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Abstract. We establish a dichotomy characterizing the class of
(E×∆(Y ))-invariant Borel sets R ⊆ X×Y , whose vertical sections
are countable, that admit (E ×∆(Y ))-invariant Borel uniformiza-
tions, where X and Y are Polish spaces and E is a Borel equivalence
relation on X. We achieve this by establishing a dichotomy char-
acterizing the class of Borel equivalence relations F ⊆ E, where F
has countable index below E and satisfies an additional technical
definability condition, for which there is a Borel set intersecting
each E-class in a non-empty finite union of F -classes.

Introduction

Endow N with the discrete topology, and NN with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and Polish if it is separable and admits a
compatible complete metric. A subset of a topological space is Borel if
it is in the smallest σ-algebra containing the open sets, and co-analytic
if its complement is analytic. Every Polish space is analytic (see, for
example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures that a
subset of an analytic Hausdorff space is Borel if and only if it is analytic
and co-analytic (see, for example, [Kec95, 14.11]1).

A homomorphism from a binary relation R on a set X to a binary
relation S on a set Y is a function φ : X → Y for which (φ×φ)(R) ⊆ S,
a reduction of R to S is a homomorphism from R to S that is also
a homomorphism from ∼R to ∼S, and an embedding of R into S is
an injective reduction of R to S. More generally, an embedding of a
sequence (Ri)i∈I of binary relations on a set X into a sequence (Si)i∈I
of binary relations on a set Y is a function φ : X → Y that is an
embedding of Ri into Si for all i ∈ I.

2010 Mathematics Subject Classification. Primary 03E15, 28A05.
Key words and phrases. Glimm-Effros, Lusin-Novikov, quotient, transversal,

uniformization.
The author was partially supported by FWF grant P29999.
1While the results in [Kec95] are stated for Polish spaces, the proofs of those to

which we refer go through just as easily in the generality discussed here.
1



2 B. MILLER

The diagonal on X is given by ∆(X) = {(x, y) ∈ X × X | x = y}.
Define I(X) = X × X, and let E0 denote the equivalence relation on
2N given by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m).

The product of binary relations R on X and S on Y is the binary
relation given by (x, y) (R× S) (x′, y′) ⇐⇒ (x R x′ and y S y′).
The vertical sections of a set R ⊆ X × Y are the sets of the form
Rx = {y ∈ Y | (x, y) ∈ R}, where x ∈ X. A partial uniformization of
a set R ⊆ X × Y over an equivalence relation F on Y is a set U ⊆ R
such that F � Ux = I(Ux) for all x ∈ X.

Given an equivalence relation E on a set X, the E-saturation of a
set Y ⊆ X is given by [Y ]E = {x ∈ X | ∃y ∈ Y x E y}, and a set
Y ⊆ X is E-complete if X = [Y ]E. A quasi-transversal of E over a
subequivalence relation F is an E-complete set Y ⊆ X for which there
exists k ∈ N such that every (E � Y )-class is contained in a union
of at most k F -classes. The following fact is a generalization of the
Glimm–Effros dichotomy for countable Borel equivalence relations:

Theorem 1. Suppose that X is an analytic Hausdorff space, E is a
Borel equivalence relation on X, F is a countable-index Borel sube-
quivalence relation of E, and the projection onto the left coordinate of
every (∆(X)× F )-invariant Borel partial uniformization of E over F
is Borel. Then exactly one of the following holds:

(1) There is a partition (Bn)n∈N of X into E-invariant Borel sets
with the property that there is an F -invariant Borel quasi-trans-
versal of E � Bn over F � Bn for all n ∈ N.

(2) There is a continuous embedding π : 2N × N ↪→ X of (E0 ×
I(N),∆(2N)×∆(N)) into (E,F ) for which [π(2N × N)]F is E-
invariant.

Following the usual abuse of language, we say that a Borel equiva-
lence relation is countable if all of its equivalence classes are countable.
The special case of Theorem 1 where E is countable originally arose
in a conversation with Marks, and was used to eliminate the need for
determinacy in an argument due to Thomas.

A uniformization of a set R ⊆ X × Y is a set U ⊆ R such that
|Ux| = 1 for all x ∈ projX(R). A Borel equivalence relation E on
an analytic Hausdorff space X is smooth if there is a Borel reduction
π : X → 2N of E to equality. Kechris has shown that the smooth Borel
equivalence relations are precisely those with the property that every
(E × ∆(Y ))-invariant Borel set R ⊆ X × Y with countable vertical
sections has an (E×∆(Y ))-invariant Borel uniformization (see [Kec20,
Theorem 1.5]). He also asked the finer question as to the circumstances
under which a given (E×∆(Y ))-invariant Borel set R ⊆ X×Y admits
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such a uniformization. The following fact refines Kechris’s result and
answers his question:

Theorem 2. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, and R ⊆ X×Y is an (E×∆(Y ))-invariant
Borel set whose vertical sections are countable. Then exactly one of the
following holds:

(1) There is an (E ×∆(Y ))-invariant Borel uniformization of R.
(2) There are a continuous embedding πX : 2N×N ↪→ X of E0×I(N)

into E and a continuous injection πY : 2N × N ↪→ Y such that
R ∩ (πX(2N × N)× Y ) = (πX × πY )(E0 × I(N)).

In §1, we establish a generalization of Theorem 1 in which F need
not be contained in E, while simultaneously strengthening it so as to
ensure that, in condition (2), distinct points map to points that are
inequivalent with respect to a given smooth countable Borel subequiv-
alence relation of E satisfying an additional technical property.

In §2, we establish a strengthening of Theorem 2 characterizing
the circumstances under which projX(R) is a countable union of E-
invariant Borel sets on which R admits an ((E × F ) � R)-invariant
Borel quasi-uniformization over a given countable Borel equivalence
relation F . Here, a quasi-uniformization of a set R ⊆ X × Y over
an equivalence relation F on Y is a set U ⊆ R for which there exists
k ∈ Z+ such that Ux is contained in a non-empty union of at most k
F -classes for all x ∈ projX(R).

1. Quasi-transversals

While the following two facts are consequences of their well-known
analogs for E0, we provide proofs for the reader’s convenience:

Proposition 1.1. Suppose that B ⊆ 2N × N is a non-meager set with
the Baire property. Then there exists (c,m) ∈ 2N×N with the property
that B ∩ ([c]E0 × {m}) is infinite.

Proof. Fix n ∈ N and s ∈ 2<N for which B is comeager in Ns × {n}
(see, for example, [Kec95, Proposition 8.26]). It is sufficient to show
that for all k ∈ N, there are comeagerly-many c ∈ Ns with the property
that B ∩ ([c]E0 × N) ∩ (Ns × {n}) has at least element k elements.

For each permutation σ of 2k, let φσ be the corresponding homeo-
morphism of Ns × {n}, given by φσ(s a t a c)(0) = s a σ(t) a c for
all c ∈ 2N and t ∈ 2k. Then there are comeagerly-many c ∈ Ns with
the property that φσ(c, n) ∈ B for all permutations σ of 2k (see, for
example, [Kec95, Exercise 8.45]), and clearly B∩([c]E0×N)∩(Ns×{n})
has at least 2k elements for every such c.
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Proposition 1.2. Suppose that E and F are equivalence relations on
2N × N with the Baire property, every E-class is a countable union of
(E ∩ F )-classes, and F ∩ (E0 ×∆(N)) = ∆(2N)×∆(N). Then E and
F are meager.

Proof. Suppose, towards a contradiction, that F is not meager. As F
has the Baire property, the Kuratowski-Ulam theorem (see, for exam-
ple, [Kec95, Theorem 8.41]) yields an F -class C with the Baire property
that is not meager. But (E0 ×∆(N)) � C * ∆(2N) ×∆(N) by Propo-
sition 1.1, the desired contradiction. It follows that F is meager.

The Kuratowski-Ulam theorem now ensures that every F -class is
meager, in which case every (E ∩ F )-class is meager, so every E-class
is meager, thus E is meager.

An invariant embedding of an equivalence relation E on X into an
equivalence relation F on Y is an embedding φ : X ↪→ Y of E into F
for which φ(X) is F -invariant.

Proposition 1.3. Suppose that U ⊆ 2N × N is a non-empty open set.
Then there is a continuous invariant embedding π : 2N × N ↪→ U of
E0 × I(N) into (E0 × I(N)) � U .

Proof. Fix S ⊆ (
⋃
n∈N 22n) × N such that {Ns × {n} | (s, n) ∈ S}

partitions U , as well as an injective enumeration ((sk, nk), tk)k∈N of
S×{c ∈ 2N | ∃n ∈ N∀m ≥ n c(m) = 0}, and define π : 2N×N ↪→ U by

π(c, k)(0)(i) =


sk(i) if i < |sk|,
c((i− 1)/2) if i ≥ |sk| is odd,

tk((i− 2|sk|)/2) if i ≥ 2|sk| is even, and

c((i− |sk|)/2) otherwise,

and π(c, k)(1) = nk.

A homomorphism from a sequence (Ri)i∈I of binary relations on a
set X to a sequence (Si)i∈I of binary relations on a set Y is a function
φ : X → Y that is a homomorphism from Ri to Si for all i ∈ I.

Proposition 1.4. Suppose that R is a meager binary relation on 2N×
N. Then there is a continuous injective homomorphism φ : 2N × N ↪→
2N × N from (E0 × I(N),∼(E0 × I(N))) to (E0 × I(N),∼R) such that
∀c ∈ 2N φ([c]E0 × N) is an (E0 × I(N))-class.

Proof. Set d0 = r0 = 1 and `0 = 0, and fix a decreasing sequence
(Un)n∈N of dense open symmetric subsets of (2N×N)× (2N×N) whose
intersection is disjoint from R, as well as φ0 : 20 × d0 ↔ 2`0 × r0.
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Lemma 1.5. Suppose that n ∈ N, dn, `n, rn ∈ N, and φn : 2n × dn ↔
2`n×rn is a bijection. Then there exist dn+1 > dn, `n+1 > `n, rn+1 > rn,
and a bijection φn+1 : 2n+1 × dn+1 ↔ 2`n+1 × rn+1 such that:

(1) ∀i < 2∀(t,m) ∈ 2n×dn (φn(t,m)(0) v φn+1(t a (i),m)(0) and
φn(t,m)(1) = φn+1(t a (i),m)(1)).

(2) ∀i, j < 2∀(t,m) ∈ (2n × 2n)× (dn × dn)
(i = j ⇐⇒ ∀` ∈ [`n, `n+1)
φn+1(t(0) a (i),m(0))(0)(`) = φn+1(t(1) a (j),m(1))(0)(`)).

(3) ∀(t,m) ∈ (2n × 2n)× (dn × dn)∏
i<2Nφn+1(t(i)a(i),m(i))(0) × {φn+1(t(i) a (i),m(i))(1)} ⊆ Un.

Proof. Fix an enumeration (tk,mk)k<4nd2n
of (2n × 2n) × (dn × dn), as

well as any pair u0 ∈ 2<N × 2<N such that ∀i < 2 u0(i) 6v u0(1 − i).
Given k < 4nd2

n and uk ∈ 2<N × 2<N, fix uk+1 ∈ 2<N × 2<N such that:

• ∀i < 2 uk(i) v uk+1(i).
•
∏

i<2Nφn(tk(i),mk(i))(0)auk+1(i) × {φn(tk(i),mk(i))(1)} ⊆ Un.

Fix `n+1 > `n and u ∈ 2`n+1−`n × 2`n+1−`n such that u4nd2n
(i) v u(i) for

all i < 2. Set dn+1 = 2`n+1−`ndn and rn+1 = 2rn. Then 2n+1dn+1 =
2`n+1−`n+12ndn = 2`n+1−`n+12`nrn = 2`n+1rn+1, in which case there is
a bijection φn+1 : 2n+1 × dn+1 ↔ 2`n+1 × rn+1 with the property that
φn+1(t a (i),m)(0) = φn(t,m)(0) a u(i) and φn+1(t a (i),m)(1) =
φn(t,m)(1) for all (t,m) ∈ 2n × dn.

As φn(t,m) @ φn+1(t a (i),m) for all i < 2, n ∈ N, and (t,m) ∈
2n×dn, we obtain a continuous function φ : 2N×N→ 2N×N by setting
φ(c,m) =

⋃
n>m φn(c � n,m) for all c ∈ 2N and m ∈ N.

To see that φ is a homomorphism from E0 × I(N) to E0 × I(N),
observe that if c ∈ E0 × I(N), then there exists n ≥ maxi<2 c(i)(1)
with the property that ∀m ≥ n c(0)(0)(m) = c(1)(0)(m), in which case
∀m ≥ `n φ(c(0))(0)(m) = φ(c(1))(0)(m).

To see that φ is a homomorphism from ∼(E0×I(N)) to ∼R, note that
if c ∈ ∼(E0 × I(N)), then there are infinitely many n ≥ maxi<2 c(i)(1)
with the property that (φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)(0)�(n+1),c(i)(1))(0)×

{φn+1(c(i)(0) � (n+ 1), c(i)(1))(1)} ⊆ Un, so (φ(c(i)))i<2 ∈ ∼R.
It remains to note that if (c,m) ∈ 2N × N, then φ([(c,m)]E0×I(N)) =⋃
n>m φ([c]Fn × dn) =

⋃
n>m[φ(c,m)]F`n×I(rn) = [φ(c,m)]E0×I(N), where

(Fn)n∈N is the increasing sequence of subequivalence relations of E0

given by c Fn d ⇐⇒ ∀m ≥ n c(m) = d(m) for all n ∈ N.

Given n ∈ N and an equivalence relation F on 2n × (n + 1), let F ∗

denote the corresponding equivalence relation on 2N× (n+ 1) given by
(c, `) F ∗ (d,m) ⇐⇒ ((c � n, `) F (d � n,m) and ∀k ≥ n c(k) = d(k)).
A one-step extension of F is an equivalence relation F ′ on 2n+1×(n+2)
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such that (s, `) F (t,m) ⇐⇒ (s a (i), `) F ′ (t a (i),m) for all i < 2
and (s, `), (t,m) ∈ 2n × (n+ 1), and such an extension is splitting if it
has the further property that ¬(s a (i), `) F ′ (t a (1 − i),m) for all
i < 2 and (s, `), (t,m) ∈ 2n× (n+ 1). A sequence (Fn)n∈N is suitable if
F0 is the unique equivalence relation on 20 × 1, and Fn+1 is a splitting
one-step extension of Fn for all n ∈ N.

Proposition 1.6. Suppose that (Fn)n∈N is a suitable sequence. Then
there is a clopen transversal U of the equivalence relation F ∗ =

⋃
n∈N F

∗
n .

Proof. Fix the unique transversal S0 of F0, and given a transversal Sn
of Fn, fix a transveral Sn+1 ⊇ {(t a (i),m) | i < 2 and (t,m) ∈ Sn} of
Fn+1. Set S∗ = {(t a c,m) | c ∈ 2N and (t,m) ∈ S} for all n ∈ N and
S ⊆ 2n × (n+ 1), and define U =

⋃
n∈N S

∗
n.

We can now establish our primary technical result.

Theorem 1.7. Suppose that X is an analytic Hausdorff space, E is a
Borel equivalence relation on X, F is a countable-index Borel subequiv-
alence relation of E for which the projection onto the left coordinate of
every (∆(X)× F )-invariant Borel partial uniformization of E over F
is Borel, and F⊥ is a Borel subequivalence relation of E for which the
E-saturation of every F⊥-invariant Borel partial quasi-transversal of E
over F⊥ is Borel. Then at least one of the following holds:

(1) There is a partition (Bn)n∈N of X into E-invariant Borel sets
such that at least one of the following holds for all n ∈ N:
(a) There is an F -invariant (E � Bn)-complete Borel partial

quasi-transversal An ⊆ Bn of F over F ∩ F⊥.
(b) There is an F∗-invariant Borel quasi-transversal An ⊆ Bn

of E � Bn over F∗ � Bn, for some F∗ ∈ {F, F⊥}.
(2) There exist a suitable sequence (Fn)n∈N and a continuous ho-

momorphism π : 2N × N → X from (F ∗ \ (∆(2N) × ∆(N)),
(E0×I(N))\F ∗) to (F \F⊥, E \(F ∪F⊥)) with the property that
∀c ∈ 2N [π([c]E0 × N)]F is an E-class, where F ∗ =

⋃
n∈N F

∗
n .

Proof. By [dRM20, Remark 2.14], there are (∆(X)×F )-invariant Borel
partial uniformizations Rn of E over F for which E =

⋃
n∈NRn.

Lemma 1.8. Every (∆(X) × F )-invariant Borel partial uniformiza-
tion R of E over F is contained in a (∆(X) × F )-invariant Borel
uniformization S of E over F .

Proof. Set S0 = R, recursively define Sn+1 = (Rn\(proj0(Sn)×Y ))∪Sn
for all n ∈ N, and observe that the set S =

⋃
n∈N Sn is as desired.
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We can clearly assume that R0 = F , and by Lemma 1.8, we can
assume that each Rn is a (∆(X) × F )-invariant Borel uniformization
of E over F .

We can also assume that F \F⊥ 6= ∅, since otherwise X is a transver-
sal of F over F ∩ F⊥.

Finally, we can assume that E \ (F ∪ F⊥) 6= ∅. To see this, suppose
otherwise, and define A = {x ∈ X | [x]E * [x]F}. Note that if x ∈ A,
then there exists y ∈ [x]E \ [x]F , in which case [y]F ⊆ [x]E \ [x]F ⊆ [x]F⊥
and [y]F⊥ = [x]F⊥ , so [x]E = [y]E = [y]F ∪ [y]F⊥ = [x]F⊥ , thus A
is a partial transversal of E over F⊥. By [dRM20, Proposition 2.1],
there is an F⊥-invariant Borel partial transversal B ⊆ X of E over F⊥
containing A. Then ∼[B]E is an E-invariant Borel partial transversal
of E over F .

It now follows that there are continuous surjections φX : NN � X,
φF\F⊥ : NN � F\F⊥, φE\(F∪F⊥) : NN � E\(F∪F⊥), and φRn : NN � Rn

for all n ∈ N. Define φE\F⊥ : NN × 2� E \ F⊥ by

φE\F⊥(b, i) =

{
φF\F⊥(b) if i = 1, and

φE\(F∪F⊥)(b) otherwise.

We will recursively define a decreasing sequence (Bα)α<ω1 of E-
invariant Borel subsets of X, off of which condition (1) holds. We begin
by setting B0 = X. For all limit ordinals λ < ω1, we set Bλ =

⋂
α<λB

α.
To describe the construction at successor ordinals, we require several
preliminaries.

An approximation is a sextuple a = (na, Da, F a, ψaX , ψ
a
R, ψ

a
E\F⊥) with

the property that na ∈ N, Da is a lexicographically downward-closed
subset of (na+1)×2n

a
containing na×2n

a
, F a is an equivalence relation

on Da, ψa∗ : Da → Nna for all ∗ ∈ {X,R}, and ψaE\F⊥ : ∼∆(Da)→ Nna .

If a is an approximation for which Da 6= (na + 1) × 2n
a
, then a

one-step extension of a is an approximation b such that:

• na = nb.
• Da = Db \ {maxlex D

b}.
• F a = F b � Da.
• ∀∗ ∈ {X,R} ψa∗ = ψb∗ � D

a.
• ψaE\F⊥ = ψbE\F⊥ � ∼∆(Da).

If a is an approximation for which Da = (na+1)×2n
a
, then a one-step

extension of a is an approximation b such that:

• nb = na + 1.
• Db = nb × 2n

b
.
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• ∀i < 2∀(m, s), (n, t) ∈ Da

((m, s) F a (n, t) ⇐⇒ (m, s a (i)) F b (n, t a (i)) and
¬(m, s a (i)) F b (n, t a (1− i))).

• ∀∗ ∈ {X,R}∀i < 2∀(n, t) ∈ Da ψa∗(n, t) v ψb∗(n, t a (i)).
• ∀i < 2∀((m, s), (n, t)) ∈ ∼∆(Da)

ψaE\F⊥((m, s), (n, t)) v ψbE\F⊥((m, s a (i)), (n, t a (i))).

A configuration is a sextuple γ = (nγ, Dγ, F γ, ψγX , ψ
γ
R, ψ

γ
E\F⊥) with

the property that nγ ∈ N, Dγ is a lexicographically downward-closed
subset of (nγ + 1)× 2n

γ
containing nγ × 2n

γ
, F γ is an equivalence rela-

tion on Dγ, ψγ∗ : Dγ → NN for all ∗ ∈ {X,R}, ψγE\F⊥ : ∼∆(Dγ) → NN,

(φRn ◦ ψ
γ
R)(n, t) = ((φX ◦ ψγX)(0, t), (φX ◦ ψγX)(n, t)) for all (n, t) ∈ Dγ,

and (φE\F⊥ ◦ (ψγE\F⊥ × 1F δ))((m, s), (n, t)) = ((φX ◦ ψγX)(m, s), (φX ◦
ψγX)(n, t)) for all distinct (m, s), (n, t) ∈ Dγ. We say that γ is com-
patible with an E-invariant set X ′ ⊆ X if (φX ◦ ψγX)(Dγ) ⊆ X ′, and
compatible with an approximation a if:

• (na, Da, F a) = (nγ, Dγ, F γ).
• ∀∗ ∈ {X,R}∀(n, t) ∈ Da ψa∗(n, t) v ψγ∗ (n, t).
• ∀((m, s), (n, t)) ∈ ∼∆(Da)

ψaE\F⊥((m, s), (n, t)) v ψγE\F⊥((m, s), (n, t)).

We say that an approximation a is X ′-terminal if no configuration
is compatible with both X ′ and a one-step extension of a.

For each configuration γ such that Dγ 6= (nγ + 1)× 2n
γ
, let tγ be the

lexicographically minimal element of 2n
γ

for which (nγ, tγ) /∈ Dγ and set
Cγ = (Rnγ )(φX◦ψγX)(0,tγ). For each approximation a with the property
that Da 6= (na + 1) × 2n

a
and each set X ′ ⊆ X, define A′(a,X ′) =⋃

{Cγ | γ is compatible with a and X ′}.
Lemma 1.9. Suppose that X ′ ⊆ X is E-invariant and a is an X ′-
terminal approximation for which Da 6= (na + 1)× 2n

a
. Then A′(a,X ′)

is a partial quasi-transversal of F over F ∩ F⊥.

Proof. Suppose, towards a contradiction, that there is a configura-
tion γ, compatible with a and X ′, with the property that Cγ con-
tains strictly more than |Dγ| (F ∩ F⊥)-classes, in which case there
exists y ∈ Cγ \ [(φX ◦ ψγX)(Dγ)]F∩F⊥ . Define nδ = na, as well as
Dδ = Da ∪ {(na, ta)}, and fix an extension ψδX of ψγX to Dδ for which
(φX ◦ ψδX)(na, ta) = y. Let F δ be the equivalence relation on Dδ given
by F δ � Dγ = F γ � Dγ and (n, t) F δ (na, ta) ⇐⇒ (φX ◦ ψδX)(n, t) F
(φX ◦ ψδX)(na, ta) for all (n, t) ∈ Dδ, fix an extension ψδR of ψγR to
Dδ for which (φR ◦ ψδR)(na, ta) = y, and fix an extension ψδE\F⊥ of
ψγE\F⊥ to ∼∆(Dδ) such that (φE\F⊥ ◦ (ψδE\F⊥ × 1F δ))((m, s), (n, t)) =
((φX ◦ ψδX)(m, s), (φX ◦ ψδX)(n, t)) for all distinct (m, s), (n, t) ∈ Dδ
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such that (na, ta) ∈ {(m, s), (n, t)}. Then δ is compatible with a one-
step extension of a, contradicting the fact that a is X ′-terminal.

Set X = X × {F, F⊥} and E = E × I({F, F⊥}), and define F on
X by (x, F∗) F (x′, F ′∗) ⇐⇒ (F∗ = F ′∗ and x F∗ x

′). For each
configuration γ, set Aγ = (φX ◦ ψγX)(Dγ), and for each approximation
a with the property that Da = (na + 1)× 2n

a
and each E-invariant set

X ′ ⊆ X, define A (a,X ′) = {Aγ | γ is compatible with a and X ′} and
A (a,X ′) = {A × {F, F⊥} | A ∈ A (a,X ′)}. We say that a family A
of subsets of X is F -intersecting if the F -saturations of any two sets
in the family have a point in common, and E-locally F -intersecting
if, for every E-class C, the family A � C = {A ∈ A | A ⊆ C} is
F -intersecting.

Lemma 1.10. Suppose that X ′ ⊆ X and a is an X ′-terminal approx-
imation for which Da = (na + 1) × 2n

a
. Then A (a,X ′) is E-locally

F -intersecting.

Proof. Suppose, towards a contradiction, that there are configurations
γ0 and γ1, both compatible with a and X ′, such that Aγ0 and Aγ1

are contained in the same E-class, but have disjoint F -saturations
and disjoint F⊥-saturations. Set nδ = na + 1 and Dδ = nδ × 2n

δ
,

define functions ψδ∗ : Dδ → NN by ψδ∗(n, t a (i)) = ψγi∗ (n, t) for all
∗ ∈ {X,R}, i < 2, and (n, t) ∈ Dδ, let F δ be the equivalence relation
on Dδ given by (m, s) F δ (n, t) ⇐⇒ (φX ◦ψδX)(m, s) F (φX ◦ψδX)(n, t)
for all (m, s), (n, t) ∈ Dδ, and fix ψδE\F⊥ : ∼∆(Dδ) → NN such that
ψδE\F⊥((m, s a (i)), (n, t a (i))) = ψγiE\F⊥((m, s), (n, t)) for all i < 2 and
distinct (m, s), (n, t) ∈ Da and

(φE\F⊥ ◦ (ψδE\F⊥ × 1F δ))((m, s a (i)), (n, t a (1− i)))
= ((φX ◦ ψδX)(m, s a (i)), (φX ◦ ψδX)(n, t a (1− i)))

for all i < 2 and (m, s), (n, t) ∈ Da. Then δ is compatible with a one-
step extension of a, contradicting the fact that a is X ′-terminal.

Suppose that a is Bα-terminal. If Da 6= (na + 1)× 2n
a
, then Lemma

1.9 and [dRM20, Proposition 2.1] yield an F -invariant Borel partial
quasi-transversal A(a,Bα) of F over F ∩ F⊥ containing A′(a,Bα), in
which case we define B(a,Bα) = [A(a,Bα)]E. A set Y ⊆ X punctures
a family A of subsets of X if A ∩ Y 6= ∅ for all A ∈ A . If Da =
(na + 1) × 2n

a
, then Lemma 1.10 and [dRM20, Proposition 4.1] yield

an F -invariant Borel partial quasi-transversal A(a,Bα) of E over F
puncturing A (a,Bα), and it follows that the set AF∗(a,B

α) = {x ∈ X |
(x, F∗) ∈ A(a,Bα)} is an F∗-invariant Borel partial quasi-transversal
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of E over F∗ for all F∗ ∈ {F, F⊥}, and
⋃
F∗∈{F,F⊥}AF∗(a,B

α) punctures

A (a,Bα), in which case we define B(a,Bα) =
⋃
F∗∈{F,F⊥}[AF∗(a,B

α)]E.

Let Bα+1 be the set obtained from Bα by subtracting the union
of the sets of the form B(a,Bα), where a varies over all Bα-terminal
approximations.

Lemma 1.11. Suppose that α < ω1 and a is a non-Bα+1-terminal
approximation. Then a has a non-Bα-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration
γ compatible with b and Bα+1. Then (φX ◦ φγX)(Dγ) ⊆ Bα+1, so b is
not Bα-terminal.

Fix α < ω1 such that the families of Bα- and Bα+1-terminal approxi-
mations coincide, and let a0 be the approximation given by na0 = 0 and
Da0 = 1× 20. As A (a0, X

′) = {{(x, F∗) | F∗ ∈ {F, F⊥}} | x ∈ X ′} for
all E-invariant sets X ′ ⊆ X, we can assume that a0 is not Bα-terminal,
since otherwise Bα+1 = ∅, so condition (1) holds.

By recursively applying Lemma 1.11, we obtain non-Bα-terminal
one-step extensions a′n+1 of a′n for all n ∈ N. Let (an)n∈N be the unique
subsequence such thatDan = (n+1)×2n for all n ∈ N. Define Fn = F an

n

for all n ∈ N, ψ∗ : 2N × N → NN by ψ∗(c,m) =
⋃
n≥m ψ

an
∗ (m, c(0) � n)

for all ∗ ∈ {X,R}, and ψE\F⊥ : (E0× I(N)) \ (∆(2N)×∆(N))→ NN by
ψE\F⊥((b, `), (c,m)) =

⋃
n≥n((b,`),(c,m)) ψ

an
E\F⊥((`, b � n), (m, c � n)), where

n((b, `), (c,m)) is the least natural number n ≥ max{`,m} such that
∀k ≥ n b(k) = c(k). We will show that the function π = φX ◦ ψX is as
desired.

To see that ∀c ∈ 2N [π([c]E0 × N)]F is an E-class, we will show that
if c ∈ 2N and m ∈ N, then (φRm ◦ ψR)(c,m) = (π(c, 0), π(c,m)). As
X×X is a Hausdorff space, it is sufficient to show that if U is an open
neighborhood of (π(c, 0), π(c,m)) and V is an open neighborhood of
(φRm ◦ ψR)(c,m), then U ∩ V 6= ∅. Towards this end, fix n ≥ m such
that φX(NψanX (0,c�n))× φX(NψanX (m,c�n)) ⊆ U and φRm(NψanR (m,c�n)) ⊆ V .
As an is not Bα-terminal, there is a configuration γ compatible with
an, in which case ((φX ◦ ψγX)(0, c � n), (φX ◦ ψγX)(m, c � n)) ∈ U and
(φRm ◦ φ

γ
R)(m, c � n) ∈ V , thus U ∩ V 6= ∅.

It now only remains to establish that π is a homomorphism from
(F ∗ \ (∆(2N) × ∆(N)), (E0 × I(N)) \ F ∗) to (F \ F⊥, (E \ (F ∪ F⊥)).
We will show the stronger fact that if (b, `) and (c,m) are distinct but
(E0 × I(N))-equivalent, then (φE\F⊥ ◦ (ψE\F⊥ × 1F ∗))((b, `), (c,m)) =
(π(b, `), π(c,m)). As X × X is a Hausdorff space, it is sufficient to
show that if U is an open neighborhood of (π(b, `), π(c,m)) and V is
an open neighborhood of (φE\F⊥ ◦ (ψE\F⊥ × 1F ∗))((b, `), (c,m)), then
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U ∩ V 6= ∅. Towards this end, set n = n((b, `), (c,m)), and note that
φX(NψanX (`,b�n))×φX(NψanX (m,c�n)) ⊆ U and φE\F⊥(Nψan

E\F⊥
((`,b�n),(m,c�n))×

{1F ∗((b, `), (c,m))}) ⊆ V . As an is not Bα-terminal, there exists a con-
figuration γ compatible with an, so ((φX ◦ψγX)(`, b � n), (φX ◦ψγX)(m, c �
n)) ∈ U and φE(ψγE\F⊥((`, b � n), (m, c � n)),1F ∗((b, `), (c,m))) ∈ V ,

and it follows that U ∩ V 6= ∅.

Remark 1.12. The apparent use of choice beyond DC in the above ar-
gument can be eliminated by first running the analog of the argument
without [dRM20, Proposition 2.1] and replacing the use of [dRM20,
Propositions 4.1] with the use of its weakening without any definabil-
ity constraints on the partial quasi-transversal puncturing the family
(which can be proven in the same manner, but without using [dRM20,
Proposition 2.1]), in order to obtain an upper bound α′ < ω1 on the
least ordinal α < ω1 for which the sets of Bα- and Bα+1-terminal ap-
proximations coincide.

The composition of sets R ⊆ X × Y and S ⊆ Y × Z is given by
R ◦ S = {(x, z) ∈ X × Z | ∃y ∈ Y x R y S z}.

Theorem 1.13. Suppose that X is an analytic Hausdorff space, E is
a Borel equivalence relation on X, F is a Borel equivalence relation
on X for which every E-class is a countable union of (E ∩ F )-classes
and the projection onto the left coordinate of every (∆(X)× (E ∩ F ))-
invariant Borel partial uniformization of E over E ∩ F is Borel, and
F⊥ is a smooth countable Borel subequivalence relation of E for which
E = (E ∩ F ) ◦ F⊥. Then exactly one of the following holds:

(1) There is a partition (Bn)n∈N of X into E-invariant Borel sets
with the property that there is an (E∩F )-invariant Borel quasi-
transversal An ⊆ Bn of E � Bn over (E∩F ) � Bn for all n ∈ N.

(2) There is a continuous embedding π : 2N × N ↪→ X of (E0 ×
I(N),∆(2N)×∆(N)) into (E,F ∪F⊥) for which [π(2N×N)]E∩F
is E-invariant.

Proof. To see that conditions (1) and (2) are mutually exclusive, note
that if both hold, then there exists n ∈ N for which π−1(Bn) is not
meager, thus π−1(An) is a non-meager Borel partial quasi-transversal
of E0 × I(N), contradicting Proposition 1.1.

Note that if A ⊆ X is an E-invariant Borel set for which there is
an F⊥-invariant Borel quasi-transversal of E � A over F⊥ � A, then
the smoothness of F⊥ and [HKL90, Theorem 1.1] ensure that E � A is
smooth. Moreover, if B ⊆ X is an E-invariant Borel set for which there
is an (E � B)-complete (E∩F )-invariant Borel partial quasi-transversal
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of E ∩F over E ∩F ∩F⊥, then the fact that E = (E ∩F ) ◦F⊥ ensures
that B is a partial quasi-transversal of E over F⊥, so E � B is smooth.

By [dRM20, Theorem 2.6] and Theorem 1.7, we can therefore assume
that there is a suitable sequence (Fn)n∈N and a continuous homomor-
phism φ : 2N×N→ X from (F ∗ \ (∆(2N)×∆(N)), (E0× I(N))\F ∗) to
((E ∩ F ) \ F⊥, E \ (F ∪ F⊥)) such that ∀c ∈ 2N [φ([c]E0 × N)]E∩F
is an E-class, where F ∗ =

⋃
n∈N F

∗
n . As Proposition 1.6 yields a

clopen transversal U ⊆ 2N × N of F ∗, Proposition 1.3 gives rise to
a continuous invariant embedding χ : 2N × N ↪→ U of E0 × I(N) into
(E0 × I(N)) � U , in which case φ ◦ χ is a continuous homomorphism
from (E0 × I(N)) \ (∆(2N) × ∆(N)) to E \ (F ∪ F⊥) with the prop-
erty that ∀c ∈ 2N [(φ ◦ χ)([c]E0 × N)]E∩F is an E-class. As Propo-
sition 1.1 ensures that the preimages E ′ and F ′ of E and F under
(φ ◦ χ)× (φ ◦ χ) are meager, Proposition 1.4 yields a continuous injec-
tive homomorphism ψ : 2N×N ↪→ 2N×N from (E0×I(N),∼(E0×I(N)))
to (E0 × I(N),∼(E ′ ∪ F ′)) with the property that ∀c ∈ 2N ψ([c]E0 ×N)
is an (E0 × I(N))-class. Define π = φ ◦ χ ◦ ψ.

2. Uniformizations

As a corollary of Theorem 1.13, we obtain the following:

Theorem 2.1. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, F is a countable Borel equivalence relation
on Y , and R ⊆ X × Y is an (E × ∆(Y ))-invariant Borel set whose
vertical sections are contained in countable unions of F -classes. Then
exactly one of the following holds:

(1) There is a partition (Bn)n∈N of projX(R) into E-invariant Bor-
el sets with the property that there is an ((E×F ) � R)-invariant
Borel quasi-uniformization of R ∩ (Bn × Y ) for all n ∈ N.

(2) There are continuous embeddings πX : 2N×N ↪→ X of E0×I(N)
into E and πY : 2N×N ↪→ Y of ∆(2N)×∆(N) into F such that
R ∩ (πX(2N × N)× Y ) = [(πX × πY )(E0 × I(N))](∆(X)×F )�R.

Proof. To see that conditions (1) and (2) are mutually exclusive, note
that if both hold, then there exists n ∈ N for which π−1

X (Bn) is not
meager, in which case the pullback of the corresponding ((E×F ) � R)-
invariant Borel quasi-uniformization of R∩ (Bn× Y ) through πX × πY
is a non-meager Borel quasi-transversal of E0 × I(N), contradicting
Proposition 1.1.

Suppose now that condition (1) fails. Then Theorem 1.13 yields a
continuous embedding π : 2N×N ↪→ R of (E0×I(N),∆(2N)×∆(N)) into
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(E×I(Y ), (I(X)×F )∪(∆(X)×I(Y ))) for which [π(2N×N)](E×F )�R is
((E×I(Y )) � R)-invariant. Set πX = projX ◦π and πY = projY ◦π.

As a corollary, we obtain the following generalization of Theorem 2:

Theorem 2.2. Suppose that X and Y are Polish spaces, E is a Borel
equivalence relation on X, F is a smooth countable Borel equivalence
relation on Y , and R ⊆ X × Y is an (E ×∆(Y ))-invariant Borel set
whose vertical sections are contained in countable unions of F -classes.
Then exactly one of the following holds:

(1) There is an ((E ×F ) � R)-invariant Borel uniformization of R
over F .

(2) There are continuous embeddings πX : 2N×N ↪→ X of E0×I(N)
into E and πY : 2N×N ↪→ Y of ∆(2N)×∆(N) into F such that
R ∩ (πX(2N × N)× Y ) = [(πX × πY )(E0 × I(N))](∆(X)×F )�R.

Proof. By Theorem 2.1, it is sufficient to show that if every vertical
section of R is contained in a union of finitely-many F -classes, then
there is a Borel uniformization of R. But this is a straightforward
consequence of the original Lusin–Novikov uniformization theorem.
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