The existence of invariant measures

Benjamin Miller Kurt Gödel Institute for Mathematical Logic Universität Wien

Winter Semester, 2017

Introduction

These are the notes accompanying a course on the existence of invariant measures at the Kurt Gödel Research Center for Mathematical Logic at the University of Vienna in Fall 2017. I am grateful to the head of the KGRC, Sy Friedman, for his encouragement, as well as to all of the participants.

Contents

Introduction	iii
Part I. Basic notions Quasi-invariance Invariance 	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$
Part II. The existence of invariant σ -finite measures	9
3. Lacunary sets	10
4. Smooth cocycles	11
5. A generalization of the \mathbb{E}_0 dichotomy	13
6. Invariant measures and smoothness	15
Part III. The existence of invariant probability measures	19
7. Compressibility	20
8. The existence of invariant probability measures	23
9. Coboundaries and invariant measures	28
10. Uniform ergodic decomposition	32
11. Generic compressibility	33
Index	35

Part I

Basic notions

1. Quasi-invariance

Suppose that X is a standard Borel space and E is a countable Borel equivalence relation on X. We say that a Borel measure μ on X is *E*-quasi-invariant if $\mu(B) > 0 \iff \mu(T(B)) > 0$ for all Borel sets $B \subseteq X$ and Borel automorphisms $T: X \to X$ whose graphs are contained in E.

PROPOSITION 1.1. Suppose that X is a standard Borel space, Γ is a countable group of Borel automorphisms of X, and μ is a Borel measure on X with the property that $\mu(B) > 0 \iff \mu(\gamma B) > 0$ for all Borel sets $B \subseteq X$ and $\gamma \in \Gamma$. Then $\mu(B) > 0 \iff \mu(T(B)) > 0$ for all Borel sets $B \subseteq X$ and Borel functions $T: B \to X$ whose graphs are contained in E_{Γ}^X .

ROOF. Set
$$B_{\gamma} = \{x \in B \mid T(x) = \gamma \cdot x\}$$
 for all $\gamma \in \Gamma$. Then
 $\mu(B) > 0 \iff \exists \gamma \in \Gamma \ \mu(B_{\gamma}) > 0$
 $\iff \exists \gamma \in \Gamma \ \mu(\gamma B_{\gamma}) > 0$
 $\iff \exists \gamma \in \Gamma \ \mu(T(B_{\gamma})) > 0$
 $\iff \mu(T(B)) > 0,$

which completes the proof.

Р

The following observations often allow one to reduce questions about Borel measures to the E-quasi-invariant case.

PROPOSITION 1.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and μ is a Borel measure on X. Then there is an E-quasi-invariant Borel measure ν on X such that $\mu \ll \nu$ and μ and ν agree on every E-invariant Borel set $B \subseteq X$.

PROOF. Fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of positive real numbers whose sum is one, appeal to the Feldman-Moore theorem to obtain a group $\Gamma = \{\gamma_n \mid n \in \mathbb{N}\}$ of Borel automorphisms of X whose induced orbit equivalence relation is E, and define $\nu = \sum_{n\in\mathbb{N}} \epsilon_n(\gamma_n)_*\mu$.

To see that ν is *E*-quasi-invariant, note that if $B \subseteq X$ is a Borel set and $\gamma \in \Gamma$, then

$$\nu(B) > 0 \iff \exists \delta \in \Gamma \ \mu(\delta B) > 0$$
$$\iff \exists \delta \in \Gamma \ \mu(\delta \gamma B) > 0$$
$$\iff \nu(\gamma B) > 0.$$

To see that $\mu \ll \nu$, note that if $B \subseteq X$ is Borel and $\mu(B) > 0$, then $((1_{\Gamma})_*\mu)(B) > 0$, so $\nu(B) > 0$.

 \boxtimes

2. INVARIANCE

To see that $\mu(B) = \nu(B)$ for all *E*-invariant Borel sets $B \subseteq X$, note that $B = \gamma^{-1}B$ for all $\gamma \in \Gamma$, so $\nu(B) = \sum_{n \in \mathbb{N}} \epsilon_n \mu(B) = \mu(B)$.

PROPOSITION 1.3 (Kechris-Miller). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and μ is a Borel probability measure on X. Then there is a μ -conull Borel set $B \subseteq X$ such that $\mu \upharpoonright B$ is $(E \upharpoonright B)$ -quasi-invariant.

PROOF. We can assume that X is a Polish space. Fix a basis $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ for X that is closed under finite unions, as well as a group $\Gamma = \{\gamma_n \mid n \in \mathbb{N}\}$ of Borel automorphisms of X whose induced orbit equivalence relation is E. Let S be the set of pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ for which there is a Borel set $B_{m,n} \subseteq U_n$ such that $\mu(B_{m,n}) > \mu(U_n)/2$ and $\mu(\gamma_m B_{m,n}) = 0$. Then the set $B = \sim \bigcup_{(m,n) \in S} \gamma_m B_{m,n}$ is μ -conull.

Suppose, towards a contradiction, that $\mu \upharpoonright B$ is not $(E \upharpoonright B)$ -quasiinvariant. Then there is a μ -positive Borel set $C \subseteq B$ and a Borel automorphism $T: B \to B$ such that T(C) is μ -null and graph $(T) \subseteq E$. Fix $m \in \mathbb{N}$ for which the set $D = \{x \in C \mid T(x) = \gamma_m \cdot x\}$ is μ positive. As Borel probability measures on Polish spaces are regular, there exists $n \in \mathbb{N}$ such that $\mu(D \cap U_n) > \mu(U_n)/2$. But then $(m, n) \in S$ and $B_{m,n} \cap D \neq \emptyset$, contradicting the fact that $\gamma_m D \subseteq B$.

REMARK 1.4. Proposition 1.3 trivially implies its strengthening in which the set B is moreover E-complete.

2. Invariance

Suppose that Γ is a group. A function $\rho: E \to \Gamma$ is a *cocycle* if $\rho(x, z) = \rho(x, y)\rho(y, z)$ whenever x E y E z.

One can think of a cocycle $\rho: E \to (0, \infty)$ as assigning a notion of relative size to each *E*-class *C*, with the ρ -size of a point $y \in C$ relative to a point $z \in C$ being $\rho(y, z)$. More generally, the ρ -size of a set $Y \subseteq C$ relative to *z* is given by $|Y|_z^{\rho} = \sum_{y \in Y} \rho(y, z)$. We say that *Y* is ρ -infinite if this quantity is infinite. As the definition of cocycle ensures that $|Y|_{z'}^{\rho} = \sum_{y \in Y} \rho(y, z') = \sum_{y \in Y} \rho(y, z)\rho(z, z') = |Y|_z^{\rho}\rho(z, z')$ for all $z' \in C$, it follows that the notion of being ρ -infinite does not depend on the choice of $z \in C$. It also follows that if $Z \subseteq C$ is non-empty, then $|Y|_x^{\rho}/|Z|_x^{\rho}$ does not depend on the choice of $x \in C$. We refer to this quantity as the ρ -size of *Y* relative to *Z*, which we denote by $|Y|_z^{\rho}$.

Given a Borel cocycle $\rho: E \to (0, \infty)$, we say that a Borel measure μ on X is ρ -invariant if

$$\mu(T(B)) = \int_B \rho(T(x), x) \ d\mu(x)$$

for all Borel sets $B \subseteq X$ and Borel automorphisms $T: X \to X$ whose graphs are contained in E. Intuitively, this says that the global notion of size given by μ is compatible with the local notion of size given by ρ . When ρ is constant, we say that μ is *E*-invariant.

PROPOSITION 2.1. Suppose that X is a standard Borel space, Γ is a countable group of Borel automorphisms of X, $\rho: E_{\Gamma}^X \to (0, \infty)$ is a Borel cocycle, and μ is a Borel measure on X with the property that $\mu(\gamma B) = \int_B \rho(\gamma \cdot x, x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and $\gamma \in \Gamma$. Then $\mu(T(B)) = \int_B \rho(T(x), x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel injections $T: B \to X$ whose graphs are contained in E_{Γ}^X .

PROOF. Fix an enumeration $(\gamma_n)_{n \in \mathbb{N}}$ of Γ , and recursively define $B_n = \{x \in B \setminus \bigcup_{m < n} B_m \mid T(x) = \gamma_n \cdot x\}$ for all $n \in \mathbb{N}$. Then

$$\mu(T(B)) = \sum_{n \in \mathbb{N}} \mu(T(B_n))$$

= $\sum_{n \in \mathbb{N}} \mu(\gamma_n B_n)$
= $\sum_{n \in \mathbb{N}} \int_{B_n} \rho(\gamma_n \cdot x, x) \ d\mu(x)$
= $\sum_{n \in \mathbb{N}} \int_{B_n} \rho(T(x), x) \ d\mu(x)$
= $\int_B \rho(T(x), x) \ d\mu(x),$

which completes the proof.

PROPOSITION 2.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure on X. Then

$$\mu(\phi^{-1}(B)) = \int_B |\phi^{-1}(\{x\})|_x^{\rho} d\mu(x)$$

for all Borel functions $\phi: X \to X$ whose graphs are contained in Eand Borel sets $B \subseteq X$.

PROOF. By the Lusin-Novikov uniformization theorem, there are Borel sets $B_n \subseteq B$ and Borel injections $T_n: B_n \to X$ with the property that $(\operatorname{graph}(T_n))_{n \in \mathbb{N}}$ partitions $\operatorname{graph}(\phi^{-1}) \cap (B \times X)$. Fix Borel extensions $T'_n: B \to X$ of T_n whose graphs are contained in E. Then

$$\begin{split} \int_{B} |\phi^{-1}(\{x\})|_{x}^{\rho} d\mu(x) &= \int_{B} \sum_{n \in \mathbb{N}} \chi_{B_{n}}(x) \rho(T_{n}'(x), x) d\mu(x) \\ &= \sum_{n \in \mathbb{N}} \int_{B_{n}} \rho(T_{n}(x), x) d\mu(x) \\ &= \sum_{n \in \mathbb{N}} \mu(T_{n}(B_{n})) \\ &= \mu(\phi^{-1}(B)), \end{split}$$

by Proposition 2.1.

 \boxtimes

$$\boxtimes$$

2. INVARIANCE

A similar change-of-variables argument yields a general formula for calculating an integral along a Borel transversal of a finite Borel subequivalence relation.

PROPOSITION 2.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure. Then

$$\int \phi \ d\mu = \int_A \sum_{y \in [x]_F} \phi(y) \rho(y, x) \ d\mu(x)$$

for all Borel functions $\phi: X \to [0, \infty)$, finite Borel subequivalence relations F of E, and Borel transversals $A \subseteq X$ of F.

PROOF. Fix Borel sets $A_n \subseteq A$, Borel injections $T_n: A_n \to X$ with the property that $(\operatorname{graph}(T_n))_{n \in \mathbb{N}}$ partitions $F \cap (A \times X)$, and Borel extensions $T'_n: A \to X$ of T_n whose graphs are contained in E. Then

$$\begin{split} \int \phi \ d\mu &= \sum_{n \in \mathbb{N}} \int_{T_n(A_n)} \phi \ d\mu \\ &= \sum_{n \in \mathbb{N}} \int_{A_n} \phi \circ T_n \ d((T_n^{-1})_*\mu) \\ &= \sum_{n \in \mathbb{N}} \int_{A_n} (\phi \circ T_n)(x) \rho(T_n(x), x) \ d\mu(x) \\ &= \int_A \sum_{n \in \mathbb{N}} \chi_{A_n}(x) (\phi \circ T'_n)(x) \rho(T'_n(x), x) \ d\mu(x) \\ &= \int_A \sum_{y \in [x]_F} \phi(y) \rho(y, x) \ d\mu(x), \end{split}$$

by Proposition 2.1.

In particular, this yields the following means of computing measures using finite Borel subequivalence relations.

PROPOSITION 2.4. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure. Then

$$\mu(B) = \int_A |B \cap [x]_F|_x^\rho \, d\mu(x)$$

for all Borel sets $B \subseteq X$, finite Borel subequivalence relations F of E, and Borel transversals $A \subseteq X$ of F.

PROOF. Simply observe that

$$\mu(B) = \int \chi_B \ d\mu$$

= $\int_A \sum_{y \in [x]_F} \chi_B(y) \rho(y, x) \ d\mu(x)$
= $\int_A |B \cap [x]_F|_x^{\rho} \ d\mu(x),$

by Proposition 2.3.

 \boxtimes

 \boxtimes

5

PROPOSITION 2.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure. Then

$$\mu(B) = \int |B \cap [x]_F|_{[x]_F}^{\rho} d\mu(x)$$

for all Borel $B \subseteq X$ and finite Borel subequivalence relations F of E.

PROOF. Fix a Borel transversal $A \subseteq X$ of F, and observe that

$$\begin{split} \int |B \cap [x]_F|_{[x]_F}^{\rho} \, d\mu(x) &= \int_A \sum_{y \in [x]_F} |B \cap [y]_F|_{[y]_F}^{\rho} \rho(y, x) \, d\mu(x) \\ &= \int_A |B \cap [x]_F|_{[x]_F}^{\rho} |[x]_F|_x^{\rho} \, d\mu(x) \\ &= \int_A |B \cap [x]_F|_x^{\rho} \, d\mu(x), \end{split}$$

by Proposition 2.3, in which case $\mu(B) = \int |B \cap [x]_F|_{[x]_F}^{\rho} d\mu(x)$ by Proposition 2.4.

We close this section by noting the connection between invariance and quasi-invariance.

PROPOSITION 2.6. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and μ is an E-quasiinvariant σ -finite Borel measure on X. Then there is a Borel cocycle $\rho: E \to (0, \infty)$ for which μ is ρ -invariant.

PROOF. Fix a countable group Γ of Borel automorphisms whose induced orbit equivalence relation is E. For each $\gamma \in \Gamma$, fix a Borel Radon-Nikodým derivative $\phi_{\gamma} \colon X \to (0, \infty)$ of $\gamma_* \mu$ with respect to μ .

LEMMA 2.7. Suppose that $\gamma, \delta \in \Gamma$. Then:

(1)
$$\gamma \cdot x = \delta \cdot x \Longrightarrow \phi_{\gamma^{-1}}(x) = \phi_{\delta^{-1}}(x)$$
 for μ -almost all $x \in X$.

(2) $\phi_{(\gamma\delta)^{-1}}(x) = \phi_{\gamma^{-1}}(\delta \cdot x)\phi_{\delta^{-1}}(x)$ for μ -almost all $x \in X$.

PROOF. To see (1), note that if $A = \{x \in X \mid \gamma \cdot x = \delta \cdot x\}$, then $(\gamma^{-1})_* \mu \upharpoonright A = (\delta^{-1})_* \mu \upharpoonright A$, so the almost everywhere uniqueness of Radon-Nikodým derivatives yields that $\phi_{\gamma^{-1}}(x) = \phi_{\delta^{-1}}(x)$ for $(\mu \upharpoonright A)$ -almost all $x \in A$. To see (2), note that if $B \subseteq X$ is Borel, then

$$\int_{B} \phi_{\gamma^{-1}}(\delta \cdot x) \phi_{\delta^{-1}}(x) \ d\mu(x) = \int_{B} \phi_{\gamma^{-1}}(\delta \cdot x) \ d((\delta^{-1})_{*}\mu)(x)$$
$$= \int_{\delta B} \phi_{\gamma^{-1}}(x) \ d\mu(x)$$
$$= ((\gamma^{-1})_{*}\mu)(\delta B)$$
$$= \mu(\gamma \delta B)$$
$$= (((\gamma \delta)^{-1})_{*}\mu)(B),$$

so the almost everywhere uniqueness of Radon-Nikodým derivatives ensures that $\phi_{(\gamma\delta)^{-1}}(x) = \phi_{\gamma^{-1}}(\delta \cdot x)\phi_{\delta^{-1}}(x)$ for μ -almost all $x \in X$.

2. INVARIANCE

As μ is *E*-quasi-invariant, Lemma 2.7 ensures that the *E*-invariant Borel set $C \subseteq X$ of $x \in X$ such that $\gamma \cdot y = \delta \cdot y \Longrightarrow \phi_{\gamma^{-1}}(y) = \phi_{\delta^{-1}}(y)$ and $\phi_{(\gamma\delta)^{-1}}(y) = \phi_{\gamma^{-1}}(\delta \cdot y)\phi_{\delta^{-1}}(y)$ for all $\gamma, \delta \in \Gamma$ and $y \in [x]_E$ is μ conull. The former condition ensures that we obtain a Borel function $\rho \colon E \upharpoonright C \to (0, \infty)$ by setting $\rho(x, y) = \phi_{\gamma^{-1}}(y)$ for all $\gamma \in \Gamma$ and $x, y \in$ *C* with the property that $x = \gamma \cdot y$. The latter condition implies that if $\gamma, \delta \in \Gamma$ and $x, y, z \in C$ have the property that $x = \gamma \cdot y$ and $y = \delta \cdot z$, then $\rho(x, z) = \phi_{(\gamma\delta)^{-1}}(z) = \phi_{\gamma^{-1}}(\delta \cdot z)\phi_{\delta^{-1}}(z) = \rho(x, y)\rho(y, z)$, thus ρ is a cocycle. As $\mu(\gamma B) = ((\gamma^{-1})_*\mu)(B) = \int_B \phi_{\gamma^{-1}} d\mu = \int_B \rho(\gamma \cdot x, x) d\mu(x)$ for all Borel sets $B \subseteq C$ and $\gamma \in \Gamma$, Proposition 2.1 ensures that $\mu \upharpoonright C$ is $(\rho \upharpoonright (E \upharpoonright C))$ -invariant, thus any extension of ρ to a Borel cocycle on *E* is as desired.

Part II

The existence of invariant σ -finite measures

3. Lacunary sets

Given a digraph G on X, we say that a set $Y \subseteq X$ is a G-clique if all pairs of distinct points of Y are G-related. Given a Borel cocycle $\rho: E \to \Gamma$ and a set $Z \subseteq \Gamma$, let G_Z^{ρ} denote the digraph on X with respect to which distinct points x and y are related if and only if they are E-equivalent and $\rho(x, y) \in Z$.

PROPOSITION 3.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, Γ is a topological group, $\rho: E \to \Gamma$ is a Borel cocycle, and $K \subseteq \Gamma$ is compact. If there is an open neighborhood $U \subseteq \Gamma$ of 1_{Γ} for which there is no infinite G_U^{ρ} -clique, then the vertical sections of G_K^{ρ} are finite.

PROOF. Fix a non-empty open set $V \subseteq \Gamma$ for which $V^{-1}V \subseteq U$, as well as a finite sequence $(\gamma_i)_{i < n}$ of elements of Γ with the property that $K \subseteq \bigcup_{i < n} \gamma_i V$. As $(G_K^{\rho})_x \subseteq \bigcup_{i < n} (G_{\gamma_i V}^{\rho})_x$ for all $x \in X$, we need only show that each $(G_{\gamma_i V}^{\rho})_x$ is a G_U^{ρ} -clique. But if i < n and $y, z \in (G_{\gamma_i V}^{\rho})_x$, then $\rho(y, z) = \rho(y, x)\rho(x, z) \in (\gamma_i V)^{-1}\gamma_i V = V^{-1}V \subseteq U$.

REMARK 3.2. As Borel digraphs on standard Borel spaces with finite vertical sections have Borel N-colorings, it follows that if there is an open neighborhood $U \subseteq \Gamma$ of 1_{Γ} for which there is a Borel N-coloring of G_U^{ρ} , then there is a Borel N-coloring of G_K^{ρ} .

PROPOSITION 3.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $G \subseteq E$ is a digraph.

- (1) If there is a Borel coloring $c: X \to \mathbb{N}$ of G, then there is an E-complete G-independent Borel set $B \subseteq X$.
- (2) If G is of the form G_U^{ρ} , where Γ is a separable topological group, $\rho \colon E \to \Gamma$ is a Borel cocycle, and $U \subseteq \Gamma$ is a pre-compact open neighborhood of 1_G , then the converse holds.

PROOF. To see (1), set $A_n = c^{-1}(\{n\})$ and $B_n = A_n \setminus \bigcup_{m < n} [A_m]_E$ for all $n \in \mathbb{N}$. As the Lusin-Novikov uniformization theorem ensures that the latter sets are Borel, it follows that their union is an *E*-complete G_U^{ρ} -independent Borel set.

To see (2), appeal to the Lusin-Novikov uniformization theorem to obtain Borel sets $B_n \subseteq B$ and Borel functions $\phi_n \colon B_n \to X$ such that $E \cap (B \times X) = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\phi_n)$. By breaking up the domains of the functions ϕ_n into countably-many Borel sets and re-indexing, we can assume the sets $K_n = \rho(\operatorname{graph}(\phi_n))$ are pre-compact. As Remark 3.2 yields Borel N-colorings of $G_{K_nUK_n}^{\rho} \cap (B \times B)$, and ϕ_n sends $G_{K_nUK_n}^{\rho}$ independent Borel sets to G_U^{ρ} -independent Borel sets, there is a Borel N-coloring of each $G_U^{\rho} \cap (\phi_n(B_n) \times \phi_n(B_n))$, and therefore of G_U^{ρ} . REMARK 3.4. It follows that if $U \subseteq \Gamma$ is a pre-compact open neighborhood of 1_{Γ} , then there is a Borel N-coloring of $G_U^{\rho} \upharpoonright \sim B$, where $B = \{x \in X \mid \forall y \in [x]_E \exists^{\infty} z \in [x]_E \ \rho(y, z) \in U\}.$

We say that a set $Y \subseteq X$ is ρ -lacunary if it is G_U^{ρ} -independent for some open neighborhood $U \subseteq \Gamma$ of 1_{Γ} .

PROPOSITION 3.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, Γ is a locally compact separable group, and $\rho: E \to \Gamma$ is a Borel cocycle. Then the following are equivalent:

- (1) The set X is a countable union of ρ -lacunary Borel sets.
- (2) For every pre-compact open neighborhood $U \subseteq \Gamma$ of 1_{Γ} there is a Borel \mathbb{N} -coloring of G_{U}^{ρ} .
- (3) There is an open neighborhood $U \subseteq \Gamma$ of 1_{Γ} for which there is a Borel \mathbb{N} -coloring of G_{U}^{ρ} .
- (4) There is an E-complete ρ -lacunary Borel set.

PROOF. To see $(1) \Longrightarrow (2)$, suppose that there are ρ -lacunary Borel sets $B_n \subseteq X$ such that $X = \bigcup_{n \in \mathbb{N}} B_n$, fix open neighborhoods $U_n \subseteq \Gamma$ of 1_{Γ} such that B_n is $G_{U_n}^{\rho}$ -independent for all $n \in \mathbb{N}$, and appeal to Remark 3.2 to obtain Borel N-colorings of the digraphs $G_U^{\rho} \cap (B_n \times B_n)$, and therefore of G_U^{ρ} .

As $(2) \implies (3) \implies (1)$ is trivial, it only remains to note that $(3) \iff (4)$ is a direct consequence of Proposition 3.3.

When Γ is locally compact and separable, we say that a Borel cocycle $\rho: E \to \Gamma$ is *smooth* if it satisfies the equivalent conditions of Proposition 3.5.

4. Smooth cocycles

When $\Gamma = (0, \infty)$, we say that an injection $T: X \to X$ is strictly ρ -increasing if its graph is contained in E and $\rho(T(x), x) > 1$ for all $x \in X$.

PROPOSITION 4.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a smooth Borel cocycle. Then there is an E-invariant Borel set $B \subseteq X$ for which $E \upharpoonright \sim B$ is smooth and there is a strictly $(\rho \upharpoonright (E \upharpoonright B))$ increasing Borel automorphism.

PROOF. Fix a partition $(B_n)_{n \in \mathbb{N}}$ of X into ρ -lacunary Borel sets, and let n(x) denote the unique natural number for which $x \in B_{n(x)}$. Let \leq be the partial order on X with respect to which $x \leq y$ if and only if $x \in y$, n(x) = n(y), and $\rho(x, y) \leq 1$, and let B be the set of $x \in X$ such that for all $n \in \mathbb{N}$, either $B_n \cap [x]_E = \emptyset$ or $\preceq \upharpoonright (B_n \cap [x]_E)$ is isomorphic to the usual ordering of \mathbb{Z} . Then the $(\preceq \upharpoonright B)$ -successor function is a strictly $(\rho \upharpoonright (E \upharpoonright B))$ -increasing Borel automorphism, and the discreteness of \preceq ensures that $E \upharpoonright \sim B$ is smooth.

The quotient of a cocycle $\rho: E \to (0, \infty)$ by a finite subequivalence relation F of E is the function $\rho/F: E/F \to (0, \infty)$ given by $(\rho/F)([x]_F, [y]_F) = |[x]_F|_{[y]_F}^{\rho}$.

PROPOSITION 4.2. Suppose that X is a set, E is an equivalence relation on X, F is a finite subequivalence relation of E, Γ is a group, and $\rho: E \to \Gamma$ is a cocycle. Then ρ/F is a cocycle.

PROOF. Simply observe that

$$(\rho/F)([x]_F, [z]_F) = |[x]_F|_w^{\rho}/|[z]_F|_w^{\rho}$$

= $(|[x]_F|_w^{\rho}/|[y]_F|_w^{\rho})(|[y]_F|_w^{\rho}/|[z]_F|_w^{\rho})$
= $(\rho/F)([x]_F, [y]_F)(\rho/F)([y]_F, [z]_F)$

whenever w E x E y E z.

PROPOSITION 4.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and F is a finite Borel subequivalence relation of E. Then ρ is smooth if and only if ρ/F is smooth.

PROOF. Proposition 4.2 ensures that if $x \in y \in z$, then

$$\rho(x, y) = \rho(x, z)\rho(z, y)
= \rho(x, z)/\rho(y, z)
= |\{x\}|_{\{y\}}^{\rho}
= |\{x\}|_{[x]_{F}}^{\rho} |[x]_{F}|_{[y]_{F}}^{\rho} |[y]_{F}|_{\{y\}}^{\rho},$$

so $\rho(x,y)/(\rho/F)([x]_F,[y]_F) = |\{x\}|_{[x]_F}^{\rho}|[y]_F|_{\{y\}}^{\rho}$.

By partitioning X into countably-many \hat{F} -invariant Borel sets, we can assume that there is a real number r > 1 such that $|[x]_F|_x^{\rho} < r$ for all $x \in X$. Then $1/r < |\{x\}|_{[x]_F}^{\rho}|[y]_F|_{\{y\}}^{\rho} < r$ for all $x, y \in X$, so $1/r < \rho(x, y)/(\rho/F)([x]_F, [y]_F) < r$ whenever $x \in y$.

One consequence is that if $Y \subseteq X$ and the quotient $[Y]_F/F$ is $G^{\rho/F}_{(1/r,r)}$ -dependent, then Y is $G^{\rho}_{(1/r^2,r^2)}$ -dependent, so the smoothness of ρ yields that of ρ/F .

Another consequence is that if $Y \subseteq X$ is both *F*-invariant and $(G^{\rho}_{(1/r,r)} \setminus F)$ -dependent, then the quotient Y/F is $G^{\rho/F}_{(1/r^2,r^2)}$ -dependent.

 \boxtimes

As locally finite Borel graphs on standard Borel spaces have Borel \mathbb{N} colorings, the smoothness of ρ/F therefore yields that of ρ .

We say that a cocycle $\rho: E \to (0, \infty)$ is *aperiodic* if every *E*-class is ρ -infinite.

PROPOSITION 4.4. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is an aperiodic smooth Borel cocycle. Then there is a finite Borel subequivalence relation F of E for which there is a strictly (ρ/F) -increasing Borel injection.

PROOF. By Proposition 4.1, we can assume that E is smooth. As the aperiodicity of ρ yields that of E, there is a partition $(B_n)_{n\in\mathbb{N}}$ of Xinto Borel transversals of E. For each $x \in X$, let n(x) be the unique natural number for which $x \in B_{n(x)}$, set $n_0(x) = 0$, recursively define $n_{i+1}(x)$ to be the least natural number with the property that the ρ size of $\{y \in [x]_E \mid n(y) \le n_{i+1}(x)\}$ relative to $\{y \in [x]_E \mid n(y) \le n_i(x)\}$ is strictly greater than two, and let i(x) be the least natural number for which $n(x) \le n_{i(x)}(x)$. Let F be the subequivalence relation of Egiven by $x \ F \ y \iff (x \ E \ y \ and \ i(x) = i(y))$, and observe that the Borel injection obtained by sending $[x]_F$ to $[y]_F$ if and only if $(x \ E \ y$ and i(x) = i(y) - 1 is strictly (ρ/F) -increasing.

5. A generalization of the \mathbb{E}_0 dichotomy

Given an open neighborhood $U \subseteq \Gamma$ of 1_{Γ} , a *U*-Lipschitz embedding of a cocycle $\sigma: E \to \Gamma$ into a cocycle $\rho: F \to \Gamma$ is an embedding $\pi: X \to Y$ of *E* into *F* such that $\rho(\pi(w), \pi(x)) \in U \cdot \sigma(w, x)$ whenever w E x. Let ρ_0 denote the constant cocycle on \mathbb{E}_0 .

THEOREM 5.1 (Glimm-Effros, Shelah-Weiss, Weiss, Jackson-Kechris-Louveau, Miller). Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, Γ is a locally-compact second-countable group, $\rho: E \to \Gamma$ is a Borel cocycle, and $U \subseteq \Gamma$ is an open neighborhood of 1_{Γ} . Then at least one of the following holds:

(1) The cocycle ρ is smooth.

(2) There is a continuous U-Lipschitz embedding of p_0 into ρ . Moreover, if U is pre-compact, then exactly one of these holds.

PROOF. To see that conditions (1) and (2) are mutually exclusive when U is pre-compact, note that if ρ is smooth, then there is a sequence $(B_n)_{n\in\mathbb{N}}$ of G_U^{ρ} -independent Borel sets with the property that $X = \bigcup_{n\in\mathbb{N}} B_n$. But if $\pi: 2^{\mathbb{N}} \to X$ is a Borel U-Lipschitz embedding of ρ_0 into ρ , then $(\pi^{-1}(B_n))_{n\in\mathbb{N}}$ is a sequence of Borel partial transversals of \mathbb{E}_0 with the property that $2^{\mathbb{N}} = \bigcup_{n \in \mathbb{N}} \pi^{-1}(B_n)$, contradicting the fact that \mathbb{E}_0 is not smooth.

It remains to show that if condition (1) fails, then condition (2) holds. Towards this end, fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of positive real numbers converging to zero. Set $U_0 = U$, and fix pre-compact open neighborhoods $U_{n+1} \subseteq \Gamma$ of 1_{Γ} such that $U_{n+1}^2 U_{n+1}^{-1} \subseteq U_n$ for all $n \in \mathbb{N}$. A simple induction shows that $(\prod_{m\leq n} U_{m+1})U_{n+1}(\prod_{m\leq n} U_{m+1})^{-1} \subseteq U$ for all $n \in \mathbb{N}$. Fix a countable group Δ of Borel automorphisms of X whose orbit equivalence relation is E, and an increasing sequence $(\Delta_n)_{n\in\mathbb{N}}$ of finite sets containing 1_{Δ} whose union is Δ . By change of topology results, we can assume that Δ acts on X by homeomorphisms, and that for all $\delta \in \Delta$, the function $\rho_{\delta} \colon X \to \Gamma$ given by $\rho_{\delta}(x) = \rho(\delta \cdot x, x)$ is continuous. Fix a compatible complete metric on X.

We will construct open sets $V_n \subseteq X$ and group elements $\delta_n \in \Delta$, from which we define $\delta^s = \prod_{n < |s|} \delta_n^{s(n)}$ for all $s \in 2^{<\mathbb{N}}$, so as to ensure that the following conditions hold:

- (a) $\forall n \in \mathbb{N} \ \rho \upharpoonright (E \upharpoonright V_n)$ is non-smooth.
- (b) $\forall n \in \mathbb{N} \ V_{n+1} \subseteq \rho_{\delta_n}^{-1}(U_{n+1}).$
- (c) $\forall n \in \mathbb{N} \ \overline{V_{n+1}} \cup \delta_n \overline{V_{n+1}} \subseteq V_n.$
- $(d) \quad \forall n \in \mathbb{N} \forall \delta \in \Delta_n \forall s, t \in \overline{2^n} \ \delta \delta^s V_{n+1} \cap \delta^t \delta_n V_{n+1} = \emptyset.$
- (e) $\forall n \in \mathbb{N} \forall s \in 2^{n+1} \operatorname{diam}(\delta^s V_{n+1}) \leq \epsilon_n$.

We begin by setting $V_0 = X$. Suppose now that $n \in \mathbb{N}$ and we have already found V_n and $(\delta_i)_{i < n}$. For each $\delta \in \Delta$, let $V_{n,\delta}$ be the set of $x \in V_n \cap \delta^{-1}V_n \cap \rho_{\delta}^{-1}(U_{n+1})$ such that $\forall \delta' \in \Delta_n \forall s, t \in 2^n \, \delta' \delta^s \cdot x \neq \delta^t \delta \cdot x$. As the horizontal sections of $G_{U_{n+1}}^{\rho} \cap ((V_n \setminus \bigcup_{\delta \in \Delta} V_{n,\delta}) \times (V_n \setminus \bigcup_{\delta \in \Delta} V_{n,\delta}))$ have size at most $4^n |\Delta_n|$, it follows that there is a Borel N-coloring of $G_{U_{n+1}}^{\rho} \cap ((V_n \setminus \bigcup_{\delta \in \Delta} V_{n,\delta}) \times (V_n \setminus \bigcup_{\delta \in \Delta} V_{n,\delta}))$, so ρ is smooth on $E \upharpoonright (V_n \setminus \bigcup_{\delta \in \Delta} V_{n,\delta})$, thus there exists $\delta_n \in \Delta$ for which $\rho \upharpoonright (E \upharpoonright V_{n,\delta_n})$ is non-smooth. As V_{n,δ_n} is the union of a countable set \mathcal{V}_{n+1} of open sets $V \subseteq X$ satisfying the analogs of conditions (c), (d), and (e) with V in place of V_{n+1} , there exists $V_{n+1} \in \mathcal{V}_{n+1}$ satisfying conditions (a) – (e). This completes the recursive construction.

Note that if $c \in 2^{\mathbb{N}}$, then $\delta^{c \upharpoonright (n+1)} \overline{V_{n+1}} \subseteq \delta^{c \upharpoonright n} (\overline{V_{n+1}} \cup \delta_n \overline{V_{n+1}}) \subseteq \delta^{c \upharpoonright n} V_n$ for all $n \in \mathbb{N}$ by condition (c), and diam $(\delta^{c \upharpoonright n} V_n) \to 0$ by condition (e), so we obtain a continuous function $\pi \colon 2^{\mathbb{N}} \to X$ by letting $\pi(c)$ be the unique element of $\bigcap_{n \in \mathbb{N}} \delta^{c \upharpoonright n} V_n$, for all $c \in 2^{\mathbb{N}}$. Observe now that if $c \in 2^{\mathbb{N}}$, $k \in \mathbb{N}$, and $s \in 2^k$, then

$$\{\delta^s \cdot \pi((0)^k \frown c)\} = \delta^s \cdot \bigcap_{n \ge k} \delta^{((0)^k \frown c) \upharpoonright n} V_n$$
$$= \bigcap_{n \ge k} \delta^{(s \frown c) \upharpoonright n} V_n$$
$$= \{\pi(s \frown c)\},$$

in which case $\rho(\pi(s \frown c), \pi((0)^k \frown c))$ can be expressed as

$$\prod_{i < k} \rho((\prod_{i \le j < k} \delta_j^{s(j)}) \cdot \pi((0)^k \frown c), (\prod_{i < j < k} \delta_j^{s(j)}) \cdot \pi((0)^k \frown c)),$$

and is therefore in $\prod_{i < k} U_{i+1}$ by k applications of condition (b), so $\rho(\pi(s \frown c), \pi(t \frown c)) \in (\prod_{i < k} U_{i+1})(\prod_{i < k} U_{i+1})^{-1}$ for all $c \in 2^{\mathbb{N}}$, $k \in \mathbb{N}$, and $s, t \in 2^k$, thus $c \mathbb{E}_0 d \Longrightarrow (\pi(c) E \pi(d) \text{ and } \rho(\pi(c), \pi(d)) \in U)$.

But if $c, d \in 2^{\mathbb{N}}$, $n \in \mathbb{N}$, and c(n) < d(n), then $\pi(c) \in \delta^{c \restriction n} V_{n+1}$ and $\pi(d) \in \delta^{d \restriction n} \delta_n V_{n+1}$, so condition (d) yields that $\forall \delta \in \Delta_n \ \delta \cdot \pi(c) \neq \pi(d)$, thus $c \neq d \Longrightarrow \pi(c) \neq \pi(d)$ and $\neg c \mathbb{E}_0 \ d \Longrightarrow \neg \pi(c) \ E \ \pi(d)$.

6. Invariant measures and smoothness

We say that a Borel cocycle $\rho: E \to \Gamma$ is a *Borel coboundary* if there is a Borel function $\phi: X \to \Gamma$ such that $\rho(x, y) = \phi(x)\phi(y)^{-1}$ for all $(x, y) \in E$. When Γ is locally compact, we say that a set $Y \subseteq X$ is ρ -bounded if it is $G^{\rho}_{\sim U}$ -independent for some pre-compact open neighborhood $U \subseteq \Gamma$ of 1_{Γ} .

PROPOSITION 6.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, Γ is a locally-compact separable group, $\rho: E \to \Gamma$ is a Borel cocycle, and $U \subseteq \Gamma$ is an open neighborhood of 1_{Γ} .

- (1) If ρ is a Borel coboundary, then there is an E-complete $G^{\rho}_{\sim U}$ independent Borel set $B \subseteq X$.
- (2) If $\Gamma = (0, \infty)$ and U is pre-compact, then the converse holds.

PROOF. To see (1), suppose that $\phi: X \to \Gamma$ is a Borel function with the property that $\rho(x, y) = \phi(x)\phi(y)^{-1}$ for all $(x, y) \in E$. Fix an enumeration $(\gamma_n)_{n \in \mathbb{N}}$ of a dense subset of Γ , as well as an open set $V \subseteq \Gamma$ for which $VV^{-1} \subseteq U$, and let n(x) be the least natural number for which $\phi([x]_E) \cap V\gamma_{n(x)} \neq \emptyset$. Then the set $B = \{x \in X \mid \phi(x) \in V\gamma_{n(x)}\}$ is *E*-complete and $G^{\rho}_{\sim U}$ -independent.

To see (2), suppose that $B \subseteq X$ is an *E*-complete ρ -bounded Borel set, define $\phi: X \to (0, \infty)$ by $\phi(x) = \sup\{\rho(x, y) \mid y \in B \cap \phi([x]_E)\}$. Given $x \in y$, fix a sequence $(z_n)_{n \in \mathbb{N}}$ of points of $[x]_E$ with the property that $\phi(x) = \lim_{n \to \infty} \rho(x, z_n)$ and $\phi(y) = \lim_{n \to \infty} \rho(y, z_n)$, and note that

$$\rho(x, y) = \lim_{n \to \infty} \rho(x, z_n) \rho(z_n, y)$$

=
$$\lim_{n \to \infty} \rho(x, z_n) / \lim_{n \to \infty} \rho(y, z_n)$$

=
$$\phi(x) / \phi(y),$$

by continuity.

We say that Borel cocycles $\rho: E \to \Gamma$ and $\sigma: E \to \Gamma$ are Borel cohomologous if there is a Borel function $\phi: X \to \Gamma$ with the property that $\rho(x, y) = \phi(x)\sigma(x, y)\phi^{-1}(y)$ whenever $x \in y$.

PROPOSITION 6.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\phi: X \to (0, \infty)$ is a Borel function witnessing that Borel cocycles $\rho, \sigma: E \to (0, \infty)$ are Borel cohomologous. Then for every σ -invariant Borel measure μ , the corresponding Borel measure ν , given by $\nu(B) = \int_B \phi \ d\mu$ for all Borel sets $B \subseteq X$, is ρ -invariant.

PROOF. Observe that if $B \subseteq X$ is a Borel set and $T: X \to X$ is a Borel automorphism whose graph is contained in E, then

$$\begin{split} \nu(T(B)) &= \int_{T(B)} \phi \ d\mu \\ &= \int_B \phi \circ T \ d((T^{-1})_*\mu) \\ &= \int_B (\phi \circ T)(x) \sigma(T(x), x) \ d\mu(x) \\ &= \int_B \rho(T(x), x) \phi(x) \ d\mu(x) \\ &= \int_B \rho(T(x), x) \ d\nu(x), \end{split}$$

by σ -invariance.

PROPOSITION 6.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a smooth Borel cocycle, and μ is a ρ -invariant σ -finite Borel measure on X. Then there is a μ -conull Borel set on which E is smooth.

PROOF. By breaking X into countably-many Borel sets, we can assume that μ is finite. By Proposition 4.1, there is an *E*-invariant Borel set $B \subseteq X$ for which $E \upharpoonright \sim B$ is smooth and there is a strictly $(\rho \upharpoonright (E \upharpoonright B))$ -increasing Borel automorphism $T: B \to B$. But then $\mu(B) = \mu(T(B)) = \int_B \rho(T(x), x) \ d\mu(x)$, thus $\mu(B) = 0$.

PROPOSITION 6.4. Suppose that X is a non-empty standard Borel space, E is a smooth Borel equivalence relation on X, and μ is an E-ergodic Borel measure. Then there is a μ -conull E-class.

16

 \boxtimes

 \boxtimes

PROOF. We can clearly assume, without loss of generality, that μ is non-zero. Fix a Borel reduction $\pi: X \to 2^{\mathbb{N}}$ of E to equality, define $d \in 2^{\mathbb{N}}$ by $d(n) = i \iff \{c \in 2^{\mathbb{N}} \mid c(n) = i\}$ is $(\pi_*\mu)$ -conull, and observe that $\pi^{-1}(\{d\})$ is a μ -conull E-class.

THEOREM 6.5 (Glimm-Effros, Shelah-Weiss, Weiss, Miller). Suppose that X is a non-empty standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then the following are equivalent:

- (1) The cocycle ρ is smooth.
- (2) Every ρ -invariant σ -finite Borel measure concentrates on a Borel set on which E is smooth.
- (3) Every E-ergodic ρ -invariant σ -finite Borel measure concentrates on an E-class.

PROOF. Proposition 6.3 yields $(1) \Longrightarrow (2)$, while Proposition 6.4 yields $(2) \Longrightarrow (3)$. To see $\neg(1) \Longrightarrow \neg(3)$, fix a pre-compact open neighborhood $U \subseteq (0, \infty)$ of 1, and appeal to Theorem 5.1 to obtain a continuous U-Lipschitz embedding $\pi: 2^{\mathbb{N}} \to X$ of ρ_0 into ρ . Define $\mu_0 = \pi_* \mu_0$ and $B = \pi(2^{\mathbb{N}})$. The fact that μ_0 is continuous, \mathbb{E}_0 -ergodic, and \mathbb{E}_0 -invariant ensures that $\mu_0 \upharpoonright B$ is continuous, $(E \upharpoonright B)$ -ergodic, and $(E \upharpoonright B)$ -invariant.

LEMMA 6.6. There are Borel sets $B_n \subseteq B$ and Borel injections $T_n: B_n \to X$, whose graphs are contained in E, with the property that $(T_n(B_n))_{n\in\mathbb{N}}$ partitions $[B]_E$.

PROOF. Fix a group $\Gamma = \{\gamma_n \mid n \in \mathbb{N}\}$ of Borel automorphisms for which $E = E_{\Gamma}^X$. For each $x \in [B]_E$, let n(x) be the least natural number such that $\gamma_{n(x)} \cdot x \in B$. Set $A_n = \{x \in [B]_E \mid n(x) = n\}, B_n = \gamma_n A_n$, and $T_n = \gamma_n^{-1} \upharpoonright B_n$ for all $n \in \mathbb{N}$.

Define $\mu = \sum_{n \in \mathbb{N}} (T_n)_* (\mu_0 \upharpoonright B_n).$

LEMMA 6.7. The measure μ is E-invariant.

PROOF. Suppose that $T: X \to X$ is a Borel automorphism whose graph is contained in E, and $A \subseteq X$ is Borel. For all $m, n \in \mathbb{N}$, define $A_{m,n} = A \cap T_m(B_m) \cap (T^{-1} \circ T_n)(B_n)$, as well as $A'_{m,n} = T_m^{-1}(A_{m,n})$ and $A''_{m,n} = (T_n^{-1} \circ T)(A_{m,n})$, and observe that $(T_n^{-1} \circ T \circ T_m)(A'_{m,n}) = A''_{m,n}$, so $\mu(A_{m,n}) = \mu_0(A'_{m,n}) = \mu_0(A''_{m,n}) = \mu(T(A_{m,n}))$. It follows that $\mu(A) = \sum_{m,n \in \mathbb{N}} \mu(A_{m,n}) = \sum_{m,n \in \mathbb{N}} \mu(T(A_{m,n})) = \mu(T(A))$.

As B is ρ -bounded, Proposition 6.1 ensures that $\rho \upharpoonright (E \upharpoonright [B]_E)$ is a Borel coboundary, so Proposition 6.2 implies that μ is equivalent to a ρ -invariant σ -finite Borel measure ν . As $\mu_0 \upharpoonright B$ is continuous and $(E \upharpoonright B)$ -ergodic, it follows that μ is continuous and E-ergodic, thus the same holds of ν .

18

Part III

The existence of invariant probability measures

7. Compressibility

We say that a function $\phi: X \to X$ whose graph is contained in Eis ρ -increasing at a finite set $S \subseteq [x]_E$ if $|\phi^{-1}(S)|_x^{\rho} \leq |S|_x^{\rho}$, and strictly ρ -increasing at a finite set $S \subseteq [x]_E$ if $|\phi^{-1}(S)|_x^{\rho} < |S|_x^{\rho}$. A compression of ρ over a subequivalence relation F of E is a function $\phi: X \to X$, whose graph is contained in E, that is ρ -increasing at every F-class, and for which the set of F-classes at which it is strictly ρ -increasing is (E/F)-complete.

PROPOSITION 7.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and there is a Borel compression $\phi: X \to X$ of ρ over a finite Borel subequivalence relation F of E. Then there is no ρ -invariant Borel probability measure.

PROOF. Proposition 2.2 ensures that $\mu(X) = \int |\phi^{-1}(\{x\})|_x^{\rho} d\mu(x)$. Fix a Borel transversal $A \subseteq X$ of F. Proposition 2.3 then implies that

$$\begin{split} \int |\phi^{-1}(\{x\})|_x^{\rho} \, d\mu(x) &= \int_A \sum_{y \in [x]_F} |\phi^{-1}(\{y\})|_y^{\rho} \rho(y, x) \, d\mu(x) \\ &= \int_A \sum_{y \in [x]_F} |\phi^{-1}(\{y\})|_x^{\rho} \, d\mu(x) \\ &= \int_A |\phi^{-1}([x]_F)|_x^{\rho} \, d\mu(x), \end{split}$$

so $\mu(X) = \int_A |[x]_F|_x^{\rho} d\mu(x) = \int_A |\phi^{-1}([x]_F)|_x^{\rho} d\mu(x)$ by Proposition 2.4. As the set $B = \{x \in A \mid |\phi^{-1}([x]_F)|_x^{\rho} < |[x]_F|_x^{\rho}\}$ is *E*-complete, it

As the set $B = \{x \in A \mid |\phi^{-1}([x]_F)|_x^{\rho} < |[x]_F|_x^{\rho}\}$ is *E*-complete, it follows that if $\mu(X) > 0$, then $\mu(B) > 0$. As $|\phi^{-1}([x]_F)|_x^{\rho} \leq |[x]_F|_x^{\rho}$ for all $x \in A$, it follows that if $\mu(B) > 0$, then $\mu(X) = \infty$.

A compression of ρ is a compression of ρ over equality.

PROPOSITION 7.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and F is a finite Borel subequivalence relation of E for which there is a Borel compression $\phi: X/F \to X/F$ of ρ/F . Then there is a Borel compression of ρ over F.

PROOF. By the Lusin-Novikov uniformization theorem, there is a Borel uniformization $\psi: X \to X$ of $\{(x, y) \in E \mid \phi([x]_F) = [y]_F\}$. But every uniformization of this set is a compression of ρ over F.

A compression of E is a compression of the constant cocycle on E, or equivalently, a Borel injection $\phi: X \to X$, whose graph is contained in E, such that $\sim \phi(X)$ is E-complete.

PROPOSITION 7.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and there is a Borel

compression $\phi: X \to X$ of the constant cocycle on E over a finite Borel subequivalence relation F of E. Then there is a Borel compression of E.

PROOF. By the Lusin-Novikov uniformization theorem, there is an injective Borel uniformization $\psi: X \to X$ of $\{(x, y) \in E \mid \phi(x) \mid F \mid y\}$. But every injective uniformization of this set is a compression of E.

We next consider the connection between injective compressions and smoothness.

PROPOSITION 7.4 (Dougherty-Jackson-Kechris, Miller). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then the following are equivalent:

- (1) There is an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.
- (2) There is a Borel subequivalence relation of E on which ρ is aperiodic and smooth.

PROOF. By Proposition 4.4, it is sufficient to show $(1) \Longrightarrow (2)$. By Proposition 4.3, we can assume that there is an injective Borel compression $\phi: X \to X$ of ρ . Set $A = \{x \in X \mid |\phi^{-1}(\{x\})|_x^{\rho} < 1\}$, and let F be the orbit equivalence relation generated by ϕ . As the sets $A_r = \{x \in X \mid |\phi^{-1}(\{x\})|_x^{\rho} < r\}$ are $(\rho \upharpoonright F)$ -lacunary for all r < 1, it follows that $\rho \upharpoonright (F \upharpoonright A)$ is smooth, thus $\rho \upharpoonright (F \upharpoonright [A]_F)$ is aperiodic and smooth. By the Lusin-Novikov uniformization theorem, there is a Borel extension $\psi: X \to [A]_F$ of the identity function on $[A]_F$ whose graph is contained in E, in which case the restriction of ρ to the pullback of $F \upharpoonright [A]_F$ through ψ is aperiodic and smooth.

We will eventually establish Nadkarni's theorem that the existence of a Borel compression of a countable Borel equivalence relation E is equivalent to the inexistence of an E-invariant Borel probability measure. The following observations rule out the most straightforward generalizations to Borel cocycles.

PROPOSITION 7.5. Suppose that X is a standard Borel space and E is an aperiodic smooth countable Borel equivalence relation on X. Then there is a Borel cocycle $\rho: E \to (0, \infty)$ that admits neither an invariant Borel probability measure nor a compression.

PROOF. Fix a strictly decreasing sequence $(r_n)_{n\in\mathbb{N}}$ of positive real numbers for which $\sum_{n\in\mathbb{N}} r_n = \infty$. As E is both aperiodic and smooth, there is a partition $(B_n)_{n\in\mathbb{N}}$ of X into Borel transversals of E. For each $x \in X$, let n(x) denote the unique natural number for which $x \in B_{n(x)}$, and define $\rho: E \to (0, \infty)$ by $\rho(x, y) = r_{n(x)}/r_{n(y)}$ for all $(x, y) \in E$.

The fact that $\sum_{n \in \mathbb{N}} r_n = \infty$ ensures that ρ is aperiodic, and the smoothness of E implies that of ρ . Proposition 7.4 therefore yields a Borel compression of the quotient of ρ by a finite Borel subequivalence relation, so Proposition 7.2 ensures that there is a Borel compression of ρ over a finite Borel subequivalence relation, thus Proposition 7.1 implies that there is no ρ -invariant Borel probability measure.

To see that there is no compression of ρ , note that if the graph of a function $\phi: X \to X$ is contained in E and $|\phi^{-1}(\{x\})|_x^{\rho} \leq 1$ for all $x \in X$, then a straightforward induction on n(x), using the fact that $(r_n)_{n\in\mathbb{N}}$ is strictly decreasing, shows that $\phi(x) = x$ for all $x \in X$.

PROPOSITION 7.6. Suppose that X is a standard Borel space and E is an aperiodic countable Borel equivalence relation on X for which there is an E-invariant Borel probability measure. Then there is a Borel coboundary $\rho: E \to (0, \infty)$ that admits neither an invariant Borel probability measure nor an injective Borel compression of its quotient by a finite Borel subequivalence relation of E.

PROOF. Set $A_0 = B_0 = X$, and given $n \in \mathbb{N}$ and an *E*-complete Borel set $B_n \subseteq X$ on which *E* is aperiodic, fix a Borel subequivalence relation F_n of $E \upharpoonright B_n$ whose classes are all of cardinality two (prove that this can be done!), as well as disjoint Borel transversals $A_{n+1}, B_{n+1} \subseteq$ B_n of F_n , and let $\iota_n \colon B_n \to B_n$ be the involution whose graph is F_n . For all $x \in X$, let n(x) be the maximal natural number for which $x \in A_{n(x)}$, and define $\rho \colon E \to (0, \infty)$ by $\rho(x, y) = 2^{n(x)-n(y)}$ for all $(x, y) \in E$.

To see that there is no ρ -invariant Borel probability measure, note that if μ is a ρ -invariant Borel measure, then the observation that $A_{n+1} = \iota_n(B_{n+1}) = \iota_n(A_{n+2}) \sqcup \iota_n(B_{n+2}) = \iota_n(A_{n+2}) \sqcup (\iota_n \circ \iota_{n+1})(A_{n+2})$ yields $\mu(A_{n+1}) = \int_{A_{n+2}} \rho(\iota_n(x), x) + \rho((\iota_n \circ \iota_{n+1})(x), x) d\mu(x) = \mu(A_{n+2})$ for all $n \in \mathbb{N}$, thus $\mu(X) \in \{0, \infty\}$.

Suppose, towards a contradiction, that there is an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E. Proposition 7.4 then ensures that there is a Borel subequivalence relation F of E on which ρ is aperiodic and smooth, in which case Proposition 4.1 yields an F-invariant Borel set $A \subseteq X$ such that $F \upharpoonright \sim A$ is smooth and there is a strictly $(\rho \upharpoonright (F \upharpoonright A))$ -increasing Borel automorphism $T: A \to A$. Fix an E-invariant Borel probability measure μ .

As the aperiodicity of $\rho \upharpoonright F$ yields that of F, Proposition 7.4 ensures that there is a Borel compression of the quotient of $F \upharpoonright \sim A$ by a finite Borel subequivalence relation, so Proposition 7.2 implies that there is a

22

23

Borel compression of $F \upharpoonright \sim A$ over a finite Borel subequivalence relation, thus $\mu(\sim A) = 0$ by Proposition 7.1.

Observe now that the facts that $A_0 = A_1 \sqcup B_1 = A_1 \sqcup \iota_0(A_1)$ and $A_{n+1} = \iota_n(B_{n+1}) = \iota_n(A_{n+2}) \sqcup \iota_n(B_{n+2}) = \iota_n(A_{n+2}) \sqcup (\iota_n \circ \iota_{n+1})(A_{n+2})$ ensure that $\mu(A_n) = 2\mu(A_{n+1})$ for all $n \in \mathbb{N}$, so $\mu(\bigcup_{n \in \mathbb{N}} A_{n+1}) = 1$, whereas $\mu(\bigcup_{n \in \mathbb{N}} A_{n+2}) = 1/2$. But the definition of ρ ensures that $T(A \cap \bigcup_{n \in \mathbb{N}} A_{n+1}) \subseteq \bigcup_{n \in \mathbb{N}} A_{n+2}$, contradicting *F*-invariance.

8. The existence of invariant probability measures

Given a finite set $S \subseteq X$ for which $S \times S \subseteq E$, let μ_S^{ρ} be the Borel probability measure on X given by $\mu_S^{\rho}(B) = |B \cap S|_S^{\rho}$.

PROPOSITION 8.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, $\phi: X \to [0, \infty)$ is Borel, $\delta > 0$, and $\epsilon > \sup_{(x,y)\in E} \phi(x) - \phi(y)$. Then there exist an E-invariant Borel set $B \subseteq X$ and a finite Borel subequivalence relation F of $E \upharpoonright B$ for which $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth and $\delta \epsilon > \sup_{(x,y)\in E \upharpoonright B} \int \phi \ d\mu_{[x]_F}^{\rho} - \int \phi \ d\mu_{[y]_F}^{\rho}$.

PROOF. By repeatedly applying the corresponding special case of the proposition over the corresponding quotients, we can assume that $\delta > 2/3$. For each $x \in X$, let $\overline{\phi}([x]_E)$ be the average of $\inf \phi([x]_E)$ and $\sup \phi([x]_E)$. Fix a maximal Borel set S of pairwise disjoint nonempty finite sets $S \subseteq X$ with the property that $S \times S \subseteq E$ and $\epsilon(\delta-1/2) > |\int \phi d\mu_S^{\rho} - \overline{\phi}([S]_E)|$. Set $C = \{x \in \sim \bigcup S \mid \phi(x) < \overline{\phi}([x]_E)\}$ and $D = \{x \in \sim \bigcup S \mid \phi(x) > \overline{\phi}([x]_E)\}$.

LEMMA 8.2. Suppose that $(x, y) \in E$. Then there exists a real number r > 1 such that x has only finitely-many $G^{\rho}_{(1/r,r)}$ -neighbors in C or y has only finitely-many $G^{\rho}_{(1/r,r)}$ -neighbors in D.

PROOF. As $\delta > 2/3$, a trivial calculation reveals that $-\epsilon(\delta - 1/2)$ is strictly below the average of $-\epsilon/2$ and $\epsilon(\delta - 1/2)$, or equivalently, that the average of $-\epsilon(\delta - 1/2)$ and $\epsilon/2$ is strictly below $\epsilon(\delta - 1/2)$. It follows that by choosing $m, n \in \mathbb{N}$ for which m/n is sufficiently close to $\rho(y, x)$, we can ensure that the ratios $s = m/(m + n\rho(y, x))$ and $t = n\rho(y, x)/(m + n\rho(y, x))$ are sufficiently close to 1/2 so as to guarantee that the sums $s(\overline{\phi}([x]_E) - \epsilon/2) + t(\overline{\phi}([x]_E) + \epsilon(\delta - 1/2))$ and $s(\overline{\phi}([x]_E) - \epsilon(\delta - 1/2)) + t(\overline{\phi}([x]_E) + \epsilon/2)$ both lie strictly between $\overline{\phi}([x]_E) - \epsilon(\delta - 1/2)$ and $\overline{\phi}([x]_E) + \epsilon(\delta - 1/2)$. Fix r > 1 such that they lie strictly between $(\overline{\phi}([x]_E) - \epsilon(\delta - 1/2))r^2$ and $(\overline{\phi}([x]_E) + \epsilon(\delta - 1/2))/r^2$.

Suppose, towards a contradiction, that there exist sets $S \subseteq C$ and $T \subseteq D$ of $G^{\rho}_{(1/r,r)}$ -neighbors of x and y of cardinalities m and n. Then $m/r < |S|_x^{\rho} < mr$ and $n\rho(y,x)/r < |T|_x^{\rho} < n\rho(y,x)r$, so $(m+n\rho(y,x))/r < |S \cup T|_x^{\rho} < (m+n\rho(y,x))r$, from which it follows that $s/r^2 < |S|_x^{\rho}/|S \cup T|_x^{\rho} < sr^2$ and $t/r^2 < |T|_x^{\rho}/|S \cup T|_x^{\rho} < tr^2$. As $\int \phi \ d\mu_S^{\rho}$ lies between $\overline{\phi}([x]_E) - \epsilon/2$ and $\overline{\phi}([x]_E) - \epsilon(\delta - 1/2)$, and $\int \phi \ d\mu_T^{\rho}$ lies between $\overline{\phi}([x]_E) + \epsilon(\delta - 1/2)$ and $\overline{\phi}([x]_E) + \epsilon/2$, it follows that $\int \phi \ d\mu_{S\cup T}^{\rho}$ lies between $(s(\overline{\phi}([x]_E) - \epsilon/2) + t(\overline{\phi}([x]_E) + \epsilon(\delta - 1/2)))/r^2$ and $(s(\overline{\phi}([x]_E) - \epsilon(\delta - 1/2)) + t(\overline{\phi}([x]_E) + \epsilon/2))r^2$, and therefore strictly between $\overline{\phi}([x]_E) - \epsilon(\delta - 1/2)$ and $\overline{\phi}([x]_E) + \epsilon(\delta - 1/2)$, contradicting the maximality of \mathcal{S} .

Letting B be the complement of $[C]_E \cap [D]_E$, it follows from Lemma 8.2 that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth. Let F be the equivalence relation on B whose classes are the subsets of B in \mathcal{S} .

PROPOSITION 8.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, $\phi, \psi: X \to [0, \infty)$ are Borel, and r > 1. Then there exist an E-invariant Borel set $B \subseteq X$, a Borel set $C \subseteq B$, and a finite Borel subequivalence relation F of $E \upharpoonright B$ such that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth and $\int_C \phi \ d\mu_{[x]_F}^{\rho} \leq \int_{B \setminus C} \psi \ d\mu_{[x]_F}^{\rho} \leq r \int_C \phi \ d\mu_{[x]_F}^{\rho}$ for all $x \in B$.

PROOF. We can assume that $\phi, \psi \colon X \to (0, \infty)$. Fix a maximal Borel set \mathcal{S} of pairwise disjoint non-empty finite sets $S \subseteq X$ such that $S \times S \subseteq E$ and $1 < \int_{S \setminus T} \psi \ d\mu_S^{\rho} / \int_T \phi \ d\mu_S^{\rho} < r$ for some set $T \subseteq S$. Define $D_{U,V} = (\phi^{-1}(U) \cap \psi^{-1}(V)) \setminus \bigcup \mathcal{S}$ for all sets $U, V \subseteq (0, \infty)$.

LEMMA 8.4. For all $x \in X$, there exists s > 1 such that x has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in $D_{(\phi(x)/s,\phi(x)s),(\psi(x)/s,\psi(x)s)}$.

PROOF. Fix positive natural numbers m and n with the property that $1 < (\psi(x)/\phi(x))(n/m) < r$. Then there exists s > 1 sufficiently small that $s^6 < (\psi(x)/\phi(x))(n/m) < r/s^6$. Suppose, towards a contradiction, that there is a set $S \subseteq D_{(\phi(x)/s,\phi(x)s),(\psi(x)/s,\psi(x)s)}$ of $G_{(1/s,s)}^{\rho}$ neighbors of x of cardinality k = m + n, and fix a set $T \subseteq S$ such that |T| = m. Then $\phi(x)\mu_S^{\rho}(T)/s < \int_T \phi \ d\mu_S^{\rho} < \phi(x)\mu_S^{\rho}(T)s$ and $(m/k)/s^2 < \mu_S^{\rho}(T) < (m/k)s^2$, which together yield the inequality that $\phi(x)(m/k)/s^3 < \int_T \phi \ d\mu_S^{\rho} < \phi(x)(m/k)s^3$. Along similar lines, the facts that $\psi(x)\mu_S^{\rho}(S \setminus T)/s < \int_{S \setminus T} \psi \ d\mu_S^{\rho} < \psi(x)\mu_S^{\rho}(S \setminus T)s$ and $(n/k)/s^2 < \mu_S^{\rho}(S \setminus T) < (n/k)s^2$ together yield the inequality that $\psi(x)(n/k)/s^3 < \int_{S \setminus T} \psi \ d\mu_S^{\rho} < \psi(x)(n/k)s^3$, from which it follows that $\int_{S \setminus T} \psi \ d\mu_S^{\rho} / \int_T \phi \ d\mu_S^{\rho}$ lies strictly between $(\psi(x)/\phi(x))(n/m)/s^6$ and $(\psi(x)/\phi(x))(n/m)s^6$, and therefore strictly between 1 and r, contradicting the maximality of S.

25

Letting *B* be the complement of $[\sim \bigcup S]_E$, it follows from Lemma 8.4 that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth. Let *F* be the Borel equivalence relation on *B* whose classes are the subsets of *B* in *S*, and appeal to the Lusin-Novikov uniformization theorem to obtain a Borel set $C \subseteq B$ such that $1 < \int_{B \setminus C} \psi \ d\mu_{[x]_F}^{\rho} / \int_C \phi \ d\mu_{[x]_F}^{\rho} < r$ for all $x \in B$.

We are now ready to establish our primary result.

THEOREM 8.5 (Nadkarni, Becker-Kechris, Miller). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then exactly one of the following holds:

- (1) There is a finite-to-one Borel compression of ρ over a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

PROOF. Proposition 7.1 ensures that conditions (1) and (2) are mutually exclusive. To see that one of them holds, fix a sequence $(\epsilon_n)_{n \in \mathbb{N}}$ of positive real numbers converging to zero, as well as a countable group Γ of Borel automorphisms whose induced orbit equivalence relation is E, and define $\rho_{\gamma} \colon X \to (0, \infty)$ by $\rho_{\gamma}(x) = \rho(\gamma \cdot x, x)$ for all $\gamma \in \Gamma$.

Fix a Polish topology on $[0, \infty)$, compatible with its underlying Borel structure, with respect to which every interval of the form [p, q), where $p, q \in \mathbb{Q}$ are non-negative, is clopen. Fix a zero-dimensional Polish topology on X, compatible with its underlying Borel structure, with respect to which Γ acts by homeomorphisms and each ρ_{γ} is continuous. Finally, fix a compatible complete metric on X, as well as a countable algebra $\mathcal{U} \subseteq \mathcal{P}(X)$ forming a basis for X, containing the pullback of every interval of the form [p,q), where $p,q \in \mathbb{Q}$ are non-negative, under each of the functions ρ_{γ} , and closed under multiplication by elements of Γ , in addition to an increasing sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of finite subsets of \mathcal{U} whose union is \mathcal{U} .

We say that a function $\phi: X \to [0, \infty)$ is \mathcal{U} -simple if it is a finite linear combination of characteristic functions of sets in \mathcal{U} . Note that for all $\epsilon > 0, \gamma \in \Gamma$, and $Y \subseteq X$ on which ρ_{γ} is bounded, there is such a function with the further property that $|\phi(y) - \rho_{\gamma}(y)| \leq \epsilon$ for all $y \in Y$.

By recursively applying Propositions 8.1 and 8.3 to functions of the form $[x]_F \mapsto \mu^{\rho}_{[x]_F}(A)$ and $[x]_F \mapsto \mu^{\rho}_{[x]_F}(B) - \mu^{\rho}_{[x]_F}(A)$, and throwing out countably-many *E*-invariant Borel sets $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, we obtain increasing sequences of finite algebras $\mathcal{A}_n \supseteq \mathcal{U}_n$ of Borel subsets of *X* and finite Borel subequivalence relations F_n of *E* with the following properties:

(a) $\forall n \in \mathbb{N} \forall A \in \mathcal{A}_n \forall (x, y) \in E \ \mu^{\rho}_{[x]_{F_{n+1}}}(A) - \mu^{\rho}_{[y]_{F_{n+1}}}(A) \le \epsilon_n.$

(b) $\forall n \in \mathbb{N} \forall A, B \in \mathcal{A}_n \ (\forall x \in X \ \mu_{[x]_{F_n}}^{\rho}(A) \le \mu_{[x]_{F_n}}^{\rho}(B) \Longrightarrow$ $\exists C \in \mathcal{A}_{n+1} \forall x \in X \ 0 \le \mu_{[x]_{F_{n+1}}}^{\rho}(B \setminus C) - \mu_{[x]_{F_{n+1}}}^{\rho}(A) \le \epsilon_n).$

Set $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$ and $F = \bigcup_{n \in \mathbb{N}} F_n$. Condition (a) ensures that for all $x \in X$, we obtain a finitely-additive probability measure μ_x on \mathcal{U} by setting $\mu_x(U) = \lim_{n \to \infty} \mu_{[x]_{F_n}}^{\rho}(U)$ for all $U \in \mathcal{U}$.

LEMMA 8.6. Suppose that $(U_n)_{n\in\mathbb{N}} \in \mathcal{U}^{\mathbb{N}}$ is a partition of a set in \mathcal{U} and $B = \{x \in X \mid \sum_{n\in\mathbb{N}} \mu_x(U_n) < \mu_x(\bigcup_{n\in\mathbb{N}} U_n)\}$. Then there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

PROOF. Note first that if $x \in B$, then $\sum_{m \geq n} \mu_x(U_m) \to 0$ and $\mu_x(\bigcup_{m \geq n} U_m) \not\to 0$, so there exist $\delta > 0$ and $n \in \mathbb{N}$ with the property that $\delta + 2 \sum_{m \geq n} \mu_x(U_m) \leq \mu_x(\bigcup_{m \geq n} U_m)$. By partitioning *B* into countably-many *E*-invariant Borel sets and passing to terminal segments of $(U_n)_{n \in \mathbb{N}}$ on each set, we can assume that there exists $\delta > 0$ such that $\delta + 2 \sum_{n \in \mathbb{N}} \mu_x(U_n) \leq \mu_x(\bigcup_{n \in \mathbb{N}} U_n)$ for all $x \in X$. Fix a sequence $(\delta_n)_{n \in \mathbb{N}}$ of positive real numbers whose sum is at most δ .

SUBLEMMA 8.7. There are pairwise disjoint sets $A_n \subseteq \bigcup_{m>n} U_m$ in \mathcal{A} with the property that for all $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that $\forall x \in B \ 0 \leq \mu_{[x]_{F_k}}^{\rho}(A_n) - \mu_{[x]_{F_k}}^{\rho}(U_n) \leq \delta_n$.

PROOF. Suppose that $n \in \mathbb{N}$ and we have already found $(A_m)_{m < n}$. Note that if $x \in B$, then

$$\mu_x(U_n) + \delta \le \mu_x(\bigcup_{m \in \mathbb{N}} U_m) + \mu_x(U_n) - 2\sum_{m \in \mathbb{N}} \mu_x(U_m)$$
$$\le \mu_x(\bigcup_{m \in \mathbb{N}} U_m) - \mu_x(U_n) - 2\sum_{m < n} \mu_x(U_m),$$

in which case

$$\mu_x(U_n) + \delta_n \leq \mu_x \left(\bigcup_{m \in \mathbb{N}} U_m \right) - \mu_x(U_n) - \sum_{m < n} 2\mu_x(U_m) + \delta_m$$
$$\leq \mu_x \left(\bigcup_{m > n} U_m \right) - \sum_{m < n} \mu_x(U_m) + \delta_m,$$

so if $k \in \mathbb{N}$ is sufficiently large, then

$$\mu_{[x]_{F_k}}^{\rho}(U_n) \leq \mu_{[x]_{F_k}}^{\rho}\left(\bigcup_{m>n} U_m\right) - \sum_{m < n} \mu_{[x]_{F_k}}^{\rho}(U_m) + \delta_m$$

$$\leq \mu_{[x]_{F_k}}^{\rho}\left(\bigcup_{m>n} U_m\right) - \sum_{m < n} \mu_{[x]_{F_k}}^{\rho}(A_m)$$

$$\leq \mu_{[x]_{F_k}}^{\rho}\left(\bigcup_{m>n} U_m\right) - \mu_{[x]_{F_k}}^{\rho}\left(\bigcup_{m < n} A_m\right)$$

$$\leq \mu_{[x]_{F_k}}^{\rho}\left(\bigcup_{m>n} U_m \setminus \bigcup_{m < n} A_m\right),$$

by condition (a). It then follows from condition (b) that there exists $A_n \subseteq \bigcup_{m>n} U_m \setminus \bigcup_{m< n} A_m$ in \mathcal{A} with $0 \leq \mu_{[x]_{F_k}}^{\rho}(A_n) - \mu_{[x]_{F_k}}^{\rho}(U_n) \leq \delta_n$ for all $x \in B$, for sufficiently large $k \in \mathbb{N}$.

26

Fix natural numbers k_n such that $\mu_{[x]_{F_{k_n}}}^{\rho}(U_n) \leq \mu_{[x]_{F_{k_n}}}^{\rho}(A_n)$ for all $n \in \mathbb{N}$ and $x \in B$, as well as Borel functions $\phi_n \colon B \cap U_n \to A_n$ whose graphs are contained in F_{k_n} for all $n \in \mathbb{N}$. Then the union of $\bigcup_{n \in \mathbb{N}} \phi_n$ and the identity function on $B \setminus \bigcup_{n \in \mathbb{N}} U_n$ is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over the union of $\bigcup_{n \in \mathbb{N}} F_{k_n} \upharpoonright (A_n \cap B)$ and equality on B.

Lemma 8.6 ensures that, after throwing out countably-many Einvariant Borel sets $B \subseteq X$ for which there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$, we can assume that for all $\delta > 0$ and $U \in \mathcal{U}$, there is a partition $(U_n)_{n \in \mathbb{N}}$ of U into sets in \mathcal{U} of diameter at most δ such that $\mu_x(U) = \sum_{n \in \mathbb{N}} \mu_x(U_n)$ for all $x \in X$. It follows that each μ_x is a measure on \mathcal{U} , and therefore has a unique extension to a Borel probability measure $\overline{\mu}_x$ on X.

LEMMA 8.8. Suppose that $\gamma \in \Gamma$, $U \in \mathcal{U}$, ρ_{γ} is bounded on U, and $B = \{x \in X \mid \overline{\mu}_x(\gamma U) \neq \int_U \rho_{\gamma} d\overline{\mu}_x\}$. Then there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

PROOF. By the symmetry of our argument, it is enough to establish the analogous lemma for the set $B = \{x \in X \mid \overline{\mu}_x(\gamma U) < \int_U \rho_\gamma \ d\overline{\mu}_x\}$. By breaking up *B* into countably-many *E*-invariant Borel sets, we can assume that $B = \{x \in X \mid \delta + \overline{\mu}_x(\gamma U) < \int_U \rho_\gamma \ d\overline{\mu}_x\}$ for some $\delta > 0$.

SUBLEMMA 8.9. For all $\epsilon > 0$, there exists $n \in \mathbb{N}$ with the property that $|\int_{U} \rho_{\gamma} d\overline{\mu}_{x} - \int_{U} \rho_{\gamma} d\mu_{[x]_{E_{\alpha}}}^{\rho}| \leq \epsilon$ for all $x \in X$.

PROOF. Fix a \mathcal{U} -simple function $\phi: X \to [0, \infty)$ with the property that $|\phi(x) - \rho_{\gamma}(x)| \leq \epsilon/3$ for all $x \in U$. By condition (a), there exists $n \in \mathbb{N}$ such that $|\int_{U} \phi \ d\overline{\mu}_{x} - \int_{U} \phi \ d\mu_{[x]_{F_{n}}}^{\rho}| \leq \epsilon/3$ for all $x \in X$. Then

$$\begin{split} \left| \int_{U} \rho_{\gamma} \ d\overline{\mu}_{x} - \int_{U} \rho_{\gamma} \ d\mu_{[x]_{F_{n}}}^{\rho} \right| &\leq \left| \int_{U} \rho_{\gamma} \ d\overline{\mu}_{x} - \int_{U} \phi \ d\overline{\mu}_{x} \right| + \\ & \left| \int_{U} \phi \ d\overline{\mu}_{x} - \int_{U} \phi \ d\mu_{[x]_{F_{n}}}^{\rho} \right| + \\ & \left| \int_{U} \phi \ d\mu_{[x]_{F_{n}}}^{\rho} - \int_{U} \rho_{\gamma} \ d\mu_{[x]_{F_{n}}}^{\rho} \right| \\ &\leq \epsilon, \end{split}$$

for all $x \in X$.

Condition (a) and Sublemma 8.9 ensure that there exists $n \in \mathbb{N}$ such that $\mu_{[x]_{F_n}}^{\rho}(\gamma U) < \int_U \rho_{\gamma} d\mu_{[x]_{F_n}}^{\rho}$ for all $x \in B$. As the former quantity is $|\gamma U \cap [x]_{F_n}|_x^{\rho}/|[x]_{F_n}|_x^{\rho}$ and the latter is $|\gamma U \cap \gamma[x]_{F_n}|_x^{\rho}/|[x]_{F_n}|_x^{\rho}$, it follows

Ø

that $|\gamma U \cap [x]_{F_n}|_x^{\rho} < |\gamma U \cap \gamma[x]_{F_n}|_x^{\rho}$ for all $x \in B$, so any function from $B \cap \gamma U$ to $B \cap \gamma U$, sending $\gamma U \cap [x]_{F_n}$ to $\gamma U \cap \gamma[x]_{F_n}$ for all $x \in B \cap \gamma U$, is a compression of $\rho \upharpoonright (E \upharpoonright (B \cap \gamma U))$ over the equivalence relation $(\gamma \times \gamma)(F_n) \upharpoonright (B \cap \gamma U)$. The Lusin-Novikov uniformization theorem yields a Borel such function, and every such function trivially extends to a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

Lemma 8.8 ensures that, after throwing out countably-many Einvariant Borel sets $B \subseteq X$ for which there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$, we can assume that $\overline{\mu}_x(\gamma U) = \int_U \rho_\gamma \ d\overline{\mu}_x$ for all $\gamma \in \Gamma, U \in \mathcal{U}$ on which ρ_γ is bounded, and $x \in X$. As our choice of topologies ensures that every open set $U \subseteq X$ is a disjoint union of sets in \mathcal{U} on which ρ_γ is bounded, we obtain the same conclusion even when $U \subseteq X$ is an arbitrary open set. As every Borel probability measure on a Polish space is regular, we obtain the same conclusion even when $U \subseteq X$ is an arbitrary Borel set. Proposition 2.1 therefore ensures that each $\overline{\mu}_x$ is ρ -invariant.

9. Coboundaries and invariant measures

Suppose that $R \subseteq X \times X$ is a Borel set whose vertical sections are countable and $\rho: R \to \Gamma$ is Borel. We say that a Borel measure μ on X is ρ -invariant if $\mu(T(B)) = \int_B \rho(T(x), x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel injections $T: B \to X$ whose graphs are contained in R^{-1} . Proposition 2.1 ensures that this agrees with the usual notion when R is an equivalence relation and ρ is a cocycle.

The composition of sets $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ is given by $R \circ S = \{(x, z) \in X \times Z \mid \exists y \in Y \ x \ R \ y \ S \ z\}$. The Lusin-Novikov uniformization theorem ensures that the class of Borel sets whose vertical sections are countable is closed under composition.

PROPOSITION 9.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $R, S \subseteq E$ are Borel, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then every $(\rho \upharpoonright (R \cup S))$ -invariant Borel measure μ is $(\rho \upharpoonright (R \circ S))$ -invariant.

PROOF. Note first that if $B \subseteq X$ is a Borel set, $T_S \colon B \to X$ is a Borel injection whose graph is contained in S^{-1} , and $T_R \colon T_S(B) \to X$

is a Borel injection whose graph is contained in R^{-1} , then

$$\mu((T_R \circ T_S)(B)) = \int_{T_S(B)} \rho(T_R(x), x) \ d\mu(x)$$

= $\int_B \rho((T_R \circ T_S)(x), T_S(x)) \ d((T_S^{-1})_*\mu)(x)$
= $\int_B \rho((T_R \circ T_S)(x), T_S(x))\rho(T_S(x), x) \ d\mu(x)$
= $\int_B \rho((T_R \circ T_S)(x), x) \ d\mu(x).$

But the Lusin-Novikov uniformization theorem ensures that every Borel injection whose graph is contained in $(R \circ S)^{-1}$ can be decomposed into countably-many Borel injections of the form $T_R \circ T_S$ as above.

We say that a set $Y \subseteq X$ has ρ -density at least ϵ if there is a finite Borel subequivalence relation F of E such that $\mu_{[x]_F}^{\rho}(Y) \geq \epsilon$ for all $x \in X$. We say that a Borel set $B \subseteq X$ has positive ρ -density if there exists $\epsilon > 0$ for which B has ρ -density at least ϵ .

PROPOSITION 9.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and $B \subseteq X$ is a Borel set with positive ρ -density. Then every $(\rho \upharpoonright (E \upharpoonright B))$ -invariant finite Borel measure μ extends to a ρ -invariant finite Borel measure.

PROOF. Fix $\epsilon > 0$ for which B has ρ -density at least ϵ , as well as a finite Borel subequivalence relation F of E such that $\mu_{[x]_F}^{\rho}(B) \geq \epsilon$ for all $x \in X$, and let $\overline{\mu}$ be the Borel measure on X given by

$$\overline{\mu}(A) = \int |A \cap [x]_F|_{B \cap [x]_F}^{\rho} d\mu(x)$$

for all Borel sets $A \subseteq X$.

As $\overline{\mu}(X) \leq \mu(B)/\epsilon$, it follows that $\overline{\mu}$ is finite, and Proposition 2.5 ensures that $\mu = \overline{\mu} \upharpoonright B$.

LEMMA 9.3. Suppose that $\phi: X \to [0, \infty)$ is a Borel function. Then $\int \phi \ d\overline{\mu} = \int \sum_{y \in [x]_F} \phi(y) |\{y\}|^{\rho}_{B \cap [x]_F} \ d\mu(x).$

PROOF. It is sufficient to check the special case that ϕ is the characteristic function of a Borel set, which is a direct consequence of the definition of $\overline{\mu}$.

LEMMA 9.4. The measure $\overline{\mu}$ is $(\rho \upharpoonright F)$ -invariant.

PROOF. Simply observe that if $A \subseteq X$ is a Borel set and $T: X \to X$ is a Borel automorphism whose graph is contained in F, then

$$\begin{split} \int_{A} \rho(T(x), x) \ d\overline{\mu}(x) &= \int \sum_{y \in A \cap [x]_{F}} \rho(T(y), y) |\{y\}|_{B \cap [x]_{F}}^{\rho} \ d\mu(x) \\ &= \int \sum_{y \in A \cap [x]_{F}} |\{T(y)\}|_{B \cap [x]_{F}}^{\rho} \ d\mu(x) \\ &= \int |T(A \cap [x]_{F})|_{B \cap [x]_{F}}^{\rho} \ d\mu(x) \\ &= \int |T(A) \cap [x]_{F}|_{B \cap [x]_{F}}^{\rho} \ d\mu(x) \\ &= \overline{\mu}(T(A)), \end{split}$$

by Lemma 9.3.

As $E = F \circ (E \upharpoonright B) \circ F$, two applications of Proposition 9.1 ensure that $\overline{\mu}$ is ρ -invariant.

The primary argument of this section will hinge on the following approximation lemma.

PROPOSITION 9.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then for all Borel sets $A \subseteq X$ and positive real numbers r < 1, there exist an E-invariant Borel set $B \subseteq X$, a Borel set $C \subseteq B$, and a finite Borel subequivalence relation F of $E \upharpoonright C$ such that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth, $r < |A \cap [x]_F|_{[x]_F \setminus A}^{\rho} < 1$ for all $x \in C$, and $A \cap [x]_E \subseteq C$ or $[x]_E \setminus A \subseteq C$ for all $x \in B$.

PROOF. Fix a maximal Borel set S of pairwise disjoint non-empty finite sets $S \subseteq X$ for which $S \times S \subseteq E$ and $r < |A \cap S|_{S \setminus A}^{\rho} < 1$. Set $D = A \setminus \bigcup S$ and $D' = (\sim A) \setminus \bigcup S$.

LEMMA 9.6. Suppose that $(x, x') \in E$. Then there exists a real number s > 1 with the property that x has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in D or x' has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in D'.

PROOF. Fix $n, n' \in \mathbb{N}$ such that $(n/n')\rho(x, x')$ lies strictly between r and 1, and fix s > 1 sufficiently small that $(n/n')\rho(x, x')$ lies strictly between rs^2 and $1/s^2$. Suppose, towards a contradiction, that there are sets $S \subseteq D$ and $S' \subseteq D'$ of $G^{\rho}_{(1/s,s)}$ -neighbors of x and x' of cardinalities n and n'. Then $n/s < |S|_x^{\rho} < ns$ and $n'\rho(x', x)/s < |S'|_x^{\rho} < n'\rho(x', x)s$, so the ρ -size of S relative to S' lies strictly between $(n/n')\rho(x, x')/s^2$ and $(n/n')\rho(x, x')s^2$. As these bounds lie strictly between r and 1, this contradicts the maximality of \mathcal{S} .

Letting B be the complement of $[D]_E \cap [D']_E$, it follows from Lemma 9.6 that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth. Set $C = B \cap \bigcup S$, and let F be the equivalence relation on C whose classes are the subsets of C in S.

30

 \boxtimes

We say that a Borel set $B \subseteq X$ has σ -positive ρ -density if X is the union of countably-many E-invariant Borel sets $A_n \subseteq X$ for which $A_n \cap B$ has positive $(\rho \upharpoonright (E \upharpoonright A_n))$ -density.

THEOREM 9.7. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and $A \subseteq X$ is an E-complete Borel set. Then X is the union of an E-invariant Borel set $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, an E-invariant Borel set $C \subseteq X$ for which $A \cap C$ has σ -positive ($\rho \upharpoonright (E \upharpoonright C)$)-density, and an E-invariant Borel set $D \subseteq X$ for which there is a finite-to-one Borel compression of the quotient of $\rho \upharpoonright (E \upharpoonright D)$ by a finite Borel subequivalence relation of $E \upharpoonright D$.

PROOF. Fix a positive real number r < 1. We will show that, after throwing out countably-many *E*-invariant Borel sets $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, as well as countably-many *E*-invariant Borel sets $C \subseteq X$ for which $A \cap C$ has positive $(\rho \upharpoonright (E \upharpoonright C))$ -density, there are increasing sequences of finite Borel subequivalence relations F_n of *E* and *E*-complete F_n -invariant Borel sets $A_n \subseteq X$ with the property that $r < |A_n \cap [x]_{F_{n+1}}|_{(A_{n+1} \setminus A_n) \cap [x]_{F_{n+1}}} < 1$ for all $n \in \mathbb{N}$ and $x \in A_n$. We begin by setting $A_0 = A$ and letting F_0 be equality. Suppose

We begin by setting $A_0 = A$ and letting F_0 be equality. Suppose now that $n \in \mathbb{N}$ and we have already found A_n and F_n . By applying Proposition 9.5 to A_n/F_n , and throwing out an E-invariant Borel set $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, we obtain a finite Borel subequivalence relation $F_{n+1} \supseteq F_n$ of E and an F_{n+1} -invariant Borel set $A_{n+1} \subseteq X$ such that $r < |A_n \cap [x]_{F_{n+1}}|_{[x]_{F_{n+1}} \setminus A_n} < 1$ for all $x \in A_{n+1}$, and $A_n \cap [x]_E \subseteq A_{n+1}$ or $[x]_E \setminus A_n \subseteq A_{n+1}$ for all $x \in X$. By throwing out an E-invariant Borel set $C \subseteq X$ for which $A \cap C$ has positive $(\rho \upharpoonright (E \upharpoonright C))$ -density, we can assume that $A_n \subseteq A_{n+1}$, completing the recursive construction.

Set $B_n = A_n \setminus \bigcup_{m < n} A_m$ and define $\phi_n \colon B_n/F_n \to B_{n+1}/F_{n+1}$ by setting $\phi_n(B_n \cap [x]_{F_n}) = B_{n+1} \cap [x]_{F_{n+1}}$ for all $n \in \mathbb{N}$ and $x \in B_n$. Then the union of $\bigcup_{n \in \mathbb{N}} \phi_n$ and the identity function on $\sim \bigcup_{n \in \mathbb{N}} A_n$ is a Borel compression of the quotient of ρ by the union of $\bigcup_{n \in \mathbb{N}} F_n \upharpoonright B_n$ and equality.

As a corollary, we can now establish the converse of Proposition 7.2 for Borel coboundaries.

THEOREM 9.8. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel coboundary, and there is a Borel compression of ρ over a finite Borel subequivalence relation of E. Then there is a Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.

PROOF. By Proposition 6.1, there is a pre-compact open neighborhood $U \subseteq (0, \infty)$ of 1 for which there is an *E*-complete Borel set $A \subseteq X$ such that $\rho(E \upharpoonright A) \subseteq U$. By Theorem 9.7, after throwing out *E*-invariant Borel sets $B \subseteq X$ and $D \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth and there is a finite-to-one Borel compression of the quotient of $\rho \upharpoonright (E \upharpoonright D)$ by a finite Borel subequivalence relation of $E \upharpoonright D$, we can assume that A has σ -positive ρ -density.

Note that there is no $(\rho \upharpoonright (E \upharpoonright A))$ -invariant Borel probability measure μ , since otherwise, by passing to an $(E \upharpoonright A)$ -invariant μ -positive Borel set, we could assume that A has positive ρ -density, in which case Proposition 9.2 would yield a ρ -invariant Borel probability measure, contradicting Proposition 7.1. Proposition 6.2 therefore ensures that there is no $(E \upharpoonright A)$ -invariant Borel probability measure, so the special cases of Proposition 7.4 and Theorem 8.5 for constant cocycles yield an aperiodic smooth Borel subequivalence relation F of $E \upharpoonright A$.

It follows that $\rho \upharpoonright F$ is smooth, and the fact that $\rho \upharpoonright (E \upharpoonright A)$ is bounded ensures that $\rho \upharpoonright F$ is also aperiodic. Fix a Borel extension $\phi: X \to A$ of the identity function on A whose graph is contained in E, and observe that ρ is aperiodic and smooth on the pullback of F through ϕ , in which case Proposition 4.4 yields an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.

10. Uniform ergodic decomposition

Recall that a *decomposition* of a Borel probability measure μ on Xis a Borel function $\phi: X \to P(X)$ such that $\phi^{-1}(\{\phi(x)\})$ is $\phi(x)$ -conull for all $x \in X$ and $\mu(B) = \int \phi(x)(B) \ d\mu(x)$ for all Borel sets $B \subseteq X$. A *decomposition* of a set $P \subseteq P(X)$ is a function $\phi: X \to P(X)$ that is a decomposition of every $\mu \in P$.

THEOREM 10.1 (Ditzen). Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle for which there is a ρ -invariant Borel probability measure. Then there is a hyperfinite Borel subequivalence relation F of E for which there is an E-invariant Borel decomposition of the family of all ρ -invariant Borel probability measures into F-ergodic ρ -invariant Borel probability measures.

PROOF. By the proof of Theorem 8.5, we can assume that X is a Polish space for which there exist a countable algebra $\mathcal{U} \subseteq \mathcal{P}(X)$ of open sets forming a basis for X, an increasing sequence $(F_n)_{n \in \mathbb{N}}$ of finite Borel subequivalence relations of E, as well as an E-invariant function $\phi: X \to P(X)$ with the property that $\phi(x)$ is ρ -invariant for all $x \in X$ and $\forall U \in \mathcal{U} \ \mu_{[x]_{F_n}}^{\rho}(U) \to \phi(x)(U) \ \mu$ -almost everywhere for all ρ -invariant Borel probability measures μ . Define $F = \bigcup_{n \in \mathbb{N}} F_n$.

LEMMA 10.2. Suppose that $A \subseteq X$ is an *F*-invariant Borel set, $B \subseteq X$ is Borel, and μ is a ρ -invariant Borel probability measure. Then $\mu(A \cap B) = \int_A \phi(x)(B) \ d\mu(x)$.

PROOF. Observe first that if $U \in \mathcal{U}$, then Proposition 2.5 ensures that $\mu(A \cap U) = \int_A \mu_{[x]_{F_n}}^{\rho}(U) d\mu(x)$ for all $n \in \mathbb{N}$, from which it follows that $\mu(A \cap U) = \lim_{n \to \infty} \int_A \mu_{[x]_{F_n}}^{\rho}(U) d\mu(x) = \int_A \phi(x)(U) d\mu(x)$. The fact that every Borel probability measure on a Polish space is regular therefore implies that $\mu(A \cap B) = \int_A \phi(x)(B) d\mu(x)$.

Recall that the ergodic decomposition theorem for a single Borel probability measure μ on X can be established by first producing a Borel function $\phi: X \to \mathcal{P}(X)$ satisfying the conclusion of Lemma 10.2 for μ , and then noting that every such function has the property that $\phi^{-1}(\{\phi(x)\})$ is $\phi(x)$ -conull and $\phi(x)$ is F-ergodic for μ -almost all $x \in X$. We can therefore assume that the latter conclusion holds for every ρ -invariant Borel probability measure μ .

LEMMA 10.3. Suppose that μ is an *E*-ergodic ρ -invariant Borel probability measure. Then $\phi^{-1}(\{\mu\})$ is μ -conull.

PROOF. As the *E*-ergodicity of μ ensures that ϕ is constant on a μ -conull set, Lemma 10.2 implies that $\forall U \in \mathcal{U} \ \mu(U) = \phi(x)(U)$ for μ -almost all $x \in X$. As every Borel probability measure on a Polish space is regular, it follows that $\mu = \phi(x)$ for all such x.

It now follows that if μ is a ρ -invariant Borel probability measure, then μ is E-ergodic $\Longrightarrow \phi^{-1}(\{\mu\})$ is μ -conull $\Longrightarrow \mu$ is F-ergodic, thus the set $B = \{x \in X \mid \phi(x) \text{ is } F$ -ergodic $\}$ is Borel. Setting $A = \sim B$, we therefore obtain the desired decomposition by redefining $\phi \upharpoonright A$ to be any $(E \upharpoonright A)$ -invariant Borel function sending each point of A to an F-ergodic ρ -invariant Borel probability measure.

11. Generic compressibility

We say that a binary relation R on X is *aperiodic* if its vertical sections are all infinite, and *countable* if its vertical sections are all countable. We say that a set $Y \subseteq X$ is *R*-complete if it intersects every vertical section of R, and *R*-invariant if $R_y \subseteq Y$ for all $y \in Y$.

THEOREM 11.1. Suppose that X is a Polish space, R is an aperiodic countable Borel binary relation on X, and S is an aperiodic transitive Borel subrelation of R. Then there is a comeager R-invariant Borel set $C \subseteq X$ for which there is a Borel injection $T: C \to C$, whose graph is contained in S, such that $\bigcap_{n \in \mathbb{N}} T^n(C) = \emptyset$.

PROOF. Fix Borel sets $A_n \subseteq X$ and Borel injections $T_n: A_n \to X$ such that $R = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(T_n)$, and set $A'_n = \{x \in A_n \mid x \in S : T_n(x)\}$ for all $n \in \mathbb{N}$. Fix a decreasing sequence $(B_n)_{n \in \mathbb{N}}$ of S-complete Borel sets whose intersection is empty.

We recursively define Borel sets $D_s \subseteq \sim B_{|s|}$ for all $s \in \mathbb{N}^{<\mathbb{N}}$, beginning with $D_{\emptyset} = \emptyset$. Given $s \in 2^{<\mathbb{N}}$ for which we have found $(D_t)_{t \subseteq s}$, set $D_{s \frown (n)} = A'_n \cap T_n^{-1}(B_{|s|+1} \setminus B_{|s|+2}) \setminus (B_{|s|+1} \cup \bigcup_{t \subseteq s} D_t)$ for all $n \in \mathbb{N}$. Now define $D = \{(b, x) \in \mathbb{N}^{\mathbb{N}} \times X \mid x \in \bigcup_{n \in \mathbb{N}} D_{b \mid n}\}$.

LEMMA 11.2. Every horizontal section of D is dense.

PROOF. Suppose that $x \in X$. To see that D^x is dense, note that if $s \in \mathbb{N}^{<\mathbb{N}}$, then there exist $i \in \mathbb{N}$ for which $x \notin B_{|s|+i}, y \in B_{|s|+i+1}$ for which $x \ S \ y$, and $n \in \mathbb{N}$ for which $T_n(x) = y$. Let j be the unique natural number for which $y \in B_{|s|+i+j+1} \setminus B_{|s|+i+j+2}$, and observe that $x \in \bigcup_{u \sqsubseteq s \frown t \frown (n)} D_u$, thus $\mathcal{N}_{s \frown t \frown (n)} \subseteq D^x$, for all $t \in \mathbb{N}^{i+j}$.

As the horizontal sections of D are open, Lemma 11.2 ensures that $\forall x \in X \forall^* b \in \mathbb{N}^{\mathbb{N}} \ b \in \bigcap_{n \in \mathbb{N}} D^{T_n(x)}$, in which case the Kuratowski-Ulam theorem implies that $\forall^* b \in \mathbb{N}^{\mathbb{N}} \forall^* x \in X \ b \in \bigcap_{n \in \mathbb{N}} D^{T_n(x)}$. Fix $b \in \mathbb{N}^{\mathbb{N}}$ for which the set $C = \{x \in X \mid b \in \bigcap_{n \in \mathbb{N}} D^{T_n(x)}\}$ is comeager, and observe that the function $T = \bigcup_{n \in \mathbb{N}} T_{b(n)} \upharpoonright (C \cap D_{b \upharpoonright (n+1)})$ is as desired.

THEOREM 11.3 (Kechris-Miller). Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then there are E-invariant Borel sets $B \subseteq C \subseteq X$ such that C is comeager, $E \upharpoonright (C \setminus B)$ is smooth, and there is an injective Borel compression of $\rho \upharpoonright (E \upharpoonright B)$.

PROOF. If the set $A = \{x \in X \mid \forall y \in [x]_E \exists^{\infty} z \in [x]_E \ \rho(y, z) \leq 1\}$ is countable, then E is smooth, and there is nothing to prove. Otherwise, there is an E-invariant infinite meager Borel set $M \subseteq A$. Fix an aperiodic countable Borel equivalence relation F on X such that $A \setminus M$ is an F-invariant set on which E and F agree, and fix a Borel cocycle $\sigma \colon F \to (0, \infty)$, agreeing with ρ on $E \upharpoonright (A \setminus M)$, for which the transitive binary relation $S = \{(x, y) \in F \mid \sigma(x, y) \leq 1\}$ is aperiodic. By Theorem 11.1, there is a comeager F-invariant Borel set $D \subseteq X$ for which there is an injective Borel compression of $\sigma \upharpoonright (F \upharpoonright D)$. Then the sets $B = (A \setminus M) \cap D$ and $C = (\sim A) \cup B$ are as desired.

Index

 $E\mbox{-}{\rm quasi-invariant},\,2$ G-clique, 10 R-complete, 33 U-Lipschitz embedding, 13 \mathcal{U} -simple, 25 $\rho\text{-bounded},\,15$ ρ -density, 29 $\rho\text{-increasing},\,20$ $\rho\text{-infinite},\,3$ $\rho\text{-invariant},\,3,\,28$ $\rho\text{-lacunary},\,11$ $\rho\text{-size},\,3$ $\sigma\text{-positive}\ \rho\text{-density},\,31$ aperiodic, 13, 33 Borel coboundary, 15 Borel cohomologous, 16 cocycle, 3 composition, 28compression, 20 decomposition, 32 positive ρ -density, 29 quotient, 12 smooth, 11 strictly ρ -increasing, 11, 20