(x_1, x_2) \cdot \phi(x_2)$ for all $x_1, x_2 \in X$. Given a class \mathcal{E} of countable Borel equivalence relations on

standard Borel spaces, we say that a Borel action $\Delta \curvearrowright Y$ is projectively \mathcal{E} -rigid if whenever X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to \Delta$ is a Borel function, $\phi, \psi \colon X \to Y$ are ρ -invariant Borel functions, and ϕ is E- \mathcal{E} -to-one, the difference set $D(\phi, \psi) = \{x \in X \mid \phi(x) \neq \psi(x)\}$ is E- \mathcal{E} .

THEOREM 12.1 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms. Then $\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}) \curvearrowright \mathbb{R}^2$ is projectively measure-hyper- \mathcal{E} rigid.

PROOF. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to \mathbb{Z}^2 \rtimes \mathrm{SL}_2(\mathbb{Z})$ is a Borel function, $\phi, \psi: X \to \mathbb{R}^2$ are ρ -invariant Borel functions, and ϕ is E-measure-hyper- \mathcal{E} -to-one, and define functions $\pi: D(\phi, \psi) \to \mathbb{T}$ and $\sigma: E \upharpoonright D(\phi, \psi) \to \mathrm{SL}_2(\mathbb{Z})$ by $\pi(x) = \mathrm{proj}_{\mathbb{T}}(\phi(x) - \psi(x))$ and $\sigma(x_1, x_2) = (\mathrm{proj}_{\mathrm{SL}_2(\mathbb{Z})} \circ \rho)(x_1, x_2).$

LEMMA 12.2. The function π is σ -invariant.

PROOF. Simply observe that if $x_1, x_2 \in D(\phi, \psi)$ are *E*-related, then

$$\pi(x_1) = \operatorname{proj}_{\mathbb{T}}(\phi(x_1) - \psi(x_1))$$

= $\operatorname{proj}_{\mathbb{T}}(\rho(x_1, x_2) \cdot \phi(x_2) - \rho(x_1, x_2) \cdot \psi(x_2))$
= $\operatorname{proj}_{\mathbb{T}}(\sigma(x_1, x_2) \cdot \phi(x_2) - \sigma(x_1, x_2) \cdot \psi(x_2))$
= $\operatorname{proj}_{\mathbb{T}}(\sigma(x_1, x_2) \cdot (\phi(x_2) - \psi(x_2)))$
= $\sigma(x_1, x_2) \cdot \operatorname{proj}_{\mathbb{T}}(\phi(x_2) - \psi(x_2))$
= $\sigma(x_1, x_2) \cdot \pi(x_2),$

thus π is σ -invariant.

As $(\operatorname{proj}_{\mathbb{T}^2} \circ \phi) \upharpoonright D(\phi, \psi)$ is also σ -invariant, it follows that $\pi \times (\operatorname{proj}_{\mathbb{T}^2} \circ \phi) \upharpoonright D(\phi, \psi)$ is a measure-hyper- \mathcal{E} -to-one homomorphism from $E \upharpoonright D(\phi, \psi)$ to the orbit equivalence relation induced by $\operatorname{SL}_2(\mathbb{Z}) \curvearrowright \mathbb{T} \times \mathbb{T}^2$. As Proposition 11.2 ensures that the latter relation is hyperfinite, Proposition 9.7 implies that the former is measure-hyper- \mathcal{E} .

QUESTION 12.3. Is there a more combinatorial way of producing projectively-measure-hyper- \mathcal{E} -rigid Borel actions?

13. Projective separability and products

Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces. A μ -homomorphism from E to F is a Borel homomorphism from $E \upharpoonright C$ to F, where $C \subseteq X$ is a μ -conull Borel set.

 \square

We say that a countable Borel equivalence relation F on a standard Borel space is *projectively* \mathcal{E} -separable if for every standard Borel space X, countable Borel equivalence relation E on X, and E-quasi-invariant non-E- \mathcal{E} finite Borel measure μ on X, there is a countable set Φ of E- \mathcal{E} -to-one μ -homomorphisms from E to F such that every E- \mathcal{E} -to-one μ -homomorphism from E to F agrees with a function in Φ on a set of positive μ -measure.

THEOREM 13.1 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, Δ is a countable group, Y is a standard Borel space, and $\Delta \curvearrowright Y$ is a projectivelymeasure-hyper- \mathcal{E} -rigid Borel action. Then E_{Δ}^{Y} is projectively measurehyper- \mathcal{E} -separable.

PROOF. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and μ is an E-quasi-invariant non-Ehyper- \mathcal{E} finite Borel measure on X. Clearly we can assume that X is a Polish space. Fix a countable basis \mathcal{U} for X closed under finite unions, as well as a countable group Γ of Borel automorphisms of X generating E. By Proposition 3.3, there is a finite set $S \subseteq \Gamma$ for which the equivalence relation $E' = E_{\langle S \rangle}^X$ is non- μ -hyper- \mathcal{E} , and therefore non- μ -hyperhyper- \mathcal{E} . For each Borel set $B \subseteq X$, let E_B denote the equivalence relation on X generated by the set $R_B = \bigcup_{\gamma \in S} \operatorname{graph}(\gamma \upharpoonright B)$.

LEMMA 13.2. There exists $\epsilon > 0$ such that E_B is non- μ -hyper- \mathcal{E} for all Borel sets $B \subseteq X$ of μ -measure at least $\mu(X) - \epsilon$.

PROOF. Fix real numbers $\epsilon_n > 0$ such that $\sum_{n \in \mathbb{N}} \epsilon_n < \infty$, and suppose, towards a contradiction, that there are Borel sets $B_n \subseteq X$ of μ -measure at least $\mu(X) - \epsilon_n$ with the property that E_{B_n} is μ -hyper- \mathcal{E} for all $n \in \mathbb{N}$. Setting $C_n = \bigcap_{m \geq n} B_m$ for all $n \in \mathbb{N}$, it follows that $\mu(C_n) \to \mu(X)$. As μ is E'-quasi-invariant, the E'-invariant Borel set $C = \sim [\sim \bigcup_{n \in \mathbb{N}} C_n]_{E'}$ is μ -conull. But $(E_{C_n} \upharpoonright C)_{n \in \mathbb{N}}$ is an increasing sequence of μ -hyper- \mathcal{E} countable Borel equivalence relations whose union is $E' \upharpoonright C$, contradicting the fact that E' is non- μ -hyper-hyper- \mathcal{E} .

Observe that if $\phi: X \to Y$ is a μ -homomorphism from E to E_{Δ}^{Y} , then there is a finite set $T \subseteq \Delta$ for which the set $B_{\phi,T}$ of all $x \in \bigcap_{\gamma \in \langle S \rangle} \gamma^{-1}(\operatorname{dom}(\phi))$ such that $\forall \gamma \in S \exists \delta \in T \ \phi(x) = \delta \cdot \phi(\gamma \cdot x)$ has μ measure strictly greater than $\mu(X) - \epsilon/2$, as well as a function $U: T^S \to \mathcal{U}$ for which the set $B_{\phi,T,U}$ of all $x \in B_{\phi,T}$ such that $x \in U(f) \iff \forall \gamma \in S \ \phi(x) = f(\gamma) \cdot \phi(\gamma \cdot x)$ for all $f \in T^S$ has μ -measure at least $\mu(X) - \epsilon/2$. Now suppose that $\psi: X \to Y$ is another μ -homomorphism from E to E_{Δ}^{Y} for which the corresponding set $B_{\psi,T,U}$ has μ -measure at least $\mu(X) - \epsilon/2$, so that the set $B = B_{\phi,T,U} \cap B_{\psi,T,U}$ has μ -measure at least $\mu(X) - \epsilon$. Fix linear orderings of S and T^{S} , and observe that both ϕ and ψ are invariant with respect to the function $\sigma \colon R_B \to \Delta$ given by $\sigma(x, y) = f(\gamma)$, where f is the least element of T^{S} such that $x \in U(f)$, and γ is the least element of S such that $\gamma \cdot x = y$. Let $\overline{\sigma}$ be the extension of σ to $R_B^{\pm 1}$ given by $\overline{\sigma}(x, y) = \sigma(x, y)^{-1}$ for all $(x, y) \in R_B^{-1} \setminus R_B$, appeal to the Lusin-Novikov uniformization theorem to obtain a Borel function $\theta \colon E_B \to X^{<\mathbb{N}}$ sending each pair $(x, y) \in E_B$ to an R_B -path from x to y, and observe that both ϕ and ψ are invariant with respect to the function $\rho \colon E_B \to \Delta$ given by $\rho(x, y) = \prod_{n < |\gamma(x,y)| = 1} \overline{\sigma}(\theta_n(x, y), \theta_{n+1}(x, y))$, so if ϕ is E-measure-hyper- \mathcal{E} -to-one, then $D(\phi \upharpoonright B, \psi \upharpoonright B)$ is not $(\mu \upharpoonright B)$ conull. But there are only countably-many possibilities for T and U.

PROPOSITION 13.3 (Conley-Miller). Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces such that the family of Borel sets on which any equivalence relation is in \mathcal{E} is closed under countable unions. Then the projectively \mathcal{E} -separable countable Borel equivalence relations on standard Borel spaces are closed downward under countable-to-one Borel homomorphisms.

PROOF. Suppose that Y and Y' are standard Borel spaces, F and F' are countable Borel equivalence relations on Y and Y', F' is projectively \mathcal{E} -separable, and there is a countable-to-one Borel homomorphism $\psi: Y \to Y'$ from F to F'. By the Lusin-Novikov uniformization theorem, there is a countable set Φ of Borel functions $\phi: \psi(Y) \to Y$ such that graph $(\psi)^{-1} = \bigcup_{\phi \in \Phi} \operatorname{graph}(\phi)$. Given a standard Borel space X, a countable Borel equivalence relation E on X, and an E-quasi-invariant non-E- \mathcal{E} finite Borel measure μ on X, fix a countable set Φ' of E- \mathcal{E} -to-one μ -homomorphisms from E to F' such that every E- \mathcal{E} -to-one μ -homomorphism from E to F' agrees with a function in Φ' on a set of positive μ -measure. Then every E- \mathcal{E} -to-one μ -homomorphism from E to F agrees with a function $\phi \circ \phi'$, where $\phi \in \Phi$ and $\phi' \in \Phi'$, on a set of positive μ -measure.

REMARK 13.4 (Conley-Miller). If E is a non-measure- \mathcal{E} countable Borel equivalence relation on a standard Borel space, then $E \times \Delta(\mathbb{R})$ is not projectively \mathcal{E} -separable. It follows that if E is projectively measure- \mathcal{E} -separable, then there is no countable-to-one Borel homomorphism from $E \times \Delta(\mathbb{R})$ to E.

REMARK 13.5 (Conley-Miller). We say that E is \mathcal{E} -to-one measure homomorphible to F if there is an \mathcal{E} -to-one μ -homomorphism from Eto F for every Borel probability measure μ on X. Under the above assumptions, it is not difficult to see that if ν is a continuous finite Borel measure on \mathbb{R} and $B \subseteq X \times \mathbb{R}$ is a $(\mu \times \nu)$ -positive Borel set, then $(E \times \Delta(\mathbb{R})) \upharpoonright B$ is not projectively \mathcal{E} -separable, so there is no countable-to-one Borel homomorphism from $(E \times \Delta(\mathbb{R})) \upharpoonright B$ to E, thus $E \times \Delta(\mathbb{R})$ is not countable-to-one measure homomorphible to F.

REMARK 13.6 (Conley-Miller). If \mathcal{F} is a class of countable Borel equivalence relations on standard Borel spaces that is closed downward under smooth-to-one Borel homomorphisms, then again under the above assumptions, E cannot be a maximal element of \mathcal{F} under any quasi-order between countable-to-one measure homomorphibility and continuous embeddability.

14. Measures and products

Let $\ll_{E,F}^{\mathcal{E}}$ denote the set of $(\mu, \nu) \in P(X) \times P(Y)$ for which μ is *E*-ergodic and *E*-quasi-invariant, ν is *F*-ergodic and *F*-quasi-invariant, and there is an *E*- \mathcal{E} -to-one μ -homomorphism $\phi: X \to Y$ from *E* to *F* such that $\phi_*\mu \ll \nu$.

PROPOSITION 14.1 (Conley-Miller). Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces, X and Y are standard Borel spaces, E and F are countable Borel equivalence relations on X and Y, μ is an E-ergodic E-quasi-invariant non-E- \mathcal{E} Borel probability measure on X, and F is projectively \mathcal{E} -separable. Then the μ th vertical section of $\ll_{E,F}^{\mathcal{E}}$ is a union of countably-many measure-equivalence classes.

PROOF. As any two *F*-ergodic *F*-quasi-invariant Borel measures are either equivalent or orthogonal, it follows that any non-zero Borel measure on Y is absolutely continuous with respect to at most one such measure. As F is projectively \mathcal{E} -separable, it is therefore sufficient to show that if $C \subseteq X$ is a μ -conull Borel set, $\phi, \psi \colon C \to Y$ are Borel homomorphisms from $E \upharpoonright C$ to F for which $\sim D(\phi, \psi)$ is μ -positive, and ν is an *F*-quasi-invariant Borel measure on *Y* for which $\phi_* \mu \ll \nu$, then $\psi_*\mu \ll \nu$. Towards this end, suppose that $B \subseteq Y$ is a $(\psi_*\mu)$ positive Borel set. The *E*-ergodicity of μ then ensures that $[\psi^{-1}(B)]_E$ is μ -conull. As the fact that ψ is a homomorphism from $E \upharpoonright C$ to F implies that $[\psi^{-1}(B)]_E \cap C$ is contained in $\psi^{-1}([B]_F)$, the latter set is also μ -conull. In particular, it follows that $\psi^{-1}([B]_F) \setminus D(\phi, \psi)$ is μ -positive, thus so too is $\phi^{-1}([B]_F)$. The fact that $\phi_*\mu \ll \nu$ therefore ensures that $[B]_F$ is ν -positive, in which case the F-quasi-invariance of ν implies that B is ν -positive. \boxtimes A μ -reduction of E to F is a Borel reduction of $E \upharpoonright C$ to F, where $C \subseteq X$ is a μ -conull Borel set. A μ -embedding is an injective μ -reduction. We say that E is measure reducible to F if there is a μ -reduction of E to F for every Borel probability measure μ on X. We say that E is measure embeddable into F if there is a μ -embedding of E into F for every Borel probability measure μ on X.

We say that \mathcal{E} is *dichotomous* if it is strictly contained in hyper- \mathcal{E} but every hyper- \mathcal{E} countable Borel equivalence relation on a standard Borel space is measure embeddable into every non- \mathcal{E} countable Borel equivalence relation on a standard Borel space. Given such an \mathcal{E} , we use $E_{\mathcal{E}}^+$ to denote any hyper- \mathcal{E} non- \mathcal{E} countable Borel equivalence relation on a standard Borel space.

QUESTION 14.2. Is there a dichotomous class containing the hyperfinite Borel equivalence relations on standard Borel spaces?

We say that a Borel measure μ on X is (E, F)-ergodic if for every Borel homomorphism $\phi: X \to Y$ from E to F, there exists $y \in Y$ for which $\phi^{-1}([y]_F)$ is μ -conull.

QUESTION 14.3. Is the measure hyper- \mathcal{E} -ness of E equivalent to the inexistence of an $(E, E_{\mathcal{E}}^+)$ -ergodic Borel probability measure?

PROPOSITION 14.4 (Conley-Miller). Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces containing all equivalence relations on countable standard Borel spaces, X and Y are standard Borel spaces, E and F are countable Borel equivalence relations on X and Y, μ is an E-ergodic E-quasi-invariant non-E- \mathcal{E} Borel probability measure on X, and ν is an F-ergodic Fquasi-invariant F-projectively- \mathcal{E} -separable Borel probability measure on Y. Then there is a ν -conull Borel set $D \subseteq Y$ with the property that whenever X' and Y' are standard Borel spaces, E' and F' are countable Borel equivalence relations on X' and Y', μ is (E, F')-ergodic, and μ' is a Borel probability measure on X' for which there is a $(\mu \times \mu')$ reduction of $E \times E'$ to $(F \upharpoonright D) \times F'$, then there is also a μ' -reduction of E' to F'.

PROOF. By Proposition 14.1, there is an *F*-invariant *F*-projectively-*E*-separable ν -conull Borel set $D \subseteq Y$ with the property that the μ^{th} vertical section of $\ll_{E,F \upharpoonright D}^{\mathcal{E}}$ is contained in the measure-equivalence class of $\nu \upharpoonright D$. To see that this set is desired, suppose that $C \subseteq X \times X'$ is a $(\mu \times \mu')$ -conull Borel set and $\pi \colon C \to D \times Y'$ is a Borel reduction of $(E \times E') \upharpoonright C$ to $(F \upharpoonright D) \times F'$. Then the set $R = \{(x, (x', y')) \in X \times (X' \times Y') \mid (\text{proj}_{Y'} \circ \pi)(x, x') \land F' \land y'\}$ is Borel, thus so too is 36

the set $S = \{(x', y') \in X' \times Y' \mid \mu(R^{(x',y')}) = 1\}$. Fubini's theorem ensures that $\{x' \in X' \mid \mu(C^{x'}) = 1\}$ is itself μ -conull, and if x' is in this set, then the (E, F')-ergodicity of μ and the fact that $(\operatorname{proj}_{Y'} \circ \pi)(\cdot, x')$ is a homomorphism from $E \upharpoonright C^{x'}$ to F' ensure that $x' \in \operatorname{proj}_{X'}(S)$, thus $\operatorname{proj}_{X'}(S)$ is a μ' -conull Borel set. As S has countable vertical sections, the Lusin-Novikov uniformization theorem yields a Borel uniformization $\phi : \operatorname{proj}_{X'}(S) \to Y'$ of S. Set $B = \{(x, x') \in X\}$ $C \cap (X \times \operatorname{proj}_{X'}(S)) \mid (\operatorname{proj}_{Y'} \circ \pi)(x, x') F' \phi(x')\}$, and note that if $w', x' \in \operatorname{proj}_{X'}(S)$, then there exists $x \in B^{w'} \cap B^{x'}$, and if w' E' x', then $\phi(w')$ F' $(\operatorname{proj}_{Y'} \circ \pi)(x, w')$ F' $(\operatorname{proj}_{Y'} \circ \pi)(x, x')$ F' $\phi(x')$, thus ϕ is a homomorphism from $E' \upharpoonright \operatorname{proj}_{X'}(S)$ to F'. Suppose, towards a contradiction, that there are E'-inequivalent points $w', x' \in \operatorname{proj}_{X'}(S)$ such that $\phi(w') F' \phi(x')$, and for both $v' \in \{w', x'\}$, fix an F-quasi-invariant Borel probability measure $\nu_{v'}$ on Y such that $(\operatorname{proj}_Y \circ \pi)(\cdot, v')_* \mu \ll \nu_{v'}$ and the two measures agree on all F-invariant Borel sets. As the functions of the form $(\operatorname{proj}_V \circ \pi)(\cdot, v') \upharpoonright B^{v'}$ are μ -reductions of E to F and $[(\operatorname{proj}_Y \circ \pi)(B^{w'} \times \{w'\})]_F \cap [(\operatorname{proj}_Y \circ \pi)(B^{x'} \times \{x'\})]_F = \emptyset$, it follows that $\nu_{w'}$ and $\nu_{x'}$ are orthogonal measures in the μ^{th} vertical section of $\ll_{E,F \upharpoonright D}^{\mathcal{E}}$, a contradiction. \boxtimes

REMARK 14.5 (Conley-Miller). Proposition 9.5 ensures that if \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, and E is non-measure-hyper- \mathcal{E} , then there is an E-ergodic E-quasi-invariant non-E-hyper- \mathcal{E} Borel probability measure on X, so if E is projectively measure-hyper- \mathcal{E} -separable, then Proposition 14.4 yields an E-non-measure-hyper- \mathcal{E} Borel set $D \subseteq X$ with the property that for no $n \in \mathbb{Z}^+$ is $(E \upharpoonright D) \times \Delta(n+1)$ measure reducible to $(E \upharpoonright D) \times \Delta(n)$.

REMARK 14.6 (Conley-Miller). Even if the existence of a $(\mu \times \mu')$ reduction of $E \times E'$ to $(F \upharpoonright D) \times F'$ is weakened to the existence of a $(\mu \times \mu')$ -reduction of $E \times E'$ to $F \times F'$, the above argument still yields a countable-to-one μ -homomorphism from E' to F'. In particular, it follows that if E is non-measure-hyper- \mathcal{E} but projectively measure-hyper- \mathcal{E} -separable, E' is non-measure- \mathcal{E} , and F' is measure \mathcal{E} , then $E \times E'$ is not measure reducible to $E \times F'$.

REMARK 14.7 (Conley-Miller). Under the additional assumption that \mathcal{E} is dichotomous, the above argument shows that if there is an $(E, E_{\mathcal{E}}^+)$ -ergodic Borel probability measure, E is projectively measurehyper- \mathcal{E} -separable, E' is non-measure-hyper- \mathcal{E} , and F' is measure-hyper- \mathcal{E} , then $E \times E'$ is not measure reducible to $E \times F'$.

15. Reducibility without embeddability

We say that E is *invariant-measure*- \mathcal{E} if $E \upharpoonright B$ is $(\mu \upharpoonright B)$ - \mathcal{E} for all Borel sets $B \subseteq X$ and $(E \upharpoonright B)$ -invariant Borel probability measures μ on B.

QUESTION 15.1. Are measure hyperfiniteness and invariant-measure hyperfiniteness equivalent?

QUESTION 15.2. Is invariant-measure hyperfiniteness closed downward under passage to Borel subequivalence relations?

PROPOSITION 15.3 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, \mathcal{E} is dichotomous, X and Y are standard Borel spaces, E is an invariant-measure-hyper- \mathcal{E} countable Borel equivalence relation on X, and F is a non- \mathcal{E} countable Borel equivalence relation on Y. Then E is measure reducible to F if and only if E is measure embeddable into F.

PROOF. It is sufficient to show that if μ is a Borel probability measure on X for which there is a μ -reduction of E to F, then there is a μ -embedding of E into F. Towards this end, suppose that $C \subseteq X$ is a μ -conull Borel set and $\phi: C \to Y$ is a Borel reduction of $E \upharpoonright C$ to F. As E is countable, the Lusin-Novikov uniformization theorem yields a Borel function from $[C]_E$ to C whose graph is contained in E. Replacing C by $[C]_E$, ϕ by its composition with such a function, and μ with an E-quasi-invariant Borel probability measure ν on X for which $\mu \ll \nu$ and the two measures agree on all E-invariant Borel sets, we can assume that C is E-invariant and μ is E-quasi-invariant.

As ϕ is countable-to-one, the Lusin-Novikov uniformization theorem yields an $(E \upharpoonright C)$ -complete Borel set $B \subseteq C$ on which ϕ is injective. Fix a μ -maximal Borel set $A \subseteq B$ for which $E \upharpoonright A$ is compressible. Replacing A by $[A]_E \cap B$, we can assume that A is $(E \upharpoonright B)$ -invariant. Proposition 2.1 then yields a Borel injection $\psi \colon [A]_E \to A$ whose graph is contained in E.

If $[A]_E$ is μ -conull, then set $A' = \emptyset$. Otherwise, Theorem 2.2 ensures that $\mu \upharpoonright (B \setminus A)$ is equivalent to an $E \upharpoonright (B \setminus A)$ -invariant Borel probability measure ν on $B \setminus A$. As E is invariant-measure hyper- \mathcal{E} , there is an E-hyper- $\mathcal{E} \nu$ -conull Borel set $B' \subseteq B \setminus A$. As $((E \upharpoonright B') \times I(\mathbb{N})) \times \Delta(\mathbb{N})$ is hyper- \mathcal{E} , the fact that \mathcal{E} is dichotomous ensures that there is a ν conull Borel set $A' \subseteq B'$ and a Borel embedding $\phi' : (A' \times \mathbb{N}) \times \mathbb{N} \to Y$ of $((E \upharpoonright A') \times I(\mathbb{N})) \times \Delta(\mathbb{N})$ into F. By the Lusin-Novikov uniformization theorem, there is a Borel injection $\psi' : [A']_E \to (A' \times \mathbb{N}) \times \{0\}$ for which the graph of $\operatorname{proj}_X \circ \operatorname{proj}_{X \times \mathbb{N}} \circ \psi'$ is contained in E. Let $\pi: Y \to Y$ be the function supported on $\phi'((A' \times \mathbb{N}) \times \mathbb{N})$ given by $(\pi \circ \phi')((x,m),n) = \phi'((x,m),n+1)$, and note that $(\pi \circ \phi \circ \psi) \cup (\phi' \circ \psi')$ is a μ -embedding of $E \upharpoonright [A \cup A']_E$ into F.

REMARK 15.4 (Conley-Miller). As proj_X is a Borel reduction of $E \times I(\mathbb{N})$ to E, Proposition 15.3 ensures that if E is invariant-measure-hyper- \mathcal{E} and non-E- \mathcal{E} , then $E \times I(\mathbb{N})$ is measure embeddable into E.

We say that E is *invariant-measure embeddable* into F if there is a μ -embedding of $E \upharpoonright B$ into F for all Borel sets $B \subseteq X$ and $(E \upharpoonright B)$ invariant Borel probability measures μ on B.

PROPOSITION 15.5 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, X is a standard Borel space, and E is a non-invariant-measure-hyper- \mathcal{E} projectively-measure-hyper- \mathcal{E} -separable treeable countable Borel equivalence relation on X. Then there is a non-invariant-measure-hyper- \mathcal{E} Borel equivalence relation $F \subseteq E$ with the property that for no $n \in \mathbb{Z}^+$ is $F \times I(n+1)$ invariant-measure embeddable into $F \times I(n)$.

PROOF. By passing to a Borel subset of X, we can assume that there is an E-invariant non-E-hyper- \mathcal{E} Borel probability measure μ on X. As the Lusin-Novikov uniformization theorem ensures that Eis the union of countably-many graphs of Borel functions, Proposition 3.3 yields a non- μ -hyper- \mathcal{E} Borel subequivalence relation E' of Ethat is generated by finitely-many graphs of Borel functions, so that $C_{\nu}(E') < \infty$ for all E'-invariant Borel probability measures ν on X. By Proposition 9.5, there is an E'-ergodic E'-invariant non-E'-hyper- \mathcal{E} Borel probability measure ν on X. As Proposition 13.3 ensures that E' is projectively measure-hyper- \mathcal{E} -separable, there is an E'-invariant ν -conull Borel set $C \subseteq X$ that is null with respect to every measure in the ν^{th} vertical section of $\ll_{E',E'}^{\text{hyper-}\mathcal{E}}$ orthogonal to ν . Set $F = E' \upharpoonright C$, and let m_n denote the uniform probability measure on n for all $n \in \mathbb{Z}^+$.

Suppose, towards a contradiction, that there exists $n \in \mathbb{N}$ for which there is a $(\nu \times m_{n+1})$ -conull Borel set $B \subseteq C \times (n+1)$ and a Borel embedding $\pi: B \to C \times n$ of $(F \times I(n+1)) \upharpoonright B$ into $F \times I(n)$. For all i < n+1and j < n, let $\pi_{i,j}$ be the restriction of the function $(\operatorname{proj}_X \circ \pi)(\cdot, i)$ to $\operatorname{proj}_X((C \times \{i\}) \cap \pi^{-1}(C \times \{j\}))$, and if this set is ν -positive, then fix an F-quasi-invariant Borel probability measure $\nu_{i,j}$ on C such that $(\pi_{i,j})_*\nu \ll \nu_{i,j}$ and the two measures agree on all F-invariant Borel sets. Our choice of C ensures that $\nu_{i,j} \ll \nu$. Observe that if a set $D \subseteq C \times n$ is $\pi_*(\nu \times m_{n+1})$ -positive, then there exist i < n+1 and j < n for which $\operatorname{proj}_Y(D \cap (C \times \{j\}))$ is $(\pi_{i,j})_*\nu$ -positive, and therefore ν -positive, so

16. MINIMALITY

D is $(\nu \times m_n)$ -positive, thus $\pi_*(\nu \times m_{n+1}) \ll \nu \times m_n$. As the uniform ergodic decomposition theorem ensures that any two ergodic invariant Borel probability measures are either the same or orthogonal, it follows that $\pi_*(\nu \times m_{n+1}) \upharpoonright \pi(B)$ and $(\nu \times m_n) \upharpoonright \pi(B)$ have the same normalizations. As F is non- ν -hyperfinite and therefore ν -aperiodic, Proposition 7.7 yields that $C_{\nu}(F) > 1$, in which case Remark 7.9 ensures that $C_{(\nu \times m_{n+1})/(n+1)}(F \times I(n+1)) < C_{(\nu \times m_n)/n}(F \times I(n))$ and $C_{(\nu \times m_n)/n}(F \times I(n)) \leq C_{(\nu \times m_n)/(\nu \times m_n)(\pi(B))}((F \times I(n)) \upharpoonright \pi(B))$, contradicting the fact that the first and last quantities are the same.

16. Minimality

A minimal element of a set X under a quasi-order \leq is a point $x \in X$ such that $\forall y \in X \ (y \leq x \Longrightarrow x \leq y)$. We say that E is measureminimal non- \mathcal{E} if it is a minimal non- \mathcal{E} countable Borel equivalence relation on a standard Borel space under measure reducibility.

PROPOSITION 16.1 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, \mathcal{E} is dichotomous, X is a standard Borel space, and E is a countable Borel equivalence relation on X. If the set of E-ergodic E-quasi-invariant non-measure-hyper- \mathcal{E} Borel probability measures on X is a measure-equivalence class, then E is measure-minimal non-measure-hyper- \mathcal{E} .

PROOF. Suppose that Y is a standard Borel space and F is a nonmeasure-hyper- \mathcal{E} countable Borel equivalence relation on Y that is measure reducible to E. As in the proof of Proposition 15.3, the fact that \mathcal{E} is dichotomous ensures that there is a Borel embedding $\phi: Y \to Y$ of F into F for which $\sim [\phi(Y)]_F$ is non-F- \mathcal{E} but F-hyper- \mathcal{E} . By Proposition 9.5, there is an F-ergodic F-quasi-invariant non-hyper- \mathcal{E} Borel probability measure ν on Y. Fix a ν -conull Borel set $D \subseteq [\phi(Y)]_F$ and a Borel reduction $\psi: D \to X$ of $F \upharpoonright D$ to E, as well as an Equasi-invariant Borel probability measure μ on X such that $\psi_*\nu \ll \mu$ but the two measures agree on all E-invariant Borel sets. Then μ is E-ergodic and non-E-measure-hyper- \mathcal{E} , and the Lusin-Novikov uniformization ensures that there is a Borel reduction $\pi: [\psi(D)]_E \to D$ of $E \upharpoonright [\psi(D)]_E$ to $F \upharpoonright D$.

Suppose now that μ' is a Borel probability measure on X. As usual, we can assume that μ' is *E*-quasi-invariant. Fix a μ' -maximal *E*-invariant *E*-hyper- \mathcal{E} Borel set $B \subseteq \sim [\psi(D)]_E$. As \mathcal{E} is dichotomous, there exist a $(\mu' \upharpoonright B)$ -conull Borel set $C \subseteq B$ and a Borel embedding $\pi' \colon C \to \sim [\phi(Y)]_E$ of $E \upharpoonright C$ to $F \upharpoonright \sim [\phi(Y)]_E$. As Proposition 9.5 ensures that $\mu' \upharpoonright \sim B \ll \mu$, it follows that $\pi \cup \pi'$ is a μ' -reduction of E to F.

PROPOSITION 16.2 (Conley-Miller). Suppose that \mathcal{E} is a class of countable Borel equivalence relations on standard Borel spaces, X is a standard Borel space, and E is a measure-minimal non-measure- \mathcal{E} projectively- \mathcal{E} -separable countable Borel equivalence relation on X. Then the set of E-ergodic E-quasi-invariant non-E- \mathcal{E} Borel probability measures on X is a measure-equivalence class.

PROOF. Suppose, towards a contradiction, that there are orthogonal *E*-ergodic *E*-quasi-invariant non-*E*- \mathcal{E} Borel probability measures μ and ν on *X*. As *E* is projectively \mathcal{E} -separable, Proposition 14.1 yields an *E*-invariant μ -conull Borel set $C \subseteq X$ that is null with respect to every measure in the union of the μ th and ν th vertical sections of $\ll_{E,E}^{\mathcal{E}}$ orthogonal to μ . By measure minimality, there exist a $(\mu + \nu)$ -conull Borel set $B \subseteq X$ and a Borel reduction $\pi: B \to C$ of $E \upharpoonright B$ to $E \upharpoonright C$. Then $\pi_*\mu, \pi_*\nu \ll \mu$, so the *E*-ergodicity of μ ensures that $[\pi(B \cap C)]_E \cap [\pi(B \setminus C)]_E$ is μ -conull, thus there exist $x \in B \cap C$ and $y \in B \setminus C$ for which $\pi(x) \in \pi(y)$. As *x* and *y* are *E*-inequivalent, this contradicts the fact that π is a reduction of $E \upharpoonright B$ to $E \upharpoonright C$.

QUESTION 16.3. Is there a measure-minimal non-measure-hyper- \mathcal{E} countable Borel equivalence relation on a standard Borel space?

QUESTION 16.4. Is there a non- $E_{SL_2(\mathbb{Z})}^{\mathbb{T}^2}$ -hyperfinite Borel probability measure orthogonal to \mathfrak{m}^2 ?

PROPOSITION 16.5. Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, X is a standard Borel space, and E is a countable Borel equivalence relation on X for which the set of E-ergodic E-quasi-invariant non-E-hyper- \mathcal{E} Borel probability measures on X is a measure-equivalence class. Then every E-ergodic non-E-hyper- \mathcal{E} Borel probability measure on X is (E, \mathbb{E}_0) -ergodic.

PROOF. Suppose that μ is an *E*-ergodic non- (E, \mathbb{E}_0) -ergodic Borel probability measure on *X*, and fix a μ -null-to-one Borel homomorphism $\phi: X \to 2^{\mathbb{N}}$ from *E* to \mathbb{E}_0 . Then there exists $c \in 2^{\mathbb{N}}$ with the property that for all $d \in \sim [c]_{\mathbb{E}_0}$, every *E*-ergodic *E*-quasi-invariant Borel probability measure on $\phi^{-1}([d]_{\mathbb{E}_0})$ is *E*-hyper- \mathcal{E} , in which case Proposition 9.5 ensures that $\phi^{-1}([d]_{\mathbb{E}_0})$ is *E*-measure-hyper- \mathcal{E} . It then follows from Proposition 9.7 that $\sim \phi^{-1}([c]_{\mathbb{E}_0})$ is *E*-measure-hyper- \mathcal{E} , so the fact that $\phi^{-1}([c]_{\mathbb{E}_0})$ is μ -null yields that *E* is μ -hyper- \mathcal{E} .

17. BASES

REMARK 16.6. Remark 14.6 and Propositions 16.2 and 16.5 ensure that if \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, and E is measure-minimal non-measure-hyper- \mathcal{E} and projectively-measure-hyper- \mathcal{E} -separable, then there is no non-measurehyper- \mathcal{E} countable Borel equivalence relation F on a standard Borel space for which $E \times F$ is measure reducible to $E \times \mathbb{E}_0$.

17. Bases

An external basis for a set $Y \subseteq X$ under a quasi-order \leq on X is a set $B \subseteq X$ such that $\forall y \in Y \exists b \in B \ b \leq y$.

QUESTION 17.1. Suppose that E is non-measure-hyper- \mathcal{E} but projectively measure-hyper- \mathcal{E} -separable, and \mathcal{F} is the set of restrictions of E to E-invariant non-E-measure-hyper- \mathcal{E} Borel sets. Is there an external basis for \mathcal{F} under measure-hyper- \mathcal{E} -to-one measure homomorphism whose elements are measure-minimal non-measure-hyper- \mathcal{E} ?

REMARK 17.2. Proposition 16.5 ensures that a positive answer to the special case of Question 17.1 in which \mathcal{E} is the family of smooth countable Borel equivalence relations would yield a positive answer to the corresponding special case of Question 14.3. It would also allow one to drop the assumption that E is measure-minimal in Remark 16.6.

THEOREM 17.3 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, \mathcal{E} is dichotomous, X is a standard Borel space, E is a non-measure-hyper- \mathcal{E} projectivelymeasure-hyper- \mathcal{E} -separable countable Borel equivalence relation on X, the set M of non-E-hyper- \mathcal{E} Borel probability measures on X is analytic, \mathcal{F} is the set of restrictions of E to E-invariant non-E-measurehyper- \mathcal{E} Borel sets, \mathcal{B} is an external basis for \mathcal{F} under measure-hyper- \mathcal{E} countable Borel equivalence relations on standard Borel spaces, and $2^{\mathbb{N}}$ is not a union of \mathcal{B} -many countable sets. Then E is a disjoint union of countably-many measure-minimal non-measure-hyper- \mathcal{E} countable Borel equivalence relations on standard Borel spaces.

PROOF. By Proposition 16.1, it is sufficient to show that M is a union of countably-many measure-equivalence classes. Suppose, towards a contradiction, that this is not the case. The perfect set theorem for co-analytic equivalence relations on Hausdorff spaces then yields a non-empty perfect set $P \subseteq M$ of pairwise-orthogonal measures. By Theorem 1.1, there exist a continuous injection $\pi: 2^{\mathbb{N}} \to P$ and a K_{σ} sequence $(K_c)_{c \in 2^{\mathbb{N}}}$ of pairwise disjoint subsets of X such that $\pi(c)(K_c) = 1$ for all $c \in 2^{\mathbb{N}}$. As E is projectively measure-hyper- \mathcal{E} -separable, it follows that for each $F \in \mathcal{B}$, the set of $c \in 2^{\mathbb{N}}$ for which there is an F-measure-hyper- \mathcal{E} -to-one $\pi(c)$ -homomorphism from F to $E \upharpoonright K_c$ is countable, thus $2^{\mathbb{N}}$ is the union of \mathcal{B} -many countable sets, the desired contradiction.

REMARK 17.4 (Conley-Miller). Under the stronger assumption that \mathcal{B} is a countable external basis for \mathcal{F} under smooth-to-one measure homomorphism, it is not difficult to see that the hypothesis that M is analytic is superfluous, as Proposition 4.2 easily implies that the family of smooth-to-one Borel homomorphisms is closed under composition.

REMARK 17.5 (Conley-Miller). Even without the assumption that M is analytic, if the union of \aleph_1 -many meager sets is always meager, then we can still conclude that there is a basis for \mathcal{F} under measure embeddability consisting of $(\leq \aleph_1)$ -many minimal non-measure-hyper- \mathcal{E} countable Borel equivalence relations on standard Borel spaces under measure reducibility. To see this, appeal to Proposition 9.3 to see that M is co-analytic, and use the perfect set theorem for analytic equivalence relations in place of that for co-analytic equivalence relations.

18. Antichains

We have essentially already seen one way of building antichains.

THEOREM 18.1 (Conley-Miller). Suppose that \mathcal{E} is the downward closure of a countable Borel equivalence relation on a standard Borel space under smooth-to-one Borel homomorphisms, \mathcal{E} is dichotomous, X is a standard Borel space, E is a non-measure-hyper- \mathcal{E} projectivelymeasure-hyper- \mathcal{E} -separable countable Borel equivalence relation on X that is not a disjoint union of countably-many measure-minimal nonmeasure-hyper- \mathcal{E} countable Borel equivalence relations on standard Borel spaces, and the set M of non-E-hyper- \mathcal{E} Borel probability measures on X is analytic. Then there exist a continuous injection $\pi: 2^{\mathbb{N}} \to M$ and a K_{σ} sequence $(K_c)_{c \in 2^{\mathbb{N}}}$ of pairwise disjoint subsets of X such that $\pi(c)(K_c) = 1$ for all $c \in 2^{\mathbb{N}}$ and for no two distinct sequences $c, d \in 2^{\mathbb{N}}$ is there a measure-hyper- \mathcal{E} -to-one $\pi(c)$ -homomorphism from E to $E \upharpoonright K_d$.

PROOF. By the proof of Theorem 17.3, we can assume that there exist a continuous injection $\phi: 2^{\mathbb{N}} \to M$ and a K_{σ} sequence $(K_c)_{c \in 2^{\mathbb{N}}}$ of pairwise disjoint subsets of X such that $\phi(c)(K_c) = 1$ for all $c \in 2^{\mathbb{N}}$. As E is projectively measure-hyper- \mathcal{E} , the vertical sections of the set $(\phi \times \phi)^{-1}(\ll_{E,F}^{\text{hyper-}\mathcal{E}})$ are countable. As Proposition 9.9 ensures that this set is analytic, and therefore meager, Mycielski's theorem yields a

18. ANTICHAINS

continuous injection $\psi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ such that for no two distinct sequences $c, d \in 2^{\mathbb{N}}$ is there a measure-hyper- \mathcal{E} -to-one $(\phi \circ \psi)(c)$ -homomorphism from E to $E \upharpoonright K_{\psi(d)}$, thus $\phi \circ \psi$ and $(K_{\psi(c)})_{c \in 2^{\mathbb{N}}}$ are as desired.

REMARK 18.2. This reduces the problem of building antichains to the case that E is measure-minimal non-measure-hyper- \mathcal{E} . When Eis treeable, it is known that there is an increasing sequence $(E_r)_{r\in\mathbb{R}}$ of measure-minimal non-measure-hyper- \mathcal{E} subequivalence relations of E that are pairwise incomparable under measure reducibility. However, the existence of antichains (within the treeable countable Borel equivalence relations) under countable-to-one measure homomorphism remains open.

Index

coded, 21, 22

(E, F)-ergodic, 35 $E-\mathcal{E}, 5, 7$ E-complete, 2 E-ergodic, 3 E-invariant, 3 E-quasi-invariant, 3 E-scope, 22 $F_{\sigma}, 21$ G-connected, 13 G-convex, 14 $K_{\sigma}, 1$ L-structuring, 8 δ -bounded, 1 \mathcal{E} -to-one measure homomorphible, 33 \mathcal{M} -structurable, 8 \mathcal{M} -structuring, 8 μ - $\mathcal{E}, 5$ μ -acyclic, 14 μ -embedding, 35 μ -homomorphism, 31 μ -nowhere compressible, 3 μ -reduction, 35 ρ -increasing, 3 ρ -invariant, 3, 30 *n*-regular, 14 analytic, 1 aperiodic, 13 Borel, 8 Borel-on-Borel, 9 Borel measure, 1 Borel sets, 1 Borel space, 1 cocycle, 3 code, 21, 22, 26

compressible, 2, 3 compression, 2, 3 cost, 13, 15 countable, 2decomposition, 4, 24 diagonal, 7 dichotomous, 35 difference set, 31 disintegration, 23 embedding, 7, 11 external basis, 42 finite, 3 graphing, 11 homomorphism, 7, 10 hyper- \mathcal{E} , 4 hyperfinite, 27 in, 1 invariant embedding, 9 invariant-measure embeddable, 38 invariant-measure- \mathcal{E} , 37 measure embeddable, 35 measure reducible, 35 measure- \mathcal{E} , 25 measure-minimal non- \mathcal{E} , 39 minimal, 39 orthogonal, 1 partial transversal, 7 partial witness, 23 Polish, 1

INDEX

productively hyperfinite, 27 projectively \mathcal{E} -rigid, 31 projectively \mathcal{E} -separable, 32 pruning derivative, 14

reduction, 7 right Bernoulli shift, 10

scope, 23, 26 smooth, 7 standard, 2 strictly ρ -increasing, 3

totally bounded, 1 treeable, 12 treeing, 11

unilateral shift, 28 universal, 9

zero-dimensional, 1

46