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Part I

Basic notions



1. Quasi-invariance

Suppose that X is a standard Borel space and E is a countable

Borel equivalence relation on X. We say that a Borel measure µ on

X is E-quasi-invariant if µ(B) > 0 () µ(T (B)) > 0 for all Borel

sets B ✓ X and Borel automorphisms T : X ! X whose graphs are

contained in E.

Proposition 1.1. Suppose that X is a standard Borel space, �

is a countable group of Borel automorphisms of X, and µ is a Borel
measure on X with the property that µ(B) > 0 () µ(�B) > 0 for
all Borel sets B ✓ X and � 2 �. Then µ(B) > 0 () µ(T (B)) > 0

for all Borel sets B ✓ X and Borel functions T : B ! X whose graphs
are contained in EX

� .

Proof. Set B� = {x 2 B | T (x) = � · x} for all � 2 �. Then

µ(B) > 0 () 9� 2 � µ(B�) > 0

() 9� 2 � µ(�B�) > 0

() 9� 2 � µ(T (B�)) > 0

() µ(T (B)) > 0,

which completes the proof.

The following observations often allow one to reduce questions about

Borel measures to the E-quasi-invariant case.

Proposition 1.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and µ is a Borel measure
on X. Then there is an E-quasi-invariant Borel measure ⌫ on X such
that µ ⌧ ⌫ and µ and ⌫ agree on every E-invariant Borel set B ✓ X.

Proof. Fix a sequence (✏n)n2N of positive real numbers whose

sum is one, appeal to the Feldman-Moore theorem to obtain a group

� = {�n | n 2 N} of Borel automorphisms of X whose induced orbit

equivalence relation is E, and define ⌫ =
P

n2N ✏n(�n)⇤µ.
To see that ⌫ is E-quasi-invariant, note that if B ✓ X is a Borel

set and � 2 �, then

⌫(B) > 0 () 9� 2 � µ(�B) > 0

() 9� 2 � µ(��B) > 0

() ⌫(�B) > 0.

To see that µ ⌧ ⌫, note that if B ✓ X is Borel and µ(B) > 0, then

((1�)⇤µ)(B) > 0, so ⌫(B) > 0.
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To see that µ(B) = ⌫(B) for all E-invariant Borel sets B ✓ X, note

that B = ��1B for all � 2 �, so ⌫(B) =
P

n2N ✏nµ(B) = µ(B).

Proposition 1.3 (Kechris-Miller). Suppose that X is a standard
Borel space, E is a countable Borel equivalence relation on X, and µ
is a Borel probability measure on X. Then there is a µ-conull Borel
set B ✓ X such that µ � B is (E � B)-quasi-invariant.

Proof. We can assume that X is a Polish space. Fix a basis

U = {Un | n 2 N} for X that is closed under finite unions, as well as a

group � = {�n | n 2 N} of Borel automorphisms of X whose induced

orbit equivalence relation is E. Let S be the set of pairs (m,n) 2 N⇥N
for which there is a Borel set Bm,n ✓ Un such that µ(Bm,n) > µ(Un)/2
and µ(�mBm,n) = 0. Then the set B = ⇠

S
(m,n)2S �mBm,n is µ-conull.

Suppose, towards a contradiction, that µ � B is not (E � B)-quasi-

invariant. Then there is a µ-positive Borel set C ✓ B and a Borel

automorphism T : B ! B such that T (C) is µ-null and graph(T ) ✓ E.

Fix m 2 N for which the set D = {x 2 C | T (x) = �m · x} is µ-
positive. As Borel probability measures on Polish spaces are regular,

there exists n 2 N such that µ(D\Un) > µ(Un)/2. But then (m,n) 2 S
and Bm,n \D 6= ;, contradicting the fact that �mD ✓ B.

Remark 1.4. Proposition 1.3 trivially implies its strengthening in

which the set B is moreover E-complete.

2. Invariance

Suppose that � is a group. A function ⇢ : E ! � is a cocycle if

⇢(x, z) = ⇢(x, y)⇢(y, z) whenever x E y E z.
One can think of a cocycle ⇢ : E ! (0,1) as assigning a notion of

relative size to each E-class C, with the ⇢-size of a point y 2 C relative

to a point z 2 C being ⇢(y, z). More generally, the ⇢-size of a set

Y ✓ C relative to z is given by |Y |⇢z =
P

y2Y ⇢(y, z). We say that Y is

⇢-infinite if this quantity is infinite. As the definition of cocycle ensures

that |Y |⇢z0 =
P

y2Y ⇢(y, z
0
) =

P
y2Y ⇢(y, z)⇢(z, z

0
) = |Y |⇢z ⇢(z, z0) for all

z0 2 C, it follows that the notion of being ⇢-infinite does not depend

on the choice of z 2 C. It also follows that if Z ✓ C is non-empty,

then |Y |⇢x/|Z|⇢x does not depend on the choice of x 2 C. We refer to

this quantity as the ⇢-size of Y relative to Z, which we denote by |Y |⇢Z .
Given a Borel cocycle ⇢ : E ! (0,1), we say that a Borel measure

µ on X is ⇢-invariant if

µ(T (B)) =
R
B ⇢(T (x), x) dµ(x)
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for all Borel sets B ✓ X and Borel automorphisms T : X ! X whose

graphs are contained in E. Intuitively, this says that the global notion

of size given by µ is compatible with the local notion of size given by

⇢. When ⇢ is constant, we say that µ is E-invariant.

Proposition 2.1. Suppose that X is a standard Borel space, � is
a countable group of Borel automorphisms of X, ⇢ : EX

� ! (0,1) is a
Borel cocycle, and µ is a Borel measure on X with the property that
µ(�B) =

R
B ⇢(� · x, x) dµ(x) for all Borel sets B ✓ X and � 2 �.

Then µ(T (B)) =
R
B ⇢(T (x), x) dµ(x) for all Borel sets B ✓ X and

Borel injections T : B ! X whose graphs are contained in EX
� .

Proof. Fix an enumeration (�n)n2N of �, and recursively define

Bn = {x 2 B \
S

m<n Bm | T (x) = �n · x} for all n 2 N. Then

µ(T (B)) =
P

n2N µ(T (Bn))

=
P

n2N µ(�nBn)

=
P

n2N
R
Bn
⇢(�n · x, x) dµ(x)

=
P

n2N
R
Bn
⇢(T (x), x) dµ(x)

=
R
B ⇢(T (x), x) dµ(x),

which completes the proof.

Proposition 2.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and µ is a ⇢-invariant Borel measure on X. Then

µ(��1
(B)) =

R
B |��1

({x})|⇢x dµ(x)

for all Borel functions � : X ! X whose graphs are contained in E
and Borel sets B ✓ X.

Proof. By the Lusin-Novikov uniformization theorem, there are

Borel sets Bn ✓ B and Borel injections Tn : Bn ! X with the prop-

erty that (graph(Tn))n2N partitions graph(��1
) \ (B ⇥ X). Fix Borel

extensions T 0
n : B ! X of Tn whose graphs are contained in E. Then

R
B |��1

({x})|⇢x dµ(x) =
R
B

P
n2N �Bn(x)⇢(T

0
n(x), x) dµ(x)

=
P

n2N
R
Bn
⇢(Tn(x), x) dµ(x)

=
P

n2N µ(Tn(Bn))

= µ(��1
(B)),

by Proposition 2.1.
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A similar change-of-variables argument yields a general formula for

calculating an integral along a Borel transversal of a finite Borel sube-

quivalence relation.

Proposition 2.3. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and µ is a ⇢-invariant Borel measure. Then

R
� dµ =

R
A

P
y2[x]F �(y)⇢(y, x) dµ(x)

for all Borel functions � : X ! [0,1), finite Borel subequivalence re-
lations F of E, and Borel transversals A ✓ X of F .

Proof. Fix Borel sets An ✓ A, Borel injections Tn : An ! X with

the property that (graph(Tn))n2N partitions F \ (A ⇥ X), and Borel

extensions T 0
n : A ! X of Tn whose graphs are contained in E. Then

R
� dµ =

P
n2N

R
Tn(An)

� dµ

=
P

n2N
R
An
� � Tn d((T�1

n )⇤µ)

=
P

n2N
R
An
(� � Tn)(x)⇢(Tn(x), x) dµ(x)

=
R
A

P
n2N �An(x)(� � T 0

n)(x)⇢(T
0
n(x), x) dµ(x)

=
R
A

P
y2[x]F �(y)⇢(y, x) dµ(x),

by Proposition 2.1.

In particular, this yields the following means of computing measures

using finite Borel subequivalence relations.

Proposition 2.4. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and µ is a ⇢-invariant Borel measure. Then

µ(B) =
R
A |B \ [x]F |⇢x dµ(x)

for all Borel sets B ✓ X, finite Borel subequivalence relations F of E,
and Borel transversals A ✓ X of F .

Proof. Simply observe that

µ(B) =
R
�B dµ

=
R
A

P
y2[x]F �B(y)⇢(y, x) dµ(x)

=
R
A |B \ [x]F |⇢x dµ(x),

by Proposition 2.3.
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Proposition 2.5. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and µ is a ⇢-invariant Borel measure. Then

µ(B) =
R
|B \ [x]F |⇢[x]F dµ(x)

for all Borel B ✓ X and finite Borel subequivalence relations F of E.

Proof. Fix a Borel transversal A ✓ X of F , and observe that
R
|B \ [x]F |⇢[x]F dµ(x) =

R
A

P
y2[x]F |B \ [y]F |⇢[y]F ⇢(y, x) dµ(x)

=
R
A |B \ [x]F |⇢[x]F |[x]F |

⇢
x dµ(x)

=
R
A |B \ [x]F |⇢x dµ(x),

by Proposition 2.3, in which case µ(B) =
R
|B \ [x]F |⇢[x]F dµ(x) by

Proposition 2.4.

We close this section by noting the connection between invariance

and quasi-invariance.

Proposition 2.6. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, and µ is an E-quasi-
invariant �-finite Borel measure on X. Then there is a Borel cocycle
⇢ : E ! (0,1) for which µ is ⇢-invariant.

Proof. Fix a countable group � of Borel automorphisms whose

induced orbit equivalence relation is E. For each � 2 �, fix a Borel

Radon-Nikodým derivative �� : X ! (0,1) of �⇤µ with respect to µ.

Lemma 2.7. Suppose that �, � 2 �. Then:

(1) � · x = � · x =) ���1(x) = ���1(x) for µ-almost all x 2 X.
(2) �(��)�1(x) = ���1(� · x)���1(x) for µ-almost all x 2 X.

Proof. To see (1), note that if A = {x 2 X | � · x = � · x}, then
(��1

)⇤µ � A = (��1
)⇤µ � A, so the almost everywhere uniqueness of

Radon-Nikodým derivatives yields that ���1(x) = ���1(x) for (µ � A)-
almost all x 2 A. To see (2), note that if B ✓ X is Borel, then

R
B ���1(� · x)���1(x) dµ(x) =

R
B ���1(� · x) d((��1

)⇤µ)(x)

=
R
�B ���1(x) dµ(x)

= ((��1
)⇤µ)(�B)

= µ(��B)

= (((��)�1
)⇤µ)(B),

so the almost everywhere uniqueness of Radon-Nikodým derivatives

ensures that �(��)�1(x) = ���1(� · x)���1(x) for µ-almost all x 2 X.
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As µ is E-quasi-invariant, Lemma 2.7 ensures that the E-invariant

Borel set C ✓ X of x 2 X such that � · y = � · y =) ���1(y) = ���1(y)
and �(��)�1(y) = ���1(� · y)���1(y) for all �, � 2 � and y 2 [x]E is µ-
conull. The former condition ensures that we obtain a Borel function

⇢ : E � C ! (0,1) by setting ⇢(x, y) = ���1(y) for all � 2 � and x, y 2
C with the property that x = � · y. The latter condition implies that if

�, � 2 � and x, y, z 2 C have the property that x = � · y and y = � · z,
then ⇢(x, z) = �(��)�1(z) = ���1(�·z)���1(z) = ⇢(x, y)⇢(y, z), thus ⇢ is a
cocycle. As µ(�B) = ((��1

)⇤µ)(B) =
R
B ���1 dµ =

R
B ⇢(� · x, x) dµ(x)

for all Borel sets B ✓ C and � 2 �, Proposition 2.1 ensures that µ � C
is (⇢ � (E � C))-invariant, thus any extension of ⇢ to a Borel cocycle

on E is as desired.





Part II

The existence of invariant �-finite
measures



3. Lacunary sets

Given a digraph G on X, we say that a set Y ✓ X is a G-clique if

all pairs of distinct points of Y are G-related. Given a Borel cocycle

⇢ : E ! � and a set Z ✓ �, let G⇢
Z denote the digraph on X with

respect to which distinct points x and y are related if and only if they

are E-equivalent and ⇢(x, y) 2 Z.

Proposition 3.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, � is a topological group,
⇢ : E ! � is a Borel cocycle, and K ✓ � is compact. If there is an
open neighborhood U ✓ � of 1� for which there is no infinite G⇢

U -clique,
then the vertical sections of G⇢

K are finite.

Proof. Fix a non-empty open set V ✓ � for which V �1V ✓ U , as

well as a finite sequence (�i)i<n of elements of � with the property that

K ✓
S

i<n �iV . As (G⇢
K)x ✓

S
i<n(G

⇢
�iV

)x for all x 2 X, we need only

show that each (G⇢
�iV

)x is a G⇢
U -clique. But if i < n and y, z 2 (G⇢

�iV
)x,

then ⇢(y, z) = ⇢(y, x)⇢(x, z) 2 (�iV )
�1�iV = V �1V ✓ U .

Remark 3.2. As Borel digraphs on standard Borel spaces with

finite vertical sections have Borel N-colorings, it follows that if there is
an open neighborhood U ✓ � of 1� for which there is a Borel N-coloring
of G⇢

U , then there is a Borel N-coloring of G⇢
K .

Proposition 3.3. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and G ✓ E is a digraph.

(1) If there is a Borel coloring c : X ! N of G, then there is an
E-complete G-independent Borel set B ✓ X.

(2) If G is of the form G⇢
U , where � is a separable topological group,

⇢ : E ! � is a Borel cocycle, and U ✓ � is a pre-compact open
neighborhood of 1G, then the converse holds.

Proof. To see (1), set An = c�1
({n}) and Bn = An \

S
m<n[Am]E

for all n 2 N. As the Lusin-Novikov uniformization theorem ensures

that the latter sets are Borel, it follows that their union is an E-

complete G⇢
U -independent Borel set.

To see (2), appeal to the Lusin-Novikov uniformization theorem to

obtain Borel sets Bn ✓ B and Borel functions �n : Bn ! X such that

E \ (B ⇥ X) =
S

n2N graph(�n). By breaking up the domains of the

functions �n into countably-many Borel sets and re-indexing, we can

assume the sets Kn = ⇢(graph(�n)) are pre-compact. As Remark 3.2

yields Borel N-colorings of G⇢

KnUK�1
n

\ (B⇥B), and �n sends G⇢

KnUK�1
n
-

independent Borel sets to G⇢
U -independent Borel sets, there is a Borel

N-coloring of each G⇢
U \ (�n(Bn)⇥ �n(Bn)), and therefore of G⇢

U .
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Remark 3.4. It follows that if U ✓ � is a pre-compact open neigh-

borhood of 1�, then there is a Borel N-coloring of G⇢
U � ⇠B, where

B = {x 2 X | 8y 2 [x]E91z 2 [x]E ⇢(y, z) 2 U}.

We say that a set Y ✓ X is ⇢-lacunary if it is G⇢
U -independent for

some open neighborhood U ✓ � of 1�.

Proposition 3.5. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, � is a locally compact
separable group, and ⇢ : E ! � is a Borel cocycle. Then the following
are equivalent:

(1) The set X is a countable union of ⇢-lacunary Borel sets.
(2) For every pre-compact open neighborhood U ✓ � of 1� there is

a Borel N-coloring of G⇢
U .

(3) There is an open neighborhood U ✓ � of 1� for which there is
a Borel N-coloring of G⇢

U .
(4) There is an E-complete ⇢-lacunary Borel set.

Proof. To see (1) =) (2), suppose that there are ⇢-lacunary Borel

sets Bn ✓ X such that X =
S

n2N Bn, fix open neighborhoods Un ✓ �

of 1� such that Bn is G⇢
Un
-independent for all n 2 N, and appeal to

Remark 3.2 to obtain Borel N-colorings of the digraphs G⇢
U\(Bn⇥Bn),

and therefore of G⇢
U .

As (2) =) (3) =) (1) is trivial, it only remains to note that

(3) () (4) is a direct consequence of Proposition 3.3.

When � is locally compact and separable, we say that a Borel co-

cycle ⇢ : E ! � is smooth if it satisfies the equivalent conditions of

Proposition 3.5.

4. Smooth cocycles

When � = (0,1), we say that an injection T : X ! X is strictly
⇢-increasing if its graph is contained in E and ⇢(T (x), x) > 1 for all

x 2 X.

Proposition 4.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and ⇢ : E ! (0,1) is a
smooth Borel cocycle. Then there is an E-invariant Borel set B ✓ X
for which E � ⇠B is smooth and there is a strictly (⇢ � (E � B))-
increasing Borel automorphism.

Proof. Fix a partition (Bn)n2N of X into ⇢-lacunary Borel sets,

and let n(x) denote the unique natural number for which x 2 Bn(x).

Let � be the partial order on X with respect to which x � y if and
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only if x E y, n(x) = n(y), and ⇢(x, y)  1, and let B be the set of

x 2 X such that for all n 2 N, either Bn \ [x]E = ; or � � (Bn \ [x]E)
is isomorphic to the usual ordering of Z. Then the (� � B)-successor

function is a strictly (⇢ � (E � B))-increasing Borel automorphism, and

the discreteness of � ensures that E � ⇠B is smooth.

The quotient of a cocycle ⇢ : E ! (0,1) by a finite subequiva-

lence relation F of E is the function ⇢/F : E/F ! (0,1) given by

(⇢/F )([x]F , [y]F ) = |[x]F |⇢[y]F .

Proposition 4.2. Suppose that X is a set, E is an equivalence
relation on X, F is a finite subequivalence relation of E, � is a group,
and ⇢ : E ! � is a cocycle. Then ⇢/F is a cocycle.

Proof. Simply observe that

(⇢/F )([x]F , [z]F ) = |[x]F |⇢w/|[z]F |⇢w
= (|[x]F |⇢w/|[y]F |⇢w)(|[y]F |⇢w/|[z]F |⇢w)
= (⇢/F )([x]F , [y]F )(⇢/F )([y]F , [z]F )

whenever w E x E y E z.

Proposition 4.3. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and F is a finite Borel subequivalence relation of E. Then ⇢
is smooth if and only if ⇢/F is smooth.

Proof. Proposition 4.2 ensures that if x E y E z, then

⇢(x, y) = ⇢(x, z)⇢(z, y)

= ⇢(x, z)/⇢(y, z)

= |{x}|⇢{y}
= |{x}|⇢[x]F |[x]F |

⇢
[y]F

|[y]F |⇢{y},

so ⇢(x, y)/(⇢/F )([x]F , [y]F ) = |{x}|⇢[x]F |[y]F |
⇢
{y}.

By partitioning X into countably-many F -invariant Borel sets, we

can assume that there is a real number r > 1 such that |[x]F |⇢x < r
for all x 2 X. Then 1/r < |{x}|⇢[x]F |[y]F |

⇢
{y} < r for all x, y 2 X, so

1/r < ⇢(x, y)/(⇢/F )([x]F , [y]F ) < r whenever x E y.
One consequence is that if Y ✓ X and the quotient [Y ]F/F is

G⇢/F
(1/r,r)-dependent, then Y is G⇢

(1/r2,r2)-dependent, so the smoothness

of ⇢ yields that of ⇢/F .

Another consequence is that if Y ✓ X is both F -invariant and

(G⇢
(1/r,r) \F )-dependent, then the quotient Y/F is G⇢/F

(1/r2,r2)-dependent.
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As locally finite Borel graphs on standard Borel spaces have Borel N-
colorings, the smoothness of ⇢/F therefore yields that of ⇢.

We say that a cocycle ⇢ : E ! (0,1) is aperiodic if every E-class

is ⇢-infinite.

Proposition 4.4. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and ⇢ : E ! (0,1) is an
aperiodic smooth Borel cocycle. Then there is a finite Borel subequiv-
alence relation F of E for which there is a strictly (⇢/F )-increasing
Borel injection.

Proof. By Proposition 4.1, we can assume that E is smooth. As

the aperiodicity of ⇢ yields that of E, there is a partition (Bn)n2N of X
into Borel transversals of E. For each x 2 X, let n(x) be the unique

natural number for which x 2 Bn(x), set n0(x) = 0, recursively define

ni+1(x) to be the least natural number with the property that the ⇢-
size of {y 2 [x]E | n(y)  ni+1(x)} relative to {y 2 [x]E | n(y)  ni(x)}
is strictly greater than two, and let i(x) be the least natural number

for which n(x)  ni(x)(x). Let F be the subequivalence relation of E
given by x F y () (x E y and i(x) = i(y)), and observe that the

Borel injection obtained by sending [x]F to [y]F if and only if (x E y
and i(x) = i(y)� 1) is strictly (⇢/F )-increasing.

5. A generalization of the E0 dichotomy

Given an open neighborhood U ✓ � of 1�, a U-Lipschitz embedding
of a cocycle � : E ! � into a cocycle ⇢ : F ! � is an embedding

⇡ : X ! Y of E into F such that ⇢(⇡(w), ⇡(x)) 2 U · �(w, x) whenever
w E x. Let ⇢0 denote the constant cocycle on E0.

Theorem 5.1 (Glimm-E↵ros, Shelah-Weiss, Weiss, Jackson-Kech-

ris-Louveau, Miller). Suppose that X is a Polish space, E is a countable
Borel equivalence relation on X, � is a locally-compact second-coun-
table group, ⇢ : E ! � is a Borel cocycle, and U ✓ � is an open
neighborhood of 1�. Then at least one of the following holds:

(1) The cocycle ⇢ is smooth.
(2) There is a continuous U-Lipschitz embedding of ⇢0 into ⇢.

Moreover, if U is pre-compact, then exactly one of these holds.

Proof. To see that conditions (1) and (2) are mutually exclusive

when U is pre-compact, note that if ⇢ is smooth, then there is a se-

quence (Bn)n2N of G⇢
U -independent Borel sets with the property that

X =
S

n2N Bn. But if ⇡ : 2N ! X is a Borel U -Lipschitz embedding of

⇢0 into ⇢, then (⇡�1
(Bn))n2N is a sequence of Borel partial transversals
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of E0 with the property that 2
N
=

S
n2N ⇡

�1
(Bn), contradicting the

fact that E0 is not smooth.

It remains to show that if condition (1) fails, then condition (2)

holds. Towards this end, fix a sequence (✏n)n2N of positive real num-

bers converging to zero. Set U0 = U , and fix pre-compact open neigh-

borhoods Un+1 ✓ � of 1� such that U2
n+1U

�1
n+1 ✓ Un for all n 2 N. A

simple induction shows that (
Q

mn Um+1)Un+1(
Q

mn Um+1)
�1 ✓ U for

all n 2 N. Fix a countable group� of Borel automorphisms ofX whose

orbit equivalence relation is E, and an increasing sequence (�n)n2N of

finite sets containing 1� whose union is �. By change of topology re-

sults, we can assume that � acts on X by homeomorphisms, and that

for all � 2 �, the function ⇢� : X ! � given by ⇢�(x) = ⇢(� · x, x) is

continuous. Fix a compatible complete metric on X.

We will construct open sets Vn ✓ X and group elements �n 2 �,

from which we define �s =
Q

n<|s| �
s(n)
n for all s 2 2

<N
, so as to ensure

that the following conditions hold:

(a) 8n 2 N ⇢ � (E � Vn) is non-smooth.

(b) 8n 2 N Vn+1 ✓ ⇢�1
�n
(Un+1).

(c) 8n 2 N Vn+1 [ �nVn+1 ✓ Vn.

(d) 8n 2 N8� 2 �n8s, t 2 2
n ��sVn+1 \ �t�nVn+1 = ;.

(e) 8n 2 N8s 2 2
n+1

diam(�sVn+1)  ✏n.

We begin by setting V0 = X. Suppose now that n 2 N and we have

already found Vn and (�i)i<n. For each � 2 �, let Vn,� be the set of

x 2 Vn\��1Vn\⇢�1
� (Un+1) such that 8�0 2 �n8s, t 2 2

n �0�s ·x 6= �t� ·x.
As the horizontal sections of G⇢

Un+1
\((Vn\

S
�2� Vn,�)⇥(Vn\

S
�2� Vn,�))

have size at most 4
n|�n|, it follows that there is a Borel N-coloring

of G⇢
Un+1

\ ((Vn \
S
�2� Vn,�) ⇥ (Vn \

S
�2� Vn,�)), so ⇢ is smooth on

E � (Vn \
S
�2� Vn,�), thus there exists �n 2 � for which ⇢ � (E � Vn,�n)

is non-smooth. As Vn,�n is the union of a countable set Vn+1 of open

sets V ✓ X satisfying the analogs of conditions (c), (d), and (e) with

V in place of Vn+1, there exists Vn+1 2 Vn+1 satisfying conditions (a) –

(e). This completes the recursive construction.

Note that if c 2 2
N
, then �c�(n+1)Vn+1 ✓ �c�n(Vn+1[�nVn+1) ✓ �c�nVn

for all n 2 N by condition (c), and diam(�c�nVn) ! 0 by condition (e),

so we obtain a continuous function ⇡ : 2N ! X by letting ⇡(c) be the

unique element of
T

n2N �
c�nVn, for all c 2 2

N
.
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Observe now that if c 2 2
N
, k 2 N, and s 2 2

k
, then

{�s · ⇡((0)k a c)} = �s ·
T

n�k �
((0)kac)�nVn

=
T

n�k �
(sac)�nVn

= {⇡(s a c)},

in which case ⇢(⇡(s a c), ⇡((0)k a c)) can be expressed as

Q
i<k ⇢((

Q
ij<k �

s(j)
j ) · ⇡((0)k a c), (

Q
i<j<k �

s(j)
j ) · ⇡((0)k a c)),

and is therefore in
Q

i<k Ui+1 by k applications of condition (b), so

⇢(⇡(s a c), ⇡(t a c)) 2 (
Q

i<k Ui+1)(
Q

i<k Ui+1)
�1

for all c 2 2
N
, k 2 N,

and s, t 2 2
k
, thus c E0 d =) (⇡(c) E ⇡(d) and ⇢(⇡(c), ⇡(d)) 2 U).

But if c, d 2 2
N
, n 2 N, and c(n) < d(n), then ⇡(c) 2 �c�nVn+1 and

⇡(d) 2 �d�n�nVn+1, so condition (d) yields that 8� 2 �n � ·⇡(c) 6= ⇡(d),
thus c 6= d =) ⇡(c) 6= ⇡(d) and ¬c E0 d =) ¬⇡(c) E ⇡(d).

6. Invariant measures and smoothness

We say that a Borel cocycle ⇢ : E ! � is a Borel coboundary if

there is a Borel function � : X ! � such that ⇢(x, y) = �(x)�(y)�1

for all (x, y) 2 E. When � is locally compact, we say that a set

Y ✓ X is ⇢-bounded if it is G⇢
⇠U -independent for some pre-compact

open neighborhood U ✓ � of 1�.

Proposition 6.1. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, � is a locally-compact
separable group, ⇢ : E ! � is a Borel cocycle, and U ✓ � is an open
neighborhood of 1�.

(1) If ⇢ is a Borel coboundary, then there is an E-complete G⇢
⇠U -

independent Borel set B ✓ X.
(2) If � = (0,1) and U is pre-compact, then the converse holds.

Proof. To see (1), suppose that � : X ! � is a Borel function

with the property that ⇢(x, y) = �(x)�(y)�1
for all (x, y) 2 E. Fix an

enumeration (�n)n2N of a dense subset of �, as well as an open set V ✓ �

for which V V �1 ✓ U , and let n(x) be the least natural number for

which �([x]E)\V �n(x) 6= ;. Then the set B = {x 2 X | �(x) 2 V �n(x)}
is E-complete and G⇢

⇠U -independent.

To see (2), suppose that B ✓ X is an E-complete ⇢-bounded Borel

set, define � : X ! (0,1) by �(x) = sup{⇢(x, y) | y 2 B \ �([x]E)}.
Given x E y, fix a sequence (zn)n2N of points of [x]E with the property
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that �(x) = limn!1 ⇢(x, zn) and �(y) = limn!1 ⇢(y, zn), and note that

⇢(x, y) = lim
n!1

⇢(x, zn)⇢(zn, y)

= lim
n!1

⇢(x, zn)/ lim
n!1

⇢(y, zn)

= �(x)/�(y),

by continuity.

We say that Borel cocycles ⇢ : E ! � and � : E ! � are Borel
cohomologous if there is a Borel function � : X ! � with the property

that ⇢(x, y) = �(x)�(x, y)��1
(y) whenever x E y.

Proposition 6.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and � : X ! (0,1) is
a Borel function witnessing that Borel cocycles ⇢, � : E ! (0,1) are
Borel cohomologous. Then for every �-invariant Borel measure µ, the
corresponding Borel measure ⌫, given by ⌫(B) =

R
B � dµ for all Borel

sets B ✓ X, is ⇢-invariant.

Proof. Observe that if B ✓ X is a Borel set and T : X ! X is a

Borel automorphism whose graph is contained in E, then

⌫(T (B)) =
R
T (B) � dµ

=
R
B � � T d((T�1

)⇤µ)

=
R
B(� � T )(x)�(T (x), x) dµ(x)

=
R
B ⇢(T (x), x)�(x) dµ(x)

=
R
B ⇢(T (x), x) d⌫(x),

by �-invariance.

Proposition 6.3. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a
smooth Borel cocycle, and µ is a ⇢-invariant �-finite Borel measure on
X. Then there is a µ-conull Borel set on which E is smooth.

Proof. By breaking X into countably-many Borel sets, we can

assume that µ is finite. By Proposition 4.1, there is an E-invariant

Borel set B ✓ X for which E � ⇠B is smooth and there is a strictly

(⇢ � (E � B))-increasing Borel automorphism T : B ! B. But then

µ(B) = µ(T (B)) =
R
B ⇢(T (x), x) dµ(x), thus µ(B) = 0.

Proposition 6.4. Suppose that X is a non-empty standard Bor-
el space, E is a smooth Borel equivalence relation on X, and µ is an
E-ergodic Borel measure. Then there is a µ-conull E-class.
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Proof. We can clearly assume, without loss of generality, that µ
is non-zero. Fix a Borel reduction ⇡ : X ! 2

N
of E to equality, define

d 2 2
N
by d(n) = i () {c 2 2

N | c(n) = i} is (⇡⇤µ)-conull, and
observe that ⇡�1

({d}) is a µ-conull E-class.

Theorem 6.5 (Glimm-E↵ros, Shelah-Weiss, Weiss, Miller). Sup-
pose that X is a non-empty standard Borel space, E is a countable
Borel equivalence relation on X, and ⇢ : E ! (0,1) is a Borel cocy-
cle. Then the following are equivalent:

(1) The cocycle ⇢ is smooth.
(2) Every ⇢-invariant �-finite Borel measure concentrates on a

Borel set on which E is smooth.
(3) Every E-ergodic ⇢-invariant �-finite Borel measure concen-

trates on an E-class.

Proof. Proposition 6.3 yields (1) =) (2), while Proposition 6.4

yields (2) =) (3). To see ¬(1) =) ¬(3), fix a pre-compact open

neighborhood U ✓ (0,1) of 1, and appeal to Theorem 5.1 to obtain

a continuous U -Lipschitz embedding ⇡ : 2N ! X of ⇢0 into ⇢. Define

µ0 = ⇡⇤µ0 and B = ⇡(2N). The fact that µ0 is continuous, E0-ergodic,

and E0-invariant ensures that µ0 � B is continuous, (E � B)-ergodic,

and (E � B)-invariant.

Lemma 6.6. There are Borel sets Bn ✓ B and Borel injections
Tn : Bn ! X, whose graphs are contained in E, with the property that
(Tn(Bn))n2N partitions [B]E.

Proof. Fix a group � = {�n | n 2 N} of Borel automorphisms

for which E = EX
� . For each x 2 [B]E, let n(x) be the least natural

number such that �n(x) · x 2 B. Set An = {x 2 [B]E | n(x) = n},
Bn = �nAn, and Tn = ��1

n � Bn for all n 2 N.
Define µ =

P
n2N(Tn)⇤(µ0 � Bn).

Lemma 6.7. The measure µ is E-invariant.

Proof. Suppose that T : X ! X is a Borel automorphism whose

graph is contained in E, and A ✓ X is Borel. For all m,n 2 N, define
Am,n = A\Tm(Bm)\ (T�1 �Tn)(Bn), as well as A0

m,n = T�1
m (Am,n) and

A00
m,n = (T�1

n � T )(Am,n), and observe that (T�1
n �T �Tm)(A0

m,n) = A00
m,n,

so µ(Am,n) = µ0(A0
m,n) = µ0(A00

m,n) = µ(T (Am,n)). It follows that

µ(A) =
P

m,n2N µ(Am,n) =
P

m,n2N µ(T (Am,n)) = µ(T (A)).

As B is ⇢-bounded, Proposition 6.1 ensures that ⇢ � (E � [B]E) is

a Borel coboundary, so Proposition 6.2 implies that µ is equivalent to

a ⇢-invariant �-finite Borel measure ⌫. As µ0 � B is continuous and
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(E � B)-ergodic, it follows that µ is continuous and E-ergodic, thus

the same holds of ⌫.



Part III

The existence of invariant
probability measures



7. Compressibility

We say that a function � : X ! X whose graph is contained in E
is ⇢-increasing at a finite set S ✓ [x]E if |��1

(S)|⇢x  |S|⇢x, and strictly
⇢-increasing at a finite set S ✓ [x]E if |��1

(S)|⇢x < |S|⇢x. A compression
of ⇢ over a subequivalence relation F of E is a function � : X ! X,

whose graph is contained in E, that is ⇢-increasing at every F -class,

and for which the set of F -classes at which it is strictly ⇢-increasing is

(E/F )-complete.

Proposition 7.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and there is a Borel compression � : X ! X of ⇢ over a finite
Borel subequivalence relation F of E. Then there is no ⇢-invariant
Borel probability measure.

Proof. Proposition 2.2 ensures that µ(X) =
R
|��1

({x})|⇢x dµ(x).
Fix a Borel transversal A ✓ X of F . Proposition 2.3 then implies that

R
|��1

({x})|⇢x dµ(x) =
R
A

P
y2[x]F |��1

({y})|⇢y⇢(y, x) dµ(x)
=

R
A

P
y2[x]F |��1

({y})|⇢x dµ(x)

=
R
A |��1

([x]F )|⇢x dµ(x),

so µ(X) =
R
A |[x]F |⇢x dµ(x) =

R
A |��1

([x]F )|⇢x dµ(x) by Proposition 2.4.

As the set B = {x 2 A | |��1
([x]F )|⇢x < |[x]F |⇢x} is E-complete, it

follows that if µ(X) > 0, then µ(B) > 0. As |��1
([x]F )|⇢x  |[x]F |⇢x for

all x 2 A, it follows that if µ(B) > 0, then µ(X) = 1.

A compression of ⇢ is a compression of ⇢ over equality.

Proposition 7.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and F is a finite Borel subequivalence relation of E for which
there is a Borel compression � : X/F ! X/F of ⇢/F . Then there is a
Borel compression of ⇢ over F .

Proof. By the Lusin-Novikov uniformization theorem, there is a

Borel uniformization  : X ! X of {(x, y) 2 E | �([x]F ) = [y]F}. But
every uniformization of this set is a compression of ⇢ over F .

A compression of E is a compression of the constant cocycle on E,

or equivalently, a Borel injection � : X ! X, whose graph is contained

in E, such that ⇠�(X) is E-complete.

Proposition 7.3. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, and there is a Borel
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compression � : X ! X of the constant cocycle on E over a finite Bor-
el subequivalence relation F of E. Then there is a Borel compression
of E.

Proof. By the Lusin-Novikov uniformization theorem, there is an

injective Borel uniformization  : X ! X of {(x, y) 2 E | �(x) F y}.
But every injective uniformization of this set is a compression of E.

We next consider the connection between injective compressions

and smoothness.

Proposition 7.4 (Dougherty-Jackson-Kechris, Miller). Suppose
that X is a standard Borel space, E is a countable Borel equivalence re-
lation on X, and ⇢ : E ! (0,1) is a Borel cocycle. Then the following
are equivalent:

(1) There is an injective Borel compression of the quotient of ⇢ by
a finite Borel subequivalence relation of E.

(2) There is a Borel subequivalence relation of E on which ⇢ is
aperiodic and smooth.

Proof. By Proposition 4.4, it is su�cient to show (1) =) (2).

By Proposition 4.3, we can assume that there is an injective Borel

compression � : X ! X of ⇢. Set A = {x 2 X | |��1
({x})|⇢x < 1},

and let F be the orbit equivalence relation generated by �. As the sets
Ar = {x 2 X | |��1

({x})|⇢x < r} are (⇢ � F )-lacunary for all r < 1, it

follows that ⇢ � (F � A) is smooth, thus ⇢ � (F � [A]F ) is aperiodic and
smooth. By the Lusin-Novikov uniformization theorem, there is a Bor-

el extension  : X ! [A]F of the identity function on [A]F whose graph

is contained in E, in which case the restriction of ⇢ to the pullback of

F � [A]F through  is aperiodic and smooth.

We will eventually establish Nadkarni’s theorem that the existence

of a Borel compression of a countable Borel equivalence relation E is

equivalent to the inexistence of an E-invariant Borel probability mea-

sure. The following observations rule out the most straightforward

generalizations to Borel cocycles.

Proposition 7.5. Suppose that X is a standard Borel space and
E is an aperiodic smooth countable Borel equivalence relation on X.
Then there is a Borel cocycle ⇢ : E ! (0,1) that admits neither an
invariant Borel probability measure nor a compression.

Proof. Fix a strictly decreasing sequence (rn)n2N of positive real

numbers for which
P

n2N rn = 1. As E is both aperiodic and smooth,

there is a partition (Bn)n2N of X into Borel transversals of E. For each
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x 2 X, let n(x) denote the unique natural number for which x 2 Bn(x),

and define ⇢ : E ! (0,1) by ⇢(x, y) = rn(x)/rn(y) for all (x, y) 2 E.

The fact that
P

n2N rn = 1 ensures that ⇢ is aperiodic, and the

smoothness of E implies that of ⇢. Proposition 7.4 therefore yields a

Borel compression of the quotient of ⇢ by a finite Borel subequivalence

relation, so Proposition 7.2 ensures that there is a Borel compression

of ⇢ over a finite Borel subequivalence relation, thus Proposition 7.1

implies that there is no ⇢-invariant Borel probability measure.

To see that there is no compression of ⇢, note that if the graph of

a function � : X ! X is contained in E and |��1
({x})|⇢x  1 for all

x 2 X, then a straightforward induction on n(x), using the fact that

(rn)n2N is strictly decreasing, shows that �(x) = x for all x 2 X.

Proposition 7.6. Suppose that X is a standard Borel space and
E is an aperiodic countable Borel equivalence relation on X for which
there is an E-invariant Borel probability measure. Then there is a Bor-
el coboundary ⇢ : E ! (0,1) that admits neither an invariant Borel
probability measure nor an injective Borel compression of its quotient
by a finite Borel subequivalence relation of E.

Proof. Set A0 = B0 = X, and given n 2 N and an E-complete

Borel set Bn ✓ X on which E is aperiodic, fix a Borel subequivalence

relation Fn of E � Bn whose classes are all of cardinality two (prove that

this can be done!), as well as disjoint Borel transversals An+1, Bn+1 ✓
Bn of Fn, and let ◆n : Bn ! Bn be the involution whose graph is Fn. For

all x 2 X, let n(x) be the maximal natural number for which x 2 An(x),

and define ⇢ : E ! (0,1) by ⇢(x, y) = 2
n(x)�n(y)

for all (x, y) 2 E.

To see that there is no ⇢-invariant Borel probability measure, note

that if µ is a ⇢-invariant Borel measure, then the observation that

An+1 = ◆n(Bn+1) = ◆n(An+2)t ◆n(Bn+2) = ◆n(An+2)t (◆n � ◆n+1)(An+2)

yields µ(An+1) =
R
An+2

⇢(◆n(x), x)+⇢((◆n�◆n+1)(x), x) dµ(x) = µ(An+2)

for all n 2 N, thus µ(X) 2 {0,1}.
Suppose, towards a contradiction, that there is an injective Bor-

el compression of the quotient of ⇢ by a finite Borel subequivalence

relation of E. Proposition 7.4 then ensures that there is a Borel sube-

quivalence relation F of E on which ⇢ is aperiodic and smooth, in

which case Proposition 4.1 yields an F -invariant Borel set A ✓ X such

that F � ⇠A is smooth and there is a strictly (⇢ � (F � A))-increasing
Borel automorphism T : A ! A. Fix an E-invariant Borel probability

measure µ.
As the aperiodicity of ⇢ � F yields that of F , Proposition 7.4 ensures

that there is a Borel compression of the quotient of F � ⇠A by a finite

Borel subequivalence relation, so Proposition 7.2 implies that there is a
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Borel compression of F � ⇠A over a finite Borel subequivalence relation,

thus µ(⇠A) = 0 by Proposition 7.1.

Observe now that the facts that A0 = A1 t B1 = A1 t ◆0(A1) and

An+1 = ◆n(Bn+1) = ◆n(An+2)t ◆n(Bn+2) = ◆n(An+2)t (◆n � ◆n+1)(An+2)

ensure that µ(An) = 2µ(An+1) for all n 2 N, so µ(
S

n2N An+1) = 1,

whereas µ(
S

n2N An+2) = 1/2. But the definition of ⇢ ensures that

T (A \
S

n2N An+1) ✓
S

n2N An+2, contradicting F -invariance.

8. The existence of invariant probability measures

Given a finite set S ✓ X for which S ⇥ S ✓ E, let µ⇢S be the Borel

probability measure on X given by µ⇢S(B) = |B \ S|⇢S.

Proposition 8.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, � : X ! [0,1) is Borel, � > 0, and ✏ > sup(x,y)2E �(x)��(y).
Then there exist an E-invariant Borel set B ✓ X and a finite Borel
subequivalence relation F of E � B for which ⇢ � (E � ⇠B) is smooth
and �✏ > sup(x,y)2E�B

R
� dµ⇢[x]F �

R
� dµ⇢[y]F .

Proof. By repeatedly applying the corresponding special case of

the proposition over the corresponding quotients, we can assume that

� > 2/3. For each x 2 X, let �([x]E) be the average of inf �([x]E)
and sup�([x]E). Fix a maximal Borel set S of pairwise disjoint non-

empty finite sets S ✓ X with the property that S ⇥ S ✓ E and

✏(��1/2) > |
R
� dµ⇢S��([S]E)|. Set C = {x 2 ⇠

S
S | �(x) < �([x]E)}

and D = {x 2 ⇠
S

S | �(x) > �([x]E)}.

Lemma 8.2. Suppose that (x, y) 2 E. Then there exists a real
number r > 1 such that x has only finitely-many G⇢

(1/r,r)-neighbors in
C or y has only finitely-many G⇢

(1/r,r)-neighbors in D.

Proof. As � > 2/3, a trivial calculation reveals that �✏(� � 1/2)
is strictly below the average of �✏/2 and ✏(� � 1/2), or equivalently,

that the average of �✏(� � 1/2) and ✏/2 is strictly below ✏(� � 1/2).
It follows that by choosing m,n 2 N for which m/n is su�ciently

close to ⇢(y, x), we can ensure that the ratios s = m/(m + n⇢(y, x))
and t = n⇢(y, x)/(m + n⇢(y, x)) are su�ciently close to 1/2 so as to

guarantee that the sums s(�([x]E) � ✏/2) + t(�([x]E) + ✏(� � 1/2))
and s(�([x]E)� ✏(�� 1/2)) + t(�([x]E) + ✏/2) both lie strictly between

�([x]E)�✏(��1/2) and �([x]E)+✏(��1/2). Fix r > 1 such that they lie

strictly between (�([x]E)� ✏(�� 1/2))r2 and (�([x]E)+ ✏(�� 1/2))/r2.
Suppose, towards a contradiction, that there exist sets S ✓ C

and T ✓ D of G⇢
(1/r,r)-neighbors of x and y of cardinalities m and
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n. Then m/r < |S|⇢x < mr and n⇢(y, x)/r < |T |⇢x < n⇢(y, x)r, so
(m + n⇢(y, x))/r < |S [ T |⇢x < (m + n⇢(y, x))r, from which it follows

that s/r2 < |S|⇢x/|S [ T |⇢x < sr2 and t/r2 < |T |⇢x/|S [ T |⇢x < tr2.
As

R
� dµ⇢S lies between �([x]E) � ✏/2 and �([x]E) � ✏(� � 1/2), andR

� dµ⇢T lies between �([x]E) + ✏(� � 1/2) and �([x]E) + ✏/2, it follows
that

R
� dµ⇢S[T lies between (s(�([x]E)�✏/2)+t(�([x]E)+✏(��1/2)))/r2

and (s(�([x]E)� ✏(��1/2))+ t(�([x]E)+ ✏/2))r2, and therefore strictly

between �([x]E) � ✏(� � 1/2) and �([x]E) + ✏(� � 1/2), contradicting
the maximality of S.

Letting B be the complement of [C]E\ [D]E, it follows from Lemma

8.2 that ⇢ � (E � ⇠B) is smooth. Let F be the equivalence relation on

B whose classes are the subsets of B in S.

Proposition 8.3. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, �, : X ! [0,1) are Borel, and r > 1. Then there exist an
E-invariant Borel set B ✓ X, a Borel set C ✓ B, and a finite Borel
subequivalence relation F of E � B such that ⇢ � (E � ⇠B) is smooth
and

R
C � dµ⇢[x]F 

R
B\C  dµ⇢[x]F  r

R
C � dµ⇢[x]F for all x 2 B.

Proof. We can assume that �, : X ! (0,1). Fix a maximal

Borel set S of pairwise disjoint non-empty finite sets S ✓ X such that

S ⇥ S ✓ E and 1 <
R
S\T  dµ⇢S /

R
T � dµ⇢S < r for some set T ✓ S.

Define DU,V = (��1
(U) \  �1

(V )) \
S
S for all sets U, V ✓ (0,1).

Lemma 8.4. For all x 2 X, there exists s > 1 such that x has only
finitely-many G⇢

(1/s,s)-neighbors in D(�(x)/s,�(x)s),( (x)/s, (x)s).

Proof. Fix positive natural numbers m and n with the property

that 1 < ( (x)/�(x))(n/m) < r. Then there exists s > 1 su�ciently

small that s6 < ( (x)/�(x))(n/m) < r/s6. Suppose, towards a con-

tradiction, that there is a set S ✓ D(�(x)/s,�(x)s),( (x)/s, (x)s) of G
⇢
(1/s,s)-

neighbors of x of cardinality k = m + n, and fix a set T ✓ S such

that |T | = m. Then �(x)µ⇢S(T )/s <
R
T � dµ⇢S < �(x)µ⇢S(T )s and

(m/k)/s2 < µ⇢S(T ) < (m/k)s2, which together yield the inequality

that �(x)(m/k)/s3 <
R
T � dµ⇢S < �(x)(m/k)s3. Along similar lines,

the facts that  (x)µ⇢S(S \ T )/s <
R
S\T  dµ⇢S <  (x)µ⇢S(S \ T )s and

(n/k)/s2 < µ⇢S(S \ T ) < (n/k)s2 together yield the inequality that

 (x)(n/k)/s3 <
R
S\T  dµ⇢S <  (x)(n/k)s3, from which it follows thatR

S\T  dµ⇢S /
R
T � dµ⇢S lies strictly between ( (x)/�(x))(n/m)/s6 and

( (x)/�(x))(n/m)s6, and therefore strictly between 1 and r, contra-
dicting the maximality of S.
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Letting B be the complement of [⇠
S

S]E, it follows from Lemma

8.4 that ⇢ � (E � ⇠B) is smooth. Let F be the Borel equivalence

relation on B whose classes are the subsets of B in S, and appeal to

the Lusin-Novikov uniformization theorem to obtain a Borel set C ✓ B
such that 1 <

R
B\C  dµ⇢[x]F /

R
C � dµ⇢[x]F < r for all x 2 B.

We are now ready to establish our primary result.

Theorem 8.5 (Nadkarni, Becker-Kechris, Miller). Suppose that X
is a standard Borel space, E is a countable Borel equivalence relation
on X, and ⇢ : E ! (0,1) is a Borel cocycle. Then exactly one of the
following holds:

(1) There is a finite-to-one Borel compression of ⇢ over a finite
Borel subequivalence relation of E.

(2) There is a ⇢-invariant Borel probability measure.

Proof. Proposition 7.1 ensures that conditions (1) and (2) are mu-

tually exclusive. To see that one of them holds, fix a sequence (✏n)n2N
of positive real numbers converging to zero, as well as a countable group

� of Borel automorphisms whose induced orbit equivalence relation is

E, and define ⇢� : X ! (0,1) by ⇢�(x) = ⇢(� · x, x) for all � 2 �.

Fix a Polish topology on [0,1), compatible with its underlying

Borel structure, with respect to which every interval of the form [p, q),
where p, q 2 Q are non-negative, is clopen. Fix a zero-dimensional Pol-

ish topology onX, compatible with its underlying Borel structure, with

respect to which � acts by homeomorphisms and each ⇢� is continuous.
Finally, fix a compatible complete metric on X, as well as a countable

algebra U ✓ P(X) forming a basis for X, containing the pullback of

every interval of the form [p, q), where p, q 2 Q are non-negative, under

each of the functions ⇢�, and closed under multiplication by elements

of �, in addition to an increasing sequence (Un)n2N of finite subsets of

U whose union is U .
We say that a function � : X ! [0,1) is U-simple if it is a finite

linear combination of characteristic functions of sets in U . Note that

for all ✏ > 0, � 2 �, and Y ✓ X on which ⇢� is bounded, there is such a

function with the further property that |�(y)�⇢�(y)|  ✏ for all y 2 Y .

By recursively applying Propositions 8.1 and 8.3 to functions of the

form [x]F 7! µ⇢[x]F (A) and [x]F 7! µ⇢[x]F (B)�µ⇢[x]F (A), and throwing out

countably-many E-invariant Borel sets B ✓ X for which ⇢ � (E � B)

is smooth, we obtain increasing sequences of finite algebras An ◆ Un

of Borel subsets of X and finite Borel subequivalence relations Fn of E
with the following properties:

(a) 8n 2 N8A 2 An8(x, y) 2 E µ⇢[x]Fn+1
(A)� µ⇢[y]Fn+1

(A)  ✏n.
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(b) 8n 2 N8A,B 2 An (8x 2 X µ⇢[x]Fn
(A)  µ⇢[x]Fn

(B) =)
9C 2 An+18x 2 X 0  µ⇢[x]Fn+1

(B \ C)� µ⇢[x]Fn+1
(A)  ✏n).

Set A =
S

n2N An and F =
S

n2N Fn. Condition (a) ensures that

for all x 2 X, we obtain a finitely-additive probability measure µx on

U by setting µx(U) = limn!1 µ⇢[x]Fn
(U) for all U 2 U .

Lemma 8.6. Suppose that (Un)n2N 2 UN is a partition of a set in
U and B = {x 2 X |

P
n2N µx(Un) < µx(

S
n2N Un)}. Then there is

a finite-to-one Borel compression of ⇢ � (E � B) over a finite Borel
subequivalence relation of E � B.

Proof. Note first that if x 2 B, then
P

m�n µx(Um) ! 0 and

µx(
S

m�n Um) 6! 0, so there exist � > 0 and n 2 N with the prop-

erty that � + 2
P

m�n µx(Um)  µx(
S

m�n Um). By partitioning B into

countably-many E-invariant Borel sets and passing to terminal seg-

ments of (Un)n2N on each set, we can assume that there exists � > 0

such that � + 2
P

n2N µx(Un)  µx(
S

n2N Un) for all x 2 X. Fix a

sequence (�n)n2N of positive real numbers whose sum is at most �.

Sublemma 8.7. There are pairwise disjoint sets An ✓
S

m>n Um in
A with the property that for all n 2 N, there exists k 2 N such that
8x 2 B 0  µ⇢[x]Fk

(An)� µ⇢[x]Fk
(Un)  �n.

Proof. Suppose that n 2 N and we have already found (Am)m<n.

Note that if x 2 B, then

µx(Un) + �  µx(
S

m2N Um) + µx(Un)� 2
P

m2N µx(Um)

 µx(
S

m2N Um)� µx(Un)� 2
P

m<n µx(Um),

in which case

µx(Un) + �n  µx

�S
m2N Um

�
� µx(Un)�

P
m<n 2µx(Um) + �m

 µx

�S
m>n Um

�
�
P

m<n µx(Um) + �m,

so if k 2 N is su�ciently large, then

µ⇢[x]Fk
(Un)  µ⇢[x]Fk

�S
m>n Um

�
�
P

m<n µ
⇢
[x]Fk

(Um) + �m

 µ⇢[x]Fk

�S
m>n Um

�
�
P

m<n µ
⇢
[x]Fk

(Am)

 µ⇢[x]Fk

�S
m>n Um

�
� µ⇢[x]Fk

�S
m<n Am

�

 µ⇢[x]Fk
(
S

m>n Um \
S

m<n Am),

by condition (a). It then follows from condition (b) that there exists

An ✓
S

m>n Um \
S

m<n Am in A with 0  µ⇢[x]Fk
(An)� µ⇢[x]Fk

(Un)  �n
for all x 2 B, for su�ciently large k 2 N.
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Fix natural numbers kn such that µ⇢[x]Fkn

(Un)  µ⇢[x]Fkn

(An) for all

n 2 N and x 2 B, as well as Borel functions �n : B \ Un ! An

whose graphs are contained in Fkn for all n 2 N. Then the union ofS
n2N �n and the identity function on B\

S
n2N Un is a finite-to-one Bor-

el compression of ⇢ � (E � B) over the union of
S

n2N Fkn � (An \B)

and equality on B.

Lemma 8.6 ensures that, after throwing out countably-many E-

invariant Borel sets B ✓ X for which there is a finite-to-one Borel

compression of ⇢ � (E � B) over a finite Borel subequivalence relation

of E � B, we can assume that for all � > 0 and U 2 U , there is

a partition (Un)n2N of U into sets in U of diameter at most � such

that µx(U) =
P

n2N µx(Un) for all x 2 X. It follows that each µx

is a measure on U , and therefore has a unique extension to a Borel

probability measure µx on X.

Lemma 8.8. Suppose that � 2 �, U 2 U , ⇢� is bounded on U , and
B = {x 2 X | µx(�U) 6=

R
U ⇢� dµx}. Then there is a finite-to-one

Borel compression of ⇢ � (E � B) over a finite Borel subequivalence
relation of E � B.

Proof. By the symmetry of our argument, it is enough to establish

the analogous lemma for the set B = {x 2 X | µx(�U) <
R
U ⇢� dµx}.

By breaking up B into countably-many E-invariant Borel sets, we can

assume that B = {x 2 X | � + µx(�U) <
R
U ⇢� dµx} for some � > 0.

Sublemma 8.9. For all ✏ > 0, there exists n 2 N with the property
that |

R
U ⇢� dµx �

R
U ⇢� dµ⇢[x]Fn

|  ✏ for all x 2 X.

Proof. Fix a U -simple function � : X ! [0,1) with the property

that |�(x)� ⇢�(x)|  ✏/3 for all x 2 U . By condition (a), there exists

n 2 N such that |
R
U � dµx �

R
U � dµ⇢[x]Fn

|  ✏/3 for all x 2 X. Then

���
R
U ⇢� dµx �

R
U ⇢� dµ⇢[x]Fn

��� 
��R

U ⇢� dµx �
R
U � dµx

��+
���
R
U � dµx �

R
U � dµ⇢[x]Fn

���+
���
R
U � dµ⇢[x]Fn

�
R
U ⇢� dµ⇢[x]Fn

���
 ✏,

for all x 2 X.

Condition (a) and Sublemma 8.9 ensure that there exists n 2 N such

that µ⇢[x]Fn
(�U) <

R
U ⇢� dµ

⇢
[x]Fn

for all x 2 B. As the former quantity is

|�U \ [x]Fn |⇢x/|[x]Fn |⇢x and the latter is |�U \ �[x]Fn |⇢x/|[x]Fn |⇢x, it follows



28

that |�U \ [x]Fn |⇢x < |�U \ �[x]Fn |⇢x for all x 2 B, so any function from

B\�U to B\�U , sending �U \ [x]Fn to �U \�[x]Fn for all x 2 B\�U ,

is a compression of ⇢ � (E � (B \ �U)) over the equivalence relation

(� ⇥ �)(Fn) � (B \ �U). The Lusin-Novikov uniformization theorem

yields a Borel such function, and every such function trivially extends

to a finite-to-one Borel compression of ⇢ � (E � B) over a finite Borel

subequivalence relation of E � B.

Lemma 8.8 ensures that, after throwing out countably-many E-

invariant Borel sets B ✓ X for which there is a finite-to-one Borel

compression of ⇢ � (E � B) over a finite Borel subequivalence relation

of E � B, we can assume that µx(�U) =
R
U ⇢� dµx for all � 2 �, U 2 U

on which ⇢� is bounded, and x 2 X. As our choice of topologies ensures

that every open set U ✓ X is a disjoint union of sets in U on which

⇢� is bounded, we obtain the same conclusion even when U ✓ X is

an arbitrary open set. As every Borel probability measure on a Polish

space is regular, we obtain the same conclusion even when U ✓ X is

an arbitrary Borel set. Proposition 2.1 therefore ensures that each µx

is ⇢-invariant.

9. Coboundaries and invariant measures

Suppose that R ✓ X ⇥X is a Borel set whose vertical sections are

countable and ⇢ : R ! � is Borel. We say that a Borel measure µ on

X is ⇢-invariant if µ(T (B)) =
R
B ⇢(T (x), x) dµ(x) for all Borel sets

B ✓ X and Borel injections T : B ! X whose graphs are contained

in R�1
. Proposition 2.1 ensures that this agrees with the usual notion

when R is an equivalence relation and ⇢ is a cocycle.

The composition of sets R ✓ X ⇥ Y and S ✓ Y ⇥ Z is given by

R � S = {(x, z) 2 X ⇥ Z | 9y 2 Y x R y S z}. The Lusin-Novik-

ov uniformization theorem ensures that the class of Borel sets whose

vertical sections are countable is closed under composition.

Proposition 9.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, R, S ✓ E are Borel, and
⇢ : E ! (0,1) is a Borel cocycle. Then every (⇢ � (R [ S))-invariant
Borel measure µ is (⇢ � (R � S))-invariant.

Proof. Note first that if B ✓ X is a Borel set, TS : B ! X is a

Borel injection whose graph is contained in S�1
, and TR : TS(B) ! X
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is a Borel injection whose graph is contained in R�1
, then

µ((TR � TS)(B)) =
R
TS(B) ⇢(TR(x), x) dµ(x)

=
R
B ⇢((TR � TS)(x), TS(x)) d((T

�1
S )⇤µ)(x)

=
R
B ⇢((TR � TS)(x), TS(x))⇢(TS(x), x) dµ(x)

=
R
B ⇢((TR � TS)(x), x) dµ(x).

But the Lusin-Novikov uniformization theorem ensures that every Bor-

el injection whose graph is contained in (R � S)�1
can be decomposed

into countably-many Borel injections of the form TR � TS as above.

We say that a set Y ✓ X has ⇢-density at least ✏ if there is a finite

Borel subequivalence relation F of E such that µ⇢[x]F (Y ) � ✏ for all

x 2 X. We say that a Borel set B ✓ X has positive ⇢-density if there

exists ✏ > 0 for which B has ⇢-density at least ✏.

Proposition 9.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
cocycle, and B ✓ X is a Borel set with positive ⇢-density. Then every
(⇢ � (E � B))-invariant finite Borel measure µ extends to a ⇢-invariant
finite Borel measure.

Proof. Fix ✏ > 0 for which B has ⇢-density at least ✏, as well as a
finite Borel subequivalence relation F of E such that µ⇢[x]F (B) � ✏ for
all x 2 X, and let µ be the Borel measure on X given by

µ(A) =
R
|A \ [x]F |⇢B\[x]F dµ(x)

for all Borel sets A ✓ X.

As µ(X)  µ(B)/✏, it follows that µ is finite, and Proposition 2.5

ensures that µ = µ � B.

Lemma 9.3. Suppose that � : X ! [0,1) is a Borel function. ThenR
� dµ =

R P
y2[x]F �(y)|{y}|

⇢
B\[x]F dµ(x).

Proof. It is su�cient to check the special case that � is the char-

acteristic function of a Borel set, which is a direct consequence of the

definition of µ.

Lemma 9.4. The measure µ is (⇢ � F )-invariant.
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Proof. Simply observe that if A ✓ X is a Borel set and T : X ! X
is a Borel automorphism whose graph is contained in F , then

R
A ⇢(T (x), x) dµ(x) =

R P
y2A\[x]F ⇢(T (y), y)|{y}|

⇢
B\[x]F dµ(x)

=
R P

y2A\[x]F |{T (y)}|⇢B\[x]F dµ(x)

=
R
|T (A \ [x]F )|⇢B\[x]F dµ(x)

=
R
|T (A) \ [x]F |⇢B\[x]F dµ(x)

= µ(T (A)),

by Lemma 9.3.

As E = F � (E � B) �F , two applications of Proposition 9.1 ensure

that µ is ⇢-invariant.

The primary argument of this section will hinge on the following

approximation lemma.

Proposition 9.5. Suppose that X is a standard Borel space, E
is a countable Borel equivalence relation on X, and ⇢ : E ! (0,1)

is a Borel cocycle. Then for all Borel sets A ✓ X and positive real
numbers r < 1, there exist an E-invariant Borel set B ✓ X, a Borel
set C ✓ B, and a finite Borel subequivalence relation F of E � C such
that ⇢ � (E � ⇠B) is smooth, r < |A\ [x]F |⇢[x]F \A < 1 for all x 2 C, and
A \ [x]E ✓ C or [x]E \ A ✓ C for all x 2 B.

Proof. Fix a maximal Borel set S of pairwise disjoint non-empty

finite sets S ✓ X for which S ⇥ S ✓ E and r < |A \ S|⇢S\A < 1. Set

D = A \
S

S and D0
= (⇠A) \

S
S.

Lemma 9.6. Suppose that (x, x0
) 2 E. Then there exists a real

number s > 1 with the property that x has only finitely-many G⇢
(1/s,s)-

neighbors in D or x0 has only finitely-many G⇢
(1/s,s)-neighbors in D0.

Proof. Fix n, n0 2 N such that (n/n0
)⇢(x, x0

) lies strictly between

r and 1, and fix s > 1 su�ciently small that (n/n0
)⇢(x, x0

) lies strictly

between rs2 and 1/s2. Suppose, towards a contradiction, that there are
sets S ✓ D and S 0 ✓ D0

of G⇢
(1/s,s)-neighbors of x and x0

of cardinalities

n and n0
. Then n/s < |S|⇢x < ns and n0⇢(x0, x)/s < |S 0|⇢x < n0⇢(x0, x)s,

so the ⇢-size of S relative to S 0
lies strictly between (n/n0

)⇢(x, x0
)/s2

and (n/n0
)⇢(x, x0

)s2. As these bounds lie strictly between r and 1, this

contradicts the maximality of S.
Letting B be the complement of [D]E\[D0

]E, it follows from Lemma

9.6 that ⇢ � (E � ⇠B) is smooth. Set C = B \
S
S, and let F be the

equivalence relation on C whose classes are the subsets of C in S.
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We say that a Borel set B ✓ X has �-positive ⇢-density if X is

the union of countably-many E-invariant Borel sets An ✓ X for which

An \ B has positive (⇢ � (E � An))-density.

Theorem 9.7. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Bor-
el cocycle, and A ✓ X is an E-complete Borel set. Then X is the
union of an E-invariant Borel set B ✓ X for which ⇢ � (E � B)

is smooth, an E-invariant Borel set C ✓ X for which A \ C has �-
positive (⇢ � (E � C))-density, and an E-invariant Borel set D ✓ X
for which there is a finite-to-one Borel compression of the quotient of
⇢ � (E � D) by a finite Borel subequivalence relation of E � D.

Proof. Fix a positive real number r < 1. We will show that, after

throwing out countably-many E-invariant Borel sets B ✓ X for which

⇢ � (E � B) is smooth, as well as countably-many E-invariant Borel

sets C ✓ X for which A \ C has positive (⇢ � (E � C))-density, there

are increasing sequences of finite Borel subequivalence relations Fn of

E and E-complete Fn-invariant Borel sets An ✓ X with the property

that r < |An \ [x]Fn+1 |
⇢
(An+1\An)\[x]Fn+1

< 1 for all n 2 N and x 2 An.

We begin by setting A0 = A and letting F0 be equality. Suppose

now that n 2 N and we have already found An and Fn. By applying

Proposition 9.5 to An/Fn, and throwing out an E-invariant Borel set

B ✓ X for which ⇢ � (E � B) is smooth, we obtain a finite Borel

subequivalence relation Fn+1 ◆ Fn of E and an Fn+1-invariant Borel

set An+1 ✓ X such that r < |An\[x]Fn+1 |
⇢
[x]Fn+1\An

< 1 for all x 2 An+1,

and An \ [x]E ✓ An+1 or [x]E \An ✓ An+1 for all x 2 X. By throwing

out an E-invariant Borel set C ✓ X for which A \ C has positive

(⇢ � (E � C))-density, we can assume that An ✓ An+1, completing the

recursive construction.

Set Bn = An \
S

m<n Am and define �n : Bn/Fn ! Bn+1/Fn+1 by

setting �n(Bn \ [x]Fn) = Bn+1 \ [x]Fn+1 for all n 2 N and x 2 Bn.

Then the union of
S

n2N �n and the identity function on ⇠
S

n2N An is

a Borel compression of the quotient of ⇢ by the union of
S

n2N Fn � Bn

and equality.

As a corollary, we can now establish the converse of Proposition 7.2

for Borel coboundaries.

Theorem 9.8. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, ⇢ : E ! (0,1) is a Borel
coboundary, and there is a Borel compression of ⇢ over a finite Borel
subequivalence relation of E. Then there is a Borel compression of the
quotient of ⇢ by a finite Borel subequivalence relation of E.
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Proof. By Proposition 6.1, there is a pre-compact open neigh-

borhood U ✓ (0,1) of 1 for which there is an E-complete Borel set

A ✓ X such that ⇢(E � A) ✓ U . By Theorem 9.7, after throwing out

E-invariant Borel sets B ✓ X and D ✓ X for which ⇢ � (E � B) is

smooth and there is a finite-to-one Borel compression of the quotient

of ⇢ � (E � D) by a finite Borel subequivalence relation of E � D, we

can assume that A has �-positive ⇢-density.
Note that there is no (⇢ � (E � A))-invariant Borel probability mea-

sure µ, since otherwise, by passing to an (E � A)-invariant µ-positive
Borel set, we could assume that A has positive ⇢-density, in which case

Proposition 9.2 would yield a ⇢-invariant Borel probability measure,

contradicting Proposition 7.1. Proposition 6.2 therefore ensures that

there is no (E � A)-invariant Borel probability measure, so the special

cases of Proposition 7.4 and Theorem 8.5 for constant cocycles yield

an aperiodic smooth Borel subequivalence relation F of E � A.
It follows that ⇢ � F is smooth, and the fact that ⇢ � (E � A) is

bounded ensures that ⇢ � F is also aperiodic. Fix a Borel extension

� : X ! A of the identity function on A whose graph is contained

in E, and observe that ⇢ is aperiodic and smooth on the pullback of

F through �, in which case Proposition 4.4 yields an injective Bor-

el compression of the quotient of ⇢ by a finite Borel subequivalence

relation of E.

10. Uniform ergodic decomposition

Recall that a decomposition of a Borel probability measure µ on X
is a Borel function � : X ! P (X) such that ��1

({�(x)}) is �(x)-conull
for all x 2 X and µ(B) =

R
�(x)(B) dµ(x) for all Borel sets B ✓ X.

A decomposition of a set P ✓ P (X) is a function � : X ! P (X) that

is a decomposition of every µ 2 P .

Theorem 10.1 (Ditzen). Suppose that X is a standard Borel space,
E is a countable Borel equivalence relation on X, and ⇢ : E ! (0,1)

is a Borel cocycle for which there is a ⇢-invariant Borel probability
measure. Then there is a hyperfinite Borel subequivalence relation F of
E for which there is an E-invariant Borel decomposition of the family
of all ⇢-invariant Borel probability measures into F -ergodic ⇢-invariant
Borel probability measures.

Proof. By the proof of Theorem 8.5, we can assume that X is

a Polish space for which there exist a countable algebra U ✓ P(X)

of open sets forming a basis for X, an increasing sequence (Fn)n2N of

finite Borel subequivalence relations of E, as well as an E-invariant

function � : X ! P (X) with the property that �(x) is ⇢-invariant for
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all x 2 X and 8U 2 U µ⇢[x]Fn
(U) ! �(x)(U) µ-almost everywhere for

all ⇢-invariant Borel probability measures µ. Define F =
S

n2N Fn.

Lemma 10.2. Suppose that A ✓ X is an F -invariant Borel set,
B ✓ X is Borel, and µ is a ⇢-invariant Borel probability measure.
Then µ(A \ B) =

R
A �(x)(B) dµ(x).

Proof. Observe first that if U 2 U , then Proposition 2.5 ensures

that µ(A\U) =
R
A µ⇢[x]Fn

(U) dµ(x) for all n 2 N, from which it follows

that µ(A \ U) = limn!1
R
A µ⇢[x]Fn

(U) dµ(x) =
R
A �(x)(U) dµ(x). The

fact that every Borel probability measure on a Polish space is regular

therefore implies that µ(A \B) =
R
A �(x)(B) dµ(x).

Recall that the ergodic decomposition theorem for a single Bor-

el probability measure µ on X can be established by first producing

a Borel function � : X ! P(X) satisfying the conclusion of Lemma

10.2 for µ, and then noting that every such function has the property

that ��1
({�(x)}) is �(x)-conull and �(x) is F -ergodic for µ-almost all

x 2 X. We can therefore assume that the latter conclusion holds for

every ⇢-invariant Borel probability measure µ.

Lemma 10.3. Suppose that µ is an E-ergodic ⇢-invariant Borel
probability measure. Then ��1

({µ}) is µ-conull.

Proof. As the E-ergodicity of µ ensures that � is constant on a

µ-conull set, Lemma 10.2 implies that 8U 2 U µ(U) = �(x)(U) for

µ-almost all x 2 X. As every Borel probability measure on a Polish

space is regular, it follows that µ = �(x) for all such x.

It now follows that if µ is a ⇢-invariant Borel probability measure,

then µ is E-ergodic =) ��1
({µ}) is µ-conull =) µ is F -ergodic, thus

the set B = {x 2 X | �(x) is F -ergodic} is Borel. Setting A = ⇠B,

we therefore obtain the desired decomposition by redefining � � A to

be any (E � A)-invariant Borel function sending each point of A to an

F -ergodic ⇢-invariant Borel probability measure.

11. Generic compressibility

We say that a binary relation R on X is aperiodic if its vertical

sections are all infinite, and countable if its vertical sections are all

countable. We say that a set Y ✓ X is R-complete if it intersects

every vertical section of R, and R-invariant if Ry ✓ Y for all y 2 Y .

Theorem 11.1. Suppose that X is a Polish space, R is an aperiodic
countable Borel binary relation on X, and S is an aperiodic transitive
Borel subrelation of R. Then there is a comeager R-invariant Borel set
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C ✓ X for which there is a Borel injection T : C ! C, whose graph is
contained in S, such that

T
n2N T

n
(C) = ;.

Proof. Fix Borel sets An ✓ X and Borel injections Tn : An ! X
such that R =

S
n2N graph(Tn), and set A0

n = {x 2 An | x S Tn(x)} for

all n 2 N. Fix a decreasing sequence (Bn)n2N of S-complete Borel sets

whose intersection is empty.

We recursively define Borel sets Ds ✓ ⇠B|s| for all s 2 N<N
, begin-

ning with D; = ;. Given s 2 2
<N

for which we have found (Dt)tvs, set

Dsa(n) = A0
n \ T�1

n (B|s|+1 \ B|s|+2) \ (B|s|+1 [
S

tvs Dt) for all n 2 N.
Now define D = {(b, x) 2 NN ⇥X | x 2

S
n2N Db�n}.

Lemma 11.2. Every horizontal section of D is dense.

Proof. Suppose that x 2 X. To see that Dx
is dense, note that

if s 2 N<N
, then there exist i 2 N for which x /2 B|s|+i, y 2 B|s|+i+1

for which x S y, and n 2 N for which Tn(x) = y. Let j be the unique

natural number for which y 2 B|s|+i+j+1 \ B|s|+i+j+2, and observe that

x 2
S

uvsata(n) Du, thus Nsata(n) ✓ Dx
, for all t 2 Ni+j

.

As the horizontal sections of D are open, Lemma 11.2 ensures that

8x 2 X8⇤b 2 NN b 2
T

n2N D
Tn(x), in which case the Kuratowski-Ulam

theorem implies that 8⇤b 2 NN8⇤x 2 X b 2
T

n2N D
Tn(x). Fix b 2 NN

for

which the set C = {x 2 X | b 2
T

n2N D
Tn(x)} is comeager, and observe

that the function T =
S

n2N Tb(n) � (C \Db�(n+1)) is as desired.

Theorem 11.3 (Kechris-Miller). Suppose that X is a Polish space,
E is a countable Borel equivalence relation on X, and ⇢ : E ! (0,1)

is a Borel cocycle. Then there are E-invariant Borel sets B ✓ C ✓ X
such that C is comeager, E � (C\B) is smooth, and there is an injective
Borel compression of ⇢ � (E � B).

Proof. If the set A = {x 2 X | 8y 2 [x]E91z 2 [x]E ⇢(y, z)  1}
is countable, then E is smooth, and there is nothing to prove. Oth-

erwise, there is an E-invariant infinite meager Borel set M ✓ A. Fix

an aperiodic countable Borel equivalence relation F on X such that

A \M is an F -invariant set on which E and F agree, and fix a Borel

cocycle � : F ! (0,1), agreeing with ⇢ on E � (A \M), for which the

transitive binary relation S = {(x, y) 2 F | �(x, y)  1} is aperiodic.

By Theorem 11.1, there is a comeager F -invariant Borel set D ✓ X
for which there is an injective Borel compression of � � (F � D). Then

the sets B = (A \M) \D and C = (⇠A) [B are as desired.
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