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1. The perfect set theorem for measures

When D is a discrete space, we endow DN with the complete ultra-
metric given by dDN(a, b) = 1/2n(a,b) for all distinct a, b ∈ DN, where
n(a, b) is the least coordinate at which a and b differ. The underlying
topology is generated by the sets of the form Ns = {c ∈ DN | s v c},
where s ∈ D<N.

A topological space is analytic if it is a continuous image of a closed
subset of NN, Polish if it is second countable and completely metrizable,
Kσ if it is a countable union of compact sets, and zero-dimensional if it
has a clopen basis. A subset of a metric space is δ-bounded if it can be
covered by finitely-many balls of radius strictly less than δ, and totally
bounded if it is δ-bounded for all δ > 0.

A Borel space is a set X equipped with a σ-algebra of Borel sets . A
Borel measure on such a space is a measure defined on the Borel sets.
Two such Borel measures µ and ν are orthogonal if there is a µ-conull
Borel set that is also ν-null. When X is a zero-dimensional Polish
space, we use P (X) to denote the set of Borel probability measures on
X, equipped with the (Polish) topology generated by the sets of the
form {µ | µ(U) ∈ V }, where U ⊆ X is clopen and V ⊆ [0, 1] is open.

We will slightly abuse language by saying that a sequence (Bi)i∈I
of subsets of a space X is in a pointclass Γ if the corresponding set
{(i, x) ∈ I ×X | x ∈ Bi} is in Γ.

Theorem 1.1 (Burgess-Mauldin). Suppose that X is a zero-dimen-
sional Polish space and A ⊆ P (X) is an analytic set of pairwise or-
thogonal measures. Then exactly one of the following holds:

(1) The set A is countable.
(2) There is a continuous injection π : 2N → A for which there is

a Kσ sequence (Kc)c∈2N of pairwise disjoint subsets of X such
that π(c)(Kc) = 1 for all c ∈ 2N.

Proof. Fix a compatible complete metric dX on X. By the perfect
set theorem for analytic Hausdorff spaces, it is sufficient to show that
if there is a continuous injection φ : 2N → A, then condition (2) holds.
Towards this end, fix real numbers δn, εn > 0 such that δn → 0 and∑

n∈N εn < ∞. We will recursively construct kn ∈ N, ψn : 2n → 2kn ,
and sequences (Us)s∈2n of open subsets of X such that:

(a) ∀i < 2∀n ∈ N∀s ∈ 2n ψn(s) a (i) v ψn+1(s a (i)).
(b) ∀n ∈ N∀s ∈ 2n+1 Us is δn-bounded.
(c) ∀n ∈ N∀s ∈ 2n+1∀µ ∈ φ(Nψn+1(s)) µ(Us) > 1− εn.

(d) ∀n ∈ N∀s, t ∈ 2n+1 (s 6= t =⇒ Us ∩ Ut = ∅).
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We begin by setting k0 = 0, ψ0(∅) = ∅, and U∅ = X. Suppose now
that n ∈ N and we have already found kn and ψn. For all i < 2
and s ∈ 2n, set µsa(i) = φ(ψn(s) a (i) a (0)∞). For all distinct
s, t ∈ 2n+1, fix a Borel set Bs,t ⊆ X that is µs-conull and µt-null. Then
the sets of the form Bs =

⋂
t∈2n+1\{s}Bs,t \Bt,s are pairwise disjoint,

and µs(Bs) = 1 for all s ∈ 2n+1. By the tightness of Borel probability
measures on Polish spaces, there are compact sets Ks ⊆ Bs with the
property that µs(Ks) > 1− εn for all s ∈ 2n+1. By compactness, there
exists 0 < δ′n < δn such that d(x, y) > 2δ′n for all distinct s, t ∈ 2n+1 and
(x, y) ∈ Ks×Kt. Compactness also ensures that for all s ∈ 2n+1, there
is a finite set Fs ⊆ Ks for which Ks is contained in the δn-bounded open
set Us = B(Fs, δ

′
n). Note that Us ∩ Ut = ∅ for all distinct s, t ∈ 2n+1.

By the regularity of Borel probability measures on Polish spaces and
the fact that X is second countable and zero-dimensional, there are
clopen sets Vs ⊆ Us such that µs(Vs) > 1 − εn for all s ∈ 2n+1. As φ
is continuous, there exists kn+1 > kn such that µ(Vsa(i)) > 1 − εn for
all i < 2, s ∈ 2n, and µ ∈ φ(Nψn(s)a(i)a(0)kn+1−(kn+1)). For all i < 2 and

s ∈ 2n, define ψn+1(s a (i)) = ψn(s) a (i) a (0)kn+1−(kn+1).
Condition (a) ensures that we obtain a continuous injection ψ : 2N →

2N by setting ψ(c) =
⋃
n∈N ψn(c � n) for all c ∈ 2N, in which case the

function π = φ ◦ ψ is also a continuous injection. Condition (b) and
the fact that δn → 0 ensure that the sets Kn =

⋂
m≥n

⋃
s∈2m Ns × Us

are totally bounded, and therefore compact, in which case the set
K =

⋃
n∈NKn is Kσ. For all c ∈ 2N, condition (c) and the fact

that
∑

n∈N εn < ∞ ensures that µc(
⋂
m≥n Uc�m) → 1, so the fact that

Kc =
⋃
n∈N

⋂
m≥n Uc�m implies that µc(Kc) = 1. Finally, for all dis-

tinct c, d ∈ 2N and n ∈ N, condition (d) ensures that
⋂
m≥n Uc�m and⋂

m≥n Ud�m are disjoint for all n ∈ N, thus so too are Kc and Kd.

2. Compressibility

Given an equivalence relation E on X, we say that a set Y ⊆ X
is E-complete if it intersects every E-class. A compression of E is
an injection φ : X → X such that graph(φ) ⊆ E and X \ φ(X) is
E-complete. A Borel space is standard if its Borel sets coincide with
those of a Polish topology. We say that a Borel equivalence relation
on a standard Borel space is compressible if it admits a Borel compres-
sion. Following the usual abuse of language, we say that an equivalence
relation is countable if all of its classes are countable.
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Proposition 2.1. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, and B ⊆ X is an E-
complete Borel set for which E � B is compressible. Then there is a
Borel injection π : X → B whose graph is contained in E.

Proof. Fix a Borel compression φ : B → B of E � B, and appeal
to the Lusin-Novikov uniformization theorem to obtain a Borel function
ψ : X → B \φ(B) whose graph is contained in E, as well as a partition
(Bn)n∈N of X into Borel sets on which ψ is injective. Then the function
π =

⋃
n∈N(φn ◦ ψ) � Bn is as desired.

Given a group G, we say that a function ρ : E → G is a cocycle
if ρ(x, z) = ρ(x, y)ρ(y, z) for all x E y E z. When G = (0,∞), we
set |S|ρx =

∑
y∈S ρ(y, x) for all x ∈ X and S ⊆ [x]E. We say that a

function φ : X → X whose graph is contained in E is ρ-increasing at S
if |φ−1(S)|ρx ≤ |S|ρx, and strictly ρ-increasing at S if |φ−1(S)|ρx < |S|ρx.
A compression of ρ over a subequivalence relation F of E is a function
φ : X → X, whose graph is contained in E, that is ρ-increasing at ev-
ery F -class, and for which the set of F -classes at which it is strictly
ρ-increasing is (E/F )-complete. Again following the usual abuse of lan-
guage, we say that an equivalence relation is finite if all of its classes
are finite. We say that a Borel cocycle ρ : E → (0,∞) is compressible
over a finite Borel subequivalence relation of E if there is a Borel com-
pression of ρ over a finite Borel subequivalence relation of E. We say
that a Borel cocycle ρ : E → (0,∞) is µ-nowhere compressible over a
finite Borel subequivalence relation of E if there is no µ-positive Borel
set B ⊆ X for which ρ � (E � B) is compressible over a finite Borel
subequivalence relation of E � B.

A Borel measure µ onX is E-ergodic if everyE-invariant Borel set is
µ-conull or µ-null, E-quasi-invariant if the family of µ-null sets is closed
under E-saturation, ρ-invariant if µ(T (B)) =

∫
B
ρ(T (x), x) dµ(x) for

all Borel sets B ⊆ X and Borel automorphisms T : X → X whose
graphs are contained in E, and E-invariant if it is invariant with re-
spect to the constant cocycle.

Theorem 2.2 (Hopf). Suppose that X is a standard Borel space,
E is a countable Borel equivalence relation on X, µ is an E-quasi-
invariant Borel probability measure on X, and ρ : E → (0,∞) is a
Borel cocycle that is µ-nowhere compressible over a finite Borel sube-
quivalence relation of E. Then there is a ρ-invariant Borel probability
measure ν ∼ µ.
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Proof. As there is no Borel compression of ρ over a finite Borel
subequivalence relation of E, the generalization of Nadkarni’s char-
acterization of the existence of invariant Borel probability measures
to Borel cocycles ensures the existence of a ρ-invariant Borel proba-
bility measure on X. Ditzen’s generalization of the Farrell-Varadar-
ajan uniform ergodic decomposition theorem therefore yields an E-
invariant Borel function φ : X → P (X) that is a decomposition of
the set of all ρ-invariant Borel probability measures into E-ergodic
ρ-invariant Borel probability measures, in the sense that φ(x) is E-
ergodic and ρ-invariant for all x ∈ X, φ−1({µ}) is µ-conull for all
E-ergodic ρ-invariant Borel probability measures µ on X, and ν(B) =∫
φ(x)(B) dν(x) for all ρ-invariant Borel probability measures ν on X

and Borel sets B ⊆ X. Let ν ′ be the Borel probability measure on X
given by ν ′(B) =

∫
φ(x)(B) dµ(x).

Lemma 2.3. The measure ν ′ is ρ-invariant.

Proof. Note that if ψ : X → (0,∞) is a Borel function, then∫
ψ(x) dν ′(x) =

∫ ∫
ψ(y) dφ(x)(y) dµ(x) by countable additivity. So

if B ⊆ X is a Borel set and T : X → X is a Borel automorphism
whose graph is contained in E, then ν ′(T (B)) =

∫
φ(x)(T (B)) dµ(x) =∫ ∫

ρ(T (y), y) dφ(x)(y) dµ(x) =
∫
ρ(T (x), x) dν ′(x).

Lemma 2.4. The measure µ is absolutely continuous with respect
to the measure ν ′.

Proof. Suppose that B ⊆ X is a µ-positive Borel set, and define
N = {x ∈ X | φ(x)(B) = 0}. Observe now that if x ∈ ∼N , then
φ(x) 6= φ(y) for all y ∈ N , in which case φ(x)(N) = 0. In particular, it
follows that if ν is a ρ-invariant Borel probability measure on X, then
ν(B∩N) ≤

∫
N
φ(x)(B) dν(x)+

∫
∼N φ(x)(N) dν(x) = 0, thus [B∩N ]E

is ν-null. One more application of the generalization of Nadkarni’s
theorem to Borel cocycles therefore ensures that ρ � (E � [B ∩N ]E) is
compressible over a finite Borel subequivalence relation of E � [B∩N ]E,
so [B ∩ N ]E is µ-null, thus B \ N is µ-positive, and it follows that
ν ′(B) ≥

∫
B\N φ(x)(B) dµ(x) > 0.

Fix an E-invariant µ-null Borel set N ⊆ X of maximal ν ′-measure,
and observe that the normalization of the ρ-invariant Borel measure ν
on X given by ν(B) = ν ′(B \N) is as desired.

3. Increasing unions

Given a class E of equivalence relations, we use hyper-E to denote
the class of equivalence relations of the form

⋃
n∈NEn, where (En)n∈N

is an increasing sequence of equivalence relations in E .



3. INCREASING UNIONS 5

Question 3.1. Is every hyperhyperfinite Borel equivalence relation
on a standard Borel space hyperfinite?

Given a Borel measure µ on a standard Borel space X, we say that
a Borel equivalence relation E on X is µ-E if its restriction to some
µ-conull Borel set is in E .

Proposition 3.2. Suppose that E is a class of countable Borel
equivalence relations on standard Borel spaces that is closed under Bor-
el restrictions and countable intersections, X is a standard Borel space,
E is a countable Borel equivalence relation on X, Φ is a countable set
of Borel partial functions from X to X such that E =

⋃
φ∈Φ graph(φ),

and µ is an E-quasi-invariant finite Borel measure on X. Then the
following are equivalent:

(1) The equivalence relation E is µ-hyper-E.
(2) For all ε > 0 and Borel sets R ⊆ E with finite vertical sections,

there exists E ′ ⊆ E in E with µ({x ∈ X | Rx * [x]E′}) < ε.
(3) For all ε > 0 and finite sets Φ′ ⊆ Φ, there exists E ′ ⊆ E in E

such that µ(
⋃
φ′∈Φ′{x ∈ dom(φ′) | ¬x E ′ φ′(x)}) < ε.

Proof. To see (1) =⇒ (2), fix a µ-conull Borel set C ⊆ X for
which E � C is hyper-E , as well as an increasing sequence (En)n∈N of
equivalence relations in E such that E � C =

⋃
n∈NEn. As µ is E-

quasi-invariant, the set N = [∼C]E is µ-null. But if ε > 0, R ⊆ E is a
Borel set with finite vertical sections, and Bn = {x ∈ X | Rx * [x]En}
for all n ∈ N, then

⋂
n∈NBn ⊆ N , so µ(Bn) < ε for some n ∈ N.

To see (2) =⇒ (3), note that if E ′ ⊆ E is an equivalence relation and
Φ′ ⊆ Φ is finite, then R =

⋃
φ′∈Φ′ graph(φ′) has finite vertical sections

and {x ∈ X | Rx * [x]E′} =
⋃
φ′∈Φ′{x ∈ dom(φ′) | ¬x E ′ φ′(x)}.

To see (3) =⇒ (1), fix real numbers εm > 0 with
∑

m∈N εm <∞, an
enumeration (φk)k∈N of Φ, and equivalence relations Em ⊆ E in E such
that the set Am =

⋃
k<m{x ∈ dom(φk) | ¬x Em φk(x)} has µ-measure

at most εm for all m ∈ N. Then the set Bn =
⋃
m≥nAm has µ-measure

at most
∑

m≥n εm for all n ∈ N, so the set N =
⋂
n∈NBn is µ-null. Note

that if x E y, then there exists k ∈ N such that φk(x) = y, and if x /∈ N ,
then there exists n > k for which x /∈ Bn, so x (

⋂
m≥nEm) y, thus

(
⋂
m≥nEm � ∼N)n∈N is an increasing sequence of equivalence relations

in E whose union is E � ∼N , hence E is µ-hyper-E .

We say that µ is E-E if E is µ-E .

Proposition 3.3 (Dye-Krieger). Suppose that E is a class of count-
able Borel equivalence relations on standard Borel spaces that is closed
under Borel restrictions and countable intersections, X is a standard
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Borel space, E is a countable Borel equivalence relation on X, and µ
is an E-hyper-hyper-E E-quasi-invariant finite Borel measure on X.
Then µ is E-hyper-E.

Proof. Suppose that ε > 0 and R ⊆ E is a Borel set with finite
vertical sections. By Proposition 3.2, there is a hyper-E equivalence
relation E ′ ⊆ E for which the set B = {x ∈ X | Rx * [x]E′} has
µ-measure at most ε/2. Set R′ = R ∩ (∼B ×X), and appeal again to
Proposition 3.2 to obtain an equivalence relation E ′′ ⊆ E ′ in E with
µ({x ∈ X | R′x * [x]E′′}) < ε/2, so µ({x ∈ X | Rx * [x]E′′}) < ε. One
last application of Proposition 3.2 then ensures that E is µ-hyper-E .

In the special case that E is the class of finite Borel equivalence
relations on standard Borel spaces, we obtain the following.

Theorem 3.4 (Segal). Suppose that X is a standard Borel space
and E is a countable Borel equivalence relation on X. Then the set of
E-hyperfinite E-quasi-invariant Borel probability measures is Borel.

Proof. We can assume, without loss of generality, that X is a
Polish space. Fix a countable basis B for X that is closed under finite
unions, appeal to the Lusin-Novikov uniformization theorem to obtain
a countable set Φ of Borel functions from X to X with the property
that E =

⋃
φ∈Φ graph(φ), and set Ψ = {φ � U | φ ∈ Φ and U ∈ B}.

For each finite set Ψ′ ⊆ Ψ, let BΨ′ be the Borel set of x ∈ X such that:

(1) ∃ψ′ ∈ Ψ′ x = ψ′(x).
(2) ∀ψ′ ∈ Ψ′ (x ∈ dom(ψ′) =⇒ ∃ψ′′ ∈ Ψ′ x = (ψ′′ ◦ ψ′)(x)).
(3) ∀ψ′, ψ′′ ∈ Ψ′ (x ∈ dom(ψ′) ∩ (ψ′)−1(dom(ψ′′)) =⇒

∃ψ′′′ ∈ Ψ′ ψ′′′(x) = (ψ′′ ◦ ψ′)(x)).

Then the restriction FΨ′ of
⋃
ψ′∈Ψ′ graph(ψ′) to BΨ′ is a finite Borel

equivalence relation.

Lemma 3.5. Suppose that E ′ ⊆ E is a finite Borel partial equiva-
lence relation on X, µ is a finite Borel measure on X, and ε > 0. Then
there is a finite set Ψ′ ⊆ Ψ for which µ({x ∈ X | [x]E′ 6= [x]FΨ′

}) < ε.

Proof. Fix an enumeration (φk)k∈N of Φ, as well as a natural num-
ber n sufficiently large that the µ-measure of the complement of the
set A = {x ∈ X | ∀y, z ∈ [x]E′∃k < n φk(y) = z} is at most ε/2.
Set Bm = {x ∈ X | x E ′ φm(x)} and appeal to the regularity of fi-
nite Borel measures on Polish spaces to obtain sets Um ∈ B such that∑

k<n(φk)∗µ(Bm 4 Um) < ε/2n for all m < n. To see that the set
Ψ′ = {φk � Uk | k < n} is as desired, set B = A \

⋃
m<n[Bm 4 Um]E′ ,

and note that if x ∈ B, then [x]E′ = {ψ′(x) | ψ′ ∈ Ψ′}, so the fact
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that B is E ′-invariant ensures that [y]E′ = {ψ′(y) | ψ′ ∈ Ψ′} for
all y ∈ [x]E′ , thus [x]E′ ⊆ BΨ′ , hence [x]E′ = [x]FΨ′

, so it only re-
mains to observe that µ(∼B) ≤ µ(∼A) +

∑
m<n µ(A∩ [Bm 4 Um]E′) ≤

ε/2 +
∑

k,m<n(φk)∗µ(Bm 4 Um) < ε.

Proposition 3.2 and Lemma 3.5 ensure that an E-quasi-invariant
finite Borel measure µ on X is E-hyperfinite if and only if for all
ε > 0 and finite sets Φ′ ⊆ Φ, there is a finite set Ψ′ ⊆ Ψ such that
µ(
⋃
φ′∈Φ′{x ∈ dom(φ′) | ¬x FΨ′ φ

′(x)}) < ε. The desired result is there-
fore a consequence of the fact that the set of E-quasi-invariant Borel
probability measures on X is Borel.

4. Smooth-to-one homomorphisms

The diagonal on X is given by ∆(X) = {(x, x) | x ∈ X}, and
we use E0 to denote the equivalence relation on 2N with respect to
which c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m). We identify
the product of equivalence relations E on X and F on Y with the
equivalence relation on X × Y for which two pairs (x, y) and (x′, y′)
are equivalent if and only if x E x′ and y F y′. A homomorphism from
a binary relation R on X to a binary relation S on Y is a function
φ : X → Y such that (φ × φ)(R) ⊆ S, a reduction of R to S is a
homomorphism from R to S that is also a homomorphism from ∼R to
∼S, and an embedding of R into S is an injective reduction of R to
S. We say that a Borel equivalence relation E on a standard Borel
space X is smooth if there is a Borel reduction of E to equality on
a standard Borel space. A partial transversal of E is a set Y ⊆ X
whose intersection with each E-class consists of at most one point.
The Lusin-Novikov uniformization theorem ensures that when E is
countable, the smoothness of E is equivalent to the existence of cover
of X by countably-many Borel partial transversals of E. Given a class
E of countable Borel equivalence relations on standard Borel spaces, a
standard Borel space X, and a countable Borel equivalence relation E
on X, we say that a Borel set B ⊆ X is E-E if E � B ∈ E .

Proposition 4.1. Suppose that X and Y are standard Borel spaces,
E is a countable Borel equivalence relation on X, and φ : X → Y is
Borel. Then the following are equivalent:

(1) The function φ is E-smooth-to-one.
(2) The graph of φ is (E ×∆(Y ))-smooth.
(3) There is a cover (Bn)n∈N of X by Borel sets with the property

that φ is injective on each (E � Bn)-class for all n ∈ N.
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Proof. To see ¬(2) =⇒ ¬(1), note that if the graph of φ is not
(E × ∆(Y ))-smooth, then the E0 dichotomy yields a continuous em-
bedding ψ : 2N → graph(φ) of E0 into E ×∆(Y ). Then projY ◦ ψ is a
continuous homomorphism from E0 to equality, and is therefore con-
stant. Let y ∈ Y be its constant value, and observe that projX ◦ ψ is
an embedding of E0 into E � φ−1({y}), thus the latter is non-smooth.

To see (2) =⇒ (3), fix Borel partial transversals Rn of E × ∆(Y )
with the property that graph(φ) =

⋃
n∈NRn, and observe that the Bor-

el sets of the form Bn = projX(Rn) cover X and φ is injective on each
(E � Bn)-class for all n ∈ N.

To see (3) =⇒ (1), note that for all y ∈ Y , the sets of the form
Bn ∩ φ−1({y}) are partial transversals of E and cover φ−1({y}), so
φ−1({y}) is E-smooth.

Proposition 4.2. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relation on X and Y , and
φ : X → Y is a Borel homomorphism from E to F . Then φ is E-
smooth-to-one if and only if there is an E-complete Borel set B ⊆ X
such that φ is injective on each (E � B)-class.

Proof. If φ is smooth-to-one, then Proposition 4.1 yields a cover
(Bn)n∈N of X by Borel sets such that φ is injective on each (E � Bn)-
class for all n ∈ N, so the Borel set B =

⋃
n∈NBn \

⋃
m<n[Bm]E is

E-complete and φ is injective on each (E � B)-class. Conversely, if
B ⊆ X is an E-complete Borel set such that φ is injective on each
(E � B)-class and y ∈ Y , then φ−1({y}) ⊆

⋃
z∈[y]F

[B ∩ φ−1({z})]E. As

each B∩φ−1({z}) is a partial transversal of E, the fact that the family
of Borel sets on which E is smooth is closed under countable unions
and E-saturations yields that φ−1({y}) is E-smooth.

5. Structurability

Suppose that N is a countable set, L = (Rn)n∈N is a relational
language, and kn is the arity of Rn for all n ∈ N. An L-structuring of
an equivalence relation E on X is an E-invariant function assigning an
L-structure Mx = ([x]E, (R

x
n)n∈N) to each x ∈ X. We say that such an

assignment is Borel if {(x, (xi)i<kn) ∈ X×Xkn | (xi)i<kn ∈ Rx
n} is Bor-

el for all n ∈ N . Given a class M of L-structures, an M-structuring
of E is an L-structuring of E such that Mx ∈ M for all x ∈ X.
We say that a Borel equivalence relation on a standard Borel space is
M-structurable if it admits a Borel M-structuring. In particular, the
following observation ensures that the classes of smooth and hyperfi-
nite countable Borel equivalence relations on standard Borel spaces are
closed downward under smooth-to-one Borel homomorphisms.
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Proposition 5.1. Suppose that L is a countable relational lan-
guage and M is an isomorphism-invariant class of countable L-struc-
tures for which the class ofM-structurable countable Borel equivalence
relations on standard Borel spaces is closed under Borel restrictions
and saturations. Then it is downward closed under smooth-to-one Bor-
el homomorphisms.

Proof. Suppose that X and Y are standard Borel spaces, E and
F are countable Borel equivalence relations on X and Y , φ : X → Y
is an E-smooth-to-one Borel homomorphism from E to F , and F is
M-structurable. By Proposition 4.2, there is an E-complete Borel set
B ⊆ X such that φ � B is injective on (E � B)-classes.

Lemma 5.2. There is a Borel partial function ψ : X × N ⇀ Y
bijectively sending dom(ψ) ∩ ([x]E × N) to [φ(x)]F for all x ∈ X.

Proof. Appeal to the Feldman-Moore theorem to obtain a count-
able group G = {gn | n ∈ N} of Borel automorphisms of Y such that
F = EY

G , set φn = gn ◦ φ and Bn = B ∩ φ−1
n (φn(B) \

⋃
m<n φm(B)) for

all n ∈ N, define A =
⋃
n∈NBn × {n}, and observe that the function

ψ : A→ Y given by ψ(x, n) = φn(x) is as desired.

For each set N , let I(N) denote the equivalence relation N × N .
As F isM-structurable, so too is (E× I(N)) � dom(ψ). The closure of
M-structurability under saturations therefore ensures that E × I(N)
isM-structurable, so the closure ofM-structurability under Borel re-
strictions implies that E is M-structurable.

We say that an element F of a class E is universal for E under
a quasi-order ≤ if E ≤ F for all E ∈ E . We say that a class M
of countable L-structures is Borel-on-Borel if for all standard Borel
spaces X, countable Borel equivalence relations E on X, and Borel
L-structurings x 7→ Mx of E, the set {x ∈ X | Mx ∈ M} is Bor-
el. An invariant embedding of an equivalence relation E on X into an
equivalence relation F on Y is an embedding π : X → Y of E into F
with the property that π([x]E) = [π(x)]F for all x ∈ X.

Proposition 5.3. Suppose that L is a countable relational language
and M is an isomorphism-invariant Borel-on-Borel class of countable
L-structures. Then there is a universalM-structurable countable Borel
equivalence relation on a standard Borel space under Borel invariant
embeddability.

Proof. The Feldman-Moore theorem ensures that every countable
Borel equivalence relation on a standard Borel space is generated by a
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Borel action of the free group G = Fℵ0 . Fix a countable set N disjoint
from N for which there is an injective enumeration (Rn)n∈N of the
relation symbols of L, and let kn be the arity of Rn for all n ∈ N .

The right Bernoulli shift of G on
∏

n∈N 2G
kn

is the map from G ×∏
n∈N 2G

kn
to
∏

n∈N 2G
kn

given by (g ·x)(n)((gi)i<kn) = x(n)((gig)i<kn).
Note that if x ∈ X, then (1G · x)(n)((gi)i<kn) = x(n)((gi)i<kn) for all
n ∈ N and (gi)i<kn ∈ Gkn , thus 1G · x = x. Similarly, if g, h ∈ G and
x ∈ X, then

(g · (h · x))(n)((gi)i<kn) = (h · x)(n)((gig)i<kn)

= x(n)((gigh)i<kn)

= ((gh) · x)(n)((gi)i<kn)

for all n ∈ N and (gi)i<kn ∈ Gkn , thus g · (h · x) = (gh) · x.

Let XL be the set of all x ∈
∏

n∈N 2G
kn

with the property that
(gi · x)i<kn = (hi · x)i<kn =⇒ x(n)((gi)i<kn) = x(n)((hi)i<kn) for all
n ∈ N and (gi)i<kn , (hi)i<kn ∈ Gkn . Observe that if g ∈ G and x ∈
XL, then (gi · (g · x))i<kn = (hi · (g · x))i<kn =⇒ x(n)((gig)i<kn) =
x(n)((hig)i<kn) =⇒ (g · x)(n)((gi)i<kn) = (g · x)(n)((hi)i<kn) for all
n ∈ N and (gi)i<kn , (hi)i<kn ∈ Gkn , so g · x ∈ XL.

The definition of XL ensures that for all n ∈ N and x ∈ XL, we
obtain a kn-ary relation Rx

n on Gx by setting (gi · x)i<kn ∈ Rx
n ⇐⇒

x(n)((gi)i<kn) = 1 for all (gi)i<kn ∈ Gkn . Note that if g ∈ G, n ∈ N ,
(gi)i<kn ∈ Gkn , and x ∈ X then

(gi · x)i<kn ∈ Rg·x
n ⇐⇒ (gig

−1 · (g · x))i<kn ∈ Rg·x
n

⇐⇒ (g · x)(n)((gig
−1)i<kn) = 1

⇐⇒ x(n)((gi)i<kn) = 1

⇐⇒ (gi · x)i<kn ∈ Rx
n.

It follows that the assignment x 7→ Mx = (Gx, (Rx
n)n∈N) is an L-

structuring of EXL
G , in which case the restriction of this assignment to

the set XM = {x ∈ XL |Mx ∈M} is an M-structuring of EXM
G .

A homomorphism from an action G y X to an action G y Y
is a function φ : X → Y such that φ(g · x) = g · φ(x) for all x ∈ X.
Given a standard Borel space X, a Borel action G y X, and a Bor-
el L-structuring x 7→ Mx = (Gx, (Rx

n)n∈N) of EX
G , define a function

φ : X →
∏

n∈N 2G
kn

by φ(x)(n)((gi)i<kn) = 1 ⇐⇒ (gi ·x)i<kn ∈ Rx
n for

all n ∈ N , (gi)i<kn ∈ Gkn , and x ∈ X, and observe that if g ∈ G and
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x ∈ X, then

φ(g · x)(n)((gi)i<kn) = 1 ⇐⇒ (gig · x)i<kn ∈ Rx
n

⇐⇒ φ(x)(n)((gig)i<kn) = 1

⇐⇒ (g · φ(x))(n)((gi)i<kn) = 1,

so φ(g · x) = g · φ(x), thus φ is a homomorphism of G-actions.
An embedding of an action G y X into an action G y Y is an

injective homomorphism from G y X to G y Y . Let L′ be the
language obtained from L by adding unary function symbols Sn for all
n ∈ N. LetM′ be the class of L′-structures whose L-reducts are inM.

Suppose now that X is a standard Borel space, G y X is a Bor-
el action, and x 7→ Mx = (Gx, (Rx

n)n∈N) is a Borel M-structuring of
EX
G , fix a sequence (Bn)n∈N of Borel subsets of X separating points,

and let x 7→ (M ′)x = (Gx, (Rx
n)n∈N ∪ (Sxn)n∈N) be the M′-structuring

of EX
G with respect to which (M ′)x is the expansion of Mx such that

y ∈ Sxn ⇐⇒ y ∈ Bn for all n ∈ N, x ∈ X, and y ∈ Gx. Let φ be

the homomorphism from Gy X to Gy
∏

n∈N 2G
kn × (2G)N from the

previous paragraph.
To see that φ is injective, note that if x, y ∈ X are distinct, then

there exists n ∈ N such that x ∈ Sxn but y /∈ Syn, so φ(x)(n)(1G) 6=
φ(y)(n)(1G), thus φ(x) 6= φ(y).

To see that φ(X) ⊆ XL′ , note that if n ∈ N , (gi)i<kn , (hi)i<kn ∈ Gkn ,
and x ∈ X has the property that (gi · φ(x))i<kn = (hi · φ(x))i<kn ,
then the fact that φ is a homomorphism ensures that (φ(gi · x))i<kn =
(φ(hi · x))i<kn , so the fact that φ is injective implies that (gi · x)i<kn =
(hi · x)i<kn , thus φ(x)(n)((gi)i<kn) = 1 ⇐⇒ (gi · x)i<kn ∈ Rx

n ⇐⇒
(hi · x)i<kn ∈ Rx

n ⇐⇒ φ(x)(n)((hi)i<kn) = 1. Of course, the same
argument shows that if n ∈ N, g, h ∈ G, and x ∈ X has the property
that g · φ(x) = h · φ(x), then φ(x)(n)(g) = φ(x)(n)(h).

The fact that x 7→ (M ′)x is anM′-structuring of E now implies that
φ(X) ⊆ XM′ , thus G y XM′ is a universal Borel G-action on a stan-
dard Borel space whose orbit equivalence relation is M-structurable
under Borel embeddability. As every embedding of G-actions is an in-

variant embedding of orbit equivalence relations, it follows that E
XM′
G

is a universal M-structurable countable Borel equivalence relation on
a standard Borel space under Borel invariant embeddability.

6. Treeability

A graphing of an equivalence relation is a graph whose connected
components coincide with the equivalence classes. A treeing of an
equivalence relation is an acyclic graphing. We say that a countable
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Borel equivalence relation E on a standard Borel space is treeable if
there is a Borel treeing of E.

Proposition 6.1 (Jackson-Kechris-Louveau). The class of tree-
able countable Borel equivalence relations on standard Borel spaces is
downward closed under smooth-to-one Borel homomorphisms.

Proof. By Proposition 5.1, we need only establish closure under
saturations and Borel restrictions.

To establish closure under saturations, suppose that X is a standard
Borel space, E is a countable Borel equivalence relation on X, B ⊆ X
is Borel, and T is a Borel treeing of E � B, appeal to the Lusin-Novikov
uniformization theorem to obtain a Borel function φ : [B]E \ B → B
whose graph is contained in E, and observe that graph(φ)±1 ∪ T is a
Borel treeing of E � [B]E.

To establish closure under Borel restrictions, suppose that X is a
standard Borel space, E is a countable Borel equivalence relation on
X, T is a Borel treeing of E, and B ⊆ X is Borel. For all x ∈ [B]E,
let dT (x,B) be the minimal number of edges along a T -path from x
to B. By the Lusin-Novikov uniformization theorem, there is a Borel
function φ : [B]E \ B → B such that dT (φ(x), B) < dT (x,B) for all
x ∈ [B]E \B. Define ψ : [B]E → B by ψ(x) = φdT (x,B)(x), let F be the
subequivalence relation of E � [B]E given by x F y ⇐⇒ ψ(x) = ψ(y),
and observe that (ψ × ψ)(T \ F ) is a treeing of E � B.

7. Cost

We begin this section with a basic fact concerning integration.

Proposition 7.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, R ⊆ E is Borel, and µ is
an E-invariant Borel measure. Then

∫
|Rx| dµ(x) =

∫
|Ry| dµ(y).

Proof. By the Lusin-Novikov uniformization theorem, there are
Borel partial injections φn : X ⇀ X whose graphs partition R. Then∫

|Ry| dµ(y) =
∫ ∑

n∈N χφn(dom(φn))(y) dµ(y)

=
∑

n∈N µ(φn(dom(φn)))

=
∑

n∈N µ(dom(φn))

=
∫ ∑

n∈N χdom(φn)(x) dµ(x)

=
∫
|Rx| dµ(x),

which completes the proof.
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Suppose that X is a standard Borel space, G is a Borel graph on
X, and µ is a Borel measure on X. The cost of G with respect to µ is
given by Cµ(G) = 1

2

∫
|Gx| dµ(x).

Proposition 7.2. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, φ : X ⇀ X is a Bor-
el partial function whose graph is contained in E with the property
that x /∈ {f(x), f 2(x)} for all x ∈ X, and µ is an E-invariant Borel
measure. Then Cµ(graph(φ)±1) = µ(dom(φ)).

Proof. As graph(φ)∩graph(φ)−1 = ∅ and Proposition 7.1 ensures
that

∫
|graph(φ)x| dµ(x) =

∫
|graph(φ)y| dµ(y) =

∫
|graph(φ)−1

x | dµ(x),
it follows that Cµ(graph(φ)±1) =

∫
|graph(φ)x| dµ(x) = µ(dom(φ)).

Proposition 7.3 (Levitt). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, B ⊆ X is
a Borel transversal of E, T is a Borel treeing of E, and µ is an E-
invariant Borel measure on X. Then Cµ(T ) = µ(∼B).

Proof. For all x ∈ X, let dT (x,B) denote the number of edges
along the unique injective T -path from x to a point of B, and define
φ : ∼B → X by φ(x) = the unique T -neighbor of x with the property
that dT (φ(x), B) < dT (x,B). Then T = graph(φ)±1, so Proposition
7.2 ensures that Cµ(T ) = µ(dom(φ)) = µ(∼B).

We say that a set Y ⊆ X is G-connected if G � Y has a single
connected component.

Proposition 7.4. Suppose that X is a standard Borel space, E is a
hyperfinite Borel equivalence relation on X, and G is a Borel graphing
of E. Then E is the union of an increasing sequence (En)n∈N of finite
Borel subequivalence relations whose classes are G-connected.

Proof. Fix an increasing sequence (Fn)n∈N of finite Borel equiva-
lence relations whose union is E, and define x En y if and only if x E y
and there is a G-path from x to y that lies within a single Fn-class.

An equivalence relation is aperiodic if all of its classes are infinite.

Proposition 7.5 (Levitt). Suppose that X is a standard Borel
space, E is an aperiodic hyperfinite Borel equivalence relation on X, T
is a Borel treeing of E, and µ is an E-invariant finite Borel measure
on X. Then Cµ(T ) = µ(X).

Proof. By Proposition 7.4, there is an increasing sequence (En)n∈N
of finite Borel subequivalence relations of E such that E =

⋃
n∈NEn

and each equivalence class of each En is T -connected. Fix a decreasing
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sequence of Borel transversals Bn ⊆ X of En. Proposition 7.3 ensures
that Cµ(En ∩ T ) = µ(∼Bn) for all n ∈ N. As the set B =

⋂
n∈NBn is a

partial transversal of E, E is aperiodic, and µ is E-invariant, it follows
that B is µ-null, so µ(Bn)→ 0, thus the fact that Cµ(En∩T )→ Cµ(T )
implies that Cµ(T ) = µ(X).

A graph G is n-regular if |Gx| = n for all x ∈ X.

Proposition 7.6. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and there is a two-regular
Borel graphing G of E. Then E is hyperfinite.

Proof. We can clearly assume that every equivalence class of E
is infinite, and therefore that G is acyclic. By the Lusin-Novikov uni-
formization theorem, there is a Borel function φ : X → X whose graph
is contained in G. Let dG denote the (extended-valued) graph metric
on X induced by G, and let F be the subequivalence relation of E
consisting of all (x, y) ∈ E for which dG(x, y) = dG(φ(x), φ(y)). As
every E-class is the union of two F -classes, it only remains to show
that F is hyperfinite. Define T : X ⇀ X by T (x) = the first point of
[x]F \ {x} along the injective G-ray (x, φ(x), . . .). By throwing out an
F -invariant Borel set on which F is smooth, we can assume that T is
a Borel automorphism. But then F is the orbit equivalence relation
induced by T , and is therefore hyperfinite.

We say that G is µ-acyclic if there is a µ-conull Borel set C ⊆ X
for which G � C is acyclic.

Proposition 7.7 (Levitt). Suppose that X is a standard Borel
space, E is an aperiodic countable Borel equivalence relation on X, G is
a Borel graphing of E, and µ is an E-invariant finite Borel measure on
X. Then Cµ(G) ≥ µ(X), and if equality holds, then E is µ-hyperfinite
and G is µ-acyclic.

Proof. As Cµ(G) < ∞ and µ is E-quasi-invariant, by throwing
out an E-invariant µ-null Borel set, we can assume that G is locally
finite. We say that a set Y ⊆ X is G-convex if every injective G-path
between elements of Y lies entirely within Y . The pruning derivative
on the family of all G-convex sets Y ⊆ X is the function given by
Y ′ = {y ∈ Y | |Gy ∩ Y | ≥ 2}. The G-convexity of Y yields that of
Y ′. Note that if every (E � Y )-class has at least two elements, then
every point of Y \ Y ′ has a unique (G � Y )-neighbor, and if every
(E � Y )-class has at least three elements, then this (G � Y )-neighbor is
necessarily in Y ′. Letting φ : Y \Y ′ → Y ′ be the function sending each
point of Y \ Y ′ to this (G � Y )-neighbor, it follows that G � Y is the
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disjoint union of G � Y ′ with graph(φ)±1. The fact that G is locally
finite ensures that if E � Y is aperiodic, then so too is E � Y ′.

By starting with Y = X and recursively applying the pruning de-
rivative, we obtain a decreasing sequence (Bn)n∈N of G-convex Borel
subsets of X and Borel functions φn : Bn \ Bn+1 → Bn+1 such that
B0 = X and G � Bn is the disjoint union of G � Bn+1 with graph(φn)±1

for all n ∈ N. Then the set B =
⋂
n∈NBn is G-convex, and G is the

disjoint union of G � B with graph(ψ)±1, where ψ : ∼B → X is given
by ψ =

⋃
n∈N φn. As G is locally finite, the pruning derivative termi-

nates after ω-many steps, that is, every point of B has at least two
(G � B)-neighbors.

Proposition 7.2 ensures that Cµ(G) = µ(∼B) +Cµ(G � B) ≥ µ(X),
so it only remains to show that if Cµ(G � B) = µ(B), then E is µ-
hyperfinite and G is µ-acyclic. The fact that ψ sends points of ∼B
to points of strictly larger pruning rank ensures that every simple G-
cycle lies entirely within B (since it would otherwise contain a point of
minimal pruning rank). It follows that the restriction of G to the set
A = {x ∈ X | B ∩ [x]E = ∅} is acyclic, and since E � A = Et(ψ � A),
it follows that E � A is hypersmooth, and therefore hyperfinite. So we
can assume that µ(A) < µ(X). As µ is E-quasi-invariant, it follows
that µ(B) > 0. As the family of Borel subsets of X on which E
is hyperfinite is closed under E-saturations, it only remains to show
that E � B is (µ � B)-hyperfinite and G � B is (µ � B)-acyclic. By
throwing out an (E � B)-invariant (µ � B)-null Borel subset of B, we
can assume that G � B is a two-regular Borel graph, and therefore
generates a hyperfinite equivalence relation by Proposition 7.6. To see
that G � B is acyclic, note that otherwise there exists x ∈ B for which
[x]E�B is finite, and the fact that ψ is finite-to-one yields n ∈ N for
which Bn ∩ ψ−1([x]E�B) = ∅, thus [x]E =

⋃
m≤n ψ

−m([x]E�B) is finite,
contradicting the aperiodicity of E.

The cost of a countable Borel equivalence relation E on a standard
Borel space X with respect to an E-invariant finite Borel measure µ
on X is given by Cµ(E) = inf{Cµ(G) | G is a Borel graphing of E}.

Proposition 7.8 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, B ⊆ X is an
E-complete Borel set, and µ is an E-invariant finite Borel measure on
X. Then Cµ(E)− µ(X) = Cµ�B(E � B)− µ(B).

Proof. To see that Cµ(E)−µ(X) ≤ Cµ�B(E � B)−µ(B), note that
if ε > 0, then there is a Borel graphing H of E � B with the property
that Cµ(H) ≤ Cµ�B(E � B) + ε, and the Lusin-Novikov uniformization
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theorem yields a Borel function φ : ∼B → B whose graph is contained in
E. As the graph G = graph(φ)±1∪H generates E, and Proposition 7.2
ensures that Cµ(G) = µ(∼B) +Cµ(H), it follows that Cµ(E)−µ(X) ≤
Cµ(G)− µ(X) = Cµ(H)− µ(B) ≤ Cµ�B(E � B)− µ(B) + ε.

To see that Cµ�B(E � B) − µ(B) ≤ Cµ(E) − µ(X), note that if
ε > 0, then there is a Borel graphing G of E with the property that
Cµ(G) ≤ Cµ(E) + ε, and the Lusin-Novikov uniformization theorem
yields a Borel function φ : ∼B → X whose graph is contained in G and
has the property that dG(φ(x), B) < dG(x,B) for all x ∈ ∼B. Define
ψ : X → B by ψ(x) = φdG(x,B)(x), and let F be the subequivalence
relation of E given by x F y ⇐⇒ ψ(x) = ψ(y). Then the graph
H = (ψ × ψ)(G \ F ) generates E � B and

Cµ(H) = 1
2

∫
|Hx| dµ(x)

≤ 1
2

∫
B

∑
y∈[x]F

|(G \ F )y| dµ(x)

= 1
2

∫
|(G \ F )x| dµ(x)

= Cµ(G \ F ).

As graph(φ)±1 ⊆ F ∩G, it follows from Proposition 7.2 that Cµ(H) ≤
Cµ(G)−µ(∼B), in which case Cµ�B(E � B)−µ(B) ≤ Cµ(H)−µ(B) ≤
Cµ(G)− µ(X) ≤ Cµ(E)− µ(X) + ε.

Remark 7.9. Proposition 7.8 ensures that if Cµ(E) > µ(X), then
Cµ/µ(X)(E) ≤ C(µ�B)/µ(B)(E � B), with equality holding if and only if
B is µ-conull.

Given sets R ⊆ X × Y and S ⊆ Y × Z, let RS denote the set of
pairs (x, z) ∈ X × Z for which there exists y ∈ Y such that x R y S z.

Proposition 7.10 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, F is a Bor-
el subequivalence relation of E whose classes have bounded finite size,
B ⊆ X is a Borel transversal of F , G is a Borel graphing of E disjoint
from F for which FGF � B is acyclic, and µ is an E-invariant finite
Borel measure on X. Then Cµ(FGF � B)− µ(B) ≤ Cµ(G)− µ(X).

Proof. Let (X)3
E denote the space of injective triples of pairwise

E-related points of X, and fix a Borel coloring c : (X)3
E → N of the

graph on (X)3
E in which two triples are related if and only if their images

intersect, as well as an infinite-to-one function d : N → N. We will
define an increasing sequence of finite Borel subequivalence relations
Fn of F and a decreasing sequence of Borel transversals Bn ⊇ B of Fn
such that Cµ(Fn+1GFn+1 � Bn+1)−µ(Bn+1) ≤ Cµ(FnGFn � Bn)−µ(Bn)
for all n ∈ N. We begin by setting B0 = X and F0 = ∆(X), so
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that Cµ(G) − µ(X) = Cµ(F0GF0 � B0) − µ(B0). Given n ∈ N for
which we have already found Bn and Fn, let Rn be the set of triples
(x, y, z) ∈ (Bn \B)×Bn×Bn with the property that c(x, y, z) = d(n),
x FnGFn y FnGFn z, and x (F \ Fn) z, define φn : Bn \ B ⇀ Bn by
φn(x) = z ⇐⇒ ∃y ∈ Bn (x, y, z) ∈ Rn, let Fn+1 be the equivalence
relation generated by Fn and graph(φn), set Bn+1 = Bn \ dom(φn),
and define ψn : dom(φn) → Bn by ψn(x) = y ⇐⇒ (x, y, φn(x)) ∈ Rn.
Proposition 7.2 then ensures that

Cµ(Fn+1GFn+1 � Bn+1)

= 1
2

∫
Bn+1
|Bn+1 ∩ (Fn+1GFn+1)x| dµ(x)

≤ 1
2

∫
Bn+1\φn(dom(φn))

|Bn ∩ (FnGFn)x| dµ(x) +

1
2

∫
φn(dom(φn))

|Bn ∩ (FnGFn)x| dµ(x) +

1
2

∫
φn(dom(φn))

|Bn ∩ (FnGFn)φ−1
n (x)| dµ(x) −

Cµ(graph(ψn)±1)

= 1
2

∫
Bn
|Bn ∩ (FnGFn)x| dµ(x)− µ(dom(ψn))

= Cµ(FnGFn � Bn)− (µ(Bn)− µ(Bn+1)),

thus Cµ(Fn+1GFn+1 � Bn+1) − µ(Bn+1) ≤ Cµ(FnGFn � Bn) − µ(Bn).
This completes the recursive construction.

Define B∞ =
⋂
n∈NBn and F∞ =

⋃
n∈N Fn. The fact that F is finite

ensures that for all x ∈ X, there exists n ∈ N such that [x]F∞ = [x]Fn ,
so B∞ ∩ [x]F∞ = Bn ∩ [x]Fn , thus B∞ is a transversal of F∞.

Lemma 7.11. The relations F and F∞ coincide on B∞.

Proof. Suppose, towards a contradiction, that F � B∞ * F∞, and
let k be the minimal natural number with the property that there is
an (F∞GF∞ � B∞)-path (xi)i≤k such that x0 /∈ B and x0 (F \ F∞) xk.
Define φ : X → B by φ(x) = the unique element of B ∩ [x]F , and
note that (φ(xi))i≤k is an (FGF � B)-path whose initial and terminal
points coincide, so the acyclicity of FGF � B yields 0 < i < k with
the property that φ(xi−1) = φ(xi+1). As the minimality of k ensures
that xi−1 (F \ F∞) xi+1, it follows that k = 2. Fix m ∈ N for which
x0 FmGFm x1 FmGFm x2, as well as n > m with the property that
c(x0, x1, x2) = d(n), and observe that x0 Fn+1 x2, a contradiction.

Lemma 7.11 ensures that B = B∞, thus F = F∞, in which case
FGF � B =

⋃
n∈N FnGFn � B. Set k = maxx∈X |[x]F |, and observe



18 REDUCIBILITY OF COUNTABLE EQUIVALENCE RELATIONS

that if H ⊆ E is a Borel graph, then Proposition 7.1 ensures that

Cµ(FH ∪HF ) ≤
∫ ∑

y∈[x]F
|Hy| dµ(x)

≤ k
∫ ∑

y∈[x]F
|Hy|/|[x]F | dµ(x)

= k
∫
|Hx| dµ(x)

= 2kCµ(H).

As F (FG ∪GF ) ∪ (FG ∪GF )F = FGF , it follows that Cµ(FGF ) ≤
2kCµ(FG ∪GF ) ≤ 4k2Cµ(G). In particular, as we can clearly assume
that Cµ(G) < ∞, it follows that Cµ(FGF ) < ∞. Then the measure
ν on X given by ν(A) =

∫
A
|(FGF )x| dµ(x) is finite, so the fact that⋂

n∈NBn \B = ∅ ensures that ν(Bn \B)→ 0. As one more application
of Proposition 7.1 yields that

Cµ((FnGFn � Bn) \ (FnGFn � B)) = Cµ(FnGFn ∩ ((Bn \B)×B)±1)

≤
∫
Bn\B |(FnGFn)x| dµ(x)

≤ ν(Bn \B),

the fact that Cµ(FnGFn � B) → Cµ(FGF � B) therefore implies that
Cµ(FnGFn � Bn)−µ(Bn)→ Cµ(FGF � B)−µ(B), and it follows that
Cµ(FGF � B)− µ(B) ≤ Cµ(G)− µ(X).

Theorem 7.12 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, T is a Borel
treeing of E, and µ is an E-invariant finite Borel measure on X for
which Cµ(T ) <∞. Then Cµ(E) = Cµ(T ).

Proof. It is sufficient to show that if ε > 0 and G is a Borel graph-
ing of E, then Cµ(T ) ≤ Cµ(G) + ε. By the Lusin-Novikov uniformiza-
tion theorem, there are countable sets ΦG and ΦT of Borel partial injec-
tions of X into X such that (graph(φ)i)(i,φ)∈{±1}×ΦH

partitions H for all
H ∈ {G, T}. By replacing each φ ∈ ΦG with countably-many restric-
tions, we can assume that for all φ ∈ ΦG, there is a ΦT -word wφ such
that φ = wφ � dom(φ). The fact that Cµ(T ) <∞ ensures the existence
of a finite set W of ΦG-words such that Cµ(T \

⋃
w∈W graph(w)±1) ≤ ε.

Let ΦG � W be the set of φ ∈ ΦG appearing in some w ∈ W , set
ΦH = {φ ∈ ΦG � W | |wφ| ≥ 2}, define H =

⋃
φ∈ΦH

graph(φ)±1 and

U =
⋃
φ∈(ΦG�W )\ΦH

graph(φ)±1 ∪ (T \
⋃
w∈W graph(w)±1), and observe

that H ∪ U is a graphing of E and Cµ(H ∪ U) ≤ Cµ(G) + ε.
For all φ ∈ ΦH , set Xφ = {1, . . . , |wφ| − 1} × {φ} × dom(φ) and

define φ : dom(φ) ∪ Xφ → Xφ ∪ φ(dom(φ)) by φ(x) = (1, φ, x) for

all x ∈ dom(φ), φ(i, φ, x) = (i + 1, φ, x) for all 1 ≤ i ≤ |wφ| − 2

and x ∈ dom(φ), and φ(|wφ| − 1, φ, x) = φ(x) for all x ∈ dom(φ).
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Define X = X ∪
⋃
φ∈ΦH

Xφ, let π : X → X be the extension of the

identity function on X given by π(i, φ, x) = (wφ � i)(x) for all φ ∈ ΦH ,
1 ≤ i ≤ |wφ| − 1, and x ∈ dom(φ), let E be the pullback of E through

π, set H =
⋃
φ∈ΦH

graph(φ)±1, and let µ be the extension of µ to an E-

invariant finite Borel measure on X given by µ({i}×{φ}×B) = µ(B)
for all φ ∈ ΦH , 1 ≤ i ≤ |wφ| − 1, and Borel sets B ⊆ dom(φ).

Let F be the pullback of equality on X through π. As π is injective
on {i} × {φ} × dom(φ) for all φ ∈ ΦH and 1 ≤ i ≤ |wφ| − 1, it follows
that the classes of F have bounded finite cardinality.

Lemma 7.13. The graphs F (H ∪ U)F � X and T coincide.

Proof. As FHF � X = (π × π)(H) and FUF � X = U , their
union is contained in T . To see that T ⊆ F (H ∪ U)F , suppose that
x T y. If (x, y) /∈

⋃
v∈W graph(v)±1, then x U y. Otherwise, fix v ∈ W

for which (x, y) ∈ graph(v)±1. As T is acyclic, there exist i < |v| and
j < |wv(i)| with the property that (x, y) ∈ graph(wv(i)(j))

±1, in which

case |wv(i)| = 1 =⇒ x U y and |wv(i)| ≥ 2 =⇒ x FHF y.

As H ∪ U is clearly a graphing of E, Proposition 7.10 ensures that
Cµ(T )− µ(X) ≤ Cµ(H ∪ U)− µ(X). As the fact that

Cµ(H) =
∑

φ∈ΦH
Cµ(graph(φ)±1)

=
∑

φ∈ΦH
µ(dom(φ))

=
∑

φ∈ΦH
µ(dom(φ))|wφ|

= Cµ(H) + µ(X)− µ(X)

implies that Cµ(H ∪ U) − µ(X) = Cµ(H ∪ U) − µ(X), it follows that
Cµ(T ) ≤ Cµ(H ∪ U) ≤ Cµ(G) + ε.

Remark 7.14 (Gaboriau). Conversely, if G is a non-µ-acyclic Bor-
el graphing of E for which Cµ(G) < ∞, then Cµ(E) < Cµ(G). To
see this, let CG be the standard Borel space of simple G-cycles, fix a
Borel coloring c : CG → N of the graph on CG in which two simple
G-cycles are related if and only if they pass through a common point,
and define φn : X ⇀ X by φn(x) = y ⇐⇒ ∃γ ∈ c−1({n}) (x, y) v γ
for all n ∈ N. As µ is E-quasi-invariant, the fact that G is not µ-
acyclic yields n ∈ N for which the domain of φn is µ-positive. Then the
graph H = G \ graph(φn)±1 also generates E, and since Proposition
7.2 ensures that Cµ(H) < Cµ(G), it follows that Cµ(E) < Cµ(G).

Remark 7.15 (Gaboriau). Theorem 7.12 implies its generalization
in which the hypothesis that Cµ(T ) < ∞ is removed. To see this, it
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is sufficient to show that if G is a Borel graphing of E, r ∈ R, and
Cµ(T ) > r, then Cµ(G) > r. Towards this end, again fix countable
sets ΦG and ΦT of Borel partial injections of X into X such that
(graph(φ)i)(i,φ)∈{±1}×ΦH

partitions H for all H ∈ {G, T}, and note
once more that by replacing each φ ∈ ΦG with countably-many re-
strictions, we can assume that for all φ ∈ ΦG, there is a ΦT -word
wφ such that φ = wφ � dom(φ). Fix a finite set ΨT ⊆ ΦT such
that Cµ(H) > r, where H =

⋃
ψ∈ΨT

graph(ψ)±1, as well as a fi-

nite set ΨG ⊆ ΦG such that Cµ(H) − Cµ(H \ F ) > r, where F
is the equivalence relation generated by

⋃
ψ∈ΨG

graph(ψ)±1. Define

Ψ′T = ΨT ∪ {φ ∈ ΦT | ∃ψ ∈ ΨG φ appears in wψ}, and observe that⋃
ψ∈Ψ′T

graph(ψ)±1 and
⋃
ψ∈ΨG∪(Ψ′T \ΨT ) graph(ψ)±1 ∪ (H \ F ) generate

the same equivalence relation, so Theorem 7.12 ensures that the cost of
the former is at most that of the latter, thus Cµ(

⋃
ψ∈ΨT

graph(ψ)±1) ≤
Cµ(
⋃
ψ∈ΨG

graph(ψ)±1)+Cµ(H\F ), hence Cµ(
⋃
ψ∈ΨG

graph(ψ)±1) > r.

8. Codes

Given a compact space X and a metric space Y , let C(X, Y ) denote
the space of continuous functions from X to Y , equipped with the
metric dC(X,Y )(f, g) = supx∈X dY (f(x), g(x)).

Proposition 8.1. Suppose that X is a compact Polish space and
Y is a Polish metric space. Then C(X, Y ) is Polish.

Proof. To see that C(X, Y ) is separable, fix a countable basis U
for X and a countable dense set D ⊆ Y . For all rational ε > 0, finite
covers V ⊆ U of X, and functions φ : V → D for which it is possible, fix
a continuous function fε,V,φ : X → Y such that dY (φ(V ), fε,V,φ(x)) < ε
for all V ∈ V and x ∈ V . To see that the set of all fε,V,φ is dense, note
that if ε > 0 and f : X → Y is continuous, then there is a finite cover
V ⊆ U such that diam(f(V )) < ε for all V ∈ V , as well as a function
φ : V → D such that dY (φ(V ), f(x)) < 2ε for all V ∈ V and x ∈ V .
But then f2ε,V,φ exists and dC(X,Y )(f, f2ε,V,φ) < 4ε.

To see that C(X, Y ) is complete, note that if (fn)n∈N is Cauchy,
then we obtain a function f : X → Y by setting f(x) = limn→∞ fn(x).
To see that f is continuous, observe that if ε > 0 and x ∈ X, then
there exists n ∈ N such that dC(X,Y )(fm, fn) < ε for all m ≥ n, thus
dY (fn(x), f(x)) ≤ ε for all x ∈ X, so if U is an open neighborhood of x
such that fn(U) ⊆ B(fn(x), ε), then f(U) ⊆ B(fn(x), 2ε) ⊆ B(f(x), 3ε).
To see that fn → f , note that if ε > 0 and n ∈ N is sufficiently large
that dC(X,Y )(fm, fn) < ε for all m ≥ n, then dC(X,Y )(fn, f) ≤ ε.
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Proposition 8.2. Suppose that X is a compact space and Y is
a metric space. Then the function φ : C(X, Y ) × X → Y given by
φ(f, x) = f(x) is continuous.

Proof. Given ε > 0, f ∈ C(X, Y ), and x ∈ X, fix 0 < δ < ε and
an open neighborhood U ⊆ X of x such that f(U) ⊆ B(f(x), δ), and
observe that φ(B(f, ε− δ)× U) ⊆ B(f(x), ε).

A code for a partial function is a sequence c ∈ C(X, Y )N. The
partial function πc : X ⇀ Y coded by such a sequence is given by
πc(x) = y ⇐⇒ ∀∞n ∈ N c(n)(x) = y. We identify each partial
function π : X ⇀ Y with the extension π : X → Y t {∅} given by
π(x) = ∅ for all x ∈ ∼dom(φ).

Proposition 8.3. Suppose that X is a zero-dimensional Polish
space, Y is a metric space of cardinality at least two, µ is a finite Bor-
el measure on X, and π : X ⇀ Y is a µ-measurable partial function.
Then there is a code c for a partial function such that π(x) = πc(x) for
µ-almost all x ∈ X.

Proof. Fix a sequence (εn)n∈N of positive real numbers for which∑
n∈N εn < ∞, as well as closed sets Cn ⊆ dom(π) on which π is

continuous and clopen sets Un ⊆ X such that µ(dom(π)\Cn) ≤ εn and
µ(dom(π) 4 Un) ≤ εn for all n ∈ N, in which case the corresponding
set N = (

⋂
n∈N

⋃
m≥n dom(π) \ Cm)∪ (

⋂
n∈N

⋃
m≥n dom(π) 4 Um) is µ-

null. Fix continuous retractions πn : X → Cn, as well as points yn ∈ Y
with the property that (yn)n∈N is not eventually constant, and let c
be the code for a partial function given by c(n) � Un = (π ◦ πn) � Un
and c(n) � ∼Un = yn for all n ∈ N. It only remains to observe that
if x ∈ ∼N , then x ∈ dom(π) =⇒ ∃n ∈ N∀m ≥ n x ∈ Cm ∩ Um =⇒
∃n ∈ N∀m ≥ n c(m)(x) = (π ◦ πm)(x) = π(x) =⇒ π(x) = πc(x),
and x /∈ dom(π) =⇒ ∃n ∈ N∀m ≥ n x /∈ Um =⇒ ∃n ∈ N∀m ≥ n
c(m)(x) = ym =⇒ π(x) = πc(x).

A subset of a topological space is Fσ if it is a union of countably-
many closed sets.

Proposition 8.4. Suppose that X is a compact Polish space and Y
is a Polish metric space. Then the partial function φ : C(X, Y )N×X ⇀
Y given by φ(c, x) = πc(x) is Borel.

Proof. The domain of φ is the set of (c, x) ∈ C(X, Y )N × X for
which c(n)(x) is eventually constant, which is Fσ by Proposition 8.2.
Similarly, the graph of φ is the set of ((c, x), y) ∈ (C(X, Y )N×X)× Y
for which c(n)(x) is eventually constant with value y, which is also Fσ
by Proposition 8.2.
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Proposition 8.5. Suppose that X is a compact Polish space and
Y is a Polish metric space. Then the partial function φ : C(X, Y )N ×
P (X) ⇀ P (Y ) given by φ(c, µ) = (πc)∗µ is Borel.

Proof. Suppose that B ⊆ Y and C ⊆ R are Borel. As Proposition
8.4 ensures that the set of (c, x) ∈ C(X, Y )N×X for which x ∈ π−1

c (B)
is Borel, it follows that so too is the set of (c, µ) ∈ C(X, Y )N × P (X)
for which µ(π−1

c (B)) ∈ C and µ(dom(πc)) = 1.

A code for a subset of X is a code c for a partial function πc : X → 2.
The set Bc ⊆ X coded by such a sequence is the support of πc.

9. Measure-hyper-E-to-one homomorphisms

Suppose that E is the downward closure of a countable Borel equiv-
alence relation EE on a Polish metric space XE under smooth-to-one
Borel homomorphisms. A code for a partial witness to the hyper-E-
ness of a partial equivalence relation E on a compact Polish space X
is a pair (c, d) ∈ (C(X,XE)

N)N × (C(X, 2)N)N. The E-scope of such a
code is the set of x ∈ dom(E) for which the partial equivalence rela-
tions En = (πc(n)×πc(n))

−1(EE) � [x]E are increasing and their union is
[x]E × [x]E, the sets Bn = Bd(n) ∩ dom(En) are En-complete, and each
πc(n) is injective on each (En � Bn)-class.

Proposition 9.1. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a Polish metric space XE
under smooth-to-one Borel homomorphisms, X is a compact Polish
space, and E is a countable Borel partial equivalence relation on X for
which there is a Borel homomorphism φ : dom(E) → (C(X,XE)

N)N ×
(C(X, 2)N)N from E to equality such that x is in the E-scope of φ(x)
for all x ∈ dom(E). Then E is hyper-E.

Proof. Define (cx, dx) = φ(x) for all x ∈ dom(E), as well as
πn : dom(E) ⇀ XE by πn(x) = πcx(n)(x), En = E ∩ (πn × πn)−1(EE),
and Bn = {x ∈ dom(E) | x ∈ Bdx(n)} for all n ∈ N. Then (En)n∈N
is an increasing sequence of Borel equivalence relations whose union
is E, and each πn is a Borel homomorphism from En to EE . As each
Bn is En-complete and each πn is injective on each (En � Bn)-class,
Proposition 4.2 ensures that each πn is E-smooth-to-one, so each En is
in E , thus E is hyper-E .

Proposition 9.2. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a Polish metric space XE un-
der smooth-to-one Borel homomorphisms, X is a compact zero-dimen-
sional Polish space, E is a countable Borel partial equivalence relation



9. MEASURE-HYPER-E-TO-ONE HOMOMORPHISMS 23

on X, and µ is an E-hyper-E finite Borel measure on X. Then there
is a code for a partial witness to the hyper-E-ness of E whose E-scope
is µ-conull.

Proof. Fix a µ-conull Borel set C ⊆ X such that E � C is
hyper-E , an increasing sequence (En)n∈N of equivalence relations in
E whose union is E � C, and smooth-to-one Borel homomorphisms
πn : dom(En) → XE from En to EE for all n ∈ N. By the Lusin-No-
vikov uniformization theorem, there is a Borel function π : [C]E → C
whose graph is contained in E. By replacing C with [C]E, En with
(π×π)−1(En), and πn with πn◦π, we can assume that C is E-invariant.
Fix an E-quasi-invariant finite Borel measure ν such that µ � ν and
the two measures agree on every E-invariant Borel set. By Proposition
4.2, there are En-complete Borel sets Bn ⊆ dom(En) such that πn is
injective on each (En � Bn)-class for all n ∈ N, and by Proposition 8.3,
there exists (c, d) ∈ (C(X,XE)

N)N× (C(X, 2)N)N for which the set D =
{x ∈ C | ∀n ∈ N (πn(x) = πc(n)(x) and (x ∈ Bn ⇐⇒ x ∈ Bd(n)))}
is ν-conull. As ν is E-quasi-invariant, the set ∼[∼D]E is ν-conull, thus
µ-conull. But ∼[∼D]E is contained in the E-scope of (c, d).

Proposition 9.3. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a standard Borel space XE
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, and E is a countable Borel equivalence relation on X. Then the
set of E-hyper-E Borel probability measures is analytic.

Proof. By the isomorphism theorem for standard Borel spaces,
we can assume that X is a compact zero-dimensional Polish space.
We can clearly assume that XE is a Polish metric space. As the set
R of ((c, d), x) ∈ ((C(X,XE)

N)N × (C(X, 2)N)N) × X for which x is
in the E-scope of (c, d) is Borel, so too is the set S of (µ, (c, d)) ∈
P (X)× ((C(X,XE)

N)N × (C(X, 2)N)N) for which µ(R(c,d)) = 1. But if
µ is a finite Borel measure on X, then the special case of Proposition
9.1 for constant homomorphisms ensures that if µ ∈ projP (X)(S) then
E is µ-hyper-E , and conversely, Proposition 9.2 implies that if E is
µ-hyper-E then µ ∈ projP (X)(S).

A partial witness to the E-hyper-E-to-one-ness of a partial function
φ : X ⇀ Y is a partial function π : Y ⇀ (C(X,XE)

N)N × (C(X, 2)N)N.
The scope of such a partial witness is the set of x ∈ dom(φ) for which
φ(x) ∈ dom(π) and x is in the (E � φ−1({φ(x)}))-scope of (π ◦ φ)(x).

A disintegration of a Borel probability measure µ on X through
a Borel function φ : X → Y is a function ψ : Y → P (X) with the
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property that φ−1({y}) is ψ(y)-conull for (φ∗µ)-almost all y ∈ Y , and
µ(B) =

∫
ψ(y)(B) dφ∗µ(y) for all Borel sets B ⊆ X.

Proposition 9.4. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a Polish metric space XE un-
der smooth-to-one Borel homomorphisms, X is a compact zero-dimen-
sional Polish space, Y is a standard Borel space, E is a countable
Borel equivalence relation on X, µ is a Borel probability measure on
X, φ : X ⇀ Y is a Borel partial function whose domain is µ-conull,
and there is a Borel disintegration ψ : Y → P (X) of µ through φ such
that E � φ−1({y}) is ψ(y)-hyper-E for (φ∗µ)-almost all y ∈ Y . Then
there is a Borel partial witness to the E-hyper-E-to-one-ness of φ whose
scope is µ-conull.

Proof. As the setR of ((c, d), x) ∈ ((C(X,XE)
N)N×(C(X, 2)N)N)×

dom(φ) for which x is in the (E � φ−1({φ(x)}))-scope of (c, d) is Borel,
so too is the set S of (y, (c, d)) ∈ Y × ((C(X,XE)

N)N × (C(X, 2)N)N)
for which ψ(y)(R(c,d)) = 1, thus the Jankov-von Neumann uniformiza-
tion theorem yields a σ(Σ1

1)-measurable uniformization π : projY (S)→
(C(X,XE)

N)N × (C(X, 2)N)N of S. As Proposition 9.2 ensures that
projY (S) is (φ∗µ)-conull, there is a (φ∗µ)-conull Borel set D ⊆ dom(π)
on which π is Borel. Let C be the set of x ∈ φ−1(D) in the E �
φ−1({φ(x)})-scope of (π ◦φ)(x). Then µ(C) =

∫
ψ(y)(C) dφ∗µ(y) = 1,

so π � D is a Borel partial witness to the E-hyper-E-to-one-ness of φ
whose scope is µ-conull.

Proposition 9.5. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a standard Borel space XE
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, E is a countable Borel equivalence relation on X, and ρ : E →
(0,∞) is a Borel cocycle for which every E-ergodic ρ-invariant Bor-
el probability measure is E-hyper-E. Then so too is every ρ-invariant
Borel probability measure.

Proof. By the isomorphism theorem for standard Borel spaces,
we can assume that X is a compact zero-dimensional Polish space.
We can clearly assume that XE is a Polish metric space. Given a ρ-
invariant Borel probability measure µ, fix an E-invariant Borel function
φ : X → P (X) that is a decomposition of µ into E-ergodic ρ-invariant
Borel probability measures, in the sense that φ(x) is E-ergodic and
ρ-invariant for all x ∈ X, φ−1({ν}) is ν-conull for all ν ∈ φ(X), and
µ(B) =

∫
φ(x)(B) dµ(x) for all Borel sets B ⊆ X. As the identity

function on P (X) is a disintegration of µ through φ, Proposition 9.4
yields a Borel partial witness π : P (X) ⇀ (C(X,XE)

N)N× (C(X, 2)N)N
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to the E-hyper-E-to-one-ness of φ whose scope C ⊆ X is µ-conull, and
since (π ◦φ) � C is a Borel homomorphism from E � C to equality such
that x is in the E-scope of (π ◦ φ)(x) for all x ∈ C, Proposition 9.1
ensures that E � C is hyper-E , thus µ is E-hyper-E .

Given any class E of countable Borel equivalence relations on stan-
dard Borel spaces, we say that a countable Borel equivalence relation
on a standard Borel space X is measure-E if it is µ-E for all Borel
probability measures µ on X.

Question 9.6. Is a countable Borel equivalence relation hyperfinite
if and only if it is measure hyperfinite?

Proposition 9.7. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a standard Borel space XE
under smooth-to-one Borel homomorphisms, X is a standard Borel
space, E is a countable Borel equivalence relation on X, and there is an
E-measure-hyper-E-to-one Borel homomorphism from E to a measure-
hyperfinite countable Borel equivalence relation on a standard Borel
space. Then E is measure-hyper-E.

Proof. We will first show that if there is an E-measure-hyper-
E-to-one Borel homomorphism φ : X → Y from E to equality on a
standard Borel space, then E is measure-hyper-E . By the isomorphism
theorem for standard Borel spaces, we can assume that X and Y are
compact zero-dimensional Polish spaces. Clearly we can assume that
XE is a Polish metric space. But given any Borel probability measure
µ on X, Proposition 9.4 yields a Borel partial witness π to the E-
hyper-E-to-one-ness of φ whose scope C ⊆ X is µ-conull, in which case
(π ◦ φ) � C is a Borel homomorphism from E � C to equality with
the property that x is in the E-scope of (π ◦ φ)(x) for all x ∈ C, thus
Proposition 9.1 ensures that E � C is hyper-E .

Suppose now that Y is a standard Borel space, F is a measure-
hyperfinite countable Borel equivalence relation on Y , and φ : X → Y
is an E-measure-hyper-E-to-one Borel homomorphism from E to F .
Given a Borel probability measure µ on X, fix a (φ∗µ)-conull Borel set
D ⊆ Y on which F is hyperfinite, as well as an increasing sequence
(Fn)n∈N of finite Borel equivalence relations whose union is F � D.
Then the Borel set C = φ−1(D) is µ-conull, and for all n ∈ N, the
function φ � C is an E-measure-hyper-E-to-one Borel homomorphism
from the equivalence relation En = (E ∩ (φ × φ)−1(Fn)) � C to Fn,
so the previous paragraph ensures that En is µ-hyper-E . As E � C =⋃
n∈NEn, Proposition 3.3 implies that E is µ-hyper-E .
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A code for an E-hyper-E-to-one partial homomorphism from an
equivalence relation E on X to a partial equivalence relation F on Y
is a pair (c, d) ∈ C(X, Y )N×C(Y, (C(X,XE)

N)N× (C(X, 2)N)N)N. The
scope of such a code (c, d) is the set of all x ∈ X with the property
that [x]E ⊆ dom(πc), πc([x]E) ⊆ dom(πd) ∩ dom(F ) ∩ [πc(x)]F , and y
is in the E � π−1

c ({πc(y)})-scope of (πd ◦ πc)(y) for all y ∈ [x]E.

Proposition 9.8. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a Polish metric space XE
under smooth-to-one Borel homomorphisms, X and Y are compact
zero-dimensional Polish spaces, D ⊆ Y is a Borel set, E and F are
countable Borel equivalence relations on X and Y , and µ is a finite
Borel measure on X. Then the following are equivalent:

(1) There exists a code (c, d) for an E-hyper-E-to-one partial ho-
momorphism from E to F � D whose scope is µ-conull.

(2) There exist a µ-conull Borel set C ⊆ X and an E-hyper-E-to-
one Borel homomorphism from E � C to F � D.

(3) There exist a µ-conull Borel set C ⊆ X and an E-measure-
hyper-E-to-one Borel homomorphism from E � C to F � D.

Proof. To see (1) =⇒ (2), note that if (c, d) is a code for an
E-hyper-E-to-one partial homomorphism from E to F � D with scope
C ⊆ X, then πc � C is an E-hyper-E-to-one Borel homomorphism from
E � C to F � D. As (2) =⇒ (3) is clear, it only remains to establish
(3) =⇒ (1). Towards this end, suppose that there is a µ-conull Bor-
el set C ⊆ X for which there is an E-measure-hyper-E-to-one Borel
homomorphism φ : C → D from E � C to F � D. By the Lusin-Novikov
uniformization theorem, there is a Borel function ψ : [C]E → C whose
graph is contained in E. By replacing C with [C]E and φ with φ◦ψ, we
can assume that C is E-invariant. Fix an E-quasi-invariant finite Borel
measure ν such that µ � ν and the two measures agree on every E-
invariant Borel set. By Proposition 9.4, there is a Borel partial witness
π : Y ⇀ (C(X,XE)

N)N×(C(X, 2)N)N to the E-hyper-E-to-one-ness of φ
whose scope is ν-conull. By Proposition 8.3, there are codes c and d for
partial functions πc : X ⇀ Y and πd : Y ⇀ (C(X,XE)

N)N×(C(X, 2)N)N

such that φ(x) = πc(x) and (π ◦ φ)(x) = (πd ◦ φ)(x) for ν-almost all
x ∈ X. Then the E-quasi-invariance of ν ensures that (c, d) is a code
for an E-hyper-E-to-one partial homomorphism from E to F � D whose
scope is ν-conull, and therefore µ-conull.

Proposition 9.9. Suppose that E is the downward closure of a
countable Borel equivalence relation EE on a standard Borel space XE
under smooth-to-one Borel homomorphisms, I, X, and Y are standard
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Borel spaces, (Di)i∈I is a Borel sequence of subsets of Y , and E and F
are countable Borel equivalence relations on X and Y . Then the set of
(µ, i) ∈ P (X)×I for which there exist a µ-conull Borel set C ⊆ X and
an E-hyper-E-to-one Borel homomorphism from E � C to F � Di is
analytic and coincides with the set of (µ, i) ∈ P (X)× I for which there
exist a µ-conull Borel set C ⊆ X and an E-measure-hyper-E-to-one
Borel homomorphism from E � C to F � Di.

Proof. By the isomorphism theorem for standard Borel spaces,
we can assume that X and Y are compact zero-dimensional Polish
spaces. Clearly we can assume that XE and Y are Polish metric
spaces. As the set R of ((c, d, i), x) ∈ (C(X, Y )N×C(Y, (C(X,XE)

N)N×
(C(X, 2)N)N)N × I)×X for which x is in the Di-scope of (c, d) is Bor-
el, so too is the set S of ((µ, i), (c, d)) ∈ (P (X) × I) × (C(X, Y )N ×
C(Y, (C(X,XE)

N)N × (C(X, 2)N)N)N) for which µ(R(c,d,i)) = 1. But
Proposition 9.8 ensures that (µ, i) ∈ projP (X)(S) if and only if there
exist a µ-conull Borel set C ⊆ X and an E-hyper-E-to-one Borel ho-
momorphism from E � C to F � Di if and only if there exist a µ-conull
Borel set C ⊆ X and an E-measure-hyper-E-to-one Borel homomor-
phism from E � C to F � Di.

10. Productive hyperfiniteness

Suppose that Γ is a countable group. We say that a Borel action of Γ
on a standard Borel space is hyperfinite if the induced orbit equivalence
relation is hyperfinite. We say that Γ is hyperfinite if every Borel action
of Γ on a standard Borel space is hyperfinite.

The diagonal product of actions Γ y X and Γ y Y is the action
Γ y X × Y given by γ · (x, y) = (γ · x, γ · y). We say that a Bor-
el action of Γ on a standard Borel space is productively hyperfinite if
its diagonal product with every Borel action of Γ on a standard Borel
space is hyperfinite.

Proposition 10.1. Suppose that Γ is a countable group, X is a
standard Borel space, and Γ y X is a hyperfinite Borel action such
that the stabilizer of every point is hyperfinite and only countably-many
points have infinite stabilizers. Then Γ y X is productively hyperfinite.

Proof. Let C be the set of x ∈ X whose stabilizers are infinite,
fix an increasing sequence (En)n∈N of finite Borel equivalence relations
whose union is EX

Γ , and suppose that Y is a standard Borel space and
Γ y Y is a Borel action. As each EX×Y

Γ � ({x} × Y ) is generated by
the stabilizer of x, and therefore hyperfinite, we need only show that
E

(∼C)×Y
Γ is hyperfinite. But if Fn is the subequivalence relation with
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respect to which two E
(∼C)×Y
Γ -equivalent pairs (x, y) and (x′, y′) are

related exactly when x En x
′ for all n ∈ N, then each Fn is finite and

their union is E
(∼C)×Y
Γ .

11. Actions of SL2(Z)

Define ∼ on R2 \ {(0, 0)} by v ∼ w ⇐⇒ ∃r > 0 rv = w, set
T = (R2 \ {(0, 0)})/∼, and define projT : R2 \ {(0, 0)} → T by setting
projT(v) = [v]∼. Note that if A ∈ GL2(Z), r > 0, and v ∈ R2 \{(0, 0)},
then A(rv) = r(Av), so the usual action GL2(Z) y R2 \ {(0, 0)} by
matrix multiplication factors over ∼ to an action GL2(Z) y T.

Proposition 11.1 (Jackson-Kechris-Louveau). The action GL2(Z)
y T is hyperfinite.

Proof. Define an action GL2(Z) y R ∪ {∞} by ( a bc d ) · x =
ax+b
cx+d

(where a∞+b
c∞+d

= a
c
), let φ : R \ Q → ZN be the function send-

ing each irrational number to its continued fraction expansion, and
recall that the unilateral shift on ZN is the function s : ZN → ZN given
by s(x)(n) = x(n + 1). It is well-known that if x, y ∈ R \ Q, then

x E
R∪{∞}
GL2(Z) y ⇐⇒ φ(x) Et(s) φ(y) (see, for example, Theorem 175 of

The Theory of Numbers by Hardy-Wright). As Et(s) is hyperfinite, so

too is E
R∪{∞}
GL2(Z) .

As the set X = {(x, y) ∈ R2 | y ≥ 0 and (y = 0 =⇒ x > 0)}
is E

R2\{(0,0)}
GL2(Z) -complete, we need only show that ET

GL2(Z) � projT(X) is

hyperfinite. Define π : X → R ∪ {∞} by π(x, y) = x/y, and note that

( a bc d ) · π( xy ) = a(x/y)+b
c(x/y)+d

= ax+by
cx+dy

= π(( a bc d ) ( xy )) for all ( a bc d ) ∈ SL2(Z)

and (x, y) ∈ X, thus π induces an embedding of ET
GL2(Z) � projT(X)

into E
R∪{∞}
GL2(Z) .

Proposition 11.2 (Conley-Miller). The action SL2(Z) y T is
productively hyperfinite.

Proof. Note that if θ ∈ T has a non-trivial stabilizer, then it is
the equivalence class of an eigenvector of a non-trivial matrix in SL2(Z)
whose corresponding eigenvector is positive. As SL2(Z) is countable
and every such matrix admits at most two such classes of eigenvectors,
there are only countably-many such θ. By Propositions 10.1 and 11.1,
it only remains to show that the stabilizer of each θ ∈ T is cyclic.

We first consider the case that θ∩Z2 6= ∅. Let v denote the unique
element of θ ∩Z2 of minimal length. Note that the stabilizers of θ and
v coincide, for if A is in the stabilizer of θ, then v is an eigenvector of
A, so minimality ensures that Av = v. Minimality also ensures that
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the coordinates of v are relatively prime, so there exists a ∈ Z2 such
that a · v = 1, in which case the matrix B = ( a0 a1

−v1 v0
) is in SL2(Z)

and Bv = ( 1
0 ), thus conjugation by B yields an isomorphism of the

stabilizer of v with that of ( 1
0 ). But if ( a bc d ) ∈ SL2(Z), then ( a bc d ) ( 1

0 ) =
( 1

0 ) ⇐⇒ ( a bc d ) = ( 1 n
0 1 ) for some n ∈ Z, thus the group of such

matrices is cyclic.
It remains to consider the case that θ ∩ Z2 = ∅.

Lemma 11.3. The stabilizer of each v = (x, y) in θ is trivial.

Proof. Suppose, towards a contradiction, that there is a matrix
A = ( a bc d ) in SL2(Z) \ {( 1 0

0 1 )} such that such that Av = v. Then
(a− 1)x+ by = cx+ (d− 1)y = 0, so there exists (a′, b′) ∈ Z2 \ {(0, 0)}
such that a′x+ b′y = 0. As θ∩Z2 6= ∅, it follows that neither x nor y is
zero, so neither a′ nor b′ is zero, thus y = −(a′/b′)x, in which case there
exist i, j ∈ {±1} for which (ib′, ja′) ∈ θ, the desired contradiction.

Note that the set Λ of eigenvalues of matrices in the stabilizer of θ
is a group under multiplication.

Lemma 11.4. The group Λ is cyclic.

Proof. It is sufficient to show that 1 is isolated in Λ ∩ [1,∞).
Towards this end, suppose that A is in the stabilizer of θ and v is an
eigenvector of A with eigenvalue λ > 1. If µ is the other eigenvalue
of A, then λµ = det(A) = 1, so tr(A) = λ + µ = λ + 1/λ. As
tr(A) ∈ Z, it follows that λ + 1/λ = n for some n ≥ 2, in which case
λ = (n+

√
n2 − 4)/2. The fact that λ > 1 therefore ensures that n 6= 2,

thus λ ≥ (3 +
√

5)/2.

By Lemma 11.4, there is a matrix A in the stabilizer of θ which
has an eigenvalue λ generating Λ. If B is any matrix in the stabilizer
of θ, then there exists n ∈ Z for which v is an eigenvector of B with
eigenvalue λn, in which case AnB−1 is in the stabilizer of v, so B = An,
thus A generates the stabilizer of θ, hence the latter is cyclic.

Let Z2oSL2(Z) denote the group of all functions T : R2 → R2 of the
form T (x) = Ax+b (under composition), where A ∈ SL2(Z) and b ∈ Z2,
and define projSL2(Z) : Z2oSL2(Z)→ SL2(Z) by projSL2(Z)(Ax+b) = A.

Set T2 = R2/Z2, let projT2 denote the projection from R2 to T2, and
let m2 denote the usual Lebesgue probability measure on T2. Note that
if A ∈ SL2(Z), b ∈ Z2, v ∈ R2, and w ∈ Z2, then A(v + w) + b = Av +
(Aw+ b), so Z2 oSL2(Z) y R2 factors to an action Z2 oSL2(Z) y T2.

Proposition 11.5. There is an m2-treeable Borel subequivalence
relation E of ET2

SL2(Z) that is not m2-hyperfinite.
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Proof. We first note that the free part of the action SL2(Z) y T2

is m2-conull.

Lemma 11.6. The non-free part of SL2(Z) y T2 is contained in the

ET2

SL2(Z)-saturation of projT2(Q× R).

Proof. If projT2(x, y) is in the non-free part, then there exists
( a bc d ) ∈ SL2(Z) \ {( 1 0

0 1 )} for which ((a− 1)x+ by, cx+ (d− 1)y) ∈ Z2,
so there exists (a′, b′) ∈ Z2 \ {(0, 0)} such that a′x + b′y ∈ Z. If either
a′ or b′ is zero, then y or x is rational, so ( −yx ) = ( 0 −1

1 0 ) ( xy ) or ( xy )
is in Q × R. Otherwise, there are relatively prime a′′, b′′ ∈ Z such
that a′′x + b′′y ∈ Q, in which case there are c′′, d′′ ∈ Z such that
a′′d′′ − b′′c′′ = 1, thus

(
a′′ b′′

c′′ d′′

)
∈ SL2(Z) and

(
a′′ b′′

c′′ d′′

)
( xy ) ∈ Q× R.

We next observe that SL2(Z) contains a copy F2 of the free group
on two generators.

Lemma 11.7. The group generated by the matrices A = ( 1 3
0 1 ) and

B = ( 1 0
3 1 ) is free.

Proof. Note that if n 6= 0, x, y ∈ R, ( xAyA ) = An ( xy ) =
(
x+3ny
y

)
,

and ( xByB ) = Bn ( xy ) = ( x
3nx+y ), then

|x| < |y| =⇒ |xA| > (3|n| − 1)|y| ≥ 2|y| =⇒ |xA| − |yA| > |y| − |x|
and

|y| < |x| =⇒ |yB| > (3|n| − 1)|x| ≥ 2|x| =⇒ |yB| − |xB| > |x| − |y|.
A straightforward induction therefore ensures that if W is a non-trivial
reduced word in A and B, |x| < |y| if and only if the rightmost entry of
W is a power of A, and ( xWyW ) = W ( xy ), then ||xW |− |yW || > ||x|− |y||,
so ( xWyW ) 6= ( xy ), thus W 6= ( 1 0

0 1 ).

Note that the push-forward G of the Cayley graph of F2 through
F2 y T2 is acyclic on the free part B ⊆ X of F2 y T2, so EB

F2
is

treeable. Moreover, as Cm2(G) = 2, Proposition 7.5 ensures that ET2

F2

is not m2-hyperfinite.

Remark 11.8. Jackson-Kechris-Louveau have shown that ET2

SL2(Z)

is itself treeable, but we will not need this stronger result.

12. Projective rigidity

Given sets X and Y , a binary relation R on X, a countable group
∆, an action ∆ y Y , and a function ρ : R→ ∆, we say that a function
φ : X → Y is ρ-invariant if x1 R x2 =⇒ φ(x1) = ρ(x1, x2) ·φ(x2) for all
x1, x2 ∈ X. Given a class E of countable Borel equivalence relations on
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standard Borel spaces, we say that a Borel action ∆ y Y is projectively
E-rigid if whenever X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E → ∆ is a Borel function, φ, ψ : X → Y
are ρ-invariant Borel functions, and φ is E-E-to-one, the difference set
D(φ, ψ) = {x ∈ X | φ(x) 6= ψ(x)} is E-E .

Theorem 12.1 (Conley-Miller). Suppose that E is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms. Then Z2oSL2(Z) y
R2 is projectively measure-hyper-E rigid.

Proof. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, ρ : E → Z2 o SL2(Z) is a Bor-
el function, φ, ψ : X → R2 are ρ-invariant Borel functions, and φ
is E-measure-hyper-E-to-one, and define functions π : D(φ, ψ) → T
and σ : E � D(φ, ψ) → SL2(Z) by π(x) = projT(φ(x) − ψ(x)) and
σ(x1, x2) = (projSL2(Z) ◦ ρ)(x1, x2).

Lemma 12.2. The function π is σ-invariant.

Proof. Simply observe that if x1, x2 ∈ D(φ, ψ) are E-related, then

π(x1) = projT(φ(x1)− ψ(x1))

= projT(ρ(x1, x2) · φ(x2)− ρ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · φ(x2)− σ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · (φ(x2)− ψ(x2)))

= σ(x1, x2) · projT(φ(x2)− ψ(x2))

= σ(x1, x2) · π(x2),

thus π is σ-invariant.

As (projT2 ◦ φ) � D(φ, ψ) is also σ-invariant, it follows that π ×
(projT2 ◦φ) � D(φ, ψ) is a measure-hyper-E-to-one homomorphism from
E � D(φ, ψ) to the orbit equivalence relation induced by SL2(Z) y T×
T2. As Proposition 11.2 ensures that the latter relation is hyperfinite,
Proposition 9.7 implies that the former is measure-hyper-E .

Question 12.3. Is there a more combinatorial way of producing
projectively-measure-hyper-E-rigid Borel actions?

13. Projective separability and products

Suppose that E is a class of countable Borel equivalence relations
on standard Borel spaces. A µ-homomorphism from E to F is a Borel
homomorphism from E � C to F , where C ⊆ X is a µ-conull Borel set.
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We say that a countable Borel equivalence relation F on a standard
Borel space is projectively E-separable if for every standard Borel space
X, countable Borel equivalence relation E on X, and E-quasi-invariant
non-E-E finite Borel measure µ on X, there is a countable set Φ of E-
E-to-one µ-homomorphisms from E to F such that every E-E-to-one
µ-homomorphism from E to F agrees with a function in Φ on a set of
positive µ-measure.

Theorem 13.1 (Conley-Miller). Suppose that E is the downward
closure of a countable Borel equivalence relation on a standard Bor-
el space under smooth-to-one Borel homomorphisms, ∆ is a countable
group, Y is a standard Borel space, and ∆ y Y is a projectively-
measure-hyper-E-rigid Borel action. Then EY

∆ is projectively measure-
hyper-E-separable.

Proof. Suppose that X is a standard Borel space, E is a countable
Borel equivalence relation on X, and µ is an E-quasi-invariant non-E-
hyper-E finite Borel measure on X. Clearly we can assume that X is a
Polish space. Fix a countable basis U for X closed under finite unions,
as well as a countable group Γ of Borel automorphisms of X generating
E. By Proposition 3.3, there is a finite set S ⊆ Γ for which the equiva-
lence relation E ′ = EX

〈S〉 is non-µ-hyper-E , and therefore non-µ-hyper-
hyper-E . For each Borel set B ⊆ X, let EB denote the equivalence
relation on X generated by the set RB =

⋃
γ∈S graph(γ � B).

Lemma 13.2. There exists ε > 0 such that EB is non-µ-hyper-E for
all Borel sets B ⊆ X of µ-measure at least µ(X)− ε.

Proof. Fix real numbers εn > 0 such that
∑

n∈N εn < ∞, and
suppose, towards a contradiction, that there are Borel sets Bn ⊆ X of
µ-measure at least µ(X)− εn with the property that EBn is µ-hyper-E
for all n ∈ N. Setting Cn =

⋂
m≥nBm for all n ∈ N, it follows that

µ(Cn) → µ(X). As µ is E ′-quasi-invariant, the E ′-invariant Borel set
C = ∼[∼

⋃
n∈NCn]E′ is µ-conull. But (ECn � C)n∈N is an increasing se-

quence of µ-hyper-E countable Borel equivalence relations whose union
is E ′ � C, contradicting the fact that E ′ is non-µ-hyper-hyper-E .

Observe that if φ : X ⇀ Y is a µ-homomorphism from E to EY
∆,

then there is a finite set T ⊆ ∆ for which the set Bφ,T of all x ∈⋂
γ∈〈S〉 γ

−1(dom(φ)) such that ∀γ ∈ S∃δ ∈ T φ(x) = δ · φ(γ · x) has µ-

measure strictly greater than µ(X)−ε/2, as well as a function U : T S →
U for which the set Bφ,T,U of all x ∈ Bφ,T such that x ∈ U(f) ⇐⇒
∀γ ∈ S φ(x) = f(γ) · φ(γ · x) for all f ∈ T S has µ-measure at least
µ(X)−ε/2. Now suppose that ψ : X ⇀ Y is another µ-homomorphism
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from E to EY
∆ for which the corresponding set Bψ,T,U has µ-measure at

least µ(X)− ε/2, so that the set B = Bφ,T,U ∩Bψ,T,U has µ-measure at
least µ(X)−ε. Fix linear orderings of S and T S, and observe that both
φ and ψ are invariant with respect to the function σ : RB → ∆ given by
σ(x, y) = f(γ), where f is the least element of T S such that x ∈ U(f),
and γ is the least element of S such that γ·x = y. Let σ be the extension
of σ to R±1

B given by σ(x, y) = σ(x, y)−1 for all (x, y) ∈ R−1
B \RB, appeal

to the Lusin-Novikov uniformization theorem to obtain a Borel function
θ : EB → X<N sending each pair (x, y) ∈ EB to an RB-path from x to y,
and observe that both φ and ψ are invariant with respect to the function
ρ : EB → ∆ given by ρ(x, y) =

∏
n<|γ(x,y)|−1 σ(θn(x, y), θn+1(x, y)), so if

φ is E-measure-hyper-E-to-one, then D(φ � B,ψ � B) is not (µ � B)-
conull. But there are only countably-many possibilities for T and U .

Proposition 13.3 (Conley-Miller). Suppose that E is a class of
countable Borel equivalence relations on standard Borel spaces such
that the family of Borel sets on which any equivalence relation is in E is
closed under countable unions. Then the projectively E-separable count-
able Borel equivalence relations on standard Borel spaces are closed
downward under countable-to-one Borel homomorphisms.

Proof. Suppose that Y and Y ′ are standard Borel spaces, F and
F ′ are countable Borel equivalence relations on Y and Y ′, F ′ is pro-
jectively E-separable, and there is a countable-to-one Borel homomor-
phism ψ : Y → Y ′ from F to F ′. By the Lusin-Novikov uniformization
theorem, there is a countable set Φ of Borel functions φ : ψ(Y ) → Y
such that graph(ψ)−1 =

⋃
φ∈Φ graph(φ). Given a standard Borel space

X, a countable Borel equivalence relation E on X, and an E-quasi-
invariant non-E-E finite Borel measure µ on X, fix a countable set Φ′

of E-E-to-one µ-homomorphisms from E to F ′ such that every E-E-
to-one µ-homomorphism from E to F ′ agrees with a function in Φ′ on
a set of positive µ-measure. Then every E-E-to-one µ-homomorphism
from E to F agrees with a function of the form φ ◦ φ′, where φ ∈ Φ
and φ′ ∈ Φ′, on a set of positive µ-measure.

Remark 13.4 (Conley-Miller). If E is a non-measure-E countable
Borel equivalence relation on a standard Borel space, then E × ∆(R)
is not projectively E-separable. It follows that if E is projectively
measure-E-separable, then there is no countable-to-one Borel homo-
morphism from E ×∆(R) to E.

Remark 13.5 (Conley-Miller). We say that E is E-to-one measure
homomorphible to F if there is an E-to-one µ-homomorphism from E
to F for every Borel probability measure µ on X. Under the above



34 REDUCIBILITY OF COUNTABLE EQUIVALENCE RELATIONS

assumptions, it is not difficult to see that if ν is a continuous finite
Borel measure on R and B ⊆ X × R is a (µ × ν)-positive Borel set,
then (E × ∆(R)) � B is not projectively E-separable, so there is no
countable-to-one Borel homomorphism from (E × ∆(R)) � B to E,
thus E ×∆(R) is not countable-to-one measure homomorphible to F .

Remark 13.6 (Conley-Miller). If F is a class of countable Borel
equivalence relations on standard Borel spaces that is closed down-
ward under smooth-to-one Borel homomorphisms, then again under
the above assumptions, E cannot be a maximal element of F under
any quasi-order between countable-to-one measure homomorphibility
and continuous embeddability.

14. Measures and products

Let �EE,F denote the set of (µ, ν) ∈ P (X) × P (Y ) for which µ is
E-ergodic and E-quasi-invariant, ν is F -ergodic and F -quasi-invariant,
and there is an E-E-to-one µ-homomorphism φ : X ⇀ Y from E to F
such that φ∗µ� ν.

Proposition 14.1 (Conley-Miller). Suppose that E is a class of
countable Borel equivalence relations on standard Borel spaces, X and
Y are standard Borel spaces, E and F are countable Borel equivalence
relations on X and Y , µ is an E-ergodic E-quasi-invariant non-E-
E Borel probability measure on X, and F is projectively E-separable.
Then the µth vertical section of �EE,F is a union of countably-many
measure-equivalence classes.

Proof. As any two F -ergodic F -quasi-invariant Borel measures
are either equivalent or orthogonal, it follows that any non-zero Borel
measure on Y is absolutely continuous with respect to at most one such
measure. As F is projectively E-separable, it is therefore sufficient to
show that if C ⊆ X is a µ-conull Borel set, φ, ψ : C → Y are Borel
homomorphisms from E � C to F for which ∼D(φ, ψ) is µ-positive,
and ν is an F -quasi-invariant Borel measure on Y for which φ∗µ� ν,
then ψ∗µ � ν. Towards this end, suppose that B ⊆ Y is a (ψ∗µ)-
positive Borel set. The E-ergodicity of µ then ensures that [ψ−1(B)]E
is µ-conull. As the fact that ψ is a homomorphism from E � C to F
implies that [ψ−1(B)]E ∩ C is contained in ψ−1([B]F ), the latter set
is also µ-conull. In particular, it follows that ψ−1([B]F ) \ D(φ, ψ) is
µ-positive, thus so too is φ−1([B]F ). The fact that φ∗µ � ν therefore
ensures that [B]F is ν-positive, in which case the F -quasi-invariance of
ν implies that B is ν-positive.
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A µ-reduction of E to F is a Borel reduction of E � C to F , where
C ⊆ X is a µ-conull Borel set. A µ-embedding is an injective µ-
reduction. We say that E is measure reducible to F if there is a µ-
reduction of E to F for every Borel probability measure µ on X. We
say that E is measure embeddable into F if there is a µ-embedding of
E into F for every Borel probability measure µ on X.

We say that E is dichotomous if it is strictly contained in hyper-E
but every hyper-E countable Borel equivalence relation on a standard
Borel space is measure embeddable into every non-E countable Bor-
el equivalence relation on a standard Borel space. Given such an E ,
we use E+

E to denote any hyper-E non-E countable Borel equivalence
relation on a standard Borel space.

Question 14.2. Is there a dichotomous class containing the hyper-
finite Borel equivalence relations on standard Borel spaces?

We say that a Borel measure µ on X is (E,F )-ergodic if for every
Borel homomorphism φ : X → Y from E to F , there exists y ∈ Y for
which φ−1([y]F ) is µ-conull.

Question 14.3. Is the measure hyper-E-ness of E equivalent to
the inexistence of an (E,E+

E )-ergodic Borel probability measure?

Proposition 14.4 (Conley-Miller). Suppose that E is a class of
countable Borel equivalence relations on standard Borel spaces con-
taining all equivalence relations on countable standard Borel spaces,
X and Y are standard Borel spaces, E and F are countable Borel
equivalence relations on X and Y , µ is an E-ergodic E-quasi-invariant
non-E-E Borel probability measure on X, and ν is an F -ergodic F -
quasi-invariant F -projectively-E-separable Borel probability measure on
Y . Then there is a ν-conull Borel set D ⊆ Y with the property that
whenever X ′ and Y ′ are standard Borel spaces, E ′ and F ′ are count-
able Borel equivalence relations on X ′ and Y ′, µ is (E,F ′)-ergodic, and
µ′ is a Borel probability measure on X ′ for which there is a (µ × µ′)-
reduction of E × E ′ to (F � D)× F ′, then there is also a µ′-reduction
of E ′ to F ′.

Proof. By Proposition 14.1, there is an F -invariant F -projectively-
E-separable ν-conull Borel set D ⊆ Y with the property that the µth

vertical section of�EE,F �D is contained in the measure-equivalence class
of ν � D. To see that this set is desired, suppose that C ⊆ X ×X ′ is
a (µ × µ′)-conull Borel set and π : C → D × Y ′ is a Borel reduction
of (E × E ′) � C to (F � D) × F ′. Then the set R = {(x, (x′, y′)) ∈
X × (X ′ × Y ′) | (projY ′ ◦ π)(x, x′) F ′ y′} is Borel, thus so too is
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the set S = {(x′, y′) ∈ X ′ × Y ′ | µ(R(x′,y′)) = 1}. Fubini’s theo-
rem ensures that {x′ ∈ X ′ | µ(Cx′) = 1} is itself µ′-conull, and if
x′ is in this set, then the (E,F ′)-ergodicity of µ and the fact that
(projY ′ ◦ π)(·, x′) is a homomorphism from E � Cx′ to F ′ ensure that
x′ ∈ projX′(S), thus projX′(S) is a µ′-conull Borel set. As S has count-
able vertical sections, the Lusin-Novikov uniformization theorem yields
a Borel uniformization φ : projX′(S) → Y ′ of S. Set B = {(x, x′) ∈
C ∩ (X × projX′(S)) | (projY ′ ◦ π)(x, x′) F ′ φ(x′)}, and note that if
w′, x′ ∈ projX′(S), then there exists x ∈ Bw′ ∩ Bx′ , and if w′ E ′ x′,
then φ(w′) F ′ (projY ′ ◦π)(x,w′) F ′ (projY ′ ◦π)(x, x′) F ′ φ(x′), thus φ is
a homomorphism from E ′ � projX′(S) to F ′. Suppose, towards a con-
tradiction, that there are E ′-inequivalent points w′, x′ ∈ projX′(S) such
that φ(w′) F ′ φ(x′), and for both v′ ∈ {w′, x′}, fix an F -quasi-invariant
Borel probability measure νv′ on Y such that (projY ◦ π)(·, v′)∗µ� νv′
and the two measures agree on all F -invariant Borel sets. As the func-
tions of the form (projY ◦π)(·, v′) � Bv′ are µ-reductions of E to F and
[(projY ◦ π)(Bw′ × {w′})]F ∩ [(projY ◦ π)(Bx′ × {x′})]F = ∅, it follows
that νw′ and νx′ are orthogonal measures in the µth vertical section of
�EE,F �D, a contradiction.

Remark 14.5 (Conley-Miller). Proposition 9.5 ensures that if E
is the downward closure of a countable Borel equivalence relation on
a standard Borel space under smooth-to-one Borel homomorphisms,
and E is non-measure-hyper-E , then there is an E-ergodic E-quasi-
invariant non-E-hyper-E Borel probability measure on X, so if E is
projectively measure-hyper-E-separable, then Proposition 14.4 yields
an E-non-measure-hyper-E Borel set D ⊆ X with the property that for
no n ∈ Z+ is (E � D)×∆(n+ 1) measure reducible to (E � D)×∆(n).

Remark 14.6 (Conley-Miller). Even if the existence of a (µ× µ′)-
reduction of E × E ′ to (F � D) × F ′ is weakened to the existence of
a (µ × µ′)-reduction of E × E ′ to F × F ′, the above argument still
yields a countable-to-one µ-homomorphism from E ′ to F ′. In par-
ticular, it follows that if E is non-measure-hyper-E but projectively
measure-hyper-E-separable, E ′ is non-measure-E , and F ′ is measure E ,
then E × E ′ is not measure reducible to E × F ′.

Remark 14.7 (Conley-Miller). Under the additional assumption
that E is dichotomous, the above argument shows that if there is an
(E,E+

E )-ergodic Borel probability measure, E is projectively measure-
hyper-E-separable, E ′ is non-measure-hyper-E , and F ′ is measure-hyper-
E , then E × E ′ is not measure reducible to E × F ′.
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15. Reducibility without embeddability

We say that E is invariant-measure-E if E � B is (µ � B)-E for all
Borel sets B ⊆ X and (E � B)-invariant Borel probability measures µ
on B.

Question 15.1. Are measure hyperfiniteness and invariant-measure
hyperfiniteness equivalent?

Question 15.2. Is invariant-measure hyperfiniteness closed down-
ward under passage to Borel subequivalence relations?

Proposition 15.3 (Conley-Miller). Suppose that E is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, E is dichoto-
mous, X and Y are standard Borel spaces, E is an invariant-measure-
hyper-E countable Borel equivalence relation on X, and F is a non-E
countable Borel equivalence relation on Y . Then E is measure reducible
to F if and only if E is measure embeddable into F .

Proof. It is sufficient to show that if µ is a Borel probability mea-
sure on X for which there is a µ-reduction of E to F , then there is
a µ-embedding of E into F . Towards this end, suppose that C ⊆ X
is a µ-conull Borel set and φ : C → Y is a Borel reduction of E � C
to F . As E is countable, the Lusin-Novikov uniformization theorem
yields a Borel function from [C]E to C whose graph is contained in E.
Replacing C by [C]E, φ by its composition with such a function, and µ
with an E-quasi-invariant Borel probability measure ν on X for which
µ � ν and the two measures agree on all E-invariant Borel sets, we
can assume that C is E-invariant and µ is E-quasi-invariant.

As φ is countable-to-one, the Lusin-Novikov uniformization theo-
rem yields an (E � C)-complete Borel set B ⊆ C on which φ is injective.
Fix a µ-maximal Borel set A ⊆ B for which E � A is compressible. Re-
placing A by [A]E ∩ B, we can assume that A is (E � B)-invariant.
Proposition 2.1 then yields a Borel injection ψ : [A]E → A whose graph
is contained in E.

If [A]E is µ-conull, then set A′ = ∅. Otherwise, Theorem 2.2 ensures
that µ � (B\A) is equivalent to an E � (B\A)-invariant Borel probabil-
ity measure ν on B \A. As E is invariant-measure hyper-E , there is an
E-hyper-E ν-conull Borel set B′ ⊆ B \A. As ((E � B′)× I(N))×∆(N)
is hyper-E , the fact that E is dichotomous ensures that there is a ν-
conull Borel set A′ ⊆ B′ and a Borel embedding φ′ : (A′×N)×N→ Y
of ((E � A′)× I(N))×∆(N) into F . By the Lusin-Novikov uniformiza-
tion theorem, there is a Borel injection ψ′ : [A′]E → (A′ × N) × {0}
for which the graph of projX ◦ projX×N ◦ ψ′ is contained in E. Let
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π : Y → Y be the function supported on φ′((A′ × N) × N) given by
(π◦φ′)((x,m), n) = φ′((x,m), n+1), and note that (π◦φ◦ψ)∪(φ′ ◦ψ′)
is a µ-embedding of E � [A ∪ A′]E into F .

Remark 15.4 (Conley-Miller). As projX is a Borel reduction of
E×I(N) to E, Proposition 15.3 ensures that if E is invariant-measure-
hyper-E and non-E-E , then E × I(N) is measure embeddable into E.

We say that E is invariant-measure embeddable into F if there is a
µ-embedding of E � B into F for all Borel sets B ⊆ X and (E � B)-
invariant Borel probability measures µ on B.

Proposition 15.5 (Conley-Miller). Suppose that E is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, X is a stan-
dard Borel space, and E is a non-invariant-measure-hyper-E projec-
tively-measure-hyper-E-separable treeable countable Borel equivalence
relation on X. Then there is a non-invariant-measure-hyper-E Bor-
el equivalence relation F ⊆ E with the property that for no n ∈ Z+ is
F × I(n+ 1) invariant-measure embeddable into F × I(n).

Proof. By passing to a Borel subset of X, we can assume that
there is an E-invariant non-E-hyper-E Borel probability measure µ
on X. As the Lusin-Novikov uniformization theorem ensures that E
is the union of countably-many graphs of Borel functions, Proposi-
tion 3.3 yields a non-µ-hyper-E Borel subequivalence relation E ′ of E
that is generated by finitely-many graphs of Borel functions, so that
Cν(E

′) < ∞ for all E ′-invariant Borel probability measures ν on X.
By Proposition 9.5, there is an E ′-ergodic E ′-invariant non-E ′-hyper-E
Borel probability measure ν on X. As Proposition 13.3 ensures that
E ′ is projectively measure-hyper-E-separable, there is an E ′-invariant
ν-conull Borel set C ⊆ X that is null with respect to every measure in
the νth vertical section of �hyper-E

E′,E′ orthogonal to ν. Set F = E ′ � C,

and let mn denote the uniform probability measure on n for all n ∈ Z+.
Suppose, towards a contradiction, that there exists n ∈ N for which

there is a (ν×mn+1)-conull Borel set B ⊆ C×(n+1) and a Borel embed-
ding π : B → C×n of (F×I(n+1)) � B into F×I(n). For all i < n+1
and j < n, let πi,j be the restriction of the function (projX ◦ π)(·, i)
to projX((C × {i}) ∩ π−1(C × {j})), and if this set is ν-positive, then
fix an F -quasi-invariant Borel probability measure νi,j on C such that
(πi,j)∗ν � νi,j and the two measures agree on all F -invariant Borel sets.
Our choice of C ensures that νi,j � ν. Observe that if a set D ⊆ C×n
is π∗(ν×mn+1)-positive, then there exist i < n+1 and j < n for which
projY (D ∩ (C × {j})) is (πi,j)∗ν-positive, and therefore ν-positive, so
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D is (ν ×mn)-positive, thus π∗(ν ×mn+1)� ν ×mn. As the uniform
ergodic decomposition theorem ensures that any two ergodic invariant
Borel probability measures are either the same or orthogonal, it fol-
lows that π∗(ν × mn+1) � π(B) and (ν × mn) � π(B) have the same
normalizations. As F is non-ν-hyperfinite and therefore ν-aperiodic,
Proposition 7.7 yields that Cν(F ) > 1, in which case Remark 7.9 en-
sures that C(ν×mn+1)/(n+1)(F × I(n + 1)) < C(ν×mn)/n(F × I(n)) and
C(ν×mn)/n(F ×I(n)) ≤ C(ν×mn)/(ν×mn)(π(B))((F ×I(n)) � π(B)), contra-
dicting the fact that the first and last quantities are the same.

16. Minimality

A minimal element of a set X under a quasi-order ≤ is a point
x ∈ X such that ∀y ∈ X (y ≤ x =⇒ x ≤ y). We say that E is measure-
minimal non-E if it is a minimal non-E countable Borel equivalence
relation on a standard Borel space under measure reducibility.

Proposition 16.1 (Conley-Miller). Suppose that E is the down-
ward closure of a countable Borel equivalence relation on a standard
Borel space under smooth-to-one Borel homomorphisms, E is dichoto-
mous, X is a standard Borel space, and E is a countable Borel equiv-
alence relation on X. If the set of E-ergodic E-quasi-invariant non-
measure-hyper-E Borel probability measures on X is a measure-equiv-
alence class, then E is measure-minimal non-measure-hyper-E.

Proof. Suppose that Y is a standard Borel space and F is a non-
measure-hyper-E countable Borel equivalence relation on Y that is mea-
sure reducible to E. As in the proof of Proposition 15.3, the fact that
E is dichotomous ensures that there is a Borel embedding φ : Y → Y
of F into F for which ∼[φ(Y )]F is non-F -E but F -hyper-E . By Propo-
sition 9.5, there is an F -ergodic F -quasi-invariant non-hyper-E Borel
probability measure ν on Y . Fix a ν-conull Borel set D ⊆ [φ(Y )]F
and a Borel reduction ψ : D → X of F � D to E, as well as an E-
quasi-invariant Borel probability measure µ on X such that ψ∗ν � µ
but the two measures agree on all E-invariant Borel sets. Then µ
is E-ergodic and non-E-measure-hyper-E , and the Lusin-Novikov uni-
formization ensures that there is a Borel reduction π : [ψ(D)]E → D of
E � [ψ(D)]E to F � D.

Suppose now that µ′ is a Borel probability measure on X. As
usual, we can assume that µ′ is E-quasi-invariant. Fix a µ′-maximal
E-invariant E-hyper-E Borel set B ⊆ ∼[ψ(D)]E. As E is dichotomous,
there exist a (µ′ � B)-conull Borel set C ⊆ B and a Borel embedding
π′ : C → ∼[φ(Y )]E of E � C to F � ∼[φ(Y )]E. As Proposition 9.5
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ensures that µ′ � ∼B � µ, it follows that π ∪ π′ is a µ′-reduction of E
to F .

Proposition 16.2 (Conley-Miller). Suppose that E is a class of
countable Borel equivalence relations on standard Borel spaces, X is
a standard Borel space, and E is a measure-minimal non-measure-
E projectively-E-separable countable Borel equivalence relation on X.
Then the set of E-ergodic E-quasi-invariant non-E-E Borel probability
measures on X is a measure-equivalence class.

Proof. Suppose, towards a contradiction, that there are orthogo-
nal E-ergodic E-quasi-invariant non-E-E Borel probability measures µ
and ν on X. As E is projectively E-separable, Proposition 14.1 yields
an E-invariant µ-conull Borel set C ⊆ X that is null with respect
to every measure in the union of the µth and νth vertical sections of
�EE,E orthogonal to µ. By measure minimality, there exist a (µ + ν)-
conull Borel set B ⊆ X and a Borel reduction π : B → C of E � B
to E � C. Then π∗µ, π∗ν � µ, so the E-ergodicity of µ ensures that
[π(B ∩ C)]E ∩ [π(B \ C)]E is µ-conull, thus there exist x ∈ B ∩ C and
y ∈ B \ C for which π(x) E π(y). As x and y are E-inequivalent, this
contradicts the fact that π is a reduction of E � B to E � C.

Question 16.3. Is there a measure-minimal non-measure-hyper-E
countable Borel equivalence relation on a standard Borel space?

Question 16.4. Is there a non-ET2

SL2(Z)-hyperfinite Borel probability

measure orthogonal to m2?

Proposition 16.5. Suppose that E is the downward closure of a
countable Borel equivalence relation on a standard Borel space under
smooth-to-one Borel homomorphisms, X is a standard Borel space, and
E is a countable Borel equivalence relation on X for which the set of
E-ergodic E-quasi-invariant non-E-hyper-E Borel probability measures
on X is a measure-equivalence class. Then every E-ergodic non-E-
hyper-E Borel probability measure on X is (E,E0)-ergodic.

Proof. Suppose that µ is an E-ergodic non-(E,E0)-ergodic Borel
probability measure on X, and fix a µ-null-to-one Borel homomorphism
φ : X → 2N from E to E0. Then there exists c ∈ 2N with the property
that for all d ∈ ∼[c]E0 , every E-ergodic E-quasi-invariant Borel prob-
ability measure on φ−1([d]E0) is E-hyper-E , in which case Proposition
9.5 ensures that φ−1([d]E0) is E-measure-hyper-E . It then follows from
Proposition 9.7 that ∼φ−1([c]E0) is E-measure-hyper-E , so the fact that
φ−1([c]E0) is µ-null yields that E is µ-hyper-E .
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Remark 16.6. Remark 14.6 and Propositions 16.2 and 16.5 en-
sure that if E is the downward closure of a countable Borel equiva-
lence relation on a standard Borel space under smooth-to-one Borel
homomorphisms, and E is measure-minimal non-measure-hyper-E and
projectively-measure-hyper-E-separable, then there is no non-measure-
hyper-E countable Borel equivalence relation F on a standard Borel
space for which E × F is measure reducible to E × E0.

17. Bases

An external basis for a set Y ⊆ X under a quasi-order ≤ on X is a
set B ⊆ X such that ∀y ∈ Y ∃b ∈ B b ≤ y.

Question 17.1. Suppose that E is non-measure-hyper-E but pro-
jectively measure-hyper-E-separable, and F is the set of restrictions of
E to E-invariant non-E-measure-hyper-E Borel sets. Is there an exter-
nal basis for F under measure-hyper-E-to-one measure homomorphism
whose elements are measure-minimal non-measure-hyper-E?

Remark 17.2. Proposition 16.5 ensures that a positive answer to
the special case of Question 17.1 in which E is the family of smooth
countable Borel equivalence relations would yield a positive answer to
the corresponding special case of Question 14.3. It would also allow
one to drop the assumption that E is measure-minimal in Remark 16.6.

Theorem 17.3 (Conley-Miller). Suppose that E is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms, E is dichotomous,
X is a standard Borel space, E is a non-measure-hyper-E projectively-
measure-hyper-E-separable countable Borel equivalence relation on X,
the set M of non-E-hyper-E Borel probability measures on X is ana-
lytic, F is the set of restrictions of E to E-invariant non-E-measure-
hyper-E Borel sets, B is an external basis for F under measure-hyper-
E-to-one measure homomorphism consisting of non-measure-hyper-E
countable Borel equivalence relations on standard Borel spaces, and 2N

is not a union of B-many countable sets. Then E is a disjoint union of
countably-many measure-minimal non-measure-hyper-E countable Bor-
el equivalence relations on standard Borel spaces.

Proof. By Proposition 16.1, it is sufficient to show that M is a
union of countably-many measure-equivalence classes. Suppose, to-
wards a contradiction, that this is not the case. The perfect set the-
orem for co-analytic equivalence relations on Hausdorff spaces then
yields a non-empty perfect set P ⊆ M of pairwise-orthogonal mea-
sures. By Theorem 1.1, there exist a continuous injection π : 2N → P
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and a Kσ sequence (Kc)c∈2N of pairwise disjoint subsets of X such that
π(c)(Kc) = 1 for all c ∈ 2N. As E is projectively measure-hyper-E-
separable, it follows that for each F ∈ B, the set of c ∈ 2N for which
there is an F -measure-hyper-E-to-one π(c)-homomorphism from F to
E � Kc is countable, thus 2N is the union of B-many countable sets,
the desired contradiction.

Remark 17.4 (Conley-Miller). Under the stronger assumption that
B is a countable external basis for F under smooth-to-one measure
homomorphism, it is not difficult to see that the hypothesis that M is
analytic is superfluous, as Proposition 4.2 easily implies that the family
of smooth-to-one Borel homomorphisms is closed under composition.

Remark 17.5 (Conley-Miller). Even without the assumption that
M is analytic, if the union of ℵ1-many meager sets is always meager,
then we can still conclude that there is a basis for F under measure
embeddability consisting of (≤ ℵ1)-many minimal non-measure-hyper-
E countable Borel equivalence relations on standard Borel spaces under
measure reducibility. To see this, appeal to Proposition 9.3 to see that
M is co-analytic, and use the perfect set theorem for analytic equiva-
lence relations in place of that for co-analytic equivalence relations.

18. Antichains

We have essentially already seen one way of building antichains.

Theorem 18.1 (Conley-Miller). Suppose that E is the downward
closure of a countable Borel equivalence relation on a standard Borel
space under smooth-to-one Borel homomorphisms, E is dichotomous,
X is a standard Borel space, E is a non-measure-hyper-E projectively-
measure-hyper-E-separable countable Borel equivalence relation on X
that is not a disjoint union of countably-many measure-minimal non-
measure-hyper-E countable Borel equivalence relations on standard Bor-
el spaces, and the set M of non-E-hyper-E Borel probability measures
on X is analytic. Then there exist a continuous injection π : 2N → M
and a Kσ sequence (Kc)c∈2N of pairwise disjoint subsets of X such that
π(c)(Kc) = 1 for all c ∈ 2N and for no two distinct sequences c, d ∈ 2N is
there a measure-hyper-E-to-one π(c)-homomorphism from E to E � Kd.

Proof. By the proof of Theorem 17.3, we can assume that there
exist a continuous injection φ : 2N → M and a Kσ sequence (Kc)c∈2N

of pairwise disjoint subsets of X such that φ(c)(Kc) = 1 for all c ∈ 2N.
As E is projectively measure-hyper-E , the vertical sections of the set
(φ × φ)−1(�hyper-E

E,F ) are countable. As Proposition 9.9 ensures that
this set is analytic, and therefore meager, Mycielski’s theorem yields a
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continuous injection ψ : 2N → 2N such that for no two distinct sequences
c, d ∈ 2N is there a measure-hyper-E-to-one (φ ◦ ψ)(c)-homomorphism
from E to E � Kψ(d), thus φ ◦ ψ and (Kψ(c))c∈2N are as desired.

Remark 18.2. This reduces the problem of building antichains to
the case that E is measure-minimal non-measure-hyper-E . When E
is treeable, it is known that there is an increasing sequence (Er)r∈R
of measure-minimal non-measure-hyper-E subequivalence relations of
E that are pairwise incomparable under measure reducibility. How-
ever, the existence of antichains (within the treeable countable Borel
equivalence relations) under countable-to-one measure homomorphism
remains open.
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