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Introduction

These are the notes accompanying an introductory course to de-
scriptive set theory at the Kurt Gödel Research Center for Mathemat-
ical Logic at the University of Vienna in Fall 2015. I am grateful to
the head of the KGRC, Sy Friedman, for his encouragement and many
useful suggestions, as well as to all of the participants.

The goal of the course was to provide a succinct introduction to the
structures underlying the main results of classical descriptive set theory.
In the first half, we discuss trees, the corresponding representations of
closed sets, Borel sets, analytic spaces, injectively analytic spaces, and
Polish spaces, as well as Baire category. In the second half, we establish
various relatives of the G0 dichotomy, which we then use to establish
many of the primary dichotomy theorems of descriptive set theory.
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CHAPTER 1

The basics

1. Trees

Given a set X, we use X<N to denote the set
⋃
n∈NX

n of functions
from natural numbers to X. The length of t ∈ X<N, or |t|, is simply
its domain. We say that s ∈ X<N is an initial segment of t ∈ X<N, t is
an extension of s, or s v t if |s| ≤ |t| and s = t � |s|. A tree on X is a
set T ⊆ X<N which is closed under initial segments , in the sense that
t � n ∈ T whenever t ∈ T and n ≤ |t|.

Many problems in descriptive set theory can be reduced to analo-
gous problems concerning the structure of trees. In this first section,
we establish several basic facts about trees which we will later utilize
through such reductions.

Pruning. The pruning derivative is the function associating with
each tree T the subtree Prune(T ) consisting of all elements of T which
have proper extensions in T .

Proposition 1.1.1. Suppose that S and T are trees. If S ⊆ T ,
then Prune(S) ⊆ Prune(T ).

Proof. By the definition of the pruning derivative.

A tree T is pruned if every t ∈ T has a proper extension in T .

Proposition 1.1.2. Suppose that T is a tree. Then T is pruned if
and only if T = Prune(T ).

Proof. This follows from the definitions of the pruning derivative
and pruned trees.

Set Prune0(T ) = T , Pruneα+1(T ) = Prune(Pruneα(T )) for all ordi-
nals α, and Pruneλ(T ) =

⋂
α<λ Pruneα(T ) for limit ordinals λ.

Proposition 1.1.3. Suppose that α is an ordinal and S and T are
trees. If S ⊆ T , then Pruneα(S) ⊆ Pruneα(T ).

Proof. By Proposition 1.1.1 and the obvious induction.
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The pruning rank of T is the least α with Pruneα(T ) = Pruneα+1(T ).
A branch through a tree T on X is a sequence x ∈ XN such that
x � n ∈ T , for all n ∈ N. A tree is well-founded if it has no branches.

Proposition 1.1.4. Suppose that T is a tree with pruning rank α.
Then T is well-founded if and only if Pruneα(T ) = ∅.

Proof. Proposition 1.1.2 ensures that Pruneα(T ) is pruned. It is
clear that if T is well-founded, then so too is Pruneα(T ). Conversely,
if T is not well-founded, then there is a branch x through T , in which
case the subtree S = {x � n | n ∈ N} is pruned, so Propositions
1.1.2 and 1.1.3 imply that S ⊆ Pruneα(T ), thus x is a branch through
Pruneα(T ), hence Pruneα(T ) is not well-founded. As a pruned tree is
well-founded if and only if it is empty, the proposition follows.

The pruning rank of t ∈ T within T is the maximal ordinal α with
the property that t ∈ Pruneα(T ), or ∞ if no such ordinal exists.

Proposition 1.1.5. Suppose that T is a tree and t ∈ T . Then the
pruning rank of t within T is the least ordinal strictly greater than the
pruning ranks of the proper extensions of t within T .

Proof. If α is at most the pruning rank of some proper extension
of t within T , then this proper extension is in Pruneα(T ), thus the
pruning rank of t within T is strictly greater than α. And if α is strictly
greater than the pruning ranks of the proper extensions of t within T ,
then no proper extension of t is in Pruneα(T ), thus the pruning rank
of t within T is at most α.

Proposition 1.1.6. Suppose that T is a tree. Then T has a unique
branch if and only if for all n ∈ N there is a unique t ∈ T of length n
whose pruning rank within T is maximal.

Proof. Suppose first that T has exactly one branch x. Then for
each n ∈ N, the pruning rank of x � n within T is ∞, but the pruning
rank of every t ∈ T \ {x � n} of length n within T is an ordinal.

Conversely, suppose that for all n ∈ N, there is a unique tn ∈ T
of length n whose pruning rank within T is maximal. Then for every
n ∈ N and t ∈ T \ {tn} of length n, Proposition 1.1.5 yields i for which
the pruning rank of tn a (i) ∈ T is at least that of t, and therefore
at least that of every extension of t in T . In particular, it follows that
(tn)n∈N is a strictly increasing sequence of elements of T , so

⋃
n∈N tn

is a branch through T . And the fact that the pruning rank of every
t ∈ T \ {tn | n ∈ N} within T is an ordinal ensures that there are no
other branches of T .
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A homomorphism from a binary relationR onX to a binary relation
S on Y is a function φ : X → Y such that w R x =⇒ φ(w) S φ(x), for
all w, x ∈ X.

Proposition 1.1.7. Suppose that S and T are non-empty trees.
Then there is a homomorphism from @ � S to @ � T if and only if the
pruning rank of ∅ within S is at most the pruning rank of ∅ within T .

Proof. Suppose that φ : S → T is a homomorphism from @ � S
to @ � T . Then φ induces a homomorphism from @ � Prune(S) to
@ � Prune(T ). The obvious transfinite induction therefore ensures that
φ induces a homomorphism from @ � Pruneα(S) to @ � Pruneα(T ), for
all ordinals α. In particular, it follows that if Pruneα(S) is non-empty,
then so too is Pruneα(T ), thus the pruning rank of ∅ within S is at
most the pruning rank of ∅ within T .

Conversely, suppose that the pruning rank of ∅ within S is at most
the pruning rank of ∅ within T . Recursively construct functions φn
from the set of s ∈ S of length n to the set of t ∈ T of length n by
setting φ0(∅) = ∅ and letting φn+1(s a (i)) be any element of T of the
form φn(s) a (j) for which the pruning rank of the former within S is
at most that of the latter within T (which exists by Proposition 1.1.5).
Then

⋃
n∈N φn is a homomorphism from @ � S to @ � T .

Perfection. We say that s, t ∈ X<N are incompatible, or s ⊥ t, if
neither is an extension of the other. The perfection derivative is the
function associating with each tree T the subtree Perfect(T ) consisting
of all elements of T which have a pair of incompatible extensions in T .

Proposition 1.1.8. Suppose that S and T are trees. If S ⊆ T ,
then Perfect(S) ⊆ Perfect(T ).

Proof. By the definition of the perfection derivative.

A tree T is perfect if every t ∈ T has a pair of incompatible exten-
sions in T .

Proposition 1.1.9. Suppose that T is a tree. Then T is perfect if
and only if T = Perfect(T ).

Proof. This follows from the definitions of the perfection deriva-
tive and perfect trees.

Set Perfect0(T ) = T , Perfectα+1(T ) = Perfect(Perfectα(T )) for all
ordinals α, and Perfectλ(T ) =

⋂
α<λ Perfectα(T ) for limit ordinals λ.

Proposition 1.1.10. Suppose that α is an ordinal and S and T
are trees. If S ⊆ T , then Perfectα(S) ⊆ Perfectα(T ).
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Proof. By Proposition 1.1.8 and the obvious induction.

The perfection rank of T is the least α with the property that
Perfectα(T ) = Perfectα+1(T ). An embedding of a binary relation R on
X into a binary relation S on Y is a function φ : X → Y such that
w R x ⇐⇒ φ(w) S φ(x), for all w, x ∈ X. A tree T is scattered if
there is no embedding of v � 2<N into v � T .

Proposition 1.1.11. Suppose that T is a tree with perfection rank
α. Then T is scattered if and only if Perfectα(T ) = ∅.

Proof. Proposition 1.1.9 ensures that Perfectα(T ) is perfect. It is
clear that if T is scattered, then so too is Perfectα(T ). Conversely, if
T is not scattered, then there is an embedding φ : 2<N → T of v � 2<N

into v � T , in which case the subtree S generated by φ(2<N) is perfect,
so Propositions 1.1.9 and 1.1.10 imply that S ⊆ Perfectα(T ), thus φ is
an embedding of v � 2<N into v � Perfectα(T ), hence Perfectα(T ) is
not scattered. As a perfect tree is scattered if and only if it is empty,
the proposition follows.

The perfection rank of t ∈ T within T is the maximal ordinal α
with the property that t ∈ Perfectα(T ), or ∞ if no such ordinal exists.

Proposition 1.1.12. Suppose that T is a scattered tree. Then there
are at most |T |-many branches through T .

Proof. Proposition 1.1.11 ensures that every t ∈ T has ordinal
perfection rank within T . But any function sending x to a proper
initial segment of minimal pruning rank within T is injective, so there
are at most |T |-many branches through T .

Generalizations. We will occasionally refer to objects as trees
even when they are not literally trees on a set as previously discussed,
but can nevertheless trivially be coded as such.

The simplest example consists of sets T ⊆
⋃
n∈NX

n ×Xn with the
property that

∀n ∈ N∀m ≤ n∀(s, t) ∈ T ∩ (Xn ×Xn) (s � m, t � m) ∈ T,
equipped with the order in which (s, t) ∈ T ∩ (Xn × Xn) is extended
by (s′, t′) ∈ T ∩ (Xn′ ×Xn′) if and only if n ≤ n′ and both s v s′ and
t v t′. By identifying

⋃
n∈NX

n ×Xn with (X × X)<N in the natural
fashion, one can view such sets T as trees on N× N.

Of course, a similar comment applies to sets T ⊆
⋃
n∈N(Xn)k, for

all natural numbers k ≥ 3. A slightly more subtle example concerns
sets T ⊆

⋃
n∈N(Xn)n with the property that

∀n ∈ N∀m ≤ n∀(ti)i<n ∈ T (ti � m)i<m ∈ T,
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equipped with the order in which (ti)i<n ∈ T is extended by (t′i)i<n′ ∈ T
if and only if n ≤ n′ and ti v t′i for all i < n. However, since the natural
way of viewing such ordered sets as trees is not significantly simpler
than the most general result of this form, we now turn our attention
to the latter.

A quasi-order on a set X is a reflexive transitive binary relation
R on X. The incomparability relation associated with R is the binary
relation ⊥R on X for which x ⊥R y if and only if neither x R y nor
y R x. The strict quasi-order associated with R is the binary relation
<R on X for which x <R y if and only if x R y but ¬y R x. The
equivalence relation associated with R is the binary relation ≡R on X
for which x ≡R y if and only if x R y and y R x. We say that x
and y are R-comparable if it is not the case that x ⊥R y. We say
that a set Y ⊆ X is an R-antichain if no two distinct points of Y
are R-comparable, and Y is an R-chain if all pairs of points of Y are
R-comparable. We use the usual interval notation, such as (−∞, x)R
to denote the set {y ∈ X | y <R x}.

A partial order is a quasi-order whose associated equivalence rela-
tion is equality. A linear order is a partial order with respect to which
every two elements are comparable. A tree order on a set X is a par-
tial order R on X whose restriction to each of the sets (−∞, x)R is a
finite linear order. A tree order is rooted if there is an R-minimum
element of X, that is, if there is an element of X which is R-related
to every element of X. An isomorphism of a binary relation R on
X with a binary relation S on Y is a bijection π : X → Y such that
w R x ⇐⇒ π(w) R π(x), for all w, x ∈ X.

Proposition 1.1.13. Suppose that R is a rooted tree order on X.
Then there is a tree T on X for which R is isomorphic to v � T .

Proof. Simply observe that the function π : X → X<N sending x
to the strictly R-increasing enumeration of (−∞, x)R is an embedding
of R into v for which π(X) is a tree on X.

2. Closed sets

Closed subsets of sequence spaces have natural tree representations.
Many problems concerning the former can be reduced to analogous
problems concerning the latter. In this section, we establish several
basic facts about this correspondence, give an application, and consider
examples of sets arising from trees.
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Tree representations. Suppose that X is a discrete topological
space. For each s ∈ X<N, let Ns denote the set of elements of XN

extending s. These sets form a basis for the product topology on XN.
For each tree T , let [T ] denote the set of branches through T .

Proposition 1.2.1. Suppose that X is a discrete space. Then a
set Y ⊆ XN is closed if and only if there is a tree T on X with Y = [T ].

Proof. Suppose first that Y is closed, and let T denote the set of
proper initial segments of elements of Y . Clearly T is a tree on X and
Y ⊆ [T ]. To see that [T ] ⊆ Y , suppose that x ∈ [T ], and note that if
n ∈ N, then x � n ∈ T , so Nx�n ∩ Y 6= ∅, thus x ∈ Y .

It remains to show that if T is a tree on X, then [T ] is closed.
Towards this end, suppose that x is in the closure of [T ], and note that
if n ∈ N, then Nx�n ∩ [T ] 6= ∅, so x � n ∈ T , thus x ∈ [T ].

The power set of X is the set P(X) of all subsets of X. We endow
P(X) with the topology it inherits from 2X via the identification of
sets with their characteristic functions.

Proposition 1.2.2. The set of trees on X is closed in P(X<N).

Proof. The set of trees on X is the intersection of the clopen sets
{Y ∈ P(X<N) | t ∈ Y =⇒ s ∈ Y }, where s v t vary over X<N.

Proposition 1.2.3. Suppose that X is a discrete space. Then the
set of pairs (T, x), where T is a tree on X and x ∈ [T ], is closed in
P(X<N)×XN.

Proof. By Proposition 1.2.2, the set of trees on X is closed, thus
so too is its product with XN. But the desired set is the intersection
of this product with the sets {(T, x) ∈ P(X<N) × XN | x � n ∈ T},
where n ∈ N, and these latter sets are clopen, as they can be written
as both

⋃
t∈Xn{T ∈ P(X<N) | t ∈ T} × Nt and as the complement of⋃

t∈Xn{T ∈ P(X<N) | t /∈ T} × Nt.

The xth vertical section of a set R ⊆ X × Y is the set Rx of all
y ∈ Y for which (x, y) ∈ R. Similarly, the yth horizontal section of R
is the set Ry of all x ∈ X for which (x, y) ∈ R.

Proposition 1.2.4 (Lebesgue). Suppose that X is a discrete space.
Then there is a closed set C ⊆ P(X<N) × XN whose vertical sections
are exactly the closed subsets of XN.

Proof. Let C denote the set of pairs (T, x), where T is a tree on
X and x ∈ [T ]. Proposition 1.2.1 ensures that the vertical sections of
C are exactly the closed subsets of XN, and Proposition 1.2.3 implies
that C is closed.
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A retraction from a set X onto a subset Y is a function φ : X → Y
whose restriction to Y is the identity.

Proposition 1.2.5. Suppose that X is a discrete space. Then there
is a continuous retraction from XN onto every non-empty closed set
C ⊆ XN.

Proof. Let T denote the set of proper initial segments of elements
of C, associate with each t ∈ T an extension β(t) ∈ [T ], let projT (x)
denote the maximal initial segment of x ∈ XN\C in T , and let φ denote
the retraction from X onto C which agrees with β ◦ projT off of C. To
see that φ is continuous, it is sufficient to show that φ(Nx�n) ⊆ Nφ(x)�n,
for all n ∈ N and x ∈ XN. Towards this end, note that if x � n ∈ T
then φ(Nx�n) ⊆ Nx�n, and if x � n /∈ T then φ(Nx�n) = {φ(x)}.

The perfect set theorem. The following result implies that closed
subsets of NN satisfy the continuum hypothesis.

Theorem 1.2.6 (Cantor). Suppose that X is a discrete space and
C ⊆ XN is closed. Then at least one of the following holds:

(1) The cardinality of C is at most that of X<N.
(2) There is a continuous injection π : 2N → C.

Proof. By Proposition 1.2.1, there is a tree T on X with C = [T ].
If T is scattered, then Proposition 1.1.12 ensures that there are at
most |T |-many branches through T , so |C| ≤ |X<N|. Otherwise, there
is an embedding φ of extension on 2<N into extension on T . Define
π : 2N → C by π(c) =

⋃
n∈N φ(c � n). To see that π is continuous, note

that if n ∈ N and c ∈ 2N, then π(Nc�n) ⊆ Nφ(c�n) ⊆ Nπ(c)�n. To see that
π is injective, note that if c, d ∈ 2N are distinct, then there exists n ∈ N
sufficiently large for which c � n and d � n are distinct, so φ(c � n) and
φ(d � n) are incompatible, thus π(c) and π(d) are distinct.

Examples. Here we consider a pair of sets arising from trees.

Proposition 1.2.7. The set of (φ, S, T ), where S and T are trees
on N and φ � S is a homomorphism from @ � S to @ � T , is a closed
subset of (N<N)N

<N × P(N<N)× P(N<N).

Proof. Proposition 1.2.2 ensures that the set of trees on N is
closed, and φ � S is a homomorphism from @ � S to @ � T if and
only if s ∈ S =⇒ φ(s) ∈ T and (r @ s and r, s ∈ S) =⇒ φ(r) @ φ(s),
for all r, s ∈ N<N.

Proposition 1.2.8. The set of (φ, S, T ), where S and T are trees
on N and φ � S is an embedding of v � S into v � T , is a closed subset
of (N<N)N

<N × P(N<N)× P(N<N).
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Proof. By Proposition 1.2.7, it is sufficient to observe that φ � S
is an embedding of v � S into v � T if and only if it is a homo-
morphism from strict extension on S to strict extension on T and
(φ(r) @ φ(s) and r, s ∈ S) =⇒ r @ s, for all r, s ∈ N<N.

3. Borel sets

A σ-algebra is a family of sets which is closed under complements,
countable intersections, and countable unions. A subset of a topo-
logical space is Borel if it is in the smallest σ-algebra containing the
open sets. While the structure of Borel sets is a central focus of classi-
cal descriptive set theory, this structure is typically derived from tree
representations of other types of sets. In this section, we give an alter-
nate characterization of Borel sets, as well as several examples of Borel
functions arising from trees.

An alternate characterization. Clearly one can also character-
ize σ-algebras as families of sets which are closed under complements
and either countable intersections or countable unions. It only takes a
little more work to establish yet another characterization.

Proposition 1.3.1. Suppose that X is set and X ⊆ P(X) is closed
under complements. Then the closure Z of X under countable disjoint
unions and countable intersections is a σ-algebra.

Proof. Let Y denote the family of sets Y ⊆ X for which both Y
and X \ Y are in Z. Clearly X ⊆ Y ⊆ Z, so it is sufficient to show
that Y is closed under countable unions. Towards this end, suppose
that (Yn)n∈N is a sequence of elements of Y . Then both Yn and X \ Yn
are in Z for all n ∈ N, so Yn \

⋃
m<n Ym = Yn ∩

⋂
m<nX \ Ym is

in Z for all n ∈ N, thus both
⋃
n∈N Yn =

⋃
n∈N Yn \

⋃
m<n Ym and

X \
⋃
n∈N Yn =

⋂
n∈NX \ Yn are in Z, hence

⋃
n∈N Yn ∈ Y .

Examples. A function φ : X → Y between topological spaces is
Borel if preimages of open sets are Borel. Note that if Y = P(N), then
φ is Borel if and only if the sets {x ∈ X | n ∈ φ(x)} are Borel.

Proposition 1.3.2. The restriction of the pruning derivative to
trees on N is Borel.

Proof. As t ∈ Prune(T ) ⇐⇒ ∃n ∈ N t a (n) ∈ T , it follows
that the set of trees T on N for which t ∈ Prune(T ) is open.

Proposition 1.3.3. The function φ : P(N)N → P(N) given by
φ((Xk)k∈N) =

⋂
k∈NXk is Borel.
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Proof. As n ∈
⋂
k∈NXk ⇐⇒ ∀k ∈ N n ∈ Xk, it follows that the

set of sequences (Xk)k∈N for which n ∈
⋂
k∈NXk is closed.

Proposition 1.3.4. Suppose that α is a countable ordinal. Then
the restriction of Pruneα to trees on N is Borel.

Proof. By Propositions 1.3.2 and 1.3.3 and induction.

Proposition 1.3.5. Suppose that C ⊆ NN, X is a topological
space, and φ : C → X. Then the map T : X → P(N<N) given by

t ∈ T (x) ⇐⇒ x ∈ φ(C ∩Nt) is Borel.

Proof. The set of x ∈ X for which t ∈ T (x) is closed.

4. Analytic spaces

A topological space is analytic if it is a continuous image of a closed
subset of NN. Tree representations of closed sets give rise to tree repre-
sentations of analytic sets, and many of the most important properties
of Borel sets come from the latter. In this section, we establish the
basic properties of analytic sets.

Closure properties. Here we establish the basic closure proper-
ties of analytic sets, beginning with the simplest operations.

Proposition 1.4.1. Suppose that X is a topological space. Then⋃
n∈NAn is analytic for all sequences (An)n∈N of analytic subsets of X.

Proof. Fix closed sets Cn ⊆ NN for which there are continuous
surjections φn : Cn → An. Then the map φ(n, x) = φn(x) is a continu-
ous surjection from {(n, x) ∈ N× NN | x ∈ Cn} onto

⋃
n∈NAn.

Proposition 1.4.2. Suppose that (Xn)n∈N is a sequence of analytic
spaces. Then

∏
n∈NXn is analytic.

Proof. Fix closed sets Cn ⊆ NN for which there are continuous
surjections φn : Cn → Xn. Then

∏
n∈N φn is a continuous surjection

from
∏

n∈NCn onto
∏

n∈NXn.

Proposition 1.4.3. Suppose that X is a Hausdorff space. Then⋂
n∈NAn is analytic for all sequences (An)n∈N of analytic subsets of X.

Proof. Proposition 1.4.2 ensures that there is a closed set C ⊆ NN

for which there is a continuous surjection φ : C →
∏

n∈NAn. As X
is Hausdorff, the set D = {x ∈ XN | ∀m,n ∈ N x(m) = x(n)} is
closed, thus so too is the set D′ = φ−1(D). But the composition of the
projection onto any coordinate with φ is a continuous surjection of D′

onto
⋂
n∈NAn.
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We will later see that the family of analytic subsets of a Hausdorff
space is usually not closed under complements. Next, we note that the
analytic sets are closed under continuous images and preimages.

Proposition 1.4.4. Suppose that X is an analytic space, Y is a
topological space, and φ : X → Y is continuous. Then φ(X) is analytic.

Proof. Fix a closed set C ⊆ NN and a continuous surjection
ψ : C → X. Then φ ◦ ψ is a continuous surjection from C to φ(X).

Proposition 1.4.5. Suppose that X is an analytic space, Y is a
Hausdorff space, φ : X → Y is continuous, and A ⊆ Y is analytic.
Then φ−1(A) is analytic.

Proof. Fix closed sets CA, CX ⊆ NN for which there are con-
tinuous surjections φA : CA → A and φX : CX → X. As Y is Hau-
sdorff, the set {(y, z) ∈ Y × Y | y = z} is closed, thus so too is
the set C = {(cA, cX) ∈ CA × CX | φA(cA) = (φ ◦ φX)(cX)}. Then
φ−1(A) = (φX ◦ projCX )(C), so φ−1(A) is analytic.

Finally, we note that the simplest subsets of analytic spaces are
themselves analytic.

Proposition 1.4.6. Suppose that X is an analytic space. Then
every closed set C ⊆ X is analytic.

Proof. Fix a closed set D ⊆ NN and a continuous surjection
φ : D → X. Then φ−1(C) is closed and its image under φ is C.

Proposition 1.4.7. Suppose that X is an analytic space. Then
every open set U ⊆ X is analytic.

Proof. Fix a closed set C ⊆ NN and a continuous surjection
φ : C → X. Then φ−1(U) is an open subset of C, and is therefore a
union of countably-many clopen subsets Cn of C. As U =

⋃
n∈N φ(Cn),

Proposition 1.4.1 ensures that it is analytic.

Alternative representations. Here we mention several other rep-
resentations of analytic sets.

Proposition 1.4.8. Every non-empty analytic space is a continu-
ous image of NN.

Proof. Suppose that X is a non-empty analytic space, and fix a
closed set C ⊆ NN for which there is a continuous surjection φ : C → X.
By Proposition 1.2.5, there is a continuous retraction ψ from NN onto
C. Then φ ◦ ψ is a continuous surjection of NN onto X.
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Proposition 1.4.9. Suppose that X is an analytic Hausdorff space
and Y ⊆ X. Then Y is analytic if and only if there is a closed set
C ⊆ NN ×X whose projection onto X is Y .

Proof. If Y is analytic, then there is a closed set D ⊆ NN for
which there is a continuous surjection φ : D → Y . Our assumption
that X is Hausdorff ensures that the set C = graph(φ) is closed, and
clearly its projection onto X is Y .

Conversely, if C ⊆ NN × X is a closed set whose projection onto
X is Y , then Proposition 1.4.2 ensures that NN × X is analytic, so
Proposition 1.4.6 implies that C is analytic, thus Proposition 1.4.4
yields that Y is analytic.

In order to provide one more useful representation of analytic sets,
we first need the following simple observation.

Proposition 1.4.10. Suppose that C ⊆ NN and D ⊆ NN, X is a
Hausdorff space, and φ : C → X and ψ : D → X are continuous. Then
for all c ∈ C and d ∈ D with the property that φ(c) 6= ψ(d), there exists

n ∈ N such that φ(Nc�n) ∩ ψ(Nd�n) = ∅.

Proof. As X is Hausdorff, there are disjoint open neighborhoods
U of φ(c) and V of ψ(d). As φ and ψ are continuous, there exists n ∈ N
sufficiently large such that φ(Nc�n) ⊆ U and ψ(Nd�n) ⊆ V . But then

φ(Nc�n) is disjoint from V , and therefore disjoint from ψ(Nd�n).

A reduction of a set A ⊆ X to a set B ⊆ Y is a function π : X → Y
with the property that x ∈ A ⇐⇒ φ(x) ∈ B, for all x ∈ X.

Proposition 1.4.11. Suppose that X is a Hausdorff space. Then
there is a Borel reduction of every analytic set A ⊆ X to the set of
ill-founded trees on N within the set of all trees on N.

Proof. By Proposition 1.4.8, we can assume that there is a contin-
uous surjection φ : NN → A. Proposition 1.3.5 ensures that the function
T : X → P(N<N) given by t ∈ T (x) ⇐⇒ x ∈ φ(Nt) is Borel. It only
remains to note that by Proposition 1.4.10, a point of x is in A if and
only if T (x) is ill-founded.

Analytic vs. Borel. We already have the machinery in hand to
establish one half of the relationship between analytic and Borel sets.

Proposition 1.4.12. Suppose that X is an analytic Hausdorff space.
Then every Borel subset of X is analytic.

Proof. By Proposition 1.3.1, it is sufficient to show that the family
of analytic subsets of X is closed under countable unions and countable
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intersections, and contains every closed subset and every open subset
of X. This follows from Propositions 1.4.1, 1.4.3, 1.4.6, and 1.4.7.

We will later see that the converse of this statement is usually false.
Nevertheless, there are several useful weak converses.

Proposition 1.4.13 (Lusin-Sierpiński). Suppose that X is a Hau-
sdorff space and A ⊆ X is analytic. Then A is both an intersection of
ℵ1-many Borel sets and a union of ℵ1-many Borel sets.

Proof. By Proposition 1.4.11, we need only establish that the set
of ill-founded trees on N, viewed as a subset of the set of all trees on N,
has the desired property. For each α < ω1, let Bα denote the set of all
trees T on N for which the pruning rank of ∅ within T is at least α, and
let Cα denote the set of all T ∈ Bα for which the pruning rank of T is at
most α. Proposition 1.3.4 ensures that these sets are Borel, and clearly
the set of ill-founded trees on N is both

⋂
α<ω1

Bα and
⋃
α<ω1

Cα.

We say that sets A,B ⊆ X are separated by a set C ⊆ X if A ⊆ C
and B ∩ C = ∅.

Theorem 1.4.14 (Lusin). Suppose that X is a Hausdorff space and
A,B ⊆ X are disjoint analytic sets. Then there is a Borel set C ⊆ X
separating A from B.

Proof. By Proposition 1.4.8, we can assume that there are con-
tinuous surjections φ : NN → A and ψ : NN → B. Define At = φ(Nt)
and Bt = ψ(Nt), for all t ∈ N<N. Let T denote the tree on N × N
consisting of all (s, t) ∈

⋃
n∈NNn × Nn such that As ∩ Bt 6= ∅. Propo-

sition 1.4.10 ensures that T is well-founded, so the pruning rank of
every (s, t) ∈ T within T is a countable ordinal, thus we can recur-
sively construct Borel sets C(s,t) ⊆ X separating As from Bt with each

(s, t) ∈
⋃
n∈N Nn × Nn by setting C(s,t) = As for all (s, t) /∈ T , and

C(s,t) =
⋃
m∈N

⋂
n∈NC(sa(m),ta(n)) for all (s, t) ∈ T . Set C = C(∅,∅).

We say that a subset of a topological space is bi-analytic if both it
and its complement are analytic.

Theorem 1.4.15 (Souslin). Suppose that X is a Hausdorff space.
Then every bi-analytic subset of X is Borel.

Proof. This is just a rephrasing of the special case of Theorem
1.4.14 in which A = X \B.

Theorem 1.4.16 (Souslin). Suppose that X is an analytic Haus-
dorff space. Then a subset of X is bi-analytic if and only if it is Borel.

Proof. By Proposition 1.4.12 and Theorem 1.4.15.
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We say that a function φ : X → Y is analytic if preimages of ana-
lytic sets are analytic.

Theorem 1.4.17. Suppose that X and Y are analytic Hausdorff
spaces and φ : X → Y . Then the following are equivalent:

(1) The function φ is Borel.
(2) The graph of φ is Borel.
(3) The graph of φ is analytic.
(4) The function φ is analytic.

Proof. Proposition 1.4.10 ensures that there is a sequence (Bn)n∈N
of Borel subsets of Y which separates points. To see (1) =⇒ (2), it is
sufficient to check that

graph(φ) =
⋂
n∈N(φ−1(Bn)×Bn) ∪ (φ−1(Y \Bn)× (Y \Bn)).

Towards this end, note that if n ∈ N and x ∈ X, then φ(x) is in Bn

or Y \ Bn, so (x, φ(x)) is in φ−1(Bn)× Bn or φ−1(Y \ Bn)× (Y \ Bn).
Conversely, if (x, y) /∈ graph(φ), then there exists n ∈ N for which
φ(x) ∈ Bn and y /∈ Bn, so x /∈ φ−1(Y \ Bn), thus (x, y) is in neither
φ−1(Bn)×Bn nor φ−1(Y \Bn)× (Y \Bn).

To see (2) =⇒ (3), note that Proposition 1.4.2 ensures that X × Y
is analytic, so Proposition 1.4.12 implies that every Borel subset of
X × Y is analytic.

To see (3) =⇒ (4), note that if A ⊆ Y is analytic, then φ−1(A) is
the projection of graph(φ) ∩ (X × A) onto X, and since Propositions
1.4.2, 1.4.3, and 1.4.4 ensure that the family of analytic sets is closed
under products, intersections, and images under continuous functions,
it follows that the latter set is analytic.

To see (4) =⇒ (1), note that if B ⊆ Y is Borel, then Proposition
1.4.12 ensures that it is bi-analytic, thus so too is φ−1(B), in which
case Theorem 1.4.15 implies that φ−1(B) is Borel.

As corollaries, we can now extend our earlier results on the closure
of the family of analytic sets under continuous images and preimages.

Proposition 1.4.18. Suppose that X is an analytic space, Y is an
analytic Hausdorff space, and φ : X → Y is Borel. Then the set φ(X)
is analytic.

Proof. By Proposition 1.4.8, we can assume that there is a con-
tinuous surjection ψ : NN → X. Then φ◦ψ is Borel, so Theorem 1.4.17
ensures that its graph is analytic. Proposition 1.4.4 therefore ensures
that projY (graph(φ ◦ ψ)) is analytic. But this latter set is φ(X).

Proposition 1.4.19. Suppose that X and Y are analytic Hausdorff
spaces, φ : X → Y is Borel, and A ⊆ Y is analytic. Then so is φ−1(A).
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Proof. This is just a rephrasing of (1) =⇒ (4) in the statement of
Theorem 1.4.17.

A Borel bijection φ : X → Y is a Borel isomorphism if it sends
Borel sets to Borel sets.

Proposition 1.4.20. Every Borel bijection φ : X → Y between
analytic Hausdorff spaces is a Borel isomorphism.

Proof. Suppose that B ⊆ X is Borel. Proposition 1.4.12 then
ensures that B is bi-analytic, so Proposition 1.4.18 implies that φ(B)
is bi-analytic, thus Proposition 1.4.15 yields that φ(B) is Borel.

We next turn our attention to generalizations of Theorem 1.4.14.

Theorem 1.4.21 (Lusin). Suppose that X is a Hausdorff space, n
is a natural number, and (Ai)i≤n is a sequence of analytic subsets of
X with empty intersection. Then there is a sequence (Bi)i≤n of Borel
subsets of X with empty intersection such that Ai ⊆ Bi, for all i ≤ n.

Proof. While the proof of Theorem 1.4.14 easily generalizes, we
will instead obtain the desired result as a consequence of Theorem
1.4.14 itself. Towards this end, note that Proposition 1.4.12 and the
latter allow us to recursively construct Borel sets Bi ⊆ Xi separating Ai
from

⋂
j<iBj ∩

⋂
j>iAj, for all i < n, and define Bn = X \

⋂
i<nBi.

The generalization to countably-infinite sequences requires a little
more thought.

Theorem 1.4.22 (Novikov). Suppose that X is a Hausdorff space
and (An)n∈N is a sequence of analytic subsets of X with empty inter-
section. Then there is a sequence (Bn)n∈N of Borel subsets of X with
empty intersection such that An ⊆ Bn, for all n ∈ N.

Proof. The most obvious attempt at generalizing the proof of
Theorem 1.4.14 is to fix continuous surjections φk : NN → Ak and to ap-
ply the same argument to the tree of all sequences (tk)k∈N ∈

⋃
n∈N(Nn)N

for which φ0(Nt0) ∩
⋂
k>0 φk(Ntk) 6= ∅. Unfortunately, this tree is un-

countably branching, so there is little reason to believe that the sets
defined in the course of the construction are Borel. Fortunately, this
problem is easily remedied by instead focusing upon the tree of all
(tk)k<n ∈ (Nn)n with n 6= 0 =⇒ φ0(Nt0) ∩

⋂
0<k<n φk(Ntk) 6= ∅, where

n varies over N.

We next note another kind of generalization of Theorem 1.4.14. A
set X of subsets of an analytic Hausdorff space X is Π1

1-on-Σ1
1 if for

every analytic Hausdorff space W and analytic set R ⊆ W × X, the
corresponding set {w ∈ W | Rw ∈ X} is co-analytic.
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Theorem 1.4.23. Suppose that X is an analytic Hausdorff space,
X ⊆ P(X) is Π1

1-on-Σ1
1, and A ∈ X is analytic. Then there is a Borel

set B ∈ X containing A.

Proof. By Propositions 1.4.11, 1.4.18, and 1.4.19, we can assume
that X is a set of trees on N, and A consists of the ill-founded trees
in X. Proposition 1.3.4 ensures that the set Bα of all trees T in X for
which the pruning rank of ∅ within T is at least α is a Borel subset of
X, for all α < ω1. Note A is contained in each of these sets. We will
show that if none of them is in X , then A is Borel.

Let R denote the set of all pairs (S, T ) ∈ X×X for which there is a
homomorphism φ : S → T from @ � S to @ � T . Propositions 1.2.7 and
1.4.4 ensure that R is analytic. Proposition 1.1.7 implies that if T ∈ A
then RT = A, and if T ∈ X \A then RT = Bα, where α is the pruning
rank of ∅ within T . It therefore follows that A = {T ∈ X | RT ∈ X}.
The fact that X is Π1

1-on-Σ1
1 then ensures that A is co-analytic, so

Theorem 1.4.15 implies that A is Borel.

The perfect set theorem. Here we show that analytic Hausdorff
spaces satisfy the continuum hypothesis.

Theorem 1.4.24 (Souslin). Suppose that X is an analytic Haus-
dorff space. Then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection π : 2N → X.

Proof. We will simply repeat the proof of Theorem 1.2.6, albeit
utilizing a slightly modified version of the perfection derivative. By
Proposition 1.4.8, we can assume that there is a continuous surjection
φ : NN → X. Recursively define a decreasing sequence of trees Tα on
N, along with a decreasing sequence of sets Xα = X \

⋃
t∈N<N\Tα φ(Nt),

by setting T 0 = N<N, Tα+1 = {t ∈ Tα | |φ(Nt) ∩ Xα| ≥ 2} for all
ordinals α < ω1, and T λ =

⋂
α<λ T

α for all limit ordinals λ < ω1. Let
α denote the least ordinal for which Tα = Tα+1.

If Tα = ∅, then Xα = ∅, so for all x ∈ X, there exists β < α with
x ∈ Xβ \Xβ+1. As Xβ \Xβ+1 =

⋃
t∈Tβ\Tβ+1 φ(Nt) ∩Xβ, it follows that

X is countable.
To handle the case that Tα 6= ∅, we will recursively construct a

function f : 2<N → Tα such that:

(a) ∀i < 2∀t ∈ 2<N f(t) @ f(t a (i)).
(b) ∀t ∈ 2<N φ(Nf(ta(0))) ∩ φ(Nf(ta(1))) = ∅.

We begin by setting f(∅) = ∅. Given t ∈ 2<N for which we have already
found f(t), fix distinct points x0,t, x1,t ∈ φ(Nf(t))∩Xα. Then there exist
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b0,t, b1,t ∈ Nf(t) such that xi,t = φ(bi,t). As φ is continuous and X is
Hausdorff, there exists nt ∈ N for which φ(Nb0,t�nt) ∩ φ(Nb1,t�nt) = ∅.
Setting f(t a (i)) = bi,t � nt, this completes the recursive construction.

Condition (a) ensures that we obtain a function ψ : 2N → NN by
setting ψ(c) =

⋃
n∈N f(c � n), and moreover, that if c ∈ 2N and n ∈ N,

then ψ(Nc�n) ⊆ Nf(c�n) ⊆ Nψ(c)�n, so ψ is continuous, thus the function
π = φ ◦ ψ is also continuous. To see that π is injective, note that if
c, d ∈ 2N are distinct and n ∈ N is minimal for which c � n 6= d � n,
then π(c) ∈ φ(Nf(c�n)) and π(d) ∈ φ(Nf(d�n)), so condition (b) ensures
that π(c) 6= π(d).

As a corollary, we obtain the following.

Proposition 1.4.25. Suppose that X and Y are analytic Hausdorff
spaces. Then there is an injection of X into Y if and only if there is a
Borel injection of X into Y .

Proof. We can clearly assume that X is uncountable and there
is an injection of X into Y , in which case Y is uncountable as well.
Theorem 1.4.24 then yields a continuous injection of 2N into Y , so we
need only show that there is a Borel injection of X into 2N. Towards
this end, note that by Proposition 1.4.8, there is a continuous surjection
φ : NN → X, and observe that the function T : X → P(N<N) given by

t ∈ T (x) ⇐⇒ x ∈ φ(Nt) yields such an injection, by Propositions
1.3.5 and 1.4.10.

Complete and universal sets. Here we establish the analog of
Proposition 1.2.4 for analytic sets.

Proposition 1.4.26. Suppose that X is an analytic Hausdorff space.
Then there is an analytic set A ⊆ 2N × X whose vertical sections are
exactly the analytic subsets of X.

Proof. We first handle the case that X = NN. By Proposition
1.2.4, there is a closed set C ⊆ 2N × (NN ×NN) whose vertical sections
are exactly the closed subsets of NN × NN. Proposition 1.4.9 then
ensures that the set A = {(c, b) ∈ 2N × NN | ∃a ∈ NN (c, (b, a)) ∈ C} is
as desired.

We now take care of the general case. By Proposition 1.4.8, we
can assume that there is a continuous surjection φ : NN → X. As
Proposition 1.4.5 ensures that every analytic subset of X is the image
of an analytic subset of NN under φ, Proposition 1.4.4 implies that the
set AX = {(c, φ(b)) | (c, b) ∈ A} is as desired.

As a corollary, we obtain the following.



4. ANALYTIC SPACES 17

Proposition 1.4.27. Suppose that X is an analytic Hausdorff space.
Then exactly one of the following holds:

(1) The set X is countable.
(2) There is an analytic subset of X which is not Borel/co-analytic.

Proof. It is sufficient to show that if X is uncountable, then there
is an analytic subset of X which is not co-analytic.

We first consider the case that X = 2N. By Proposition 1.4.26,
there is an analytic set A ⊆ 2N× 2N whose vertical sections are exactly
the analytic subsets of 2N. Proposition 1.4.5 then yields that the set
B = {c ∈ 2N | (c, c) ∈ A} is analytic. Suppose, towards a contradiction,
that B is also co-analytic. Fix c ∈ 2N with Ac = 2N \B, and note that
c ∈ B ⇐⇒ (c, c) ∈ A ⇐⇒ c /∈ B.

For the general case, appeal to Theorem 1.4.24 to obtain a contin-
uous injection φ : 2N → X. Proposition 1.4.4 then ensures that φ(B)
is analytic. But if φ(B) were also co-analytic, then Proposition 1.4.5
would imply that so too is B.

We next turn our attention to another sort of universality. We say
that an analytic subset of NN is complete analytic if it continuously
reduces every analytic subset of NN.

Proposition 1.4.28. The set of ill-founded trees on N is complete
analytic.

Proof. To see that the set of ill-founded trees on N is analytic,
note that a tree on N is ill-founded if and only if it is in the projection
onto P(N<N) of the set of all pairs (T, x), where T is a tree on N and
x ∈ [T ], and appeal to Propositions 1.2.3 and 1.4.4.

To see that every analytic set A ⊆ NN is continuously reducible
to the set of ill-founded trees on N, appeal to Proposition 1.4.9 to
obtain a closed set C ⊆ NN × NN whose projection onto the leftmost
coordinate is A, appeal to Proposition 1.2.1 to obtain a tree T on
N × N with the property that C = [T ], and observe that the function
φ : NN → P(N<N) given by t ∈ φ(b) ⇐⇒ (b � |t|, t) ∈ T is as desired,
since t ∈ φ(b) ⇐⇒ b ∈

⋃
s∈T t Ns ⇐⇒ b ∈ NN \

⋃
s∈N|t|\T t Ns.

Proposition 1.4.29. The set of trees on N with uncountably-many
branches is complete analytic.

Proof. To see that the set of trees on N with uncountably-many
branches is analytic, note that by Proposition 1.1.12, a tree on N has
uncountably-many branches if and only if it is in the projection onto
P(N<N) of the set of all pairs (φ, T ) ∈ (N<N)2<N × P(N<N) for which
T is a tree on N and φ is an embedding of v � 2<N into v � T . As
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Proposition 1.2.8 ensures that the latter set is closed, Proposition 1.4.4
yields that the desired set is analytic.

To see that every analytic set A ⊆ NN is continuously reducible to
the set of trees on N with uncountably-many branches, it is sufficient
to handle the special case that A is the set of ill-founded trees on N, by
Proposition 1.4.28. Towards this end, consider the map sending a tree
S on N to the tree T on N × 2 consisting of all pairs (s, t) ∈ S × 2<N

for which |s| = |t|.

Proposition 1.4.30. The set of trees on N which do not have ex-
actly one branch is complete analytic.

Proof. To see that the set of trees on N which do not have exactly
one branch is analytic, appeal first to Proposition 1.1.6 to see that a
tree T on N does not have exactly one branch if and only if there exists
n ∈ N such that for all s ∈ Nn ∩ T , there exists a distinct t ∈ Nn ∩ T
of pruning rank at least that of s within T . By Proposition 1.1.7, this
is equivalent to the statement that for all s ∈ Nn ∩ T , there exists a
distinct t ∈ Nn ∩ T for which there is a homomorphism from @ � Ts
to @ � Tt, where Tr denotes the tree of all sequences in T extending
r. As Propositions 1.2.7 and 1.4.4 ensure that the existence of such a
homomorphism is an analytic condition, Propositions 1.4.1 and 1.4.3
yield the desired result.

To see that every analytic set A ⊆ NN is continuously reducible to
the set of trees on N which do not have exactly one branch, note that
any map sending a tree on N to one with exactly one more branch is
a reduction of the set of ill-founded trees on N to this set, and apply
Proposition 1.4.28.

Well-founded relations. Given sets R ⊆ X ×X and Y ⊆ X, we
say that a point y ∈ Y is an R-minimal element of Y if no element of
Y is R-related to y. We say that R is well-founded if every non-empty
subset of X has an R-minimal element. The rank of a point x with
respect to such a relation is the least ordinal α strictly greater than
the rank of every y R x, and the rank of R is the least ordinal strictly
greater than all of these ranks.

Theorem 1.4.31 (Kunen-Martin). Suppose that X is a Hausdorff
space and R ⊆ X ×X is analytic and well-founded. Then the rank of
R is countable.

Proof. By Proposition 1.4.8, we can assume that there is a con-
tinuous surjection (φ, ψ) : NN → R. Let S denote the well-founded tree
on NN consisting of all s ∈ (NN)<N such that φ(s(i)) = ψ(s(i + 1)),
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for all i < |s| − 1. A straightforward induction using Proposition 1.1.5
shows that the pruning rank of each non-empty sequence s ∈ S within
S is the rank of φ(s(|s| − 1)) with respect to R. It follows that the
rank of each x ∈ X with respect to R is at most the pruning rank of ∅
within S, thus the rank of R is at most the pruning rank of S.

Let T denote the well-founded tree consisting of all t ∈
⋃
n∈N(Nn)n

with the property that φ(Nt(i)) ∩ ψ(Nt(i+1)) 6= ∅, for all i < |t| − 1.
As there is a homomorphism from @ � S to @ � T , Proposition 1.1.7
ensures that the pruning rank of S is at most that of T . But T is
countable, thus so too is its pruning rank.

5. Injectively analytic spaces

A topological space is injectively analytic if it is a continuous injec-
tive image of a closed subset of NN. Some properties of Borel sets come
from those of injectively analytic sets. In this section, we establish the
basic properties of the latter.

Closure properties. Here we establish the basic closure proper-
ties of injectively analytic sets, beginning with the simplest operations.

Proposition 1.5.1. Suppose that X is a topological space and
(An)n∈N is a sequence of pairwise disjoint injectively analytic subsets
of X. Then

⋃
n∈NAn is injectively analytic.

Proof. Fix closed sets Cn ⊆ NN for which there are continuous
bijections φn : Cn → An. Then the function φ(n, x) = φn(x) is a con-
tinuous bijection from {(n, x) ∈ N× NN | x ∈ Cn} to

⋃
n∈NAn.

Proposition 1.5.2. Suppose that (Xn)n∈N is a sequence of injec-
tively analytic spaces. Then

∏
n∈NXn is injectively analytic.

Proof. Fix closed sets Cn ⊆ NN for which there are continuous
bijections φn : Cn → Xn. Then

∏
n∈N φn is a continuous bijection from∏

n∈NCn to
∏

n∈NXn.

Proposition 1.5.3. Suppose that X is a Hausdorff space. Then⋂
n∈NAn is injectively analytic for every sequence (An)n∈N of injectively

analytic subsets of X.

Proof. Proposition 1.5.2 ensures that there is a closed set C ⊆ NN

for which there is a continuous bijection φ : C →
∏

n∈NAn. As X
is Hausdorff, the set D = {x ∈ XN | ∀m,n ∈ N x(m) = x(n)} is
closed, thus so too is the set D′ = φ−1(D). But the composition of the
projection onto any coordinate with φ is a continuous bijection from
D′ to

⋂
n∈NAn.
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We next note that the simplest subsets of injectively analytic spaces
are themselves injectively analytic.

Proposition 1.5.4. Suppose that X is an injectively analytic space.
Then every closed set C ⊆ X is injectively analytic.

Proof. Fix a closed set D ⊆ NN for which there is a continuous
bijection φ : D → X. Then φ−1(C) is closed and its φ-image is C.

Proposition 1.5.5. Suppose that X is an injectively analytic space.
Then every open set U ⊆ X is injectively analytic.

Proof. Fix a closed set C ⊆ NN for which there is a continuous
bijection φ : C → X. Then φ−1(U) is an open subset of C, and is
therefore a union of countably-many pairwise disjoint clopen subsets
Cn of C. As U =

⋃
n∈N φ(Cn), Proposition 1.5.1 ensures that it is

injectively analytic.

Borel vs. injectively analytic. We already have the machinery
in hand to establish one half of the relationship between Borel and
injectively analytic sets.

Proposition 1.5.6. Suppose that X is an injectively analytic Hau-
sdorff space. Then every Borel subset of X is injectively analytic.

Proof. By Proposition 1.3.1, it is sufficient to show that the family
of injectively analytic subsets of X is closed under countable disjoint
unions and countable intersections, and contains every closed subset
and every open subset of X. This follows from Propositions 1.5.1,
1.5.3, 1.5.4, and 1.5.5.

In order to establish the converse, we will use the following conse-
quence of separation.

Theorem 1.5.7. Suppose that X is an injectively analytic space,
Y is an analytic Hausdorff space, and φ : X → Y is a Borel injection.
Then φ(X) is Borel.

Proof. Fix a closed set C ⊆ NN for which there is a continuous
bijection ψ : C → X. Proposition 1.4.18 then ensures that for each
t ∈ N<N, the set At = (φ ◦ ψ)(C ∩ Nt) is analytic. We will recursively
construct sequences (Bt)t∈N<N of Borel subsets of Y such that:

(1) ∀t ∈ N<N At ⊆ Bt.
(2) ∀t ∈ N<N (Bta(n))n∈N partitions a subset of Bt.

We begin by setting B∅ = Y . Given t ∈ N<N for which we have found
Bt, appeal to Theorem 1.4.14 to find Borel sets Bm,n,t ⊆ Bt separating



5. INJECTIVELY ANALYTIC SPACES 21

Ata(m) from Ata(n), for all m < n. To complete the recursive definition,
set Bta(m) =

⋂
n>mBm,n,t \

⋃
n<mBn,m,t, for all m ∈ N.

For each t ∈ N<N, set Ct = At ∩ Bt. As Y is Hausdorff, it follows
that φ(X) =

⋃
b∈NN

⋂
n∈NCb�n =

⋂
n∈N

⋃
t∈Nn Ct, thus φ(X) is Borel.

In particular, we have the following.

Theorem 1.5.8. Suppose that X is an analytic Hausdorff space.
Then every injectively analytic set B ⊆ X is Borel.

Proof. Fix a closed set C ⊆ NN for which there is a continuous
bijection φ : C → B, and appeal to Theorem 1.5.7.

Remark 1.5.9. By appealing to the proof of Theorem 1.5.7 rather
than its statement, one can eliminate the assumption that X is analytic
in the statement of Theorem 1.5.8.

Theorem 1.5.10. Suppose that X is an injectively analytic Haus-
dorff space. Then a set Y ⊆ X is Borel if and only if it is injectively
analytic.

Proof. By Proposition 1.5.6 and Theorem 1.5.8.

Theorem 1.5.11. Suppose that X and Y are injectively analytic
Hausdorff spaces and R ⊆ X × Y is Borel. Then {x ∈ X | |Rx| = 1}
is co-analytic.

Proof. As Proposition 1.5.2 ensures that X × Y is injectively an-
alytic, Proposition 1.5.6 yields a closed set C ⊆ NN for which there is
a continuous bijection (φ, ψ) : C → R. Proposition 1.3.5 ensures that

the function T : X → P(N<N) given by t ∈ T (x) ⇐⇒ x ∈ φ(C ∩Nt)
is Borel, and Proposition 1.4.10 implies |Rx| = 1 if and only if there
is a unique branch through T (x), so the desired result follows from
Propositions 1.4.19 and 1.4.30.

Remark 1.5.12. The above argument goes through under the some-
what more general assumption that X is an analytic Hausdorff space,
Y is a topological space, and R ⊆ X × Y is injectively analytic.

The isomorphism theorem. Here we establish a version of Propo-
sition 1.4.25 for injectively analytic spaces.

Theorem 1.5.13 (Schröder-Bernstein). Suppose that X and Y are
injectively analytic Hausdorff spaces for which there are Borel injec-
tions φ : X → Y and ψ : Y → X. Then there is a Borel bijection
π : X → Y .
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Proof. We will show the stronger fact that there is a Borel set
X ′ ⊆ X for which the function π = (φ � X ′) ∪ (ψ−1 � (X \ X ′))
is as desired. Towards this end, note that the existence of such a set
necessitates that the set X ′0 = X \ψ(Y ) is contained in X ′. Recursively
defining Y ′n = φ(X ′n) and X ′n+1 = ψ(Y ′n), a straightforward induction
then shows that X ′n ⊆ X ′, for all n ∈ N. We will show that the
set X ′ =

⋃
n∈NX

′
n is as desired. Towards this end, note first that the

corresponding function π has full domain, since X\X ′ ⊆ dom(ψ−1). As
φ(X ′) =

⋃
n∈N Y

′
n = ψ−1(X ′), the sets φ(X ′) and ψ−1(X \X ′) partition

Y , thus π is bijective.

Theorem 1.5.14. Suppose that X and Y are injectively analytic
Hausdorff spaces. Then there is a bijection between X and Y if and
only if there is a Borel bijection between X and Y .

Proof. By Proposition 1.4.25 and Theorem 1.5.13.

6. Polish spaces

A Polish space is a completely metrizable second countable topolog-
ical space. The structure of such spaces is the primary focus of classical
descriptive set theory. Here we note several of their properties.

Closure properties. Here we establish a pair of basic facts con-
cerning complete metric spaces and completely metrizable spaces.

Proposition 1.6.1. Suppose that X is a complete metric space.
Then a set Y ⊆ X is complete if and only if it is closed.

Proof. If Y is closed, then every Cauchy sequence of points of Y
converges to a point of Y , thus Y is complete. Conversely, if Y is not
closed, then there is a sequence (yn)n∈N of points of Y converging to a
point of X \ Y , and since every such sequence is necessarily Cauchy, it
follows that Y is not complete.

A set is Gδ if it is an intersection of countably-many open sets.

Proposition 1.6.2. Suppose that X is a metric space. Then every
closed set C ⊆ X is Gδ.

Proof. Simply note that C =
⋂
n∈N B(C, 1/n).

Proposition 1.6.3. Suppose that X is a completely metrizable
space. Then a set Y ⊆ X is completely metrizable if and only if it
is Gδ.
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Proof. Suppose first that there is a compatible complete metric dY
on Y . For each ε > 0, let Uε denote the union of all open sets U ⊆ X for
which U ∩Y has dY -diameter at most ε. As every point of

⋂
ε>0 Uε∩Y

is a limit of a dY -Cauchy sequence, it follows that Y =
⋂
ε>0 Uε ∩ Y , so

Proposition 1.6.2 yields that Y is Gδ.
Conversely, to show that every Gδ set Y ⊆ X is completely metriz-

able, it is sufficient to show that there is a closed continuous injection
π : Y → X × RN, as Proposition 1.6.1 then ensures that we will ob-
tain a compatible complete metric on Y by pulling back the product
of any compatible complete metric dX on X with the usual complete
metric on RN through π. Towards this end, fix open sets Uk ⊆ X
with the property that Y =

⋂
k∈N Uk, and define π : Y → X × RN by

π(y) = (y, (1/dX(y,X \ Uk))k∈N). It is clear that π is injective. To see
that π is continuous, note that π(yn) → π(y) whenever yn → y. To
see that π is closed, suppose that C ⊆ Y is closed, and observe that if
(cn)n∈N is a sequence of points of C for which (π(cn))n∈N converges to
some point (x, r), then cn → x. It also follows that for each k ∈ N, the
sequence (dX(cn, X \ Uk))n∈N is bounded away from zero, so x ∈ Uk,
thus x ∈ Y , hence x ∈ C. The continuity of π therefore ensures that
π(cn)→ π(x), so π(x) = (x, r), thus the latter is in π(C).

Injectively analytic spaces vs. Polish spaces. We begin this
section with a useful lemma concerning complete metric spaces.

Proposition 1.6.4. Suppose that X is a complete metric space and
(Xn)n∈N is a sequence of non-empty subsets of X with the property that
diam(Xn)→ 0 and ∀n ∈ N Xn+1 ⊆ Xn. Then |

⋂
n∈NXn| = 1.

Proof. The fact that diam(Xn)→ 0 ensures that |
⋂
n∈NXn| ≤ 1.

To see that |
⋂
n∈NXn| ≥ 1, fix xn ∈ Xn for all n ∈ N. The fact that

diam(Xn)→ 0 ensures that (xn)n∈N is Cauchy, so completeness yields
x ∈ X for which xn → x, in which case x ∈

⋂
n∈NXn ⊆

⋂
n∈NXn.

We next characterize a strengthening of injective analyticity.

Proposition 1.6.5. Suppose that X is a topological space. Then
X is homeomorphic to a closed subspace of NN if and only if X is a
zero-dimensional Polish space.

Proof. By Proposition 1.6.1, it is sufficient to show that if X is
a zero-dimensional Polish space, then X is homeomorphic to a closed
subspace of NN. Towards this end, fix a compatible complete metric d
on X, and recursively construct a sequence (Ut)t∈N<N of clopen subsets
of X such that:

(1) U∅ = X.
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(2) ∀t ∈ N<N (Uta(n))n∈N is a partition of Ut.
(3) ∀t ∈ N<N diam(Ut) ≤ 1/|t|.

Define T = {t ∈ N<N | Ut 6= ∅} and C = [T ]. Conditions (2) and (3)
and Proposition 1.6.4 allow us to define a function π : C → X by letting
π(c) be the unique point of

⋂
n∈N Uc�n. To see that π is bijective, note

that if x ∈ X, then condition (1) and repeated application of condition
(2) yield a unique c ∈ C for which π(c) = x. To see that π is a
homeomorphism, observe that {Ut | t ∈ T} is a clopen basis for X and
π−1(Ut) = C ∩Nt, for all t ∈ T .

Along similar lines, we have the following.

Proposition 1.6.6. Every Polish space is injectively analytic.

Proof. Suppose that X is a Polish space, and fix a compatible
complete metric d on X. We say that a subset of a topological space
is Fσ if it is a union of countably-many closed sets. We will recursively
construct a sequence (Ft)t∈N<N of Fσ subsets of X such that:

(1) F∅ = X.
(2) ∀t ∈ N<N (Fta(n))n∈N is a partition of Ft.

(3) ∀n ∈ N∀t ∈ N<N Fta(n) ⊆ Ft.
(4) ∀n ∈ N∀t ∈ N<N diam(Ft) ≤ 1/|t|.

Given t ∈ N<N for which we have found Ft, fix closed sets Cn,t ⊆ X,
of diameter at most 1/|t|, whose union is Ft. By Proposition 1.6.2, the
sets Fta(n) = Cn,t \

⋃
m<nCm,t are Fσ.

Define T = {t ∈ N<N | Ft 6= ∅} and C = [T ]. Conditions (3) and (4)
and Proposition 1.6.4 allow us to define a function π : C → X by letting
π(c) be the unique point of

⋂
n∈N Fc�n. To see that π is bijective, note

that if x ∈ X, then condition (1) and repeated application of condition
(2) yield a unique c ∈ C for which π(c) = x. To see that π is continuous,
observe that every open subset of X is a union of sets of the form Ft,
and note that π−1(Ft) = C ∩Nt, for all t ∈ T .

As a corollary, we have the following.

Proposition 1.6.7. Suppose that X is a topological space. Then
X is an injectively analytic Hausdorff space if and only if there is a
finer zero-dimensional Polish topology on X consisting of sets which
are Borel with respect to the original topology.

Proof. By Proposition 1.6.6, we need only show that if X is an in-
jectively analytic Hausdorff space, then there is a finer zero-dimensional
Polish topology on X consisting of sets which are Borel with respect to
the original topology. But if C ⊆ NN is a closed set for which there is a
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continuous bijection φ : C → X, then Theorem 1.5.7 and Proposition
1.6.1 ensure that the pushforward of the topology on C through φ is
as desired.

Change of topology. Here we establish a number of strengthen-
ings of Proposition 1.6.6 which allow one to treat countable families of
Borel sets and Borel functions on injectively analytic Hausdorff spaces
as if they consist solely of clopen sets and continuous functions on
zero-dimensional Polish spaces.

Proposition 1.6.8. Suppose that X is an injectively analytic Hau-
sdorff space and B is a partition of X into countably-many Borel sets.
Then there is a finer zero-dimensional Polish topology τ on X, consist-
ing of sets which are Borel with respect to the original topology, with
the property that every set in B is τ -clopen.

Proof. Fix N ⊆ N for which there is an injective enumeration
(Bn)n∈N of B. By Proposition 1.5.10, there are closed sets Cn ⊆ NN for
which there exist continuous bijections φn : Cn → Bn, for all n ∈ N .
Set C = {(n, x) | n ∈ N and x ∈ Cn}, define a function φ : C → X
by φ(n, x) = φn(x), and observe that Theorem 1.5.7 ensures that the
pushforward of the topology on C through φ is as desired.

The following fact will allow us to amalgamate topologies obtained
in this fashion.

Proposition 1.6.9. Suppose that (τn)n∈N is an increasing sequence
of Polish topologies on a set X. Then the topology τ on X generated
by

⋃
n∈N τn is also Polish.

Proof. As the families of complete metric spaces and second count-
able topological spaces are closed under countable products, it follows
that

∏
n∈N(X, τn) is Polish. Our assumption that (τn)n∈N is increasing

ensures that the subspace D = {x ∈ XN | ∀m,n ∈ N x(m) = x(n)}
of this product is closed, so Proposition 1.6.1 therefore implies that
the subspace topology that D inherits from this product is Polish. To
see that (X, τ) is Polish, it only remains to check that the projection
function from D to the latter is a homeomorphism. But this follows
from the observation that if n ∈ N and U ⊆ X is τn-open, then the
pullback of U under the projection is the intersection of D with the
open set Xn × U ×XN.

As corollaries, we obtain the following.

Proposition 1.6.10. Suppose that X is an injectively analytic Hau-
sdorff space and (Bn)n∈N is a sequence of Borel subsets of X. Then
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there is a finer zero-dimensional Polish topology τ on X, consisting of
sets which are Borel with respect to the original topology, such that each
Bn is τ -clopen.

Proof. By recursively appealing to Proposition 1.6.8, we obtain an
increasing sequence (τn)n∈N of finer zero-dimensional Polish topologies
on X, consisting of sets which are Borel with respect to the original
topology, such that each Bn is τn-clopen. Proposition 1.6.9 then ensures
that the topology τ generated by

⋃
n∈N τn is as desired.

Proposition 1.6.11. Suppose that X is an injectively analytic Hau-
sdorff space, Y is a second countable space, and φ : X → Y is Borel.
Then there is a finer zero-dimensional Polish topology τ on X, consist-
ing of sets which are Borel with respect to the original topology, such
that φ is τ -continuous.

Proof. Fix a countable open basis V for Y , let U denote the set
of φ-preimages of elements of V , and appeal to Proposition 1.6.10 to
obtain a finer zero-dimensional Polish topology τ on X, consisting of
sets which are Borel with respect to the original topology, such that
each of the sets in U is τ -open.

Proposition 1.6.12. Suppose that X is an injectively analytic Hau-
sdorff space and φ : X → X is Borel. Then there is a finer zero-
dimensional Polish topology τ on X, consisting of sets which are Borel
with respect to the original topology, such that φ is τ -continuous.

Proof. By Proposition 1.6.7, we can assume that X is second
countable. By recursively applying Proposition 1.6.11, we obtain an
increasing sequence (τn)n∈N of finer zero-dimensional Polish topologies
on X, consisting of sets which are Borel with respect to the original
topology, such that φ is continuous when viewed as a function from
(X, τn+1) to (X, τn). Proposition 1.6.9 then ensures that the topology
τ generated by

⋃
n∈N τn is as desired.

Putting these results together, we obtain the following.

Proposition 1.6.13. Suppose that X is a countable family of injec-
tively analytic Hausdorff spaces, B is a countable family of Borel subsets
of these spaces, and F is a countably family of functions between these
spaces. Then there are finer zero-dimensional Polish topologies on the
spaces in X , consisting of sets which are Borel with respect to the orig-
inal topologies, such that the sets in B are clopen and the functions in
F are continuous with respect to the corresponding topologies.

Proof. By Propositions 1.6.7 and 1.6.10, there are finer zero-
dimensional Polish topologies τ0(X) on each X ∈ X , consisting of
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sets which are Borel with respect to the original topologies, such that
each B ∈ B is τ0(X)-clopen, where B ⊆ X. Fix an enumeration
(fn : Xn → Yn)n∈N of F in which every element of F appears infinitely
often, and recursively appeal to Propositions 1.6.11 and 1.6.12 to ob-
tain finer zero-dimensional Polish topologies τn+1(X) on each X ∈ X ,
consisting of sets which are Borel with respect to τn(X), such that fn
is continuous when viewed as a function from τn+1(Xn) to τn+1(Yn).
Proposition 1.6.9 then ensures that the topologies τ(X) generated by⋃
n∈N τn(X) are as desired.

7. Baire category

Here we discuss a fundamental tool in the study of Polish spaces.

The Baire property. A subset of a topological space is meager
if it is a union of countably-many nowhere dense sets. A subset of a
topological space is comeager if its complement is meager, or equiva-
lently, if it contains an intersection of countably-many dense open sets.
A Baire space is a topological space whose comeager subsets are dense.

Theorem 1.7.1 (Baire). Every complete metric space is Baire.

Proof. Suppose that X is a complete metric space and C ⊆ X is
comeager. To see that C intersects every non-empty open set U ⊆ X,
fix positive real numbers εn → 0, as well as dense open sets Un ⊆ X for
which

⋂
n∈N Un ⊆ C. Set V0 = U , and recursively choose non-empty

open sets Vn+1 ⊆ Un, of diameter at most εn, for which Vn+1 ⊆ Vn.
Proposition 1.6.4 ensures that there is a unique point in

⋂
n∈N Vn, and

this point is clearly in C ∩ U .

Proposition 1.7.2. Suppose that X is a Baire space. Then every
non-empty open set U ⊆ X is a Baire space.

Proof. Suppose, towards a contradiction, that there is a sequence
(Un)n∈N of dense open subsets of U whose intersection is not dense
in U . Let V denote the interior of the complement of U , and define
Vn = Un ∪ V for all n ∈ N. Then (Vn)n∈N is a sequence of dense open
subsets of X whose intersection is not dense, a contradiction.

Proposition 1.7.3. Suppose that X is a topological space, U ⊆ X
is a non-empty open set, and Y ⊆ U . Then Y is meager in U if and
only if Y is meager in X.

Proof. If Y is meager in U , then there is a sequence (Un)n∈N of
dense open subsets of U whose intersection is disjoint from Y . Let V
denote the interior of the complement of U . Then the sets Vn = Un∪V
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are dense and open in X, and since their intersection is disjoint from
Y , it follows that Y is meager in X.

Conversely, if Y is meager in X, then there is a sequence (Vn)n∈N of
dense open subsets of X whose intersection is disjoint from Y . Then
the sets Un = U ∩ Vn are dense and open in U , and their intersection
is disjoint from Y , thus Y is meager in U .

A subset of a topological space has the Baire property if its sym-
metric difference with some open set is meager.

Proposition 1.7.4. Suppose that X is a topological space and B ⊆
X has the Baire property. Then at least one of the following holds:

(1) The set B is meager.
(2) There is a non-empty open set U ⊆ X with the property that

B ∩ U is comeager in U .

Moreover, if X is a Baire space, then exactly one of these holds.

Proof. Fix an open set U ⊆ X such that B 4 U is meager. If U
is empty, then B is meager. Otherwise, since U \ B is meager in X,
Proposition 1.7.3 ensures that it is meager in U , and it follows that
B ∩ U is comeager in U .

To see that conditions (1) and (2) are mutually exclusive, suppose
that there is a non-empty open set U ⊆ X with the property that B∩U
is comeager in U . Let V denote the interior of X \ U , and note that
(B ∩U)∪ V is comeager. It follows that if B is also meager, then V is
a comeager set disjoint from U , contradicting Theorem 1.7.1.

We say that a function φ : X → Y is Baire measurable if preimages
of open sets have the Baire property.

Proposition 1.7.5. Suppose that X is a topological space, Y is a
second countable topological space, and φ : X → Y is Baire measurable.
Then there is a dense Gδ set C ⊆ X such that φ � C is continuous.

Proof. Fix an enumeration (Vn)n∈N of an open basis for Y , fix
open sets Un ⊆ X such that Un 4 f−1(Vn) is meager for all n ∈ N, fix
dense Gδ sets Cn ⊆ X disjoint from Un 4 φ−1(Vn) for all n ∈ N, and
observe that the set C =

⋂
n∈NCn is as desired.

Proposition 1.7.6. Suppose that X and Y are topological spaces
and φ : X → Y is a continuous open surjection. Then a set D ⊆ Y is
comeager if and only if the corresponding set C = φ−1(D) is comeager.

Proof. Suppose first that D is comeager. Then there are dense
open sets Vn ⊆ Y such that

⋂
n∈N Vn ⊆ D. The fact that φ is continuous
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ensures that the sets Un = φ−1(Vn) are open, and the fact that φ is
open implies that they are dense, thus C is comeager.

Conversely, suppose that C is comeager. Then there are dense open
sets Un ⊆ X such that

⋂
n∈N Un ⊆ C. The fact that φ is open ensures

that the sets Vn = φ(Un) are open, and the fact that φ is a continuous
surjection implies that they are dense, thus D is comeager.

Analytic and Borel vs. the Baire property. Here we examine
the relationship between analytic and Borel sets and those with the
Baire property.

Proposition 1.7.7. Suppose that X is a topological space. Then
the family of subsets of X with the Baire property is a σ-algebra con-
taining the open subsets of X.

Proof. As the empty set is meager, it follows that every open set
has the Baire property.

To see that the family of subsets of X with the Baire property is
closed under complements, suppose that B ⊆ X has the Baire property,
fix an open set U ⊆ X such that B 4 U is meager, let C denote the
complement of B, let V denote the interior of X \ U , and note that
C 4 V ⊆ (C 4 (X \ U)) ∪ ((X \ U) \ V ) = (B 4 U) ∪ ((X \ U) \ V ),
thus C has the Baire property.

To see that the family of subsets of X with the Baire property is
closed under countable unions, suppose that Bn ⊆ X has the Baire
property for all n ∈ N, fix open sets Un ⊆ X such that Bn 4 Un is
meager for all n ∈ N, set B =

⋃
n∈NBn and U =

⋃
n∈N Un, and observe

that B 4 U ⊆
⋃
n∈NBn 4 Un, thus B has the Baire property.

A set B ⊆ X is a Baire envelope for a set Y ⊆ X if Y ⊆ B and
every subset of B \ Y with the Baire property is meager.

Proposition 1.7.8. Suppose that X is a Baire space. Then every
set Y ⊆ X has an Fσ Baire envelope.

Proof. Fix a maximal sequence (Ui)i∈I of pairwise disjoint non-
empty open subsets of X within which Y is meager, fix dense Gδ sets
Ci ⊆ Ui disjoint from Y for all i ∈ I, and define B = X \

⋃
i∈I Ci.

To see that B is Fσ, it is enough to show that
⋃
i∈I Ci is Gδ. Towards

this end, fix dense open sets Vi,n ⊆ Ui such that
⋂
n∈N Vi,n ⊆ Ci for all

i ∈ I, set Vn =
⋃
i∈I Vi,n for all n ∈ N, and note that

⋃
i∈I Ci =

⋂
n∈N Vn.

To see that B is a Baire envelope for Y , suppose, towards a contra-
diction, that A ⊆ B \ Y is a non-meager set with the Baire property.
Proposition 1.7.4 then yields a non-empty open set U ⊆ X in which
A∩U is comeager, and the maximality of (Ui)i∈I ensures the existence
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of i ∈ I for which U ∩Ui 6= ∅. As both A∩U ∩Ui and Ci∩U are comea-
ger in U ∩Ui, so too is A∩Ci∩U . As Proposition 1.7.2 implies that the
latter set is non-empty, this contradicts the fact that B ∩ Ci = ∅.

Proposition 1.7.9. Suppose that X is a Baire Hausdorff space.
Then every analytic set A ⊆ X has the Baire property.

Proof. By Proposition 1.4.8, we can assume that there is a con-
tinuous surjection φ : NN → A. For each t ∈ N<N, set At = φ(Nt) and
appeal to Proposition 1.7.8 to obtain a Baire envelope Bt ⊆ At for At
with the Baire property. As A =

⋃
b∈NN

⋂
n∈NAb�n =

⋃
b∈NN

⋂
n∈NBb�n

and the latter set is contained in
⋂
n∈N

⋃
t∈Nn Bt, to see that A has

the Baire property, it is certainly sufficient to show that the difference⋂
n∈N

⋃
t∈Nn Bt\

⋃
b∈NN

⋂
n∈NBb�n is meager. And for this, it is sufficient

to show that for each t ∈ N<N, the set Bt \
⋃
n∈NBta(n) is meager. But

Bt \
⋃
n∈NBta(n) ⊆ Bt \

⋃
n∈NAta(n) = Bt \At, and is therefore meager

by the definition of Baire envelope.

Proposition 1.7.10. Suppose that X is a topological space, Y is a
second countable Baire space, and R ⊆ X × Y is Borel. Then the sets
{x ∈ X | Rx is non-meager} and {x ∈ X | Rx is comeager} are Borel.

Proof. It is sufficient to show that if R ⊆ X × Y is Borel, then
so too are the sets of the form {x ∈ X | Rx ∩ V is non-meager in V },
for all non-empty open sets V ⊆ Y . Clearly the family of Borel sets
with this property contains every Borel rectangle and is closed under
countable unions, and therefore contains every open set. To see that it
is closed under complements, suppose that R ⊆ X × Y is a Borel set
with this property, let S denote the complement of R, and fix x ∈ X.
Then Sx is non-meager in V if and only if there exists n ∈ N such that
Vn ⊆ V and Sx ∩ Vn is comeager in Vn by Proposition 1.7.4, and the
latter holds if and only if Rx ∩ Vn is meager in Vn.

In order to establish the analogous fact about analytic sets, we first
note the following characterization of the circumstances under which
an analytic set is comeager.

Proposition 1.7.11. Suppose that C ⊆ NN is closed, X is a Baire
Hausdorff space, φ : C → X is continuous, and U ⊆ X is a non-empty
open set. Then φ(C) is comeager in U if and only if there is a sequence
(Ut)t∈N<N of open subsets of X satisfying the following conditions:

(1) U∅ is dense in U .

(2) ∀t ∈ N<N Ut ⊆ φ(C ∩Nt).
(3) ∀t ∈ N<N {Uta(n) | n ∈ N} partitions a dense subset of Ut.
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Proof. We first note that if φ(C) is comeager in U , then there is
a sequence (Ut)t∈N<N satisfying conditions (1) and (3), as well as the
following strengthening of condition (2):

(2′) ∀t ∈ N<N φ(C ∩Nt) is comeager in Ut.

Towards this end, we begin by setting U∅ = U . Given t ∈ N<N for
which we have already found Ut, recursively define Uta(n) =

⋃
Uta(n),

where Uta(n) is a maximal family of pairwise disjoint non-empty open

subsets of Ut \
⋃
m<n Uta(m) in which φ(C ∩Nta(n)) is comeager.

Conversely, note that if (Ut)t∈NN satisfies conditions (1) – (3), then⋂
n∈N

⋃
t∈Nn Ut =

⋃
b∈NN

⋂
n∈N Ub�n, the former set is comeager in U , and

the latter set is contained in φ(C), thus φ(C) is comeager in U .

Proposition 1.7.12. Suppose that X is an analytic Hausdorff space,
Y is a Polish space, and R ⊆ X × Y is analytic. Then {x ∈ X |
Rx is comeager} and {x ∈ X | Rx is non-meager} are analytic as well.

Proof. By Proposition 1.4.8, we can assume that there is a contin-
uous surjection (φ, ψ) : NN → R. Our assumption that X is Hausdorff
ensures that the set C = graph(φ) is closed. Note that Rx = ψ(Cx),
for all x ∈ X. Fix an enumeration (Vn)n∈N of an open basis for Y con-
sisting of non-empty sets, and appeal to Proposition 1.7.11 to obtain
that, for all x ∈ X, the set Rx is comeager in a non-empty open set
V ⊆ Y if and only if there is a function ν : N<N → P(N) such that,
setting Ut =

⋃
n∈ν(t) Vn for all t ∈ N<N, the following conditions hold:

(1) U∅ is dense in V .

(2) ∀t ∈ N<N Ut ⊆ ψ(Cx ∩Nt).
(3) ∀t ∈ N<N {Uta(n) | n ∈ N} partitions a dense subset of Ut.

Propositions 1.4.3 and 1.4.12 ensure that the set of pairs (x, ν) satisfy-
ing these conditions is analytic, thus so too is {x ∈ X | Rx is comeager}.
As Proposition 1.7.4 ensures that {x ∈ X | Rx is non-meager} is the
union of the sets of the form {x ∈ X | Rx ∩ Vn is comeager in Vn} for
n ∈ N, it follows that the former is analytic as well.

Quantifier exchange. Here we establish the fundamental fact re-
lating Baire category in a product to Baire category on its components.

Theorem 1.7.13 (Kuratowski-Ulam). Suppose that X is a Baire
space, Y is second countable Baire space, and R ⊆ X×Y has the Baire
property.

(1) The set {x ∈ X | Rx has the Baire property} is comeager.
(2) The set R is comeager if and only if {x ∈ X | Rx is comeager}

is comeager.
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Proof. We first establish the special case of (=⇒) in (2) for which
R is dense and open. Associate with each non-empty open set V ⊆ Y
the open set V ′ = projX(R ∩ (X × V )). Note that if U ⊆ X is a
non-empty open set, then R ∩ (U × V ) 6= ∅, so U ∩ V ′ 6= ∅, thus V ′ is
dense. Fix an enumeration (Vn)n∈N of an open basis for Y consisting
of non-empty sets, and observe that the set C =

⋂
n∈N V

′
n is comeager,

and Rx is dense and open for all x ∈ C.
We next establish (=⇒) in (2). Fix dense open sets Un ⊆ X×Y with⋂

n∈N Un ⊆ R. Then the sets Cn = {x ∈ X | (Un)x is dense and open}
are comeager, thus so too is the set C =

⋂
n∈NCn, and Rx is comeager

for all x ∈ C.
To see (1), fix an open set U ⊆ X × Y such that R 4 U is meager,

note that the set C = {x ∈ X | Rx 4 Ux is meager} is comeager, and
observe that Rx has the Baire property for all x ∈ C.

It only remains to establish (⇐=) in (2). Towards this end, note
that U \ (R 4 U) ⊆ R, so if U is dense, then R is comeager. But
if U is not dense, then there are non-empty open sets V ⊆ X and
W ⊆ Y such that U ∩ (V × W ) = ∅. Note that if x ∈ V , then
Rx ∩ W ⊆ Rx \ Ux ⊆ Rx 4 Ux, so {x ∈ V | Rx ∩ W is meager}
is comeager in V , thus there are comeagerly many x ∈ V with the
property that Rx ∩ W is comeager and meager in W , contradicting
Propositions 1.7.2 and 1.7.4.

Perfect set theorems. Here we establish several perfect set the-
orems related to Baire category.

The diagonal on a set X is the set ∆(X) consisting of all pairs of
the form (x, x), where x ∈ X.

Theorem 1.7.14 (Mycielski). Suppose that X is a complete metric
space and R ⊆ X × X is meager. Then there is a continuous homo-
morphism φ : 2N → X from (2N × 2N) \∆(2N) to (X ×X) \R.

Proof. Fix a decreasing sequence (Vn)n∈N of dense open subsets of
X ×X such that R∩

⋂
n∈N Vn = ∅. We will recursively find non-empty

open sets Ut ⊆ X, for all t ∈ 2<N, satisfying the following conditions:

(1) ∀n ∈ N∀s, t ∈ 2n+1 (s 6= t =⇒ Us × Ut ⊆ Vn).
(2) ∀i < 2∀t ∈ 2<N Uta(i) ⊆ Ut.
(3) ∀t ∈ 2<N diam(Ut) ≤ 1/|t|.

We begin by setting U∅ = X. Given n ∈ N for which we have found
(Ut)t∈2n , fix non-empty open sets U ′t ⊆ Ut such that U ′t ⊆ Ut and
diam(U ′t) ≤ 1/(n + 1) for all t ∈ 2n. For all distinct s, t ∈ 2n+1, the

corresponding set Vs,t = {x ∈ X2n+1 | (x(s), x(t)) ∈ Vn} is dense and
open, thus so too is the intersection of all such sets. In particular,
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it follows that there are non-empty open sets Uta(i) ⊆ U ′t such that∏
t∈2n+1 Ut ⊆

⋂
{Vs,t | (s, t) ∈ (2n+1× 2n+1) \∆(2n+1)}. This completes

the recursive construction.
Conditions (2) and (3) and Proposition 1.6.4 ensure that we obtain

a map π : 2N → X by letting π(c) be the unique element of
⋂
n∈N Uc�n.

Condition (3) implies that π is continuous, and it follows from condition
(1) that φ is a homomorphism from (2N×2N)\∆(2N) to (X×X)\R.

For each n ∈ N ∪ {N}, the lexicographic order on 2n is given by

c <lex d ⇐⇒ ∃k ∈ N (c � k = d � k and c(k) < d(k)).

Theorem 1.7.15 (Galvin). Suppose that X is a complete metric
space and R ⊆ X × X is a set with the Baire property which is not
comeager in any set of the form U × U , where U ⊆ X is non-empty
and open. Then there is a continuous homomorphism φ : 2N → X from
<lex to (X ×X) \R.

Proof. Given distinct s, t ∈ 2<N, let s ∧ t denote the maximal
common initial segment of s and t. We will recursively find non-empty
open sets Ut ⊆ X and decreasing sequences (Vk,t)k∈N of dense open
subsets of Uta(0) × Uta(1) with the property that R ∩

⋂
k∈N Vk,t = ∅, for

all t ∈ 2<N, such that:

(1) ∀n ∈ N∀s, t ∈ 2n+1 (s <lex t =⇒ Us × Ut ⊆ Vn,s∧t).
(2) ∀i < 2∀t ∈ 2<N Uta(i) ⊆ Ut.
(3) ∀t ∈ 2<N diam(Ut) ≤ 1/|t|.

We begin by setting U∅ = X. Given n ∈ N for which we have found
(Ut)t∈2≤n and (Vk,t)(k,t)∈N×2<n , fix non-empty open sets U ′ta(i) ⊆ Ut with

the property that U ′ta(i) ⊆ Ut, diam(U ′ta(i)) ≤ 1/(n + 1), and R is

meager in U ′ta(0) × U ′ta(1) for all i < 2 and t ∈ 2n. In addition, fix

decreasing sequences (Vk,t)k∈N of dense open subsets of Uta(0) × Uta(1)

such that R ∩
⋂
k∈N Vk,t = ∅ for all t ∈ 2n. For all s <lex t in 2n+1, the

set Vs,t = {x ∈
∏

t∈2n+1 U ′t | (x(s), x(t)) ∈ Vn,s∧t} is dense and open in∏
t∈2n+1 U ′t , thus so too is the intersection of all such sets. In particular,

it follows that there are non-empty open sets Ut ⊆ U ′t with the property
that

∏
t∈2n+1 Ut ⊆

⋂
{Vs,t | (s, t) ∈ <lex � 2n+1}. This completes the

recursive construction.
Conditions (2) and (3) and Proposition 1.6.4 ensure that we obtain

a map π : 2N → X by letting π(c) be the unique element of
⋂
n∈N Uc�n.

Condition (3) implies that π is continuous, and it follows from condition
(1) that φ is a homomorphism from <lex to (X ×X) \R.
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The equivalence relation E0 on 2N is given by

x E0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m).

A homomorphism from a sequence (Ri)i∈I of binary relations on X to
a sequence (Si)i∈I of binary relations on Y is a function φ : X → Y
which is a homomorphism from Ri to Si, for all i ∈ I. We say that a
relation R ⊆ X × X is generated by homeomorphisms if it is a union
of graphs of homeomorphisms of X.

Theorem 1.7.16 (Becker-Kechris). Suppose that X is a complete
metric space, D ⊆ X × X is nowhere dense, E is a dense equiva-
lence relation on X generated by homeomorphisms, and R ⊆ X ×X is
meager. Then there is a continuous homomorphism φ : 2N → X from
(E0 \∆(2N), (2N × 2N) \ E0) to (E \D, (X ×X) \R).

Proof. By replacing D with D ∪ D−1, we can assume that D is
symmetric. Fix a decreasing sequence (Vn)n∈N of dense open subsets
of X ×X, disjoint from D, whose intersection is disjoint from R. By
replacing each Vn with Vn ∩V −1

n , we can assume that they are all sym-
metric as well. We will recursively find non-empty open sets Un ⊆ X in
addition to homeomorphisms γn : X → X whose graphs are contained
in E, with which we associate the homeomorphisms γt : X → X given

by γt =
∏

n<|t| γ
t(n)
n for all t ∈ 2<N, satisfying the following conditions:

(1) ∀n ∈ N∀s, t ∈ 2n γsa(0)(Un+1)× γta(1)(Un+1) ⊆ Vn.

(2) ∀i < 2∀n ∈ N Un+1 ∪ γn(Un+1) ⊆ Un.
(3) ∀n ∈ N∀t ∈ 2n diam(γt(Un)) ≤ 1/|t|.

We begin by setting U0 = X. Given n ∈ N for which we have found
Un and (γm)m<n, fix a non-empty open set U ′n ⊆ Un with U ′n ⊆ Un
and diam(γt(U

′
n)) ≤ 1/(n + 1) for all t ∈ 2n. For all s, t ∈ 2n, the

corresponding set Vs,t = (γs × γt)
−1(Vn) is dense and open, thus so

too is the intersection of all such sets. It follows that there are non-
empty open sets Ui,n ⊆ U ′n such that U0,n×U1,n ⊆

⋂
s,t∈2n Vs,t. As E is

dense, there exist xi,n ∈ Ui,n such that x0,n E x1,n. As E is generated
by homeomorphisms, there is a homeomorphism γn : X → X such
that graph(γn) ⊆ E and γn · x0,n = x1,n. We complete the recursive
construction by setting Un+1 = U0,n ∩ γ−1

n (U1,n).
Conditions (2) and (3) and Proposition 1.6.4 ensure that we obtain

a map φ : 2N → X by letting φ(c) be the unique element of
⋂
n∈N Uc�n.

Condition (3) implies that φ is continuous, and it follows from condition
(1) that φ is a homomorphism from (E0 \ ∆(2N), (2N × 2N) \ E0) to
(E \D, (X ×X) \R).



7. BAIRE CATEGORY 35

We use F0 to denote the equivalence relation of index two below E0

given by

x F0 y ⇐⇒ ∃n ∈ N∀m > n
∑

k<m x(k) ≡
∑

k<m y(k) (mod 2).

Theorem 1.7.17. Suppose that X is a complete metric space, D ⊆
X × X is nowhere dense, E is an equivalence relation on X, F is
an index two subequivalence relation of E for which E \ F is dense
and generated by homeomorphisms, and R ⊆ X ×X is meager. Then
there is a continuous homomorphism φ : 2N → X from (F0 \∆(2N),E0 \
F0, (2

N × 2N) \ E0) to (F \D,E \ (D ∪ F ), (X ×X) \R).

Proof. The proof is essentially the same as that of Theorem 1.7.16,
except that we ensure that x0,n (E \ F ) x1,n and graph(γn) ⊆ E\F .

The isomorphism theorem. Here we note that, modulo trivial-
ities, there is only one notion of Baire category on a Polish space.

Proposition 1.7.18. Suppose that X is a non-empty perfect Polish
space. Then there is a dense Gδ set C ⊆ X homeomorphic to NN.

Proof. We will recursively construct non-empty open sets Ut ⊆ X,
for all t ∈ N<N, which satisfy the following conditions:

(1) ∀t ∈ N<N {Uta(n) | n ∈ N} partitions a dense open subset of Ut.

(2) ∀n ∈ N∀t ∈ N<N Uta(n) ⊆ Ut.
(3) ∀t ∈ N<N diam(Ut) ≤ 1/|t|.

We begin by setting U∅ = X. Given t ∈ N<N for which we have already
found Ut, note that for every non-empty open set U ⊆ Ut, there is a
non-empty open set V ⊆ Ut such that V ⊂ U , U \V is non-empty, and
diam(V ) ≤ 1/(|t| + 1). By recursively applying this fact, we obtain
a maximal infinite family Ut of pairwise disjoint open sets U ⊆ Ut
such that U ⊆ Ut and diam(U) ≤ 1/(|t| + 1). As any such family is
countable and has dense union in Ut, we can take (Uta(n))n∈N to be any
enumeration of Ut. This completes the recursive construction.

Conditions (2) and (3) ensure that we obtain a map π : NN → X by
letting π(c) be the unique element of

⋂
n∈N Uc�n. Condition (3) implies

that π is continuous, and condition (1) yields that π is a bijection onto
a dense Gδ set. As π(Nt) = π(NN)∩Ut for all t ∈ NN, it follows that π
is a homeomorphism of NN with π(NN).





CHAPTER 2

Dichotomies

1. The baby G0 dichotomy

Digraphs. Like the perfect set theorem, descriptive set-theoretic
dichotomy theorems are typically proven by first applying a derivative
to transform the problem at hand into a relatively simple special case,
and then appealing to a topological construction. As it turns out, these
derivatives are often quite similar, and can be compartmentalized into
a small family of graph-theoretic dichotomy theorems, which simul-
taneously allow one to gauge the difficulty of the derivative portion
of the corresponding arguments. Here we present the simplest such
graph-theoretic dichotomy, and give a pair of applications.

A digraph on a set X is an irreflexive set G ⊆ X ×X, a set Y ⊆ X
is G-independent if G � Y = ∅, and an N-coloring of G is a function
c : X → N for which preimages of singletons are G-independent. A
homomorphism from a digraph G on X to a digraph H on Y is a
function φ : X → Y such that (w, x) ∈ G =⇒ (φ(w), φ(x)) ∈ H, for all
w, x ∈ X.

For each set S ⊆ 2<N and function β : S → 2N, let GS,β(2N) denote
the digraph on 2N given by

GS,β(2N) = {(s a (0) a β(s), s a (1) a β(s)) | s ∈ S},
and let S ∗2∗β denote the set of sequences s a (i) a (β(s) � k), where
i < 2, k ∈ N, and s ∈ S. We say that β is sparse if S ∩ (S ∗ 2 ∗ β) = ∅.

Theorem 2.1.1 (Lecomte). Suppose that X is an analytic Haus-
dorff space and G is a digraph on X. Then for all S ⊆ 2<N and all
sparse functions β : S → 2N, at least one of the following holds:

(1) There is an N-coloring of G.
(2) There is a continuous homomorphism from GS,β(2N) to G.

Proof. We will essentially repeat the proof of Theorem 1.4.24, al-
beit using a slightly modified version of the derivative utilized there. By
Proposition 1.4.8, we can assume that there is a continuous surjection
φ : NN → X. Recursively define a decreasing sequence of trees Tα on
N, along with a decreasing sequence of sets Xα = X \

⋃
t∈N<N\Tα φ(Nt),

37
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by setting T 0 = N<N, Tα+1 = {t ∈ Tα | φ(Nt) ∩ Xα is G-dependent}
for all ordinals α < ω1, and T λ =

⋂
α<λ T

α for all limit ordinals λ < ω1.
Let α denote the least ordinal for which Tα = Tα+1.

If Tα = ∅, then Xα = ∅, so for all x ∈ X, there exists β < α with
x ∈ Xβ \Xβ+1. As Xβ \Xβ+1 =

⋃
t∈Tβ\Tβ+1 φ(Nt) ∩Xβ, it follows that

X is a countable union of G-independent sets.
To handle the case that Tα 6= ∅, we will recursively construct three

functions f : 2<N → Tα and g0, g1 : S → [Tα] such that:

(a) ∀i < 2∀t ∈ 2<N f(t) @ f(t a (i)).
(b) ∀i < 2∀k ∈ N∀s ∈ S f(s a (i) a (β(s) � k)) @ gi(s).
(c) ∀s ∈ S ((φ ◦ g0)(s), (φ ◦ g1)(s)) ∈ G.

We begin by setting f(∅) = ∅. Suppose now that t ∈ 2<N, and we have
already defined f(t) and gi(s), for all i < 2 and s ∈ S with the property
that s a (i) v t. If t ∈ S, then fix (x0,t, x1,t) ∈ G � (φ(Nf(t)) ∩Xα), as
well as gi(t) ∈ Nf(t) such that xi,t = (φ◦gi)(t), for all i < 2. Regardless
of whether t ∈ S, suppose that u is a minimal proper extension of t.
If u ∈ S ∗ 2 ∗ β, then we take f(u) to be any proper extension of f(t)
which is an initial segment of gi(s), where u = s a (i) a (β(s) � k) for
some k ∈ N. Otherwise, we take f(u) to be any proper extension of
f(t). This completes the recursive construction.

Condition (a) ensures that we obtain a function ψ : 2N → NN by
setting ψ(c) =

⋃
n∈N f(c � n), and moreover, that if c ∈ 2N and n ∈ N,

then ψ(Nc�n) ⊆ Nf(c�n) ⊆ Nψ(c)�n, so ψ is continuous, thus the function
π = φ ◦ ψ is also continuous. To see that π is a homomorphism from
GS,β(2N) to G, suppose that s ∈ S, appeal to condition (b) to see that
ψ(s a (i) a β(s)) = gi(s) for all i < 2, and observe that condition (c)
then ensures that (π(s a (0) a β(s)), π(s a (1) a β(s))) ∈ G.

Remark 2.1.2. A set T ⊆ 2<N is dense if ∀s ∈ 2<N∃t ∈ T s v t.
A straightforward construction shows that if S ⊆ 2<N, α : S → 2N is
sparse, T ⊆ 2<N is dense, β : T → 2N, and φ : 2N → X is a continuous
homomorphism from GT,β(2N) to G, then there is a continuous homo-
morphism ψ : 2N → 2N from GS,α(2N) to GT,β(2N) with the property
that φ ◦ψ is injective. As one can trivially find dense sets T ⊆ 2<N for
which there are sparse functions β : T → 2N, this yields the strength-
ening of Theorem 2.1.1 for which the homomorphism in condition (2)
is required to be injective.

As an application of Theorem 2.1.1, we obtain the following.

Theorem 2.1.3 (Feng, Todorcevic). Suppose that X is an analytic
Hausdorff space and G is an open digraph on X. Then exactly one of
the following holds:
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(1) There is an N-coloring of G.
(2) There is a continuous homomorphism from <lex to G.

Proof. It is clear that the two conditions are mutually exclusive.
To see that at least one holds, suppose that there is no N-coloring of G,
fix a dense set S ⊆ 2<N for which there is a sparse function β : S → 2N,
and appeal to Theorem 2.1.1 to obtain a continuous homomorphism
φ : 2N → X from GS,β(2N) to G.

We will recursively construct a function f : 2<N → 2<N such that:

(a) ∀i < 2∀t ∈ 2<N f(t) @ f(t a (i)).
(b) ∀t ∈ 2<N φ(Nf(ta(0)))× φ(Nf(ta(1))) ⊆ G.

We begin by setting f(∅) = ∅. Given t ∈ 2<N for which we have found
f(t), fix st ∈ S with f(t) v st. The fact that φ is a homomorphism then
ensures that (φ(st a (0) a β(st)), φ(st a (1) a β(st))) ∈ G, so the fact
that φ is continuous and G is open yields kt ∈ N with the property
that φ(Nsta(0)a(β(st)�kt)) × φ(Nsta(1)a(β(st)�kt)) ⊆ G. We complete the
recursive construction by setting f(t a (i)) = st a (i) a (β(st) � kt).

Condition (a) ensures that we obtain a function ψ : 2N → 2N by
setting ψ(c) =

⋃
n∈N f(c � n), and moreover, that if c ∈ 2N and n ∈ N,

then ψ(Nc�n) ⊆ Nf(c�n) ⊆ Nψ(c)�n, so ψ is continuous, thus the function
π = φ◦ψ is also continuous. To see that the latter is a homomorphism
from <lex to G, note that if c <lex d and n ∈ N is minimal for which
c � n 6= d � n, then condition (b) yields that φ(Nf(c�n))×φ(Nf(d�n)) ⊆ G,
so (π(c), π(d)) ∈ G.

As an application of Theorem 2.1.3, we obtain another proof of the
perfect set theorem for analytic Hausdorff spaces.

Theorem 2.1.4 (Souslin). Suppose that X is an analytic Hausdorff
space. Then exactly one of the following holds:

(1) The set X is countable.
(2) There is a continuous injection π : 2N → X.

Proof. This is just the special case of Theorem 2.1.3 for which G
is the complement of the diagonal.

Dihypergraphs. An N-dimensional dihypergraph on a set X is a
set G ⊆ XN of non-constant sequences, a set Y ⊆ X is G-independent
if G � Y = ∅, and an N-coloring of G is a function c : X → N for which
preimages of singletons are G-independent. A homomorphism from an
N-dimensional dihypergraphG onX to an N-dimensional dihypergraph
H on Y is a function φ : X → Y with (xi)i∈N ∈ G =⇒ (φ(xi))i∈N ∈ H,
for all (xi)i∈N ∈ XN.
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For each set S ⊆ N<N and function β : S → NN, let GS,β(NN) denote
the digraph on NN given by

GS,β(NN) = {(s a (i) a β(s))i∈N | s ∈ S},
and let S ∗N∗β denote the set of sequences s a (i) a (β(s) � k), where
i, k ∈ N and s ∈ S. We say that β is sparse if S ∩ (S ∗ N ∗ β) = ∅.

Theorem 2.1.5. Suppose that X is an analytic Hausdorff space
and G is an N-dimensional dihypergraph on X. Then for all S ⊆ N<N

and all sparse functions β : S → NN, at least one of the following holds:

(1) There is an N-coloring of G.
(2) There is a continuous homomorphism from GS,β(NN) to G.

Proof. The proof of Theorem 2.1.1 works just as well here.

Remark 2.1.6. A set T ⊆ N<N is dense if ∀s ∈ N<N∃t ∈ T s v t.
A straightforward construction shows that if S ⊆ N<N, α : S → NN is
sparse, T ⊆ N<N is dense, β : T → NN, and φ : NN → X is a continuous
homomorphism from GT,β(NN) to G, then there is a continuous homo-
morphism ψ : NN → NN from GS,α(NN) to GT,β(NN) with the property
that φ ◦ψ is injective. As one can trivially find dense sets T ⊆ N<N for
which there are sparse functions β : T → NN, this yields the strength-
ening of Theorem 2.1.5 for which the homomorphism in condition (2)
is required to be injective.

The evenly-splitting N-dimensional dihypergraph is the N-dimension-
al dihypergraph on NN consisting of all sequences (s a (i) a b(i))i∈N,
where s varies over N<N and b varies over (NN)N.

Theorem 2.1.7. Suppose that X is an analytic Hausdorff space
and G is a box-open N-dimensional dihypergraph on X. Then exactly
one of the following holds:

(1) There is an N-coloring of G.
(2) There is a continuous homomorphism from the evenly-splitting

N-dimensional dihypergraph to G.

Proof. The proof of Theorem 2.1.3 works just as well here.

A set is Kσ if it is a union of countably-many compact sets.

Theorem 2.1.8 (Hurewicz, Kechris, Saint Raymond). Suppose that
X is a metric space and A ⊆ X is analytic. Then exactly one of the
following holds:

(1) The set A is contained in a Kσ subset of X.
(2) There is a closed continuous injection of NN into X whose

image is contained in A.
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Proof. As every compact subset of NN is contained in a set of the
form

∏
n∈N d(n) for some d ∈ NN, it follows that NN is not Kσ. As the

family of compact sets is closed under preimages by closed injections,
it follows that the two conditions are mutually exclusive.

To see that at least one of the two conditions holds, let G denote the
N-dimensional dihypergraph on A consisting of all injective sequences
(xn)n∈N with no subsequences converging to a point of X.

Lemma 2.1.9. The N-dimensional dihypergraph G is box open.

Proof. Suppose that (xn)n∈N ∈ G, and observe that if (εn)n∈N is
a sequence of positive real numbers with the property that εn → 0 and
εn ≤ d(xm, xn)/2 for all distinct m,n ∈ N, then A ∩

∏
n∈N B(xn, εn) is

a box-open subset of G.

As everyG-independent set has compact closure withinX, it follows
that if there is an N-coloring of G, then A is contained in a Kσ subset
of X. Otherwise, an application of Theorem 2.1.5 yields a continuous
homomorphism φ : NN → A from the evenly-splitting N-dimensional
dihypergraph to G.

Lemma 2.1.10. Suppose that C ⊆ NN is closed. Then so is φ(C).

Proof. Suppose that (cn)n∈N is a sequence of points of C for which
(φ(cn))n∈N converges to some point x ∈ X. Note that if k ∈ N and
(bn)n∈N is a subsequence of (cn)n∈N consisting of points which differ
from one another for the first time on their kth coordinates, then there
is a further subsequence (an)n∈N of (bn)n∈N which is also a subsequence
of an element of the evenly-splitting N-dimensional dihypergraph, so
(φ(an))n∈N is a subsequence of an element of G, contradicting the fact
that φ(an) → x. A straightforward recursive construction therefore
yields d ∈ NN for which every cn is in

∏
k∈N d(k). As the latter space

is compact, by passing to a subsequence we can assume that (cn)n∈N
converges to some point c. As C is closed, it follows that c ∈ C, so the
continuity of φ implies that x = φ(c), thus x ∈ φ(C).

It only remains to note that the fact that G consists solely of injec-
tive sequences ensures that φ is injective.

We equip N≤N with the smallest topology making clopen the setsN ∗s
consisting of all extensions of s in N≤N. One obtains a homeomorphism
φ : N≤N → 2N by setting

φ(t) =

{⊕
n∈N(1)t(n) a (0) if t ∈ NN and

(
⊕

n<|t|(1)t(n) a (0)) a (1)∞ otherwise.
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Theorem 2.1.11 (Hurewicz, Kechris-Louveau-Woodin). Suppose
that X is a metric space and A ⊆ X is analytic. Then exactly one of
the following holds:

(1) The set A is Fσ.
(2) There is a continuous reduction of NN ⊆ N≤N to A ⊆ X.

Proof. As every closed subset of N≤N disjoint from N<N is con-
tained in a set of the form

∏
n∈N d(n) for some d ∈ NN, and a straightfor-

ward diagonalization shows that NN is not a union of countably-many
such sets, it follows that the two conditions are mutually exclusive.

To see that at least one of the two conditions holds, let G denote the
N-dimensional dihypergraph on A consisting of all sequences (xn)n∈N
of points in A converging to a point in X \A. As the closure within X
of every G-independent set is contained in A, it follows that if there is
an N-coloring of G, then A is Fσ.

Lemma 2.1.12. The N-dimensional dihypergraph G is box open.

Proof. Suppose that (xn)n∈N ∈ G, and note that if (εn)n∈N is a se-
quence of positive real numbers converging to zero, thenA∩

∏
n∈N B(xn, εn)

is a box-open subset of G.

By Theorem 2.1.5 and Lemma 2.1.12, we can assume that there
is a continuous homomorphism φ : NN → A from the evenly-splitting
N-dimensional dihypergraph to G.

Lemma 2.1.13. Suppose that t ∈ N<N. Then there exists xt ∈ X \A
for which φ(Nta(n))→ xt.

Proof. As φ is a homomorphism from the evenly-splitting N-
dimensional dihypergraph to G, if (xn)n∈N ∈

∏
n∈N φ(Nta(n)) then there

exists xt ∈ X \ A for which xn → xt. If it is not the case that
φ(Nta(n))→ xt, then there is an open neighborhood U of xt for which
there is an infinite set N ⊆ N such that for all n ∈ N , there exists
yn ∈ φ(Nta(n)) \U . By shrinking N if necessary, we can assume that it
is also co-infinite, in which case (xn)n∈N\N ∪ (yn)n∈N does not converge,
a contradiction.

Extend φ to a function on N≤N by setting φ(t) = xt for all t ∈ N<N.
Clearly φ is a reduction of NN to A.

Lemma 2.1.14. Suppose that t ∈ N<N. Then φ(N ∗t ) ⊆ φ(Nt).

Proof. Note that φ(N ∗t \ Nt) ⊆
⋃
s∈N ∗t \Nt

φ(Ns) ⊆ φ(Nt).

To see that φ is continuous, we will show that if c ∈ N≤N and U ⊆ X
is an open neighborhood of φ(c), then there is an open neighborhood
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of c whose image under φ is contained in U . If c ∈ N<N, then Lemma
2.1.13 yields n ∈ N for which

⋃
m≥n φ(Nca(m)) ⊆ U , so Lemma 2.1.14

ensures that

φ(N ∗c \
⋃
m<n

N ∗ca(m)) = {xc}∪
⋃
m≥n

φ(N ∗ca(m)) ⊆ {xc}∪
⋃
m≥n

φ(Nca(m)) ⊆ U.

If c ∈ NN, then the continuity of φ � NN yields n ∈ N for which
φ(Nc�n) ⊆ U , so Lemma 2.1.14 ensures that φ(N ∗c�n) ⊆ φ(Nc�n) ⊆ U .

Remark 2.1.15. A simple construction can be used to establish
that if φ : N≤N → X is a continuous reduction of NN to A, then there is
a continuous reduction ψ : N≤N → N≤N of NN to NN for which φ ◦ ψ is
injective. In particular, this yields the strengthening of Theorem 2.1.11
for which the reduction in condition (2) is required to be injective.

Measurability. A set is ∆0
2 if it is both Fσ and Gδ, and a function

is ∆0
2-measurable if preimages of open sets are ∆0

2.

Theorem 2.1.16 (Lecomte). Suppose that X is an analytic metric
space, G is a digraph on X, S ⊆ 2<N is dense, and β : S → 2N is
sparse. Then exactly one of the following holds:

(1) There is a ∆0
2-measurable N-coloring of G.

(2) There is a continuous homomorphism from GS,β(2N) to G.

Proof. As the density of S ensures that every GS,β(2N)-indepen-
dent closed set is nowhere dense, the two conditions are mutually exclu-
sive. To see that at least one of them holds, we will essentially repeat
the proof of Theorem 2.1.1, albeit using a slightly modified version of
the derivative utilized there. By Proposition 1.4.8, we can assume that
there is a continuous surjection φ : NN → X. Recursively define de-
creasing sequences of trees Tα on N and sets Xα ⊆ X by setting T 0 =
N<N and X0 = X, Tα+1 = {t ∈ Tα | φ(Nt) ∩Xα is G-dependent} and

Xα+1 = Xα \
⋃
t∈Tα\Tα+1 φ(Nt) ∩Xα for all ordinals α < ω1, as well as

T λ =
⋂
α<λ T

α and Xλ =
⋂
α<λX

α for all limit ordinals λ < ω1. Let α
denote the least ordinal for which Tα = Tα+1.

If Tα = ∅, then Xα = ∅, so for all x ∈ X, there is an ordinal
β < α with x ∈ Xβ \Xβ+1. It follows that X is a countable union of
G-independent closed sets, thus G has a ∆0

2-measurable coloring.
To handle the case that Tα 6= ∅, fix a decreasing sequence (εk)k∈N of

positive real numbers converging to zero. We will recursively construct
functions f : 2<N → Tα, gi : S → Xα, and gi,k : S → Tα for all i < 2
and k ∈ N such that:

(a) ∀i < 2∀t ∈ 2<N (t a (i) /∈ S ∗ 2 ∗ β =⇒ f(t) @ f(t a (i))).
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(b) ∀i < 2∀k ∈ N∀s ∈ S f(s) v gi,k(s).
(c) ∀i < 2∀k ∈ N∀s ∈ S f(s a (i) a (β(s) � k)) = gi,k(s).
(d) ∀i < 2∀k ∈ N∀s ∈ S φ(Ngi,k(s)) ⊆ B(gi(s), εk).
(e) ∀s ∈ S (g0(s), g1(s)) ∈ G.

We begin by setting f(∅) = ∅. Suppose now that t ∈ 2<N, and we
have already defined f(t), as well as gi(s) and gi,j+1(s) in case t is of
the form s a (i) a (β(s) � j) for some i < 2, j ∈ N, and s ∈ S.

If t ∈ S, then fix (g0(t), g1(t)) ∈ G � φ(Nf(t)) ∩Xα, in addition to
points xi,k,t ∈ B(gi(t), εk) ∩ φ(Nf(t)) ∩ Xα and bi,k,t ∈ Nf(t) such that
xi,k,t = φ(bi,k,t) for all i < 2 and k ∈ N, and take each gi,k(t) to be any
proper initial segment of bi,k,t with the property that f(t) v gi,k(t) and
φ(Ngi,k(t)) ⊆ B(gi(t), εk). Regardless of whether t ∈ S, suppose that u
is a minimal proper extension of t. If u ∈ S ∗ 2 ∗ β, set f(u) = gi,k(s),
where u = s a (i) a (β(s) � k). Otherwise, take f(u) to be any proper
extension of f(t). This completes the recursive construction.

Let [S ∗ 2 ∗ β] denote the set of points of the form s a (i) a β(s),
where i < 2 and s ∈ S. Note that if c ∈ 2N\[S∗2∗β], then the sparsity of
β ensures that the setNc = {n ∈ N | c � (n+1) /∈ S∗2∗β} is infinite. As
conditions (a), (b), and (c) ensure that f(c � m) @ f(c � n) whenever
m ∈ Nc and n > m, we obtain a function ψ : 2N \ [S ∗ 2 ∗ β] → NN by
setting ψ(c) =

⋃
n∈Nc f(c � n). Let π : 2N → X be the extension of φ◦ψ

given by π(s a (i) a β(s)) = gi(s), for all i < 2 and s ∈ S. To see that

π is continuous, note that if c ∈ 2N\ [S∗2∗β] then π(Nc�n) ⊆ φ(Nf(c�n))
whenever n ∈ Nc, and if i < 2, k ∈ N, and s ∈ S then π(Nsa(i)a(β(s)�k))

is contained in B(gi(s), εk) by conditions (a), (b), (c), and (d). To see
that π is a homomorphism from GS,β(2N) to G, note that if s ∈ S, then
π(s a (i) a β(s)) = gi(s) for all i < 2 by conditions (c) and (d), so
(π(s a (0) a β(s)), π(s a (1) a β(s))) ∈ G by condition (e).

2. The G0 dichotomy

Digraphs. Here we note that, under the additional assumption
that the digraph in question is analytic, the inexistence of N-colorings
leads to continuous homomorphisms from much larger graphs, and as
a result, has far stronger consequences.

For each set S ⊆ 2<N, let GS(2N) denote
⋃
β : S→2N GS,β(2N). We say

that a set S ⊆ 2N is sparse if |S ∩ 2n| ≤ 1 for all n ∈ N.

Theorem 2.2.1 (Kechris-Solecki-Todorcevic). Suppose that X is a
Hausdorff space and G is an analytic digraph on X. Then for each
sparse set S ⊆ 2<N, at least one of the following holds:

(1) There is an N-coloring of G.
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(2) There is a continuous homomorphism π : 2N → X from GS(2N)
to G.

Proof. By Proposition 1.4.8, we can assume that there is a contin-
uous surjection φG : NN → G. By Propositions 1.4.1, 1.4.4, and 1.4.8,
we can assume that there is a continuous function φX : NN → X for
which φX(NN) is the set of points in at least one of the projections of
G. Fix sequences sn ∈ 2n such that S ⊆ {sn | n ∈ N}.

We will recursively define a decreasing sequence (Xα)α<ω1 of subsets
of X, off of which there are N-colorings of G. We begin with X0 = X,
and we set Xλ =

⋂
α<λX

α for all limit ordinals λ < ω1. To describe
the construction of Xα+1 from Xα, we require several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na),
where na ∈ N, φa : 2n

a → Nna , and ψan : 2n
a−(n+1) → Nna for n < na. We

say that an approximation b is a one-step extension of an approximation
a if the following conditions hold:

(a) na = nb − 1.

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s v t =⇒ φa(s) v φb(t)).

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s v t =⇒ ψan(s) v ψbn(t)).

A configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ), where
nγ ∈ N, φγ : 2n

γ → NN, and ψγn : 2n
γ−(n+1) → NN for n < nγ, such that

(φG ◦ ψγn)(t) = ((φX ◦ φγ)(sn a (0) a t), (φX ◦ φγ)(sn a (1) a t)),

for all n < nγ and t ∈ 2n
γ−(n+1). We say that a configuration γ is

compatible with an approximation a if the following conditions hold:

(i) na = nγ.
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

We say that a configuration γ is compatible with a set Y ⊆ X if
(φX ◦ φγ)(2n

γ
) is contained in Y . We say that an approximation a

is Y -terminal if no configuration is compatible both with a one-step
extension of a and with Y . Let A(a, Y ) denote the set of points of the
form (φX ◦φγ)(sna), where γ varies over configurations compatible with
both a and Y .

Lemma 2.2.2. Suppose that Y ⊆ X and a is a Y -terminal approx-
imation. Then A(a, Y ) is G-independent.

Proof. Suppose, towards a contradiction, that there are configu-
rations γ0 and γ1, both compatible with a and Y , with the property
that ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)) ∈ G. Then there exists d ∈ NN

such that φG(d) = ((φX ◦ φγ0)(sna), (φX ◦ φγ1)(sna)). Let γ denote the
configuration given by nγ = na+1, φγ(t a (i)) = φγi(t) for all i < 2 and
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t ∈ 2n
a
, ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and t ∈ 2n

a−(n+1),
and ψγna(∅) = d. Then the unique approximation b with which γ is
compatible is a one-step extension of a, contradicting the fact that a
is Y -terminal.

We finally define Xα+1 to be the difference of Xα and the union of
the sets A(a,Xα), where a varies over all Xα-terminal approximations.

Lemma 2.2.3. Suppose that α < ω1 and a is an approximation
which is not Xα+1-terminal. Then there is a one-step extension of a
which is not Xα-terminal.

Proof. Fix a one-step extension b of a for which there is a config-
uration γ compatible with b and Xα+1. Then (φX ◦ φγ)(snb) ∈ Xα+1,
so A(b,Xα) ∩Xα+1 6= ∅, thus b is not Xα-terminal.

Fix α < ω1 such that the families of Xα-terminal approximations
and Xα+1-terminal approximations are the same, let a0 denote the
unique approximation a with the property that na = 0, and observe
that A(a0, Y ) = Y for all Y ⊆ X. In particular, it follows that if a0 is
Xα-terminal, then Xα+1 = ∅, so there is an N-coloring of G.

Otherwise, by recursively applying Lemma 2.2.3, we obtain one-
step extensions an+1 of an, for all n ∈ N, which are not Xα-terminal.
Define φ : 2N → NN by φ(c) =

⋃
n∈N φ

an(c � n), as well as ψn : 2N → NN

by ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1))), for all n ∈ N. Clearly φ is

continuous. We will complete the proof by showing that the function
π = φX ◦ φ is a homomorphism from GS(2N) to G. For this, it is
sufficient to show the stronger fact that if c ∈ 2N and n ∈ N, then

(φG ◦ ψn)(c) = ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)).

And for this, it is sufficient to show that if U is an open neighborhood
of ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)) and V is an
open neighborhood of (φG ◦ ψn)(c), then U ∩ V 6= ∅. Towards this
end, fix m > n such that φX(Nφam (sna(0)as))× φX(Nφam (sna(1)as)) ⊆ U
and φG(Nψamn (s)) ⊆ V , where s = c � (m − (n + 1)). The fact that
am is not Xα-terminal yields a configuration γ compatible with am.
Then ((φX ◦ φγ)(sn a (0) a s), (φX ◦ φγ)(sn a (1) a s)) ∈ U and
(φG ◦ ψγn)(s) ∈ V , thus U ∩ V 6= ∅.

While conditions (1) and (2) of Theorem 2.2.1 are not mutually
exclusive, we at least have the following.

Proposition 2.2.4. Suppose that S ⊆ 2<N is dense. Then no non-
meager set B ⊆ 2N with the Baire property is GS(2N)-independent.
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Proof. Fix r ∈ 2<N for which B is comeager in Nr, as well as
s ∈ S with r v s. As B is comeager in Ns and the function φ : 2N → 2N

flipping the |s|th coordinate of its input is a homeomorphism, the set
B ∩φ−1(B)∩Ns is comeager in Ns. But (x, φ(x)) ∈ GS(2N) � B for all
x ∈ B ∩ φ−1(B) ∩Nsa(0), thus B is GS(2N)-dependent.

Proposition 2.2.5. Suppose that S ⊆ 2<N is dense. Then there is
no Baire measurable coloring c : X → N of GS(2N).

Proof. If c : X → N is Baire measurable, then there exists n ∈ N
for which c−1({n}) is non-meager, so Proposition 2.2.4 implies that
c−1({n}) is GS(2N)-dependent, thus c is not a coloring of GS(2N).

A partial transversal of an equivalence relation is a set intersecting
every equivalence class in at most one point.

Theorem 2.2.6 (Silver). Suppose that X is a Hausdorff space and
E is a co-analytic equivalence relation on X. Then exactly one of the
following holds:

(1) The equivalence relation E has only countably-many classes.
(2) There is a continuous injection π : 2N → X of 2N into a partial

transversal of E.

Proof. It is clear that the two conditions are mutually exclusive.
To see that at least one of them holds, let G denote the complement
of E. As every G-independent set is contained in a single E-class, it
follows that if there is an N-coloring of G, then E has only countably-
many classes. By Theorem 2.2.1, we can therefore assume that there is
a continuous homomorphism φ : 2N → X from GS(2N) to G, for some
dense set S ⊆ 2<N.

Let E ′ denote the pullback of E through φ. Note that each E ′-
class is GS(2N)-independent, and therefore meager. But then Theorem
1.7.13 ensures that E ′ itself must be meager, in which case Theorem
1.7.14 yields a continuous injection ψ : 2N → 2N of 2N into a partial
transversal of E ′. Set π = φ ◦ ψ.

More generally, we have the following.

Theorem 2.2.7 (Louveau). Suppose that X is a Hausdorff space
and E is a co-analytic quasi-order on X. Then exactly one of the
following holds:

(1) The equivalence relation ≡R has only countably-many classes.
(2) There is a continuous injection π : 2N → X of 2N into an R-

antichain or a continuous homomorphism π : 2N → X from
<lex to <R.
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Proof. It is clear that the two conditions are mutually exclusive.
To see that at least one of them holds, let G denote the complement
of R. As every G-independent set is contained in a single ≡R-class, it
follows that if there is an N-coloring of G, then ≡R has only countably-
many classes. By Theorem 2.2.1, we can therefore assume that there is
a continuous homomorphism φ : 2N → X from GS(2N) to G, for some
dense set S ⊆ 2<N.

Let R′ denote the pullback of R through φ. Note that each ≡R′-
class is GS(2N)-independent, and therefore meager. But then Theorem
1.7.13 ensures that ≡R′ itself must be meager. If there exists t ∈ 2<N

such that R′ is meager in Nt×Nt as well, then Theorem 1.7.14 yields a
continuous injection ψ : 2N → 2N of 2N into an R′-antichain. Otherwise,
Theorem 1.7.15 yields a continuous homomorphism ψ : 2N → 2N from
<lex to <R′ . Set π = φ ◦ ψ.

A similar result concerns metric spaces. A pseudo-metric is a
function d : X × X → {r ∈ R | r ≥ 0} such that d(x, x) = 0,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
The uniformity associated with d is the sequence (Uε)ε>0 given by
Uε = {(x, y) ∈ X × X | d(x, y) < ε}. We say that Y ⊆ X is ε-
discrete if d(y, z) ≥ ε, for all y, z ∈ Y . We say that Y ⊆ X is dense if
for all ε > 0 and x ∈ X, there exists y ∈ Y for which d(x, y) < ε. We
say that (X, d) is separable if it admits a countable dense set.

Theorem 2.2.8 (Friedman, Harrington, Kechris). Suppose that X
is a Hausdorff space and d is a pseudo-metric on X such that the sets of
its uniformity are co-analytic. Then exactly one of the following holds:

(1) The space (X, d) is separable.
(2) There is a continuous injection π : 2N → X of 2N into an ε-

discrete subspace of (X, d), for some ε > 0.

Proof. It is clear that the two conditions are mutually exclusive.
To see that at least one of them holds, let Gε denote the complement of
Uε, for all ε > 0. If c is an N-coloring of Gε and Y ⊆ X has the property
that for all x ∈ X there exists y ∈ Y with c(x) = c(y), then for all
x ∈ X there exists y ∈ Y with d(x, y) < ε. In particular, it follows
that if there are N-colorings of every Gε, then (X, d) is separable. By
Theorem 2.2.1, we can therefore assume that there is a continuous
homomorphism φ : 2N → X from GS(2N) to G2ε, for some ε > 0 and
dense set S ⊆ 2<N.

Let U ′ε denote the pullback of Uε through φ. Note that every ver-
tical section of U ′ε is GS(2N)-independent, and therefore meager. But
then Theorem 1.7.13 ensures that U ′ε itself must be meager, in which
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case Theorem 1.7.14 yields a continuous function ψ : 2N → 2N sending
distinct points to U ′ε-unrelated points. Set π = φ ◦ ψ.

Another related theorem concerns linear orders. We say that a set
Y ⊆ X is dense with respect to a linear quasi-order R on X if it
intersects every non-empty open interval, and we say that a family of
sets is intersecting if no two sets in the family have empty intersection.

Proposition 2.2.9. A quasi-order R on a set X has a dense set
of cardinality κ if and only if the family of closed R-intervals with non-
empty interiors is a union of κ-many intersecting families.

Proof. Note first that for each x ∈ X, the family Fx of closed
R-intervals containing x is an intersecting family. And if C ⊆ X is
dense, then every closed R-interval with non-empty intersection is in a
set of the form Fx, for some x ∈ C.

Conversely, suppose that (Fα)α<κ is a sequence of intersecting fam-
ilies whose union is the family of all closed R-intervals with non-empty
interiors. For each α < κ, fix a maximal strictly decreasing sequence
([xα,β, yα,β]R)β<γα consisting of closed intervals in Fα.

Lemma 2.2.10. Suppose that α < κ. Then γα < κ+.

Proof. Suppose, towards a contradiction, that γα ≥ κ+. Then
there is a subsequence ([x′α,β, y

′
α,β]R)β<κ+ of ([xα,β, yα,β]R)β<γα with the

property that (x′α,β)β<κ+ is strictly R-increasing or (y′α,β)β<κ+ is strictly
R-decreasing. In the former case, the closed intervals of the form
[x′α,λ+3n, x

′
α,λ+3n+2]R have non-empty interiors and are pairwise disjoint.

In the latter case, the closed intervals of the form [y′α,λ+3n+2, y
′
α,λ+3n]R

have non-empty interiors and are pairwise disjoint. And in neither case
are all of these intervals in

⋃
α<κFα, a contradiction.

For each α < κ with the property that γα is a successor ordinal, fix
zα ∈ (xα,βα , yα,βα)R, where βα is the predecessor of γα. Then the set of
points of the form xα,β, yα,β, and zα is an R-dense set.

We say that R is separable if there is a countable R-dense set.

Theorem 2.2.11 (Friedman, Shelah). Suppose that X is a Hau-
sdorff space and R is a linear co-analytic quasi-order on X. Then
exactly one of the following holds:

(1) The quasi-order R is separable.
(2) There is a continuous injection π : 2N → X × X of 2N into

pairs whose corresponding closed R-intervals have non-empty
interior and are pairwise disjoint.
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Proof. Clearly the two conditions are mutually exclusive. To see
that at least one holds, note first that the set A ⊆ X ×X given by

A = {(x, y) ∈ X ×X | (x, y)R 6= ∅}

is analytic, as is the graph G on A given by

G = {((x1, y1), (x2, y2)) ∈ A× A | [x1, y1]R ∩ [x2, y2]R = ∅}.

We say that a family of sets is intersecting if no two sets in the fam-
ily are disjoint. If there is an N-coloring of G, then the set of closed
intervals with non-empty interiors is a union of countably-many inter-
secting families, so Proposition 2.2.9 ensures that R is separable. By
Theorem 2.2.1, we can therefore assume that there is a continuous ho-
momorphism (φ, ψ) : 2N → A × A from GS(2N) to G, for some dense
set S ⊆ 2<N.

Note that for each x ∈ X, the set {c ∈ 2N | x ∈ [φ(c), ψ(c)]R} is
meager, since otherwise we could find (c, d) ∈ GS(2N) for which x ∈
[φ(c), ψ(c)]R∩[φ(d), ψ(d)]R, contradicting the fact that φ is a homomor-
phism from GS(2N) to G. Then the vertical sections of the sets {(c, d) ∈
2N | φ(c) ∈ [φ(d), ψ(d)]R}, {(c, d) ∈ 2N | ψ(c) ∈ [φ(d), ψ(d)]R}, {(c, d) ∈
2N | φ(d) ∈ [φ(c), ψ(c)]R}, and {(c, d) ∈ 2N | ψ(d) ∈ [φ(c), ψ(c)]R} are
all meager. But then Theorem 1.7.13 ensures that all of these sets
themselves must be meager, thus so too is their union. As the comple-
ment of this union is the pullback G′ of G through φ, Theorem 1.7.14
yields a continuous injection π′ : 2N → 2N of 2N into a G′-clique. Set
π = (φ ◦ π′, ψ ◦ π′).

Finite-dimensional dihypergraphs. Suppose that d ≥ 2 is a
natural number. A d-dimensional dihypergraph on X is a set G ⊆ Xd

of non-constant sequences, a set Y ⊆ X is G-independent if G � Y = ∅,
and an N-coloring of G is a function c : X → N for which preimages of
singletons are G-independent.

For each set S ⊆ d<N and function β : S → dN, let GS,β(dN) denote
the digraph on dN given by

GS,β(dN) = {(s a (i) a β(s))i<d | s ∈ S},

and let GS(dN) denote
⋃
β : S→dN GS,β(dN).

We say that a set S ⊆ dN is sparse if |S ∩ dn| ≤ 1 for all n ∈ N.

Theorem 2.2.12. Suppose that d ≥ 2, X is a Hausdorff space,
and G is an analytic d-dimensional dihypergraph on X. Then for each
sparse set S ⊆ d<N, at least one of the following holds:

(1) There is an N-coloring of G.
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(2) There is a continuous homomorphism π : dN → X from GS(dN)
to G.

Proof. This follows from the proof of Theorem 2.2.1.

A matroid on X is a function M : P(X) → P(X) satisfying the
following conditions:

(1) ∀Y ⊆ X Y ⊆M(Y ).
(2) ∀Y ⊆ X M(Y ) = M(M(Y )).
(3) ∀Z ⊆ Y ⊆ X M(Z) ⊆M(Y ).
(4) ∀Y ⊆ X∀x ∈ X∀y ∈M({x} ∪ Y ) \M(Y ) x ∈M({y} ∪ Y ).

We say that a sequence (xi)i∈I of points of X is M-independent if
xi /∈M({xj | j ∈ I \ {i}}), for all i ∈ I. We say that a set Y ⊆ X has
M-dimension at most κ if there is a set Z ⊆ X of cardinality at most κ
for which Y ⊆M(Z). A standard argument reveals that for all d ∈ N,
every M -independent sequence of points in a set of M -dimension at
most d has length at most d.

Theorem 2.2.13. Suppose that X is a Hausdorff space, M : P(X)→
P(X) is a matroid on X, and d is a positive natural number such that
the graph of M � [X]d is co-analytic when viewed as a subset of Xd+1.
Then for every analytic set A ⊆ X, exactly one of the following holds:

(1) The set A is a union of countably-many sets of M-dimension
at most d.

(2) There is a continuous injection π : 2N → A sending sets of
cardinality d+ 1 to M-independent sets.

Proof. It is clear that the two conditions are mutually exclusive.
To see that at least one holds, let G be the (d + 1)-dimensional di-
hypergraph on A consisting of all M -independent sequences of length
d + 1. Note that if a set Y ⊆ X is G-independent, then there is a
maximal M -independent set Z ⊆ Y of cardinality at most d, in which
case Y = M(Z). It follows that if there is an N-coloring of G, then
A is a union of countably-many sets of M -dimension at most d. By
Theorem 2.2.12, we can therefore assume that there is a continuous
homomorphism φ : (d+ 1)N → X from GS((d+ 1)N) to G, for some set
S ⊆ (d+ 1)<N which is dense in the natural sense.

Let G′ denote the pullback of G through φ. Note that for all se-
quences (ci)i<d of elements of (d + 1)N, the set of c ∈ (d + 1)N for
which φ(c) ∈ M({φ(ci) | i < d}) is necessarily meager, since otherwise
the straightforward analog of Proposition 2.2.4 for GS((d+ 1)N) would
yield a sequence of GS((d+ 1)N)-related such points, and the fact that
φ is a homomorphism from GS((d + 1)N) to G would ensure that the
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image of this sequence under φ would be an M -independent sequence
of points of M({φ(ci) | i < d}) of length d + 1, which is impossible.
It then follows that for all j ≤ d, the set of sequences (ci)i≤d of points
in (d + 1)N with φ(cj) ∈ M({φ(ci) | i ≤ d and i 6= j}) is meager,
from which it follows that G′ is comeager. The straightforward gen-
eralization of Theorem 1.7.14 to (d + 1)-fold powers therefore yields a
continuous injection ψ : 2N → (d + 1)N sending injective sequences of
length d+ 1 to elements of G′. Define π = φ ◦ ψ.

The special case of Theorem 2.2.13 for d = 1 is a rephrasing of
the perfect set theorem for co-analytic equivalence relations. But it
yields a wealth of additional results, such as the van Engelen-Kunen-
Miller characterization of analytic subsets of R2 which can be covered
by countably-many lines.

Measurability. While Theorem 2.2.1 is already quite powerful, it
is often useful to know whether there is an N-coloring of the graph
in question which is Borel. In order to obtain an analogous result
characterizing the existence of such colorings, we first need to establish
a corollary of yet another generalization of Theorem 1.4.14.

Proposition 2.2.14. Suppose that X and Y are Hausdorff spaces,
A ⊆ X is analytic, B ⊆ Y is analytic, R ⊆ X × Y is analytic, and
(A×B) ∩R = ∅. Then there are Borel sets A′ ⊆ X and B′ ⊆ Y such
that A ⊆ A′, B ⊆ B′, and (A′ ×B′) ∩R = ∅.

Proof. As A is disjoint from projX(R∩ (X×B)), there is a Borel
set A′ ⊆ X separating the former from the latter. As B is disjoint from
projY (R∩ (A′×Y )), there is a Borel set B′ ⊆ X separating the former
from the latter. Clearly the sets A′ and B′ are as desired.

Proposition 2.2.15. Suppose that X is a Hausdorff space, G is
an analytic digraph on X, and A ⊆ X is a G-independent analytic set.
Then there is a G-independent Borel set B ⊆ X such that A ⊆ B.

Proof. The fact that A is G-independent ensures that A×A and
G are disjoint, so Proposition 2.2.14 yields Borel sets C,D ⊆ X such
that A ⊆ C, A ⊆ D, and (C × D) ∩ G = ∅. But then the Borel set
B = C ∩D is as desired.

We can now establish the promised strengthening of Theorem 2.2.1.

Theorem 2.2.16 (Kechris-Solecki-Todorcevic). Suppose that X is
a Hausdorff space and G is an analytic digraph on X. Then for each
sparse set S ⊆ 2<N, at least one of the following holds:

(1) There is a Borel N-coloring of G.



2. THE G0 DICHOTOMY 53

(2) There is a continuous homomorphism from GS(2N) to G.

Moreover, for each dense set S ⊆ 2<N, at most one of these holds.

Proof. Proposition 2.2.5 ensures that when S is dense, the two
conditions are mutually exclusive. To see that one of them holds, note
that, in the proof of Theorem 2.2.1, if the set Xα is Borel, then the sets
of the form A(a,Xα), where a is an approximation, are analytic. When
a is Xα-terminal, Proposition 2.2.15 therefore yields a G-independent
Borel set B(a,Xα) ⊆ X such that A(a,Xα) ⊆ B(b,Xα). We can
therefore simply repeat the proof of Theorem 2.2.1, with the caveat
that Xα+1 is the difference of Xα and the union of the sets of the form
B(a,Xα), where a is an Xα-terminal approximation, for all α < ω1.

As GS(2N) ⊆ E0 for every set S ⊆ 2<N, it follows from Proposition
2.2.4 that every partial transversal of E0 with the Baire property is
meager. We say that an equivalence relation is countable if all of its
equivalence classes are countable.

Theorem 2.2.17 (Glimm, Effros, Jackson-Kechris-Louveau, Shel-
ah-Weiss). Suppose that X is a Hausdorff space and E is a countable
analytic equivalence relation on X. Then exactly one of the following
holds:

(1) The set X is the union of countably-many Borel partial trans-
versals of E.

(2) There is a continuous embedding π : 2N → X of E0 into E.

Proof. The fact that every Borel partial transversal of E0 is mea-
ger ensures that the two conditions are mutually exclusive. To see that
at least one holds, let G denote the difference of E and the diagonal
on X. Clearly any Borel N-coloring of G gives rise to countably many
Borel partial transversals of E whose union is X. We say that a set
S ⊆ 2<N is full if |S ∩ 2n| ≥ 1 for all n ∈ N. A straightforward induc-
tion shows that if S is such a set, then the connected components of
GS(2N) are exactly the equivalence classes of E0. By Theorem 2.2.16,
we can assume that there is a continuous homomorphism φ : 2N → X
from GS(2N) to G, for some dense full set S ⊆ 2<N.

Let D′ denote the pullback of the diagonal on X through φ, and
let E ′ denote the pullback of E through φ. Then every equivalence
class of D′ is meager, since otherwise we could find GS(2N)-related
points c, d ∈ 2N such that φ(c) = φ(d), contradicting the fact that
φ is a homomorphism from GS(2N) to G. As every E ′-class is the
union of countably many D′-classes, it follows that every E ′-class is
also meager, thus so too is E ′ itself. As GS(2N) ⊆ E ′, it follows that
E0 ⊆ E ′. Theorem 1.7.16 therefore yields a continuous homomorphism
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ψ : 2N → 2N from (E0 \∆(2N), (2N×2N)\E0) to (E ′ \D′, (2N×2N)\E ′).
Set π = φ ◦ ψ.

A subset Y of a set X is a partial transversal of an equivalence
relation E on X over a subequivalence relation F if E � Y = F � Y .
As GS(2N) ⊆ E0 \F0 for every S ⊆ 2<N, every partial transversal of E0

over F0 with the Baire property is meager.

Theorem 2.2.18 (Louveau). Suppose that X is a Hausdorff space,
E is an analytic equivalence relation on X, F is a co-analytic equiva-
lence relation on X, and E ∩ F has index two below E. Then exactly
one of the following holds:

(1) The set X is the union of countably many Borel partial trans-
versals of E over E ∩ F .

(2) There is a continuous homomorphism from (F0 \ ∆(2N),E0 \
F0, (2

N×2N)\E0) to ((E∩F )\∆(X), E\F, (X×X)\(E∪F )).

Proof. The fact that every Borel partial transversal of E0 over F0

is meager ensures that the two conditions are mutually exclusive. To see
that at least one holds, consider the digraph G = E \F on X. Clearly
every Borel N-coloring of G gives rise to a countable family of Borel
partial transversals of E over F whose union is X. By Theorem 2.2.16,
we can therefore assume that there is a continuous homomorphism
φ : 2N → X from GS(2N) to G, for some dense full set S ⊆ 2<N.

Let D′ denote the pullback of the diagonal on X through φ, let E ′

denote the pullback of E through φ, and let F ′ denote the pullback
of F through φ. Then every equivalence class of F ′ is meager, since
otherwise we could find GS(2N)-related points c, d ∈ 2N whose images
under φ are F -related, contradicting the fact that φ is a homomorphism
from GS(2N) to the complement of F . As every E ′-class is the union of
two (E ′ ∩F ′)-classes, it follows that every E ′-class is also meager, thus
so too is E ′ ∪ F ′. As GS(2N) ⊆ E ′ \ F ′, it follows that F0 ⊆ E ′ ∩ F ′
and E0 \ F0 ⊆ E ′ \ F ′. Theorem 1.7.17 therefore yields a continuous
homomorphism ψ : 2N → 2N from (F0 \∆(2N),E0 \ F0, (2

N × 2N) \ E0)
to ((E ′ ∩ F ′) \D′, E ′ \ F ′, (2N × 2N) \ (E ′ ∪ F ′)). Set π = φ ◦ ψ.

The special case of Theorem 2.2.18 in which F ⊆ E can be viewed
as stating that exactly one of the following holds:

(1) The set X/F is the union of countably-many partial transver-
sals of E with Borel liftings.

(2) There is an embedding π : 2N/F0 → X/F of E0/F0 into E/F
with a continuous lifting.
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Parametrizations. A uniformization of a set R ⊆ X × Y is a
function φ : projX(R) → Y whose graph is contained in R. A set is
σ(Σ1

1) if it is in the smallest σ-algebra containing the analytic sets.

Theorem 2.2.19 (Jankov-von Neumann). Suppose that X is a
Hausdorff space, Y is a topological space, and R ⊆ X × Y is analytic.
Then there is a σ(Σ1

1)-measurable uniformization of R.

Proof. By Proposition 1.4.8, we can assume that there is a contin-
uous surjection φ : NN → R. Define ψ : projX(R)→ Y by letting ψ(x)
be the lexicographically minimal b ∈ NN for which (projX ◦ φ)(b) = x.
Then ψ is σ(Σ1

1)-measurable, so projY ◦ φ ◦ ψ is as desired.

The following observation rules out the strengthening of Theorem
2.2.19 in which the uniformization is required to be Borel.

Proposition 2.2.20. Suppose that X and Y are injectively analytic
Hausdorff spaces, R ⊆ X × Y is Borel, and projX(R) is the union of
a sequence (An)n∈N of analytic sets for which each R∩ (An× Y ) has a
Borel uniformization φn : An → Y . Then projX(R) is Borel.

Proof. Let G denote the digraph on R given by

G = {((x, y), (x, z)) ∈ R×R | x ∈ X and y 6= z}.
Then a set is G-independent if and only if it is the graph of a par-
tial function. As Theorem 1.4.17 ensures that the graph of each φn
is analytic, Theorem 2.2.15 yields G-independent Borel sets Rn ⊆ R
containing the graph of φn, for all n ∈ N. As Theorem 1.5.7 ensures
that the projections of these sets onto X are Borel, it follows that so
too is projX(R).

We say that a digraph G on a set R ⊆ X×Y is vertically invariant
if x1 = x2 for all ((x1, y1), (x2, y2)) ∈ G. We use G(x) to denote the
graph on Rx consisting of all pairs (y, z) for which ((x, y), (x, z)) ∈ G.

Theorem 2.2.21. Suppose that X and Y are Hausdorff spaces,
R ⊆ X × Y , and G is a vertically-invariant analytic digraph on R.
Then for each sparse set S ⊆ 2<N, at least one of the following holds:

(1) There is a Borel N-coloring of G.
(2) There is a continuous homomorphism from GS(2N) to G(x)

for some x ∈ X.

Moreover, for each dense set S ⊆ 2<N, at most one of these holds.

Proof. By Theorem 2.2.16, it is enough to observe that if S ⊆ 2N

is full and φ : 2N → X×Y is a continuous homomorphism from GS(2N)
to G, then projX ◦ φ is constant. This is a direct consequence of the
inexistence of non-trivial E0-invariant open sets. �
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As a corollary, we obtain the parametrized analog of the perfect set
theorem for analytic sets.

Theorem 2.2.22 (Lusin-Novikov). Suppose that X and Y are Hau-
sdorff spaces and R ⊆ X × Y is an analytic set whose vertical sections
are countable. Then there are partial functions φn, whose graphs are
Borel subsets of R, such that R =

⋃
n∈N graph(φn).

Proof. Let G denote the vertically-invariant digraph on R given
by

G = {((x, y), (x, z)) ∈ R×R | x ∈ X and y 6= z}.
If there is a Borel N-coloring of G, then there are partial functions φn,
whose graphs are Borel subsets of R, such that R =

⋃
n∈N graph(φn).

Suppose, towards a contradiction, that there is no Borel N-coloring
of G. Theorem 2.2.21 then ensures that there is a continuous homomor-
phism φ : 2N → Y from GS(2N) to G(x), for some dense set S ⊆ 2<N and
x ∈ X. One can now repeat the second half of the proof of Theorem
2.1.3 to obtain a continuous injection ψ : 2N → Rx, a contradiction.

Proposition 2.2.20 and Theorem 2.2.22 easily imply that countable-
to-one images of Borel subsets of injectively analytic Hausdorff spaces
are Borel. This can also be seen without the former using the following.

Proposition 2.2.23 (Lusin-Novikov). Suppose that X and Y are
injectively analytic Hausdorff spaces and φ : X → Y is a countable-to-
one Borel function. Then X is a union of countably-many Borel sets
on which φ is injective.

Proof. As Theorem 1.4.17 ensures that graph(φ) is Borel, The-
orem 2.2.22 yields partial functions φn, whose graphs are Borel, such
that graph(φ−1) =

⋃
n∈N graph(φn). Theorem 1.5.7 ensures that the

projections of the graphs of these functions onto X are Borel, and are
therefore as desired.

The orbit equivalence relation induced by a group Γ of permutations
of a set X is given by x EX

Γ y ⇐⇒ ∃γ ∈ Γ γ · x = y.

Theorem 2.2.24 (Feldman-Moore). Suppose that X is an injec-
tively analytic Hausdorff space and E is a countable Borel equivalence
relation on X. Then there is a countable group Γ of Borel automor-
phisms of X for which E = EX

Γ .

Proof. By Proposition 2.2.23, there are Borel sets Bn ⊆ X and
Borel injections φn : Bn → X such that E =

⋃
n∈N graph(φn). Fix

Borel sets Cn, Dn ⊆ X such that
⋃
n∈NCn ×Dn is the complement of

the diagonal on X. For all m,n ∈ N, set Am,n = Bm ∩ Cn ∩ φ−1
m (Dn),
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and let ιm,n be the involution of X, supported by Am,n ∪ φm(Am,n),
which agrees with φm on Am,n. Then the group Γ generated by these
involutions is as desired.

We close with the following generalization of Theorem 2.2.22.

Theorem 2.2.25. Suppose that X and Y are Hausdorff spaces,
F is a co-analytic equivalence relation on Y , and R ⊆ X × Y is an
analytic set whose vertical sections intersect only countably-many F -
classes. Then there are Borel sets Rn ⊆ R, whose vertical sections
intersect at most one F -class, such that R =

⋃
n∈NRn.

Proof. The proof is nearly identical to that of Theorem 2.2.22,
except that we set

G = {((x, y), (x, z)) ∈ R×R | x ∈ X and ¬y F z},
and then appeal to the second half of the proof of Theorem 2.2.6.
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