INVARIANT UNIFORMIZATIONS AND QUASI-TRANSVERSALS

B. MILLER

Abstract

We establish a dichotomy characterizing the class of $(E \times \Delta(Y))$-invariant Borel sets $R \subseteq X \times Y$, whose vertical sections are countable, that admit $(E \times \Delta(Y))$-invariant Borel uniformizations, where X and Y are Polish spaces and E is a Borel equivalence relation on X. We achieve this by establishing a dichotomy characterizing the class of Borel equivalence relations $F \subseteq E$, where F has countable index below E and satisfies an additional technical definability condition, for which there is a Borel set intersecting each E-class in a non-empty finite union of F-classes.

INTRODUCTION

Endow \mathbb{N} with the discrete topology, and $\mathbb{N}^{\mathbb{N}}$ with the corresponding product topology. A topological space is analytic if it is a continuous image of a closed subset of $\mathbb{N}^{\mathbb{N}}$, and Polish if it is separable and admits a compatible complete metric. A subset of a topological space is Borel if it is in the smallest σ-algebra containing the open sets, and co-analytic if its complement is analytic. Every Polish space is analytic (see, for example, [Kec95, Theorem 7.9]), and Souslin's theorem ensures that a subset of an analytic Hausdorff space is Borel if and only if it is analytic and co-analytic (see, for example, [Kec95, 14.11] ${ }^{1}$].

A homomorphism from a binary relation R on a set X to a binary relation S on a set Y is a function $\phi: X \rightarrow Y$ for which $(\phi \times \phi)(R) \subseteq S$, a reduction of R to S is a homomorphism from R to S that is also a homomorphism from $\sim R$ to $\sim S$, and an embedding of R into S is an injective reduction of R to S. More generally, an embedding of a sequence $\left(R_{i}\right)_{i \in I}$ of binary relations on a set X into a sequence $\left(S_{i}\right)_{i \in I}$ of binary relations on a set Y is a function $\phi: X \rightarrow Y$ that is an embedding of R_{i} into S_{i} for all $i \in I$.

[^0]The diagonal on X is given by $\Delta(X)=\{(x, y) \in X \times X \mid x=y\}$. Define $I(X)=X \times X$, and let \mathbb{E}_{0} denote the equivalence relation on $2^{\mathbb{N}}$ given by $c \mathbb{E}_{0} d \Longleftrightarrow \exists n \in \mathbb{N} \forall m \geq n c(m)=d(m)$.

The product of binary relations R on X and S on Y is the binary relation given by $(x, y)(R \times S)\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow\left(x R x^{\prime}\right.$ and $\left.y S y^{\prime}\right)$. The vertical sections of a set $R \subseteq X \times Y$ are the sets of the form $R_{x}=\{y \in Y \mid(x, y) \in R\}$, where $x \in X$. A partial uniformization of a set $R \subseteq X \times Y$ over an equivalence relation F on Y is a set $U \subseteq R$ such that $F \upharpoonright U_{x}=I\left(U_{x}\right)$ for all $x \in X$.

Given an equivalence relation E on a set X, the E-saturation of a set $Y \subseteq X$ is given by $[Y]_{E}=\{x \in X \mid \exists y \in Y x E y\}$, and a set $Y \subseteq X$ is E-complete if $X=[Y]_{E}$. A quasi-transversal of E over a subequivalence relation F is an E-complete set $Y \subseteq X$ for which there exists $k \in \mathbb{N}$ such that every $(E \upharpoonright Y)$-class is contained in a union of at most $k F$-classes. The following fact is a generalization of the Glimm-Effros dichotomy for countable Borel equivalence relations:

Theorem 1. Suppose that X is an analytic Hausdorff space, E is a Borel equivalence relation on X, F is a countable-index Borel subequivalence relation of E, and the projection onto the left coordinate of every $(\Delta(X) \times F)$-invariant Borel partial uniformization of E over F is Borel. Then exactly one of the following holds:
(1) There is a partition $\left(B_{n}\right)_{n \in \mathbb{N}}$ of X into E-invariant Borel sets with the property that there is an F-invariant Borel quasi-transversal of $E \upharpoonright B_{n}$ over $F \upharpoonright B_{n}$ for all $n \in \mathbb{N}$.
(2) There is a continuous embedding $\pi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow X$ of $\left(\mathbb{E}_{0} \times\right.$ $\left.I(\mathbb{N}), \Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right)$ into (E, F) for which $\left[\pi\left(2^{\mathbb{N}} \times \mathbb{N}\right)\right]_{F}$ is E invariant.

Following the usual abuse of language, we say that a Borel equivalence relation is countable if all of its equivalence classes are countable. The special case of Theorem 1 where E is countable originally arose in a conversation with Marks, and was used to eliminate the need for determinacy in an argument due to Thomas.

A uniformization of a set $R \subseteq X \times Y$ is a set $U \subseteq R$ such that $\left|U_{x}\right|=1$ for all $x \in \operatorname{proj}_{X}(R)$. A Borel equivalence relation E on an analytic Hausdorff space X is smooth if there is a Borel reduction $\pi: X \rightarrow 2^{\mathbb{N}}$ of E to equality. Kechris has shown that the smooth Borel equivalence relations are precisely those with the property that every $(E \times \Delta(Y))$-invariant Borel set $R \subseteq X \times Y$ with countable vertical sections has an $(E \times \Delta(Y))$-invariant Borel uniformization (see Kec20, Theorem 1.5]). He also asked the finer question as to the circumstances under which a given $(E \times \Delta(Y))$-invariant Borel set $R \subseteq X \times Y$ admits
such a uniformization. The following fact refines Kechris's result and answers his question:

Theorem 2. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are countable. Then exactly one of the following holds:
(1) There is an $(E \times \Delta(Y))$-invariant Borel uniformization of R.
(2) There are a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow X$ of $\mathbb{E}_{0} \times I(\mathbb{N})$ into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow Y$ such that $R \cap\left(\pi_{X}\left(2^{\mathbb{N}} \times \mathbb{N}\right) \times Y\right)=\left(\pi_{X} \times \pi_{Y}\right)\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$.

In §1, we establish a generalization of Theorem 1 in which F need not be contained in E, while simultaneously strengthening it so as to ensure that, in condition (2), distinct points map to points that are inequivalent with respect to a given smooth countable Borel subequivalence relation of E satisfying an additional technical property.

In §2, we establish a strengthening of Theorem 2 characterizing the circumstances under which $\operatorname{proj}_{X}(R)$ is a countable union of E invariant Borel sets on which R admits an $((E \times F) \upharpoonright R)$-invariant Borel quasi-uniformization over a given countable Borel equivalence relation F. Here, a quasi-uniformization of a set $R \subseteq X \times Y$ over an equivalence relation F on Y is a set $U \subseteq R$ for which there exists $k \in \mathbb{Z}^{+}$such that U_{x} is contained in a non-empty union of at most k F-classes for all $x \in \operatorname{proj}_{X}(R)$.

1. QUASI-TRANSVERSALS

While the following two facts are consequences of their well-known analogs for \mathbb{E}_{0}, we provide proofs for the reader's convenience:
Proposition 1.1. Suppose that $B \subseteq 2^{\mathbb{N}} \times \mathbb{N}$ is a non-meager set with the Baire property. Then there exists $(c, m) \in 2^{\mathbb{N}} \times \mathbb{N}$ with the property that $B \cap\left([c]_{\mathbb{E}_{0}} \times\{m\}\right)$ is infinite.
Proof. Fix $n \in \mathbb{N}$ and $s \in 2^{<\mathbb{N}}$ for which B is comeager in $\mathcal{N}_{s} \times\{n\}$ (see, for example, Kec95, Proposition 8.26]). It is sufficient to show that for all $k \in \mathbb{N}$, there are comeagerly-many $c \in \mathcal{N}_{s}$ with the property that $B \cap\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right) \cap\left(\mathcal{N}_{s} \times\{n\}\right)$ has at least element k elements.

For each permutation σ of 2^{k}, let ϕ_{σ} be the corresponding homeomorphism of $\mathcal{N}_{s} \times\{n\}$, given by $\phi_{\sigma}(s \frown t \frown c)(0)=s \frown \sigma(t) \frown c$ for all $c \in 2^{\mathbb{N}}$ and $t \in 2^{k}$. Then there are comeagerly-many $c \in \mathcal{N}_{s}$ with the property that $\phi_{\sigma}(c, n) \in B$ for all permutations σ of 2^{k} (see, for example, [Kec95, Exercise 8.45]), and clearly $B \cap\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right) \cap\left(\mathcal{N}_{s} \times\{n\}\right)$ has at least 2^{k} elements for every such c.

Proposition 1.2. Suppose that E and F are equivalence relations on $2^{\mathbb{N}} \times \mathbb{N}$ with the Baire property, every E-class is a countable union of $(E \cap F)$-classes, and $F \cap\left(\mathbb{E}_{0} \times \Delta(\mathbb{N})\right)=\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})$. Then E and F are meager.

Proof. Suppose, towards a contradiction, that F is not meager. As F has the Baire property, the Kuratowski-Ulam theorem (see, for example, Kec95, Theorem 8.41]) yields an F-class C with the Baire property that is not meager. But $\left(\mathbb{E}_{0} \times \Delta(\mathbb{N})\right) \upharpoonright C \nsubseteq \Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})$ by Proposition 1.1, the desired contradiction. It follows that F is meager.

The Kuratowski-Ulam theorem now ensures that every F-class is meager, in which case every $(E \cap F)$-class is meager, so every E-class is meager, thus E is meager.

An invariant embedding of an equivalence relation E on X into an equivalence relation F on Y is an embedding $\phi: X \hookrightarrow Y$ of E into F for which $\phi(X)$ is F-invariant.

Proposition 1.3. Suppose that $U \subseteq 2^{\mathbb{N}} \times \mathbb{N}$ is a non-empty open set. Then there is a continuous invariant embedding $\pi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow U$ of $\mathbb{E}_{0} \times I(\mathbb{N})$ into $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \upharpoonright U$.

Proof. Fix $S \subseteq\left(\bigcup_{n \in \mathbb{N}} 2^{2 n}\right) \times \mathbb{N}$ such that $\left\{\mathcal{N}_{s} \times\{n\} \mid(s, n) \in S\right\}$ partitions U, as well as an injective enumeration $\left(\left(s_{k}, n_{k}\right), t_{k}\right)_{k \in \mathbb{N}}$ of $S \times\left\{c \in 2^{\mathbb{N}} \mid \exists n \in \mathbb{N} \forall m \geq n c(m)=0\right\}$, and define $\pi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow U$ by

$$
\pi(c, k)(0)(i)= \begin{cases}s_{k}(i) & \text { if } i<\left|s_{k}\right| \\ c((i-1) / 2) & \text { if } i \geq\left|s_{k}\right| \text { is odd, } \\ t_{k}\left(\left(i-2\left|s_{k}\right|\right) / 2\right) & \text { if } i \geq 2\left|s_{k}\right| \text { is even, and } \\ c\left(\left(i-\left|s_{k}\right|\right) / 2\right) & \text { otherwise }\end{cases}
$$

and $\pi(c, k)(1)=n_{k}$.
A homomorphism from a sequence $\left(R_{i}\right)_{i \in I}$ of binary relations on a set X to a sequence $\left(S_{i}\right)_{i \in I}$ of binary relations on a set Y is a function $\phi: X \rightarrow Y$ that is a homomorphism from R_{i} to S_{i} for all $i \in I$.

Proposition 1.4. Suppose that R is a meager binary relation on $2^{\mathbb{N}} \times$ \mathbb{N}. Then there is a continuous injective homomorphism $\phi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow$ $2^{\mathbb{N}} \times \mathbb{N}$ from $\left(\mathbb{E}_{0} \times I(\mathbb{N}), \sim\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)\right)$ to $\left(\mathbb{E}_{0} \times I(\mathbb{N}), \sim R\right)$ such that $\forall c \in 2^{\mathbb{N}} \phi\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)$ is an $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$-class.

Proof. Set $d_{0}=r_{0}=1$ and $\ell_{0}=0$, and fix a decreasing sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of dense open symmetric subsets of $\left(2^{\mathbb{N}} \times \mathbb{N}\right) \times\left(2^{\mathbb{N}} \times \mathbb{N}\right)$ whose intersection is disjoint from R, as well as $\phi_{0}: 2^{0} \times d_{0} \leftrightarrow 2^{\ell_{0}} \times r_{0}$.

Lemma 1.5. Suppose that $n \in \mathbb{N}, d_{n}, \ell_{n}, r_{n} \in \mathbb{N}$, and $\phi_{n}: 2^{n} \times d_{n} \leftrightarrow$ $2^{\ell_{n}} \times r_{n}$ is a bijection. Then there exist $d_{n+1}>d_{n}, \ell_{n+1}>\ell_{n}, r_{n+1}>r_{n}$, and a bijection $\phi_{n+1}: 2^{n+1} \times d_{n+1} \leftrightarrow 2^{\ell_{n+1}} \times r_{n+1}$ such that:
(1) $\forall i<2 \forall(t, m) \in 2^{n} \times d_{n}\left(\phi_{n}(t, m)(0) \sqsubseteq \phi_{n+1}(t \frown(i), m)(0)\right.$ and $\left.\phi_{n}(t, m)(1)=\phi_{n+1}(t \frown(i), m)(1)\right)$.
(2) $\forall i, j<2 \forall(t, m) \in\left(2^{n} \times 2^{n}\right) \times\left(d_{n} \times d_{n}\right)$ $\left(i=j \Longleftrightarrow \forall \ell \in\left[\ell_{n}, \ell_{n+1}\right)\right.$

$$
\left.\phi_{n+1}(t(0) \frown(i), m(0))(0)(\ell)=\phi_{n+1}(t(1) \frown(j), m(1))(0)(\ell)\right) .
$$

(3) $\forall(t, m) \in\left(2^{n} \times 2^{n}\right) \times\left(d_{n} \times d_{n}\right)$

$$
\prod_{i<2} \mathcal{N}_{\phi_{n+1}(t(i) \leftharpoonup(i), m(i))(0)} \times\left\{\phi_{n+1}(t(i) \frown(i), m(i))(1)\right\} \subseteq U_{n} .
$$

Proof. Fix an enumeration $\left(t_{k}, m_{k}\right)_{k<4^{n} d_{n}^{2}}$ of $\left(2^{n} \times 2^{n}\right) \times\left(d_{n} \times d_{n}\right)$, as well as any pair $u_{0} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that $\forall i<2 u_{0}(i) \nsubseteq u_{0}(1-i)$. Given $k<4^{n} d_{n}^{2}$ and $u_{k} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$, fix $u_{k+1} \in 2^{<\mathbb{N}} \times 2^{<\mathbb{N}}$ such that:

- $\forall i<2 u_{k}(i) \sqsubseteq u_{k+1}(i)$.
- $\prod_{i<2} \mathcal{N}_{\phi_{n}\left(t_{k}(i), m_{k}(i)\right)(0) \wedge u_{k+1}(i)} \times\left\{\phi_{n}\left(t_{k}(i), m_{k}(i)\right)(1)\right\} \subseteq U_{n}$.

Fix $\ell_{n+1}>\ell_{n}$ and $u \in 2^{\ell_{n+1}-\ell_{n}} \times 2^{\ell_{n+1}-\ell_{n}}$ such that $u_{4^{n}} d_{n}^{2}(i) \sqsubseteq u(i)$ for all $i<2$. Set $d_{n+1}=2^{\ell_{n+1}-\ell_{n}} d_{n}$ and $r_{n+1}=2 r_{n}$. Then $2^{n+1} d_{n+1}=$ $2^{\ell_{n+1}-\ell_{n}+1} 2^{n} d_{n}=2^{\ell_{n+1}-\ell_{n}+1} 2^{\ell_{n}} r_{n}=2^{\ell_{n+1}} r_{n+1}$, in which case there is a bijection $\phi_{n+1}: 2^{n+1} \times d_{n+1} \leftrightarrow 2^{\ell_{n+1}} \times r_{n+1}$ with the property that $\phi_{n+1}(t \frown(i), m)(0)=\phi_{n}(t, m)(0) \frown u(i)$ and $\phi_{n+1}(t \frown(i), m)(1)=$ $\phi_{n}(t, m)(1)$ for all $(t, m) \in 2^{n} \times d_{n}$.

As $\phi_{n}(t, m) \sqsubset \phi_{n+1}(t \frown(i), m)$ for all $i<2, n \in \mathbb{N}$, and $(t, m) \in$ $2^{n} \times d_{n}$, we obtain a continuous function $\phi: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow 2^{\mathbb{N}} \times \mathbb{N}$ by setting $\phi(c, m)=\bigcup_{n>m} \phi_{n}(c \upharpoonright n, m)$ for all $c \in 2^{\mathbb{N}}$ and $m \in \mathbb{N}$.

To see that ϕ is a homomorphism from $\mathbb{E}_{0} \times I(\mathbb{N})$ to $\mathbb{E}_{0} \times I(\mathbb{N})$, observe that if $c \in \mathbb{E}_{0} \times I(\mathbb{N})$, then there exists $n \geq \max _{i<2} c(i)(1)$ with the property that $\forall m \geq n c(0)(0)(m)=c(1)(0)(m)$, in which case $\forall m \geq \ell_{n} \phi(c(0))(0)(m)=\phi(c(1))(0)(m)$.

To see that ϕ is a homomorphism from $\sim\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$ to $\sim R$, note that if $c \in \sim\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$, then there are infinitely many $n \geq \max _{i<2} c(i)(1)$ with the property that $(\phi(c(i)))_{i<2} \in \prod_{i<2} \mathcal{N}_{\phi_{n+1}(c(i)(0) \upharpoonright(n+1), c(i)(1))(0)} \times$ $\left\{\phi_{n+1}(c(i)(0) \upharpoonright(n+1), c(i)(1))(1)\right\} \subseteq U_{n}$, so $(\phi(c(i)))_{i<2} \in \sim R$.

It remains to note that if $(c, m) \in 2^{\mathbb{N}} \times \mathbb{N}$, then $\phi\left([(c, m)]_{\mathbb{E}_{0} \times I(\mathbb{N})}\right)=$ $\bigcup_{n>m} \phi\left([c]_{F_{n}} \times d_{n}\right)=\bigcup_{n>m}[\phi(c, m)]_{F_{\ell_{n}} \times I\left(r_{n}\right)}=[\phi(c, m)]_{\mathbb{E}_{0} \times I(\mathbb{N})}$, where $\left(F_{n}\right)_{n \in \mathbb{N}}$ is the increasing sequence of subequivalence relations of \mathbb{E}_{0} given by $c F_{n} d \Longleftrightarrow \forall m \geq n c(m)=d(m)$ for all $n \in \mathbb{N}$.

Given $n \in \mathbb{N}$ and an equivalence relation F on $2^{n} \times(n+1)$, let F^{*} denote the corresponding equivalence relation on $2^{\mathbb{N}} \times(n+1)$ given by $(c, \ell) F^{*}(d, m) \Longleftrightarrow((c \upharpoonright n, \ell) F(d \upharpoonright n, m)$ and $\forall k \geq n c(k)=d(k))$. A one-step extension of F is an equivalence relation F^{\prime} on $2^{n+1} \times(n+2)$
such that $(s, \ell) F(t, m) \Longleftrightarrow(s \frown(i), \ell) F^{\prime}(t \frown(i), m)$ for all $i<2$ and $(s, \ell),(t, m) \in 2^{n} \times(n+1)$, and such an extension is splitting if it has the further property that $\neg(s \frown(i), \ell) F^{\prime}(t \frown(1-i), m)$ for all $i<2$ and $(s, \ell),(t, m) \in 2^{n} \times(n+1)$. A sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ is suitable if F_{0} is the unique equivalence relation on $2^{0} \times 1$, and F_{n+1} is a splitting one-step extension of F_{n} for all $n \in \mathbb{N}$.

Proposition 1.6. Suppose that $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a suitable sequence. Then there is a clopen transversal U of the equivalence relation $F^{*}=\bigcup_{n \in \mathbb{N}} F_{n}^{*}$.

Proof. Fix the unique transversal S_{0} of F_{0}, and given a transversal S_{n} of F_{n}, fix a transveral $S_{n+1} \supseteq\left\{(t \frown(i), m) \mid i<2\right.$ and $\left.(t, m) \in S_{n}\right\}$ of F_{n+1}. Set $S^{*}=\left\{(t \frown c, m) \mid c \in 2^{\mathbb{N}}\right.$ and $\left.(t, m) \in S\right\}$ for all $n \in \mathbb{N}$ and $S \subseteq 2^{n} \times(n+1)$, and define $U=\bigcup_{n \in \mathbb{N}} S_{n}^{*}$.

We can now establish our primary technical result.
Theorem 1.7. Suppose that X is an analytic Hausdorff space, E is a Borel equivalence relation on X, F is a countable-index Borel subequivalence relation of E for which the projection onto the left coordinate of every $(\Delta(X) \times F)$-invariant Borel partial uniformization of E over F is Borel, and F_{\perp} is a Borel subequivalence relation of E for which the E-saturation of every F_{\perp}-invariant Borel partial quasi-transversal of E over F_{\perp} is Borel. Then at least one of the following holds:
(1) There is a partition $\left(B_{n}\right)_{n \in \mathbb{N}}$ of X into E-invariant Borel sets such that at least one of the following holds for all $n \in \mathbb{N}$:
(a) There is an F-invariant $\left(E \upharpoonright B_{n}\right)$-complete Borel partial quasi-transversal $A_{n} \subseteq B_{n}$ of F over $F \cap F_{\perp}$.
(b) There is an F_{*}-invariant Borel quasi-transversal $A_{n} \subseteq B_{n}$ of $E \upharpoonright B_{n}$ over $F_{*} \upharpoonright B_{n}$, for some $F_{*} \in\left\{F, F_{\perp}\right\}$.
(2) There exist a suitable sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ and a continuous homomorphism $\pi: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow X$ from $\left(F^{*} \backslash\left(\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right)\right.$, $\left.\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \backslash F^{*}\right)$ to $\left(F \backslash F_{\perp}, E \backslash\left(F \cup F_{\perp}\right)\right)$ with the property that $\forall c \in 2^{\mathbb{N}}\left[\pi\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)\right]_{F}$ is an E-class, where $F^{*}=\bigcup_{n \in \mathbb{N}} F_{n}^{*}$.

Proof. By dRM20, Remark 2.14], there are $(\Delta(X) \times F)$-invariant Borel partial uniformizations R_{n} of E over F for which $E=\bigcup_{n \in \mathbb{N}} R_{n}$.
Lemma 1.8. Every $(\Delta(X) \times F)$-invariant Borel partial uniformization R of E over F is contained in $a(\Delta(X) \times F)$-invariant Borel uniformization S of E over F.

Proof. Set $S_{0}=R$, recursively define $S_{n+1}=\left(R_{n} \backslash\left(\operatorname{proj}_{0}\left(S_{n}\right) \times Y\right)\right) \cup S_{n}$ for all $n \in \mathbb{N}$, and observe that the set $S=\bigcup_{n \in \mathbb{N}} S_{n}$ is as desired. \boxtimes

We can clearly assume that $R_{0}=F$, and by Lemma 1.8, we can assume that each R_{n} is a $(\Delta(X) \times F)$-invariant Borel uniformization of E over F.

We can also assume that $F \backslash F_{\perp} \neq \emptyset$, since otherwise X is a transversal of F over $F \cap F_{\perp}$.

Finally, we can assume that $E \backslash\left(F \cup F_{\perp}\right) \neq \emptyset$. To see this, suppose otherwise, and define $A=\left\{x \in X \mid[x]_{E} \nsubseteq[x]_{F}\right\}$. Note that if $x \in A$, then there exists $y \in[x]_{E} \backslash[x]_{F}$, in which case $[y]_{F} \subseteq[x]_{E} \backslash[x]_{F} \subseteq[x]_{F_{\perp}}$ and $[y]_{F_{\perp}}=[x]_{F_{\perp}}$, so $[x]_{E}=[y]_{E}=[y]_{F} \cup[y]_{F_{\perp}}=[x]_{F_{\perp}}$, thus \bar{A} is a partial transversal of E over F_{\perp}. By dRM20, Proposition 2.1], there is an F_{\perp}-invariant Borel partial transversal $B \subseteq X$ of E over F_{\perp} containing A. Then $\sim[B]_{E}$ is an E-invariant Borel partial transversal of E over F.

It now follows that there are continuous surjections $\phi_{X}: \mathbb{N}^{\mathbb{N}} \rightarrow X$, $\phi_{F \backslash F_{\perp}}: \mathbb{N}^{\mathbb{N}} \rightarrow F \backslash F_{\perp}, \phi_{E \backslash\left(F \cup F_{\perp}\right)}: \mathbb{N}^{\mathbb{N}} \rightarrow E \backslash\left(F \cup F_{\perp}\right)$, and $\phi_{R_{n}}: \mathbb{N}^{\mathbb{N}} \rightarrow R_{n}$ for all $n \in \mathbb{N}$. Define $\phi_{E \backslash F_{\perp}}: \mathbb{N}^{\mathbb{N}} \times 2 \rightarrow E \backslash F_{\perp}$ by

$$
\phi_{E \backslash F_{\perp}}(b, i)= \begin{cases}\phi_{F \backslash F_{\perp}}(b) & \text { if } i=1, \text { and } \\ \phi_{E \backslash\left(F \cup F_{\perp}\right)}(b) & \text { otherwise } .\end{cases}
$$

We will recursively define a decreasing sequence $\left(B^{\alpha}\right)_{\alpha<\omega_{1}}$ of E invariant Borel subsets of X, off of which condition (1) holds. We begin by setting $B^{0}=X$. For all limit ordinals $\lambda<\omega_{1}$, we set $B^{\lambda}=\bigcap_{\alpha<\lambda} B^{\alpha}$. To describe the construction at successor ordinals, we require several preliminaries.

An approximation is a sextuple $a=\left(n^{a}, D^{a}, F^{a}, \psi_{X}^{a}, \psi_{R}^{a}, \psi_{E \backslash F_{\perp}}^{a}\right)$ with the property that $n^{a} \in \mathbb{N}, D^{a}$ is a lexicographically downward-closed subset of $\left(n^{a}+1\right) \times 2^{n^{a}}$ containing $n^{a} \times 2^{n^{a}}, F^{a}$ is an equivalence relation on $D^{a}, \psi_{*}^{a}: D^{a} \rightarrow \mathbb{N}^{n^{a}}$ for all $* \in\{X, R\}$, and $\psi_{E \backslash F_{\perp}}^{a}: \sim \Delta\left(D^{a}\right) \rightarrow \mathbb{N}^{n^{a}}$.

If a is an approximation for which $D^{a} \neq\left(n^{a}+1\right) \times 2^{n^{a}}$, then a one-step extension of a is an approximation b such that:

- $n^{a}=n^{b}$.
- $D^{a}=D^{b} \backslash\left\{\max _{\mathrm{lex}} D^{b}\right\}$.
- $F^{a}=F^{b} \upharpoonright D^{a}$.
- $\forall * \in\{X, R\} \psi_{*}^{a}=\psi_{*}^{b} \upharpoonright D^{a}$.
- $\psi_{E \backslash F_{\perp}}^{a}=\psi_{E \backslash F_{\perp}}^{b} \upharpoonright \sim \Delta\left(D^{a}\right)$.

If a is an approximation for which $D^{a}=\left(n^{a}+1\right) \times 2^{n^{a}}$, then a one-step extension of a is an approximation b such that:

- $n^{b}=n^{a}+1$.
- $D^{b}=n^{b} \times 2^{n^{b}}$.
- $\forall i<2 \forall(m, s),(n, t) \in D^{a}$

$$
\left((m, s) F^{a}(n, t) \Longleftrightarrow(m, s \frown(i)) F^{b}(n, t \frown(i))\right. \text { and }
$$

$$
\left.\neg(m, s \frown(i)) F^{b}(n, t \frown(1-i))\right) .
$$

- $\forall * \in\{X, R\} \forall i<2 \forall(n, t) \in D^{a} \psi_{*}^{a}(n, t) \sqsubseteq \psi_{*}^{b}(n, t \frown(i))$.
- $\forall i<2 \forall((m, s),(n, t)) \in \sim \Delta\left(D^{a}\right)$

$$
\psi_{E \backslash F_{\perp}}^{a}((m, s),(n, t)) \sqsubseteq \psi_{E \backslash F_{\perp}}^{b}((m, s \frown(i)),(n, t \frown(i))) .
$$

A configuration is a sextuple $\gamma=\left(n^{\gamma}, D^{\gamma}, F^{\gamma}, \psi_{X}^{\gamma}, \psi_{R}^{\gamma}, \psi_{E \backslash F_{\perp}}^{\gamma}\right)$ with the property that $n^{\gamma} \in \mathbb{N}, D^{\gamma}$ is a lexicographically downward-closed subset of $\left(n^{\gamma}+1\right) \times 2^{n^{\gamma}}$ containing $n^{\gamma} \times 2^{n^{\gamma}}, F^{\gamma}$ is an equivalence relation on $D^{\gamma}, \psi_{*}^{\gamma}: D^{\gamma} \rightarrow \mathbb{N}^{\mathbb{N}}$ for all $* \in\{X, R\}, \psi_{E \backslash F_{\perp}}^{\gamma}: \sim \Delta\left(D^{\gamma}\right) \rightarrow \mathbb{N}^{\mathbb{N}}$, $\left(\phi_{R_{n}} \circ \psi_{R}^{\gamma}\right)(n, t)=\left(\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(0, t),\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(n, t)\right)$ for all $(n, t) \in D^{\gamma}$, and $\left(\phi_{E \backslash F_{\perp}} \circ\left(\psi_{E \backslash F_{\perp}}^{\gamma} \times \mathbf{1}_{F^{\delta}}\right)\right)((m, s),(n, t))=\left(\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(m, s),\left(\phi_{X} \circ\right.\right.$ $\left.\psi_{X}^{\gamma}\right)(n, t)$) for all distinct $(m, s),(n, t) \in D^{\gamma}$. We say that γ is compatible with an E-invariant set $X^{\prime} \subseteq X$ if $\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)\left(D^{\gamma}\right) \subseteq X^{\prime}$, and compatible with an approximation a if:

- $\left(n^{a}, D^{a}, F^{a}\right)=\left(n^{\gamma}, D^{\gamma}, F^{\gamma}\right)$.
- $\forall * \in\{X, R\} \forall(n, t) \in D^{a} \psi_{*}^{a}(n, t) \sqsubseteq \psi_{*}^{\gamma}(n, t)$.
- $\forall((m, s),(n, t)) \in \sim \Delta\left(D^{a}\right)$

$$
\psi_{E \backslash F_{\perp}}^{a}((m, s),(n, t)) \sqsubseteq \psi_{E \backslash F_{\perp}}^{\gamma}((m, s),(n, t))
$$

We say that an approximation a is X^{\prime}-terminal if no configuration is compatible with both X^{\prime} and a one-step extension of a.

For each configuration γ such that $D^{\gamma} \neq\left(n^{\gamma}+1\right) \times 2^{n^{\gamma}}$, let t^{γ} be the lexicographically minimal element of $2^{n^{\gamma}}$ for which $\left(n^{\gamma}, t^{\gamma}\right) \notin D^{\gamma}$ and set $C^{\gamma}=\left(R_{n^{\gamma}}\right)_{\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)\left(0, t^{\gamma}\right)}$. For each approximation a with the property that $D^{a} \neq\left(n^{a}+1\right) \times 2^{n^{a}}$ and each set $X^{\prime} \subseteq X$, define $A^{\prime}\left(a, X^{\prime}\right)=$ $\bigcup\left\{C^{\gamma} \mid \gamma\right.$ is compatible with a and $\left.X^{\prime}\right\}$.
Lemma 1.9. Suppose that $X^{\prime} \subseteq X$ is E-invariant and a is an X^{\prime} terminal approximation for which $D^{a} \neq\left(n^{a}+1\right) \times 2^{n^{a}}$. Then $A^{\prime}\left(a, X^{\prime}\right)$ is a partial quasi-transversal of F over $F \cap F_{\perp}$.

Proof. Suppose, towards a contradiction, that there is a configuration γ, compatible with a and X^{\prime}, with the property that C^{γ} contains strictly more than $\left|D^{\gamma}\right|\left(F \cap F_{\perp}\right)$-classes, in which case there exists $y \in C^{\gamma} \backslash\left[\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)\left(D^{\gamma}\right)\right]_{F \cap F_{\perp}}$. Define $n^{\delta}=n^{a}$, as well as $D^{\delta}=D^{a} \cup\left\{\left(n^{a}, t^{a}\right)\right\}$, and fix an extension ψ_{X}^{δ} of ψ_{X}^{γ} to D^{δ} for which $\left(\phi_{X} \circ \psi_{X}^{\delta}\right)\left(n^{a}, t^{a}\right)=y$. Let F^{δ} be the equivalence relation on D^{δ} given by $F^{\delta} \upharpoonright D^{\gamma}=F^{\gamma} \upharpoonright D^{\gamma}$ and $(n, t) F^{\delta}\left(n^{a}, t^{a}\right) \Longleftrightarrow\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(n, t) F$ $\left(\phi_{X} \circ \psi_{X}^{\delta}\right)\left(n^{a}, t^{a}\right)$ for all $(n, t) \in D^{\delta}$, fix an extension ψ_{R}^{δ} of ψ_{R}^{γ} to D^{δ} for which $\left(\phi_{R} \circ \psi_{R}^{\delta}\right)\left(n^{a}, t^{a}\right)=y$, and fix an extension $\psi_{E \backslash F_{\perp}}^{\delta}$ of $\psi_{E \backslash F_{\perp}}^{\gamma}$ to $\sim \Delta\left(D^{\delta}\right)$ such that $\left(\phi_{E \backslash F_{\perp}} \circ\left(\psi_{E \backslash F_{\perp}}^{\delta} \times \mathbf{1}_{F^{\delta}}\right)\right)((m, s),(n, t))=$ $\left(\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(m, s),\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(n, t)\right)$ for all distinct $(m, s),(n, t) \in D^{\delta}$
such that $\left(n^{a}, t^{a}\right) \in\{(m, s),(n, t)\}$. Then δ is compatible with a onestep extension of a, contradicting the fact that a is X^{\prime}-terminal.

Set $\bar{X}=X \times\left\{F, F_{\perp}\right\}$ and $\bar{E}=E \times I\left(\left\{F, F_{\perp}\right\}\right)$, and define \bar{F} on \bar{X} by $\left(x, F_{*}\right) \bar{F}\left(x^{\prime}, F_{*}^{\prime}\right) \Longleftrightarrow\left(F_{*}=F_{*}^{\prime}\right.$ and $\left.x F_{*} x^{\prime}\right)$. For each configuration γ, set $A^{\gamma}=\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)\left(D^{\gamma}\right)$, and for each approximation a with the property that $D^{a}=\left(n^{a}+1\right) \times 2^{n^{a}}$ and each E-invariant set $X^{\prime} \subseteq X$, define $\mathscr{A}\left(a, X^{\prime}\right)=\left\{A^{\gamma} \mid \gamma\right.$ is compatible with a and $\left.X^{\prime}\right\}$ and $\overline{\mathscr{A}}\left(a, X^{\prime}\right)=\left\{A \times\left\{F, F_{\perp}\right\} \mid A \in \mathscr{A}\left(a, X^{\prime}\right)\right\}$. We say that a family $\overline{\mathscr{A}}$ of subsets of \bar{X} is \bar{F}-intersecting if the \bar{F}-saturations of any two sets in the family have a point in common, and \bar{E}-locally \bar{F}-intersecting if, for every \bar{E}-class C, the family $\overline{\mathscr{A}} \upharpoonright C=\{A \in \overline{\mathscr{A}} \mid A \subseteq C\}$ is \bar{F}-intersecting.

Lemma 1.10. Suppose that $X^{\prime} \subseteq X$ and a is an X^{\prime}-terminal approx$\underline{\text { imation for which }} D^{a}=\left(n^{a}+1\right) \times 2^{n^{a}}$. Then $\overline{\mathscr{A}}\left(a, X^{\prime}\right)$ is \bar{E}-locally \bar{F}-intersecting.

Proof. Suppose, towards a contradiction, that there are configurations γ_{0} and γ_{1}, both compatible with a and X^{\prime}, such that $A^{\gamma_{0}}$ and $A^{\gamma_{1}}$ are contained in the same E-class, but have disjoint F-saturations and disjoint F_{\perp}-saturations. Set $n^{\delta}=n^{a}+1$ and $D^{\delta}=n^{\delta} \times 2^{n^{\delta}}$, define functions $\psi_{*}^{\delta}: D^{\delta} \rightarrow \mathbb{N}^{\mathbb{N}}$ by $\psi_{*}^{\delta}(n, t \frown(i))=\psi_{*}^{\gamma_{i}}(n, t)$ for all $* \in\{X, R\}, i<2$, and $(n, t) \in D^{\delta}$, let F^{δ} be the equivalence relation on D^{δ} given by $(m, s) F^{\delta}(n, t) \Longleftrightarrow\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(m, s) F\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(n, t)$ for all $(m, s),(n, t) \in D^{\delta}$, and fix $\psi_{E \backslash F_{1}}^{\delta}: \sim \Delta\left(D^{\delta}\right) \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $\psi_{E \backslash F_{\perp}}^{\delta}((m, s \frown(i)),(n, t \frown(i)))=\psi_{E \backslash F_{\perp}}^{\gamma_{i}}((m, s),(n, t))$ for all $i<2$ and distinct $(m, s),(n, t) \in D^{a}$ and

$$
\begin{aligned}
\left(\phi_{E \backslash F_{\perp}}\right. & \left.\circ\left(\psi_{E \backslash F_{\perp}}^{\delta} \times \mathbf{1}_{F^{\delta}}\right)\right)((m, s \frown(i)),(n, t \frown(1-i))) \\
& =\left(\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(m, s \frown(i)),\left(\phi_{X} \circ \psi_{X}^{\delta}\right)(n, t \frown(1-i))\right)
\end{aligned}
$$

for all $i<2$ and $(m, s),(n, t) \in D^{a}$. Then δ is compatible with a onestep extension of a, contradicting the fact that a is X^{\prime}-terminal.

Suppose that a is B^{α}-terminal. If $D^{a} \neq\left(n^{a}+1\right) \times 2^{n^{a}}$, then Lemma 1.9 and dRM20, Proposition 2.1] yield an F-invariant Borel partial quasi-transversal $A\left(a, B^{\alpha}\right)$ of F over $F \cap F_{\perp}$ containing $A^{\prime}\left(a, B^{\alpha}\right)$, in which case we define $B\left(a, B^{\alpha}\right)=\left[A\left(a, B^{\alpha}\right)\right]_{E}$. A set $Y \subseteq X$ punctures a family \mathscr{A} of subsets of X if $A \cap Y \neq \emptyset$ for all $A \in \mathscr{A}$. If $D^{a}=$ $\left(n^{a}+1\right) \times 2^{n^{a}}$, then Lemma 1.10 and dRM20, Proposition 4.1] yield an \bar{F}-invariant Borel partial quasi-transversal $\bar{A}\left(a, B^{\alpha}\right)$ of \bar{E} over \bar{F} puncturing $\overline{\mathscr{A}}\left(a, B^{\alpha}\right)$, and it follows that the set $A_{F_{*}}\left(a, B^{\alpha}\right)=\{x \in X \mid$ $\left.\left(x, F_{*}\right) \in \bar{A}\left(a, B^{\alpha}\right)\right\}$ is an F_{*}-invariant Borel partial quasi-transversal
of E over F_{*} for all $F_{*} \in\left\{F, F_{\perp}\right\}$, and $\bigcup_{F_{*} \in\left\{F, F_{\perp}\right\}} A_{F_{*}}\left(a, B^{\alpha}\right)$ punctures $\mathscr{A}\left(a, B^{\alpha}\right)$, in which case we define $B\left(a, B^{\alpha}\right)=\bigcup_{F_{*} \in\left\{F, F_{\perp}\right\}}\left[A_{F_{*}}\left(a, B^{\alpha}\right)\right]_{E}$.

Let $B^{\alpha+1}$ be the set obtained from B^{α} by subtracting the union of the sets of the form $B\left(a, B^{\alpha}\right)$, where a varies over all B^{α}-terminal approximations.
Lemma 1.11. Suppose that $\alpha<\omega_{1}$ and a is a non- $B^{\alpha+1}$-terminal approximation. Then a has a non- B^{α}-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration γ compatible with b and $B^{\alpha+1}$. Then $\left(\phi_{X} \circ \phi_{X}^{\gamma}\right)\left(D^{\gamma}\right) \subseteq B^{\alpha+1}$, so b is not B^{α}-terminal.

Fix $\alpha<\omega_{1}$ such that the families of B^{α} - and $B^{\alpha+1}$-terminal approximations coincide, and let a_{0} be the approximation given by $n^{a_{0}}=0$ and $D^{a_{0}}=1 \times 2^{0}$. As $\overline{\mathscr{A}}\left(a_{0}, X^{\prime}\right)=\left\{\left\{\left(x, F_{*}\right) \mid F_{*} \in\left\{F, F_{\perp}\right\}\right\} \mid x \in X^{\prime}\right\}$ for all E-invariant sets $X^{\prime} \subseteq X$, we can assume that a_{0} is not B^{α}-terminal, since otherwise $B^{\alpha+1}=\emptyset$, so condition (1) holds.

By recursively applying Lemma 1.11, we obtain non- B^{α}-terminal one-step extensions a_{n+1}^{\prime} of a_{n}^{\prime} for all $n \in \mathbb{N}$. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the unique subsequence such that $D^{a_{n}}=(n+1) \times 2^{n}$ for all $n \in \mathbb{N}$. Define $F_{n}=F_{n}^{a_{n}}$ for all $n \in \mathbb{N}, \psi_{*}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}$ by $\psi_{*}(c, m)=\bigcup_{n \geq m} \psi_{*}^{a_{n}}(m, c(0) \upharpoonright n)$ for all $* \in\{X, R\}$, and $\psi_{E \backslash F_{\perp}}:\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \backslash\left(\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right) \rightarrow \mathbb{N}^{\mathbb{N}}$ by $\psi_{E \backslash F_{\perp}}((b, \ell),(c, m))=\bigcup_{n \geq n((b, \ell),(c, m))} \psi_{E \backslash F_{\perp}}^{a_{n}}((\ell, b \upharpoonright n),(m, c \upharpoonright n))$, where $n((b, \ell),(c, m))$ is the least natural number $n \geq \max \{\ell, m\}$ such that $\forall k \geq n b(k)=c(k)$. We will show that the function $\pi=\phi_{X} \circ \psi_{X}$ is as desired.

To see that $\forall c \in 2^{\mathbb{N}}\left[\pi\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)\right]_{F}$ is an E-class, we will show that if $c \in 2^{\mathbb{N}}$ and $m \in \mathbb{N}$, then $\left(\phi_{R_{m}} \circ \psi_{R}\right)(c, m)=(\pi(c, 0), \pi(c, m))$. As $X \times X$ is a Hausdorff space, it is sufficient to show that if U is an open neighborhood of $(\pi(c, 0), \pi(c, m))$ and V is an open neighborhood of $\left(\phi_{R_{m}} \circ \psi_{R}\right)(c, m)$, then $U \cap V \neq \emptyset$. Towards this end, fix $n \geq m$ such that $\phi_{X}\left(\mathcal{N}_{\psi_{X}^{a_{n}}(0, c\lceil n)}\right) \times \phi_{X}\left(\mathcal{N}_{\psi_{X}^{a_{n}}(m, c\lceil n)}\right) \subseteq U$ and $\phi_{R_{m}}\left(\mathcal{N}_{\psi_{R}^{a_{n}}(m, c \mid n)}\right) \subseteq V$. As a_{n} is not B^{α}-terminal, there is a configuration γ compatible with a_{n}, in which case $\left(\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(0, c \upharpoonright n),\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(m, c \upharpoonright n)\right) \in U$ and $\left(\phi_{R_{m}} \circ \phi_{R}^{\gamma}\right)(m, c \upharpoonright n) \in V$, thus $U \cap V \neq \emptyset$.

It now only remains to establish that π is a homomorphism from $\left(F^{*} \backslash\left(\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right),\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \backslash F^{*}\right)$ to $\left(F \backslash F_{\perp},\left(E \backslash\left(F \cup F_{\perp}\right)\right)\right.$. We will show the stronger fact that if (b, ℓ) and (c, m) are distinct but $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$-equivalent, then $\left(\phi_{E \backslash F_{\perp}} \circ\left(\psi_{E \backslash F_{\perp}} \times \mathbf{1}_{F^{*}}\right)\right)((b, \ell),(c, m))=$ $(\pi(b, \ell), \pi(c, m))$. As $X \times X$ is a Hausdorff space, it is sufficient to show that if U is an open neighborhood of $(\pi(b, \ell), \pi(c, m))$ and V is an open neighborhood of $\left(\phi_{E \backslash F_{\perp}} \circ\left(\psi_{E \backslash F_{\perp}} \times \mathbf{1}_{F^{*}}\right)\right)((b, \ell),(c, m))$, then
$U \cap V \neq \emptyset$. Towards this end, set $n=n((b, \ell),(c, m))$, and note that $\phi_{X}\left(\mathcal{N}_{\psi_{X}^{a_{n}}(\ell, b\lceil n)}\right) \times \phi_{X}\left(\mathcal{N}_{\psi_{X}^{a_{n}}(m, c \mid n)}\right) \subseteq U$ and $\phi_{E \backslash F_{\perp}}\left(\mathcal{N}_{\psi_{E \backslash F_{\perp}}^{a_{n}}}(\ell, b \mid n),(m, c\lceil n)) \times\right.$ $\left.\left\{\mathbf{1}_{F^{*}}((b, \ell),(c, m))\right\}\right) \subseteq V$. As a_{n} is not B^{α}-terminal, there exists a configuration γ compatible with a_{n}, so $\left(\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(\ell, b \upharpoonright n),\left(\phi_{X} \circ \psi_{X}^{\gamma}\right)(m, c \upharpoonright\right.$ $n)) \in U$ and $\phi_{E}\left(\psi_{E \backslash F_{\perp}}^{\gamma}((\ell, b \upharpoonright n),(m, c \upharpoonright n)), \mathbf{1}_{F^{*}}((b, \ell),(c, m))\right) \in V$, and it follows that $U \cap V \neq \emptyset$.

Remark 1.12. The apparent use of choice beyond DC in the above argument can be eliminated by first running the analog of the argument without dRM20, Proposition 2.1] and replacing the use of dRM20, Propositions 4.1] with the use of its weakening without any definability constraints on the partial quasi-transversal puncturing the family (which can be proven in the same manner, but without using dRM20, Proposition 2.1]), in order to obtain an upper bound $\alpha^{\prime}<\omega_{1}$ on the least ordinal $\alpha<\omega_{1}$ for which the sets of B^{α} - and $B^{\alpha+1}$-terminal approximations coincide.

The composition of sets $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ is given by $R \circ S=\{(x, z) \in X \times Z \mid \exists y \in Y x R y S z\}$.

Theorem 1.13. Suppose that X is an analytic Hausdorff space, E is a Borel equivalence relation on X, F is a Borel equivalence relation on X for which every E-class is a countable union of $(E \cap F)$-classes and the projection onto the left coordinate of every $(\Delta(X) \times(E \cap F))$ invariant Borel partial uniformization of E over $E \cap F$ is Borel, and F_{\perp} is a smooth countable Borel subequivalence relation of E for which $E=(E \cap F) \circ F_{\perp}$. Then exactly one of the following holds:
(1) There is a partition $\left(B_{n}\right)_{n \in \mathbb{N}}$ of X into E-invariant Borel sets with the property that there is an $(E \cap F)$-invariant Borel quasitransversal $A_{n} \subseteq B_{n}$ of $E \upharpoonright B_{n}$ over $(E \cap F) \upharpoonright B_{n}$ for all $n \in \mathbb{N}$.
(2) There is a continuous embedding $\pi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow X$ of $\left(\mathbb{E}_{0} \times\right.$ $\left.I(\mathbb{N}), \Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right)$ into $\left(E, F \cup F_{\perp}\right)$ for which $\left[\pi\left(2^{\mathbb{N}} \times \mathbb{N}\right)\right]_{E \cap F}$ is E-invariant.

Proof. To see that conditions (1) and (2) are mutually exclusive, note that if both hold, then there exists $n \in \mathbb{N}$ for which $\pi^{-1}\left(B_{n}\right)$ is not meager, thus $\pi^{-1}\left(A_{n}\right)$ is a non-meager Borel partial quasi-transversal of $\mathbb{E}_{0} \times I(\mathbb{N})$, contradicting Proposition 1.1.

Note that if $A \subseteq X$ is an E-invariant Borel set for which there is an F_{\perp}-invariant Borel quasi-transversal of $E \upharpoonright A$ over $F_{\perp} \upharpoonright A$, then the smoothness of F_{\perp} and [HKL90, Theorem 1.1] ensure that $E \upharpoonright A$ is smooth. Moreover, if $B \subseteq X$ is an E-invariant Borel set for which there is an $(E \upharpoonright B)$-complete $(E \cap F)$-invariant Borel partial quasi-transversal
of $E \cap F$ over $E \cap F \cap F_{\perp}$, then the fact that $E=(E \cap F) \circ F_{\perp}$ ensures that B is a partial quasi-transversal of E over F_{\perp}, so $E \upharpoonright B$ is smooth.

By dRM20, Theorem 2.6] and Theorem 1.7 , we can therefore assume that there is a suitable sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ and a continuous homomorphism $\phi: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow X$ from $\left(F^{*} \backslash\left(\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right),\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \backslash F^{*}\right)$ to $\left((E \cap F) \backslash F_{\perp}, E \backslash\left(F \cup F_{\perp}\right)\right)$ such that $\forall c \in 2^{\mathbb{N}}\left[\phi\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)\right]_{E \cap F}$ is an E-class, where $F^{*}=\bigcup_{n \in \mathbb{N}} F_{n}^{*}$. As Proposition 1.6 yields a clopen transversal $U \subseteq 2^{\mathbb{N}} \times \mathbb{N}$ of F^{*}, Proposition 1.3 gives rise to a continuous invariant embedding $\chi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow U$ of $\mathbb{E}_{0} \times I(\mathbb{N})$ into $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \upharpoonright U$, in which case $\phi \circ \chi$ is a continuous homomorphism from $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right) \backslash\left(\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right)$ to $E \backslash\left(F \cup F_{\perp}\right)$ with the property that $\forall c \in 2^{\mathbb{N}}\left[(\phi \circ \chi)\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)\right]_{E \cap F}$ is an E-class. As Proposition 1.1 ensures that the preimages E^{\prime} and F^{\prime} of E and F under $(\phi \circ \chi) \times(\phi \circ \chi)$ are meager, Proposition 1.4 yields a continuous injective homomorphism $\psi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow 2^{\mathbb{N}} \times \mathbb{N}$ from $\left(\mathbb{E}_{0} \times I(\mathbb{N}), \sim\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)\right)$ to $\left(\mathbb{E}_{0} \times I(\mathbb{N}), \sim\left(E^{\prime} \cup F^{\prime}\right)\right)$ with the property that $\forall c \in 2^{\mathbb{N}} \psi\left([c]_{\mathbb{E}_{0}} \times \mathbb{N}\right)$ is an $\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)$-class. Define $\pi=\phi \circ \chi \circ \psi$.

2. Uniformizations

As a corollary of Theorem 1.13 , we obtain the following:
Theorem 2.1. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, F is a countable Borel equivalence relation on Y, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are contained in countable unions of F-classes. Then exactly one of the following holds:
(1) There is a partition $\left(B_{n}\right)_{n \in \mathbb{N}}$ of $\operatorname{proj}_{X}(R)$ into E-invariant Borel sets with the property that there is an $((E \times F) \upharpoonright R)$-invariant Borel quasi-uniformization of $R \cap\left(B_{n} \times Y\right)$ for all $n \in \mathbb{N}$.
(2) There are continuous embeddings $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow X$ of $\mathbb{E}_{0} \times I(\mathbb{N})$ into E and $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})$ into F such that $R \cap\left(\pi_{X}\left(2^{\mathbb{N}} \times \mathbb{N}\right) \times Y\right)=\left[\left(\pi_{X} \times \pi_{Y}\right)\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)\right]_{(\Delta(X) \times F) \mid R}$.

Proof. To see that conditions (1) and (2) are mutually exclusive, note that if both hold, then there exists $n \in \mathbb{N}$ for which $\pi_{X}^{-1}\left(B_{n}\right)$ is not meager, in which case the pullback of the corresponding $((E \times F) \upharpoonright R)$ invariant Borel quasi-uniformization of $R \cap\left(B_{n} \times Y\right)$ through $\pi_{X} \times \pi_{Y}$ is a non-meager Borel quasi-transversal of $\mathbb{E}_{0} \times I(\mathbb{N})$, contradicting Proposition 1.1 .

Suppose now that condition (1) fails. Then Theorem 1.13 yields a continuous embedding $\pi: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow R$ of $\left(\mathbb{E}_{0} \times I(\mathbb{N}), \Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})\right)$ into
$(E \times I(Y),(I(X) \times F) \cup(\Delta(X) \times I(Y)))$ for which $\left[\pi\left(2^{\mathbb{N}} \times \mathbb{N}\right)\right]_{(E \times F) \upharpoonright R}$ is $((E \times I(Y)) \upharpoonright R)$-invariant. Set $\pi_{X}=\operatorname{proj}_{X} \circ \pi$ and $\pi_{Y}=\operatorname{proj}_{Y} \circ \pi . \quad \boxtimes$

As a corollary, we obtain the following generalization of Theorem 2;
Theorem 2.2. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, F is a smooth countable Borel equivalence relation on Y, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are contained in countable unions of F-classes. Then exactly one of the following holds:
(1) There is an $((E \times F) \upharpoonright R)$-invariant Borel uniformization of R over F.
(2) There are continuous embeddings $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow X$ of $\mathbb{E}_{0} \times I(\mathbb{N})$ into E and $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \hookrightarrow Y$ of $\Delta\left(2^{\mathbb{N}}\right) \times \Delta(\mathbb{N})$ into F such that $R \cap\left(\pi_{X}\left(2^{\mathbb{N}} \times \mathbb{N}\right) \times Y\right)=\left[\left(\pi_{X} \times \pi_{Y}\right)\left(\mathbb{E}_{0} \times I(\mathbb{N})\right)\right]_{(\Delta(X) \times F) \upharpoonright R}$.

Proof. By Theorem 2.1, it is sufficient to show that if every vertical section of R is contained in a union of finitely-many F-classes, then there is a Borel uniformization of R. But this is a straightforward consequence of the original Lusin-Novikov uniformization theorem. \boxtimes

Acknowledgements. I would like to thank Alexander Kechris for asking the questions that led to this work, as well as Julia Millhouse for pointing out several typos.

References

[dRM20] N. de Rancourt and B.D. Miller, The Feldman-Moore, Glimm-Effros, and Lusin-Novikov theorems over quotients, Preprint, 2020.
[HKL90] L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903-928. MR 1057041
[Kec95] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
[Kec20] , Remarks on invariant uniformization and reducibility, draft, April 2020.
B. Miller, 10520 Boardwalk Loop \#702, Lakewood Ranch, FL 34202

Email address: glimmeffros@gmail.com
$U R L$: https://glimmeffros.github.io

[^0]: 2010 Mathematics Subject Classification. Primary 03E15, 28A05.
 Key words and phrases. Glimm-Effros, Lusin-Novikov, quotient, transversal, uniformization.

 The author was partially supported by FWF grant P29999.
 ${ }^{1}$ While the results in Kec95 are stated for Polish spaces, the proofs of those to which we refer go through just as easily in the generality discussed here.

