INVARIANT UNIFORMIZATIONS AND
QUASI-TRANSVERSALS

B. MILLER

ABSTRACT. We establish a dichotomy characterizing the class of
(ExA(Y))-invariant Borel sets R C X xY', whose vertical sections
are countable, that admit (E x A(Y))-invariant Borel uniformiza-
tions, where X and Y are Polish spaces and F is a Borel equivalence
relation on X. We achieve this by establishing a dichotomy char-
acterizing the class of Borel equivalence relations F' C F, where F'
has countable index below E and satisfies an additional technical
definability condition, for which there is a Borel set intersecting
each E-class in a non-empty finite union of F-classes.

INTRODUCTION

Endow N with the discrete topology, and N with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and Polish if it is separable and admits a
compatible complete metric. A subset of a topological space is Borel if
it is in the smallest o-algebra containing the open sets, and co-analytic
if its complement is analytic. Every Polish space is analytic (see, for
example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures that a
subset of an analytic Hausdorff space is Borel if and only if it is analytic
and co-analytic (see, for example, [Kec95, 14.11]E[).

A homomorphism from a binary relation R on a set X to a binary
relation S on a set Y is a function ¢: X — Y for which (¢ x ¢)(R) C S,
a reduction of R to S is a homomorphism from R to S that is also
a homomorphism from ~R to ~S, and an embedding of R into S is
an injective reduction of R to S. More generally, an embedding of a
sequence (R;);er of binary relations on a set X into a sequence (.S;);er
of binary relations on a set Y is a function ¢: X — Y that is an
embedding of R; into S; for all 7 € I.
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The diagonal on X is given by A(X) = {(z,y) € X x X | x = y}.
Define I(X) = X x X, and let Ey denote the equivalence relation on
2N given by ¢ Eg d <= 3n € NVm > n c¢(m) = d(m).

The product of binary relations R on X and S on Y is the binary
relation given by (z,y) (Rx S) (2/,y) <= (x Ra'andy S v).
The vertical sections of a set R C X x Y are the sets of the form
R, ={yeY | (x,y) € R}, where x € X. A partial uniformization of
aset R C X XY over an equivalence relation F on Y isaset U C R
such that F' [ U, = I(U,) for all z € X.

Given an equivalence relation E on a set X, the E-saturation of a
set Y C X isgiven by [Y]p ={x € X | Jy € Y 2 E y}, and a set
Y C X is E-complete if X = [Y]g. A quasi-transversal of E over a
subequivalence relation F'is an F-complete set Y C X for which there
exists k£ € N such that every (E | Y)-class is contained in a union
of at most k F'-classes. The following fact is a generalization of the
Glimm-Effros dichotomy for countable Borel equivalence relations:

Theorem 1. Suppose that X is an analytic Hausdorff space, E is a
Borel equivalence relation on X, F is a countable-index Borel sube-
quivalence relation of E, and the projection onto the left coordinate of
every (A(X) x F)-invariant Borel partial uniformization of E over F
is Borel. Then exactly one of the following holds:

(1) There is a partition (By)nen of X into E-invariant Borel sets
with the property that there is an F-invariant Borel quasi-trans-
versal of E | B, over F' | B,, for alln € N.

(2) There is a continuous embedding 7: 28 x N — X of (Ey x
I(N), A(2Y) x A(N)) into (E, F) for which [x(2N x N)|p is E-
wnvariant.

Following the usual abuse of language, we say that a Borel equiva-
lence relation is countable if all of its equivalence classes are countable.
The special case of Theorem [I] where E is countable originally arose
in a conversation with Marks, and was used to eliminate the need for
determinacy in an argument due to Thomas.

A uniformization of a set R C X x Y is a set U C R such that
|U.| = 1 for all z € projyx(R). A Borel equivalence relation E on
an analytic Hausdorff space X is smooth if there is a Borel reduction
7m: X — 2V of E to equality. Kechris has shown that the smooth Borel
equivalence relations are precisely those with the property that every
(E x A(Y))-invariant Borel set R C X x Y with countable vertical
sections has an (E x A(Y))-invariant Borel uniformization (see [Kec20),
Theorem 1.5]). He also asked the finer question as to the circumstances
under which a given (E x A(Y"))-invariant Borel set R C X x Y admits



INVARIANT UNIFORMIZATIONS AND QUASI-TRANSVERSALS 3

such a uniformization. The following fact refines Kechris’s result and
answers his question:

Theorem 2. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, and R C X XY is an (E x A(Y))-invariant
Borel set whose vertical sections are countable. Then exactly one of the
following holds:

(1) There is an (E x A(Y))-invariant Borel uniformization of R.
(2) There are a continuous embedding wx : 28 xN — X of Eg x I(N)
into B and a continuous injection my : 2% x N < Y such that

RO (mx(2¥ x N) x V) = (mx x 7y)(Eg x I(N)).

In {1}, we establish a generalization of Theorem [I] in which F' need
not be contained in F, while simultaneously strengthening it so as to
ensure that, in condition (2), distinct points map to points that are
inequivalent with respect to a given smooth countable Borel subequiv-
alence relation of E satisfying an additional technical property.

In §2| we establish a strengthening of Theorem [2| characterizing
the circumstances under which projy(R) is a countable union of FE-
invariant Borel sets on which R admits an ((E x F') | R)-invariant
Borel quasi-uniformization over a given countable Borel equivalence
relation F'. Here, a quasi-uniformization of a set R C X X Y over
an equivalence relation F' on Y is a set U C R for which there exists
k € Z* such that U, is contained in a non-empty union of at most k
F-classes for all = € projy(R).

1. QUASI-TRANSVERSALS

While the following two facts are consequences of their well-known
analogs for £y, we provide proofs for the reader’s convenience:

Proposition 1.1. Suppose that B C 2V x N is a non-meager set with
the Baire property. Then there exists (c,m) € 2N x N with the property
that BN ([c]g, x {m}) is infinite.

Proof. Fix n € N and s € 2<N for which B is comeager in N, x {n}
(see, for example, [Kec95, Proposition 8.26]). It is sufficient to show
that for all k& € N, there are comeagerly-many ¢ € N, with the property
that B N ([c]g, x N) N (N x {n}) has at least element k elements.
For each permutation o of 2%, let ¢, be the corresponding homeo-
morphism of N x {n}, given by ¢,(s ~t ~¢)(0) = s ~ o(t) ~ ¢ for
all c € 2% and ¢t € 2. Then there are comeagerly-many ¢ € N, with
the property that ¢,(c,n) € B for all permutations o of 2¥ (see, for
example, [Kec99, Exercise 8.45]), and clearly BN ([c|g, x N)N (N x {n})
has at least 2¥ elements for every such c. X
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Proposition 1.2. Suppose that E and F' are equivalence relations on
2N % N with the Baire property, every E-class is a countable union of
(E N F)-classes, and F N (Eq x A(N)) = A(2Y) x A(N). Then E and
F' are meager.

Proof. Suppose, towards a contradiction, that F' is not meager. As F
has the Baire property, the Kuratowski-Ulam theorem (see, for exam-
ple, [Kec95, Theorem 8.41]) yields an F-class C' with the Baire property
that is not meager. But (Eq x A(N)) [ C ¢ A(2Y) x A(N) by Propo-
sition the desired contradiction. It follows that F'is meager.

The Kuratowski-Ulam theorem now ensures that every F'-class is
meager, in which case every (E N F')-class is meager, so every E-class
is meager, thus F is meager. X

An invariant embedding of an equivalence relation £ on X into an
equivalence relation F on Y is an embedding ¢: X <— Y of E into F
for which ¢(X) is F-invariant.

Proposition 1.3. Suppose that U C 2V x N is a non-empty open set.
Then there is a continuous invariant embedding m: 28 x N — U of
Eo x I(N) into (Eq x I(N)) [ U.

Proof. Fix S C (U,en 2*") x N such that {N; x {n} | (s,n) € S}
partitions U, as well as an injective enumeration ((sg,ny),tx)ren of
Sx{ce2|3n e N¥m >n c(m) =0}, and define 7: 2¥ x N < U by

sk (1) if i < sk,

c((i —1)/2) if i > |sg| is odd,
te((i — 2|sk|)/2) if © > 2|sg]| is even, and
(1 — |sk|)/2)  otherwise,

m(c, k)(0)(i) =
and 7(c,k)(1) = ng. X

A homomorphism from a sequence (R;);e; of binary relations on a
set X to a sequence (5;);er of binary relations on a set Y is a function
¢: X — Y that is a homomorphism from R; to S; for all ¢ € I.

Proposition 1.4. Suppose that R is a meager binary relation on 2N x
N. Then there is a continuous injective homomorphism ¢: 2N x N <
2N x N from (Eg x I(N),~(Ey x I(N))) to (Eq x I(N),~R) such that
Ve € 2V ¢([clg, x N) is an (Eq x 1(N))-class.

Proof. Set dy = rp = 1 and ¢y = 0, and fix a decreasing sequence
(Up)nen of dense open symmetric subsets of (2% x N) x (28 x N) whose
intersection is disjoint from R, as well as ¢g: 2° x dy <> 2% x 1.
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Lemma 1.5. Suppose that n € N, d,,, {,,r, € N, and ¢,: 2" X d,, <>
2t 1, is a bijection. Then there exist dpy1 > dp, lns1 > o, Tngl > T,
and a bijection ¢py1: 2" X dpyq < 2941 X 1,4 such that:
(1) Vi < 2V(t,m) € 2" x d,, (¢n(t,m)(0) C ¢pi1(t ~ (i),m)(0) and
¢n(tv m)(l) = gbn—i—l(t ~ (Z>7m)(1))
(2) Vi,j <2¥(t,m) € (2" x 2") x (d,, x dy,)
(i=j <= YleE [l lhi1)
Gr41(t(0) ~ (4),m(0))(0)(€) = dntr(t(1) ~ (5), m(1))(0)(£)).
(3) V(t,m) € (2" x 2") x (d, X d,)
[Lica Nowar~m@n©) X {@ns1 (@) ~ (1), m(i))(1)} € Un.
Proof. Fix an enumeration (tg,my)k<anaz of (2" x 2") x (d,, x d,), as
well as any pair ug € 2N x 2<N such that Vi < 2 ug(i) Z uo(1 — 9).
Given k < 4"d? and vy, € 2<N x 2N fix upy; € 2<N x 2<N such that:
o Vi <2 uk(z) C Uk+1(’i).
® [Lico Nonttatiymi)©uier () X {0t (2), i () (1)} € U
Fix £, 1 > {, and u € 2+17% x 20+1=6n guch that ugng2 (1) E u(i) for
all i < 2. Set dypy = 20+ %d, and 7,.1 = 2r,. Then 2"*d, ., =
bnti=tatlong - — bnsi—tntlobny - — 9fn+rp 1 in which case there is
a bijection ¢, 1: 2" X d,qq <> 29+ X 1,41 with the property that
Onsa(t ~ (i), m)(0) = dn(t,m)(0) ~ u(i) and Pna(t ~ (), m)(1) =
on(t,m)(1) for all (t,m) € 2™ X d,,. =

As ¢, (t,m) T ¢pya(t ~ (i),m) for all i < 2, n € N, and (t,m) €
2" x d,,, we obtain a continuous function ¢: 2% x N — 2N x N by setting
P(c,m) =U, o @n(c I n,m) for all ¢ € 28 and m € N.

To see that ¢ is a homomorphism from Eq, x I(N) to Eq x I(N),
observe that if ¢ € Eq x I(N), then there exists n > max;<9 c(i)(1)
with the property that Ym > n ¢(0)(0)(m) = ¢(1)(0)(m), in which case
Vm = £, ¢(c(0))(0)(m) = ¢(c(1))(0)(m).

To see that ¢ is a homomorphism from ~(Eq x I(N)) to ~R, note that
if ¢ € ~(Ey x I(N)), then there are infinitely many n > max;s c¢(i)(1)
with the property that (¢(c(2)))ica € T1ico Nowii (e(i)(0)1nt1),¢()(1))(0) X
{Dn41(c(@)(0) T (n41),¢(i)(1))(1)} € Un, so (¢(c(i)))i<2 € ~R.

It remains to note that if (¢, m) € 2% x N, then ¢([(c, m)|g,x ) =
Un>m Cb([C]Fn X dn) = Un>m[¢(c> m)]anXI(rn) = [¢(C> m)]lonl(N), where
(F)nen is the increasing sequence of subequivalence relations of Eq
given by ¢ F,, d <= ¥Ym >n c¢(m) = d(m) for all n € N. X

Given n € N and an equivalence relation F' on 2" x (n + 1), let F*
denote the corresponding equivalence relation on 2Y x (n + 1) given by
(e, 0) F* (d,m) <= ((c I n,l) F (d | n,m) and Yk > n c(k) = d(k)).

A one-step extension of F is an equivalence relation F’ on 2" x (n+2)
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such that (s,¢) F (t,m) <= (s ~ (i),0) F' (t ~ (1),m) for all i < 2
and (s, /), (t,m) € 2" x (n+ 1), and such an extension is splitting if it
has the further property that —(s ~ (i),¢) F' (t ~ (1 —4),m) for all
i <2and (s,0),(t,m) € 2" x (n+1). A sequence (F,)nen is suitable if
Fy is the unique equivalence relation on 2° x 1, and F,; is a splitting
one-step extension of F,, for all n € N.

Proposition 1.6. Suppose that (F,)nen s a suitable sequence. Then

there is a clopen transversal U of the equivalence relation F™* = |, o F};-

Proof. Fix the unique transversal Sy of Fy, and given a transversal .5,
of F,, fix a transveral S,11 2 {(t ~ (i),m) |t < 2 and (t,m) € S,} of
Foi1. Set S* = {(t ~c¢,m) | c € 2Y and (t,m) € S} for all n € N and
S C2"x (n+1), and define U = {J,,cy S X

We can now establish our primary technical result.

Theorem 1.7. Suppose that X s an analytic Hausdorff space, E is a
Borel equivalence relation on X, F' is a countable-index Borel subequiv-
alence relation of E for which the projection onto the left coordinate of
every (A(X) x F)-invariant Borel partial uniformization of E over F
is Borel, and F'| is a Borel subequivalence relation of E for which the
E-saturation of every F'\ -invariant Borel partial quasi-transversal of E
over F'| is Borel. Then at least one of the following holds:

(1) There is a partition (By)nen of X into E-invariant Borel sets
such that at least one of the following holds for all n € N:

(a) There is an F-invariant (E | By,)-complete Borel partial
quasi-transversal A, C B, of F over FNF.

(b) There is an F.-invariant Borel quasi-transversal A,, C By,
of E | B, over F, | B,, for some F, € {F,F}.

(2) There exist a suitable sequence (F,)nen and a continuous ho-
momorphism m: 28 x N — X from (F*\ (A(2Y) x A(N)),
(Eo x IN))\ F™*) to (F\F_, E\ (FUF\)) with the property that
Ve € 2V [n([c]g, X N)|F is an E-class, where F* =, . Fr.

Proof. By [dRM20l, Remark 2.14], there are (A(X) x F')-invariant Borel
partial uniformizations R,, of F over F for which F = UneN R,.

Lemma 1.8. Fvery (A(X) x F)-invariant Borel partial uniformiza-
tion R of E over F is contained in a (A(X) x F)-invariant Borel
uniformization S of E over F.

Proof. Set Sy = R, recursively define S,,11 = (R, \ (proj,(S,) xY))US,
for all n € N, and observe that the set S = J, . Sy is as desired. &
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We can clearly assume that Ry = F', and by Lemma [1.§ we can
assume that each R, is a (A(X) x F')-invariant Borel uniformization
of E over F.

We can also assume that F'\ F| # (), since otherwise X is a transver-
sal of F' over FNF|.

Finally, we can assume that £\ (FFU F|) # (. To see this, suppose
otherwise, and define A = {z € X | [z]g € [z]r}. Note that if x € A,
then there exists y € [z]g\ [x]r, in which case [y]r C [z]g\[z]r C [2]F,
and [ylp, = [z]r,, so [z]p = [ylp = [y]r U [ylr, = [z]F,, thus A
is a partial transversal of E over F|. By [dRM20, Proposition 2.1],
there is an F|-invariant Borel partial transversal B C X of E over F'|
containing A. Then ~[B|g is an E-invariant Borel partial transversal
of E over F.

It now follows that there are continuous surjections ¢x: NV — X
(er\Fi - NN - F\FL, qu\(FUpL): |\ E\(FUFL), and ¢Rn: NN R,
for all n € N. Define ¢p\p, : N¥ X 2 — E\ F| by

¢F\Fl(b) if 1 = 1, and

¢E\FL (b7 Z) {QSE\(FUFJ_) (b) otherwise.

We will recursively define a decreasing sequence (B%)a<,, of E-
invariant Borel subsets of X, off of which condition (1) holds. We begin
by setting B° = X. For all limit ordinals A\ < w;, we set B* = No<r B
To describe the construction at successor ordinals, we require several
preliminaries.

An approzimation is a sextuple a = (n*, D* F* )%, 9%, 1/1%\&) with
the property that n® € N, D® is a lexicographically downward-closed
subset of (n®+1) x 2" containing n®x 2"", F'* is an equivalence relation
on D% ¢ D* — N™ for all x € {X, R}, and ¥, p : ~A(D?) — N™.

If a is an approximation for which D* # (n® 4+ 1) x 2", then a
one-step extension of a is an approximation b such that:

e n® =nb.
o D* = D\ {maxy, D%}.
° Fa — Fb [Da.

o Vx € {X, R} ¢¢ = | D

* Vip, = wbE\FL [ ~A(D?).
If a is an approximation for which D% = (n®+1) x 2"°, then a one-step
extension of a is an approximation b such that:

o n’=n%+1.

o DV =nbx 2"
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o Vi < 2¥(m s), n,t) € D*
((m,s) F* (n,t) <= (m,s~ (i)) F* (n,t ~ (i) and
(m s~ (1)) b(n t~(1—1))).
o Vx € {X, R}Vi < 2V(n,t) € D* ¥%(n,t) E ¢2(n,t ~ (7).
o Vi < 2Y((m,s), (n,t)) € ~A(D?)
wE\FL((m s), (n,1)) C I/JE\FL((m s ~ (i), (n,t ~ ()))

A configuration is a sextuple v = (n, DV, F7 %, ¢k, ¥ B\F, ) with
the property that n” € N, D7 is a lexicographically downward-closed
subset of (n” 4 1) x 2" containing n? x 2"", F7 is an equivalence rela-
tion on D7, ¢7: DY — NN for all x € {X, R}, Vpr, © ~ADY) = NN
(Or, 0 PR)(n,t) = ((¢x 0 Yx)(0,1), (¢x 0 ¥} )(n, 1)) for all (n,t) € D7,
and (¢p\p, © (Vpp, X 1rs))((m;5), (n,1)) = ((¢x 0 ¥x)(m, 5), (¢x ©
YY) (n,t)) for all distinct (m,s), (n,t) € D?. We say that v is com-
patible with an E-invariant set X' C X if (¢x o % )(D?) C X', and
compatible with an approximation a if:

e (n* D% F*) = (n", D7, F7).
o Vx € {X,R}V(n,t) € D* Y¢(n,t) C ¢ (n,t).
* Y((m,s), (n,1)) € ~A(D")

Vipnp, (M, 5), (n,1)) E gy, (M, 5), (n,1)).

We say that an approximation a is X’-terminal if no configuration
is compatible with both X’ and a one-step extension of a.

For each configuration 7 such that D7 # (n? 4+ 1) x 27" let 7 be the
lexicographically minimal element of 2" for which (n?,t7) ¢ D and set
C7 = (Ri) (gxov])(04)- For each approximation a with the property
that D* # (n® + 1) x 2™ and each set X’ C X, define A'(a, X’) =
U{C" | v is compatible with a and X'}.

Lemma 1.9. Suppose that X' C X is E-invariant and a is an X'-
terminal approzimation for which D* # (n®+1) x 2. Then A'(a, X")
1s a partial quasi-transversal of F' over FFNF', .

Proof. Suppose, towards a contradiction, that there is a configura-
tion v, compatible with ¢ and X', with the property that C7 con-
tains strictly more than |D?| (F' N F|)-classes, in which case there
exists y € C7\ [(¢x o ¥%)(D)]pnr,. Define n® = n?, as well as
D% = DU {(n% %)}, and fix an extension 1% of ¥} to D° for which
(dx o 5 ) (ne, t“) =y. Let F° be the equivalence relation on D’ given
by F° | DY = F7 | DY and (n,t) F? (n%t%) <= (¢x ov%)(n,t) F
(px o ¥%)(n? t?) for all (n,t) € D° fix an extension ¥% of 1} to
D° for which (¢g o ¥%)(n% 1) = y, and fix an extension ¢%, . of
Vg, to ~A(D%) such that (6p\r, o (65 % 1ps))((m, ), (n,1)) =
((¢Xo¢x)(m s), (px o V% )(n,t)) for all distinct (m,s),(n,t) € D°
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such that (n®,t*) € {(m,s),(n,t)}. Then § is compatible with a one-
step extension of a, contradicting the fact that a is X'-terminal. O

Set X = X x {F,F,} and E = E x I({F,F.}), and define F on
X by (2, F,) F (¢/,F) <= (F. = F'andx F, 2/). For each
configuration v, set A7 = (¢x o 9% ) (D7), and for each approximation
a with the property that D* = (n®+1) x 2" and each E-invariant set
X' C X, define o7 (a, X') = {A7 | v is compatible with a and X’} and
o (a, X)) = {Ax{F,F.}| A€ (a,X')}. We say that a family .o/
of subsets of X is F-intersecting if the F-saturations of any two sets
in the family have a point in common, and E-locally F-intersecting
if, for every E-class C, the family & | C = {A € & | A C C} is
F-intersecting.

Lemma 1.10. Suppose that X' C X and a is an X'-terminal approz-
imation for which D* = (n® + 1) x 2"°. Then </ (a, X") is E-locally
F'-intersecting.

Proof. Suppose, towards a contradiction, that there are configurations
v and 7, both compatible with a and X', such that A" and A™
are contained in the same FE-class, but have disjoint F-saturations
and disjoint F| -saturations. Set n® = n® + 1 and D’ = n’ x 2”6,
define functions ?: D° — NN by ¢%(n,t ~ (i)) = ¢ (n,t) for all
* € {X,R}, i <2, and (n,t) € D° let F? be the equivalence relation
on D given by (m, s) F° (n,t) <= (éx 0t )(m,s) F (6x00%)(n,?)
for all (m,s), (n,t) € D, and fix ¢y, p : ~A(D’) — NV such that
U8 ((mss ~ (D), (0, ~ (D)) = 0 5, ((m, 5), (m, 1)) for all i < 2 and
distinct (m, s), (n,t) € D* and

(b, © Wpyp, X 1ps))((mys ~ (0)), (.t ~ (1= 1))
= <<¢ 0¢§<)(m»5 - (2))7 (¢X Oiﬂi{)(”at ~ (1 - Z)))

for all i < 2 and (m, s), (n,t) € D* Then ¢ is compatible with a one-
step extension of a, contradicting the fact that a is X'-terminal. I

Suppose that a is Bterminal. If D* # (n®+ 1) x 2", then Lemma
and [dRM20), Proposition 2.1] yield an F-invariant Borel partial
quasi-transversal A(a, B*) of F' over F'N F| containing A'(a, BY), in
which case we define B(a, B*) = [A(a, BY)]g. A set Y C X punctures
a family o of subsets of X if ANY # () for all A € &. If D* =
(n® 4+ 1) x 2™, then Lemma and [dRM20, Proposition 4.1] yield
an F-invariant Borel partial quasi-transversal A(a, B*) of E over F
puncturing .27 (a, B*), and it follows that the set Ap, (a, B*) = {z € X |
(z,F,) € A(a, B*)} is an F,-invariant Borel partial quasi-transversal
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of E over F, for all F, € {F, F }, and Up,c(p p,y Ar. (a, BY) punctures
o/ (a, B*), in which case we define B(a, B*) = Up, c(p r,,[Ar (¢, B)]5.

Let B®™! be the set obtained from B® by subtracting the union
of the sets of the form B(a, B*), where a varies over all B®-terminal
approximations.

Lemma 1.11. Suppose that a < w; and a is a non-B*T'-terminal
approximation. Then a has a non-B*-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration
v compatible with b and B**!. Then (¢x o ¢%)(D?) C B**! so b is
not B“-terminal. X

Fix a < w; such that the families of B%- and B**!-terminal approxi-
mations coincide, and let ag be the approximation given by n® = 0 and
D% =1x2° As o (ap, X") = {{(z,F,) | F, € {F,F,}} |z € X'} for
all F-invariant sets X’ C X, we can assume that ag is not B®-terminal,
since otherwise B“™! = ), so condition (1) holds.

By recursively applying Lemma [1.11] we obtain non-B®-terminal
one-step extensions a,, ; of a), for all n € N. Let (ay),en be the unique
subsequence such that D = (n+1)x2" for alln € N. Define F,, = F
for all n € N, ¢,: 28 x N = N¥ by ¢.(¢,m) = U,,>,, ¥ (m, c(0) | n)
for all x € {X, R}, and ¥\, : (Eg x I(N))\ (A(2Y) x A(N)) — NN by
¢E\FJ_(<b7 6)7 (C7 m)) = UnZn((b,Z),(c,m)) ¢%T§FL((€7 bl n)7 (ma cf n))7 where
n((b,£),(c,m)) is the least natural number n > max{¢,m} such that
Vk > n b(k) = ¢(k). We will show that the function m = ¢x 0 1y is as
desired.

To see that Ve € 2V [1([c]g, x N)]r is an E-class, we will show that
if c € 2% and m € N, then (¢g,, 0 ¥r)(c,m) = (7(c,0),7(c,m)). As
X x X is a Hausdorff space, it is sufficient to show that if U is an open
neighborhood of (7(c,0),7(¢,m)) and V is an open neighborhood of
(¢R,, © Yr)(c,m), then U NV # . Towards this end, fix n > m such
that ¢x(Nyan(0.eim)) X Ox(Nyan metny) € U and ¢r,, (Nyan onemy) S V.
As a,, is not B*-terminal, there is a configuration v compatible with
an, in which case ((¢px o ¥%)(0,¢ | n), (¢x o ¥} )(m,c | n)) € U and
(¢r,, © dk)(m,c[n) €V, thus UNV # 0.

It now only remains to establish that 7 is a homomorphism from
(F*\ (A(2Y) x A(N)), (Eg x I(N))\ F*) to (F\ F.,(E\ (FUF))).
We will show the stronger fact that if (b, ¢) and (¢, m) are distinct but
(Eo x I(N))-equivalent, then (¢p\p, © (Yp\p, X 1p+))((b,€), (c,m)) =
(w(b,0),m(c,m)). As X x X is a Hausdorff space, it is sufficient to
show that if U is an open neighborhood of (7(b,¢),7(c,m)) and V' is
an open neighborhood of (¢p\r, © (VE\r, X 1r+))((b,€),(c,m)), then
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UNV # (. Towards this end, set n = n((b,¥),(c,m)), and note that
Ox (Nyan (051m)) X Ox (Nyan (merny) € U and ¢p\r, (NwaE’{Fl((E,b{n),(m,c[n)) X
{1p((b,0),(c,m))}) C V. As a, is not B%terminal, there exists a con-
figuration « compatible with a,, so ((¢xov¥)(¢,b | n), (dxox)(m,c |
n)) € U and ¢p(tpp (60 [ n),(m,c | n)),1p-((b,£), (¢c,m))) € V,
and it follows that U NV # 0. =

Remark 1.12. The apparent use of choice beyond DC in the above ar-
gument can be eliminated by first running the analog of the argument
without [dRM20), Proposition 2.1] and replacing the use of [dRM20,
Propositions 4.1] with the use of its weakening without any definabil-
ity constraints on the partial quasi-transversal puncturing the family
(which can be proven in the same manner, but without using |dRM20),
Proposition 2.1]), in order to obtain an upper bound o’ < w; on the
least ordinal o < w; for which the sets of B and B*"!-terminal ap-
proximations coincide.

The composition of sets R C X x Y and S C Y x Z is given by
RoS={(z,2) e XxZ|IyeYxRyS z}.

Theorem 1.13. Suppose that X is an analytic Hausdorff space, E is
a Borel equivalence relation on X, F s a Borel equivalence relation
on X for which every E-class is a countable union of (E N F')-classes
and the projection onto the left coordinate of every (A(X) x (ENF))-
invariant Borel partial uniformization of E over E N F is Borel, and
F\ is a smooth countable Borel subequivalence relation of E for which
E=(ENF)oF,. Then exactly one of the following holds:

(1) There is a partition (By)nen of X into E-invariant Borel sets
with the property that there is an (ENF)-invariant Borel quasi-
transversal A, C B,, of E | By, over (ENF) | B, for alln € N.

(2) There is a continuous embedding 7: 28 x N — X of (Ey x
I(N), A(2Y) x A(N)) into (E, FUF\) for which [(2Y x N)|gnr
1s E-invariant.

Proof. To see that conditions (1) and (2) are mutually exclusive, note
that if both hold, then there exists n € N for which #7'(B,) is not
meager, thus 77'(A4,,) is a non-meager Borel partial quasi-transversal
of Eg x I(N), contradicting Proposition [L.1]

Note that if A € X is an FE-invariant Borel set for which there is
an F'| -invariant Borel quasi-transversal of & | A over F'| | A, then
the smoothness of F'| and [HKLI0, Theorem 1.1] ensure that E [ A is
smooth. Moreover, if B C X is an E-invariant Borel set for which there
isan (£ | B)-complete (ENF)-invariant Borel partial quasi-transversal
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of ENF over ENFNF|, then the fact that £ = (ENF)o F| ensures
that B is a partial quasi-transversal of FE over F'|, so F | B is smooth.

By [dRM20, Theorem 2.6] and Theorem[1.7, we can therefore assume
that there is a suitable sequence (F},)nen and a continuous homomor-
phism ¢: 2¥ x N — X from (F*\ (A(2Y) x A(N)), (Eq x I[(N))\ £*) to
(ENF)\ F,E\ (FUF))) such that Vc € 2V [¢([c]g, x N)|gnr
is an FE-class, where F* = (J,.yF;. As Proposition yields a
clopen transversal U C 2V x N of F*, Proposition gives rise to
a continuous invariant embedding x: 2% x N < U of Ey x I(N) into
(E¢ x I(N)) | U, in which case ¢ o x is a continuous homomorphism
from (Eq x I(N)) \ (A(2Y) x A(N)) to E \ (F U F,) with the prop-
erty that Ve € 2 [(¢ o x)([c]g, X N)|gnr is an E-class. As Propo-
sition ensures that the preimages £’ and F’ of E and F under
(pox) x (¢ox) are meager, Proposition yields a continuous injec-
tive homomorphism ¢ : 28 x N — 2N x N from (Eg x [(N), ~(Eq x I(N)))
to (Eg x I(N),~(E"U F")) with the property that Vc € 2V ¢([c]g, x N)
is an (Eq x I(N))-class. Define m = ¢ o x 0 9. =

2. UNIFORMIZATIONS

As a corollary of Theorem [1.13] we obtain the following:

Theorem 2.1. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, F is a countable Borel equivalence relation
onY, and R C X XY is an (E x A(Y))-invariant Borel set whose
vertical sections are contained in countable unions of F'-classes. Then
exactly one of the following holds:

(1) There is a partition (By,)nen of projx(R) into E-invariant Bor-
el sets with the property that there is an ((E X F') | R)-invariant
Borel quasi-uniformization of RN (B, x Y') for alln € N.

(2) There are continuous embeddings mx : 2¥ x N < X of Eg x I(N)
into E and my : 28 x N = Y of A(2Y) x A(N) into F such that
RN (7T)(<2N X N) X Y) = [(ﬂ'X X Wy)(EO X I(N))](A(X)XF)[R

Proof. To see that conditions (1) and (2) are mutually exclusive, note
that if both hold, then there exists n € N for which 7'(B,) is not
meager, in which case the pullback of the corresponding ((E x F) | R)-
invariant Borel quasi-uniformization of RN (B,, x Y') through mx X my
is a non-meager Borel quasi-transversal of Ey x I(N), contradicting
Proposition [I.T}

Suppose now that condition (1) fails. Then Theorem yields a
continuous embedding 7: 2¥xN — R of (Egx I(N), A(2Y) x A(N)) into
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(EXI(Y),[(X)x F)U(A(X)x I(Y))) for which [7(2" X N)](px g is
((ExI(Y)) I R)-invariant. Set mx = projyom and my = projyom. K

As a corollary, we obtain the following generalization of Theorem [2}

Theorem 2.2. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, F is a smooth countable Borel equivalence
relation on' Y, and R C X XY is an (E x A(Y))-invariant Borel set
whose vertical sections are contained in countable unions of F'-classes.
Then exactly one of the following holds:

(1) There is an ((E x F') | R)-invariant Borel uniformization of R
over F'.

(2) There are continuous embeddings wx : 2% xN — X of Eg x I(N)
into E and my: 28 x N = Y of A(2Y) x A(N) into F such that
RN (77')((2N X N) X Y) = [(ﬂ'X X Wy)(EO X I(N)>](A(X)><F)[R-

Proof. By Theorem [2.1] it is sufficient to show that if every vertical
section of R is contained in a union of finitely-many F'-classes, then
there is a Borel uniformization of R. But this is a straightforward
consequence of the original Lusin—Novikov uniformization theorem. X
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