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Abstract. We investigate pairs of conjugacy classes of periodic
permutations of Z whose product contains the successor function.

Introduction

Let Sym(X) denote the symmetric group of all permutations of X.
The orbit of a point x ∈ X under a permutation τ of X is given by
[x]τ = {τ i(x) | i ∈ Z}. We say that τ is almost trivial if τ(x) = x for
cofinitely many x ∈ X, an almost involution if τ 2 is almost trivial, and
(σ-)periodic if every orbit is finite. Define C(τ) =

∑
x∈X 1 − 2/|[x]τ |

and Cl(τ) = {σ ◦ τ ◦ σ−1 | σ ∈ Sym(X)}. The successor function on Z
is given by SZ(i) = i+ 1 for all i ∈ Z. Here we prove the following:

Theorem A. Suppose that ρ, σ ∈ Sym(Z) are almost involutions and
SZ ∈ Cl(ρ)Cl(σ). Then C(ρ) + C(σ) ≥ −1.

Theorem B. Suppose that ρ, σ ∈ Sym(Z) are periodic but not almost
trivial and ρ or σ is not an almost involution. Then SZ ∈ Cl(ρ)Cl(σ).

The special case of Theorem B where neither ρ nor σ is an almost
involution follows from [Mor89, Theorem A]. As far as I am aware,
however, the special case where ρ or σ is an almost involution was
not previously known. Regardless, the real purpose of this paper is to
introduce ideas and language—in the simplest possible context—that
can be used to investigate the finite-order elements R and S of the full
group of an aperiodic Borel automorphism T with the property that
T ∈ Cl(R)Cl(S). This topic will be explored in a future paper.

In §1, we prove Theorem A. In §2, we note a symmetry that removes
the need to repeat arguments. In §3, we establish a fact concerning
elimination of fixed points. In §4, we describe the simplest finite ap-
proximations to pairs (ρ, σ) for which SZ ∈ Cl(ρ)Cl(σ). In §5, we use
these as building blocks to construct extensions of more general finite
approximations. And in §6, we prove the special case of Theorem B
where ρ or σ has finite order.
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1. The case of two almost involutions

For all R ⊆ X2, define graphR(τ) = graph(τ) ∩R.

Proposition 1.1. Suppose that � is a linear ordering of a finite set F
and τ ∈ Sym(F ). Then |graph�(τ)| ≥ 1 and |graph≺(τ)| ≤ |F | − 1.

Proof. Let x be the �-maximal element of F . Then x � τ(x), so
|graph�(τ)| ≥ 1. But |graph(τ)| = |F |, thus |graph≺(τ)| ≤ |F | − 1.

Define O(τ) = {[x]τ | x ∈ X}. For all sets K of cardinals, define
PerK(τ) = {x ∈ X | |[x]τ | ∈ K} and OK(τ) = O(τ � PerK(τ)). Put
graph′R(τ) = graph(τ � ∼Per2(τ)) ∩R.

Proposition 1.2. Suppose that τ is an almost involution of a set X
and � is a binary relation on X whose restriction to each orbit of τ is
a linear order. Then C(τ) ≥ |graph′≺(τ)| − |graph′�(τ)|.

Proof. As |graph′≺(τ)| ≤
∑

O∈O≥3(τ)
(|O|−1) and |graph′�(τ)| ≥ |O≥3(τ)|

by Proposition 1.1, the desired result follows from the fact that C(τ) =∑
O∈O(τ)(|O| − 2) =

∑
O∈O≥3(τ)

(|O| − 1)− |O≥3(τ)| − |O1(τ)|.

Given τ0, τ1 ∈ Sym(X), define τ0
∐
τ1 ∈ Sym(X×2) by (τ0

∐
τ1)(x, k) =

(τk(x), k) for all x ∈ X and k < 2. Let � denote any binary relation on
Z× 2 with the property that (i, k) � (j, k) ⇐⇒ i ≤ j for all i, j ∈ Z
and k < 2. Theorem A follows from Proposition 1.2 and:

Proposition 1.3. Suppose that τ0, τ1 ∈ Sym(Z) and SZ = τ0◦τ1. Then
|graph′�(τ0

∐
τ1)| ≤ |graph′≺(τ0

∐
τ1)|+ 1.

Proof. Define I, J : graph(τ0
∐
τ1)→ (Z× 2)2 by

I((i, k), (j, k)) =

{
((j, k), (i, k)) if i, j ∈ Per2(τk) and

((i, k), (j, k)) otherwise

and

J((i, k), (j, k)) = ((j − (1− k), 1− k), (i+ k, 1− k))

for all i, j ∈ Z and k < 2.

Lemma 1.4. J(graph(τ0
∐
τ1)) ⊆ graph(τ0

∐
τ1).

Proof. Suppose that ((i, k), (j, k)) ∈ graph(τ0
∐
τ1). If k = 0, then

τ0(i) = j = SZ(j − 1) = (τ0 ◦ τ1)(j − 1), so i = τ1(j − 1), thus
J((i, 0), (j, 0)) = ((j − 1, 1), (i, 1)) ∈ graph(τ0

∐
τ1). If k = 1, then

τ1(i) = j, so τ0(j) = (τ0 ◦ τ1)(i) = SZ(i) = i+ 1, thus J((i, 1), (j, 1)) =
((j, 0), (i+ 1, 0)) ∈ graph(τ0

∐
τ1).

Lemma 1.5. J(graph≺(τ0
∐
τ1)) = graph�(τ0

∐
τ1).
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Proof. Note that ((i, k), (j, k)) ∈ graph≺(τ0
∐
τ1) ⇐⇒ i < j ⇐⇒

j − (1− k) ≥ i+ k ⇐⇒ J((i, k), (j, k)) ∈ graph�(τ0
∐
τ1).

Define 1R : R → 2 by 1R(x, y) = 1 ⇐⇒ x R y. The length of
((i, k), (j, k)) ∈ graph(τ0

∐
τ1) is given by |((i, k), (j, k))| = |i− j|.

Lemma 1.6. If ((i, k), (j, k)) ∈ graph(τ0
∐
τ1), then |J((i, k), (j, k))| =

|((i, k), (j, k))|+ (−1)1<(i,j).

Proof. Note that i < j ⇐⇒ i+ k ≤ j − (1− k), so

|(j − (1− k))− (i+ k)| = (−1)1<(i,j)((i+ k)− (j − (1− k)))

= (−1)1<(i,j)((i− j) + 1)

= |i− j|+ (−1)1<(i,j),

from which the desired result immediately follows.

Let G be the group generated by I and J . The orbit of ((i, k), (j, k))
under G is given by [((i, k), (j, k))]G = {g · ((i, k), (j, k)) | g ∈ G}. Set
O(G) = {[((i, k), (j, k))]G | ((i, k), (j, k)) ∈ graph(τ0

∐
τ1)}.

Lemma 1.7. Suppose that O ∈ O(G). Then graph′�(τ0
∐
τ1) ∩O 6= ∅.

Proof. Fix ((i, k), (j, k)) ∈ O. We can assume that ((i, k), (j, k)) /∈
graph′�(τ0

∐
τ1). By replacing ((i, k), (j, k)) with I((i, k), (j, k)) if nec-

essary, we can therefore assume that ((i, k), (j, k)) ∈ graph≺(τ0
∐
τ1).

For all n ∈ N, note that if ((in, kn), (jn, kn)) = (I ◦ J)n((i, k), (j, k))
is in graph≺(τ0

∐
τ1), then J((in, kn), (jn, kn)) ∈ graph�(τ0

∐
τ1) and

|J((in, kn), (jn, kn))| = |((in, kn), (jn, kn))|−1 by Lemmas 1.5 and 1.6. If
J((in, kn), (jn, kn)) /∈ graph′�(τ0

∐
τ1), then ((in+1, kn+1), (jn+1, kn+1)) ∈

graph≺(τ0
∐
τ1). Set n = |i−j|−1 and note that if J((im, km), (jm, km)) /∈

graph′�(τ0
∐
τ1) for all m < n, then J((in, kn), (jn, kn)) = 0, in which

case J((in, kn), (jn, kn)) ∈ graph′�(τ0
∐
τ1).

Figure 1. A finite orbit of G.
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Lemma 1.8. Suppose that O ∈ O(G).

(1) If |O| < ℵ0, then |graph′�(τ0
∐
τ1)∩O| = |graph′≺(τ0

∐
τ1)∩O| = 1.

(2) If |O| = ℵ0, then O is a cofinite subset of graph(τ0
∐
τ1),

|graph′�(τ0
∐
τ1) ∩O| = 1, and graph′≺(τ0

∐
τ1) ∩O = ∅.

Proof. By Lemma 1.7, there exists ((i, k), (j, k)) ∈ graph′�(τ0
∐
τ1)∩O.

For all n ∈ N, note that if ((in, kn), (jn, kn)) = (I ◦ J)n((i, k), (j, k)) is
in graph�(τ0

∐
τ1), then Lemma 1.5 ensures that J((in, kn), (jn, kn)) ∈

graph≺(τ0
∐
τ1). And if J((in, kn), (jn, kn)) /∈ graph′≺(τ0

∐
τ1), then

((in+1, kn+1), (jn+1, kn+1)) ∈ graph�(τ0
∐
τ1).

Suppose now that n is the least natural number with the property
that J((in, kn), (jn, kn)) ∈ graph′≺(τ0

∐
τ1). Then ((i, k), (j, k)) is in

graph′�(τ0
∐
τ1)∩O, J((in, kn), (jn, kn)) is in graph′≺(τ0

∐
τ1)∩O, and the

pairs of the form J((im, km), (jm, km)) and ((im+1, km+1), (jm+1, km+1)),
for m < n, are in Per2(τ0

∐
τ1)

2 and make up the rest of O, so (1) holds.
If there is no n ∈ N for which J((in, kn), (jn, kn)) ∈ graph′≺(τ0

∐
τ1),

then ((i, k), (j, k)) is in graph′�(τ0
∐
τ1) ∩ O and the pairs of the form

J((in, kn), (jn, kn)) and ((in+1, kn+1), (jn+1, kn+1)), for n ∈ N, are in
Per2(τ0

∐
τ1)

2 and make up the rest of O, so graph′≺(τ0
∐
τ1) ∩ O = ∅.

And a straightforward induction shows that i2n = i + n, j2n = j − n,
i2n+1 = i+ (n+ k), j2n+1 = j− (n+ (1− k)), and kn = k for all n ∈ N,
so graph(τ0

∐
τ1) \O ⊆ ({i, i+ 1, . . . , j} × 2)2, thus (2) holds.

As at most one orbit of G can be cofinite, Lemma 1.8 ensures that
|graph′�(τ0

∐
τ1)| = |O(G)| ≤ |graph′≺(τ0

∐
τ1)|+ 1.

2. Duals

We use f : X ⇀Y to denote a partial injection of X into Y . For all
σ : Z ⇀ Z, define σ : Z ⇀ Z by σ(i) = −σ−1(−i) for all i ∈ Z.

Proposition 2.1. Suppose that σ : Z ⇀ Z. Then σ = σ.

Proof. If i ∈ Z, then σ(i) = −(σ)−1(−i), so σ(−σ(i)) = −i. But
σ(−σ(i)) = −σ−1(σ(i)), so i = σ−1(σ(i)), thus σ(i) = σ(i).

Proposition 2.2. Suppose that ρ, σ : Z ⇀ Z. Then ρ ◦ σ = σ ◦ ρ.

Proof. Observe that

(σ ◦ ρ)(i) = −σ−1(−(−ρ−1(−i)))
= −(σ−1 ◦ ρ−1)(−i)
= −(ρ ◦ σ)−1(−i)
= ρ ◦ σ(i)

for all i ∈ Z.
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Define F = {(ρ : Z ⇀ Z, σ : Z ⇀ Z) | ρ ◦ σ = SZ � dom(ρ ◦ σ)}.

Proposition 2.3. (ρ, σ) ∈ F ⇐⇒ (σ, ρ) ∈ F .

Proof. Note that if i ∈ Z and ρ, σ : Z ⇀Z, then (ρ ◦σ)(i) = i+ 1 ⇐⇒
(ρ ◦ σ)−1(i + 1) = i ⇐⇒ ρ ◦ σ(−i − 1) = −i, so the desired result
follows from Proposition 2.2.

Let (i0 i1 · · · in) denote the permutation of {im | m ≤ n} sending
im to im+1 for all m < n.

Proposition 2.4. Suppose that n ≥ 1, (im)m≤n is strictly increasing,
ρ = (i0 i1 · · · in), and σ = (−in − in−1 · · · − i0). Then ρ = σ.

Proof. If m < n, then σ(im) = −σ−1(−im) = −(−im+1) = im+1.

3. Eliminating fixed points

For all k ∈ N, let par(k) denote the remainder when k is divided by
two. For all ρ, σ ∈ Sym(X), set δ(ρ, σ) = {x ∈ X | ρ(x) 6= σ(x)} and

Mal(ρ, σ) = {x ∈ PerN+3(σ) | |[x]σ \ Per1(ρ)| = 1}.

Proposition 3.1. Suppose that m ≥ 1, ρ and σ are permutations of
a set X, and ∀n ≥ 3 ¬0 < |Mal(ρ, σ) ∩ Per2N+n(σ)| < ℵ0. Then there
are permutations ρ′ and σ′ of X such that:

(1) ρ ◦ σ = ρ′ ◦ σ′,
(2) δ(ρ, ρ′) = δ(σ−1, (σ′)−1) = Mal(ρ, σ) ∩ Per1(ρ),
(3) Mal(ρ, σ) ∩ Per1(ρ) ⊆ Perm(ρ′), and
(4) ∀n ≥ 3 Mal(ρ, σ) ∩ Pern(σ) ⊆ Pern(σ′).

Proof. Define Y = Mal(ρ, σ) and Z = Y \ Per1(ρ). For all n ≥ 3, set
Yn = Per2N+n(σ) ∩ Y and Zn = Per2N+n(σ) ∩ Z. Fix an equivalence
relation F4 on Z4 whose classes all have cardinality m2, as well as
π0,1, π0,2 ∈ Sym(Z4), whose graphs are contained in F4, such that the
orbits of π0,1, π0,2, and π0,3 = (π0,1 ◦ π0,2)−1 all have cardinality m. For
all n ∈ (N+3)\{4}, fix an equivalence relation Fn on Zn whose classes
all have cardinality m, fix πpar(n),n−2 ∈ Sym(Zn) whose orbits coincide
with the equivalence classes of Fn, and set πpar(n),n−1 = π−1par(n),n−2.

Then the support of π = idX\(Y \Z) ∪
⋃
p<2,n≥1 σ

n ◦ πp,n ◦ σ−n is Y \ Z,

so ρ′ = ρ ◦ π and σ′ = π−1 ◦ σ satisfy conditions (1)–(3).

Lemma 3.2. Suppose that ` ≤ n− 1. Then

(σ′)` � Zn = (σ` ◦ π−1par(n),` ◦ · · · ◦ π
−1
par(n),1) � Zn. (∗)
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Proof. The case ` = 0 is trivial. If ` > 0 and (∗) holds at `− 1, then

(σ′)` � Zn = (σ′ ◦ (σ′)`−1) � Zn

= (σ′ ◦ σ`−1 ◦ π−1par(n),`−1 ◦ · · · ◦ π
−1
par(n),1) � Zn

= (π−1 ◦ σ` ◦ π−1par(n),`−1 ◦ · · · ◦ π
−1
par(n),1) � Zn

= (σ` ◦ π−1par(n),` ◦ σ−` ◦ σ` ◦ π
−1
par(n),`−1 ◦ · · · ◦ π

−1
par(n),1) � Zn

= (σ` ◦ π−1par(n),` ◦ · · · ◦ π
−1
par(n),1) � Zn,

so (∗) also holds at `.

For all n ≥ 3, set Y ′n = Pern(σ) ∩ Y and Z ′n = Pern(σ) ∩ Z. Lemma
3.2 ensures that Y ′n =

⋃
`≤n−1 σ

`(Z ′n) =
⋃
`≤n−1(σ

′)`(Z ′n) and

(σ′)n � Z ′n = (σ′ ◦ (σ′)n−1) � Z ′n
= (σ′ ◦ σn−1 ◦ π−1par(n),n−1 ◦ · · · ◦ π

−1
par(n),1) � Z

′
n

= (σ′ ◦ σn−1) � Z ′n
= (σ′ ◦ σ−1) � Z ′n
= idZ′n ,

so condition (4) also holds.

We write ρ ∼= σ to indicate that ρ and σ are isomorphic.

Proposition 3.3. Suppose that m ≥ 1, ρ and σ are permutations of
a set X, ∀n ≥ 3 ¬0 < |Mal(ρ, σ) ∩ Per2N+n(σ)| < ℵ0, and Perm(ρ) is
infinite. Then there are permutations ρ′ ∼= ρ � ∼(Mal(ρ, σ) ∩ Per1(ρ))
and σ′ ∼= σ of X for which ρ ◦ σ = ρ′ ◦ σ′.
Proof. Proposition 3.1 yields ρ′, σ′ ∈ Sym(X) such that ρ ◦ σ = ρ′ ◦ σ′
and |Oκ(ρ � ∼(Mal(ρ, σ)∩Per1(ρ)))| = |Oκ(ρ′)| and |Oκ(σ)| = |Oκ(σ′)|
for all cardinals κ.

4. Building blocks

For all i, j ∈ Z, we slightly abuse the usual notation by using (i, j),
[i, j), (i, j], and [i, j] to denote the corresponding intervals of integers.
Set F(i, j] = {(ρ, σ) ∈ F | ρ : (i, j] ↪→ (i, j] and σ : (i, j) ↪→ (i, j)},
noting that ∀(ρ, σ) ∈ F(i, j] dom(ρ ◦ σ) = (i, j − 1].

Proposition 4.1. If i < j and (ρ, σ) ∈ F(i, j], then ρ(j) = i+ 1.

Proof. Observe that ρ((i, j − 1]) = (ρ ◦ σ)((i, j − 1]) = (i+ 1, j].

Set F [i, j) = {(ρ, σ) ∈ F | ρ : (i, j) ↪→ (i, j) and σ : [i, j) ↪→ [i, j)},
this time noting that ∀(ρ, σ) ∈ F(i, j] SZ(j−1) /∈ rng(ρ), and therefore
∀(ρ, σ) ∈ F(i, j] dom(ρ ◦ σ) = [i, j − 1).
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Figure 2. The extension provided by Proposition 4.2.

Proposition 4.2. Suppose that n ≥ 1, (im)m≤n is strictly increasing,
∀m < n (ρm, σm) ∈ F(im, im+1], ρ =

⋃
m<n ρm, and σ = (i0 i1 · · · in)∪⋃

m<n σm. Then (ρ, σ) ∈ F [i0, in + 1).

Proof. As [i0, in) = {im | m < n} ∪
⋃
m<n(im, im+1 − 1], it follows that

(ρ, σ) ∈ F [i0, in + 1) ⇐⇒ ∀k ∈ [i0, in) (ρ ◦ σ)(k) = k + 1

⇐⇒ ∀m < n (ρ ◦ σ)(im) = im + 1

⇐⇒ ∀m < n ρ(im+1) = im + 1

⇐⇒ ∀m < n ρm(im+1) = im + 1,

so Proposition 4.1 yields the desired result.

Figure 3. The extension provided by Proposition 4.3.

Proposition 4.3. Suppose that n ≥ 1, (im)m≤n is strictly increasing,
∀m < n (ρm, σm) ∈ F [im, im+1), ρ = (i0 i1 · · · in) ∪

⋃
m<n ρm, and

σ =
⋃
m<n σm. Then (ρ, σ) ∈ F(i0 − 1, in].

Proof. By Propositions 2.1, 2.3, 2.4, and 4.2.

Proposition 4.4. Suppose that i ∈ Z. Then (∅, id{i}) ∈ F [i, i+ 1) and
(id{i}, ∅) ∈ F(i− 1, i].

Proof. As [i, i) = (i − 1, i − 1] = ∅, the definitions of F [i, i + 1) and
F(i−1, i] yield that (ρ, σ) ∈ F [i, i+1) ⇐⇒ (ρ = ∅ and dom(σ) = {i})
and (ρ, σ) ∈ F(i− 1, i] ⇐⇒ (dom(ρ) = {i} and σ = ∅).
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Figure 4. Building blocks from Propositions 4.5 and 4.6.

Proposition 4.5. Suppose that i < j are integers. Then the pair
(id(i,j), (i i+ 1 · · · j − 1)) is in F [i, j).

Proof. If i + 1 = j, then this follows from Proposition 4.4. Otherwise,
Proposition 4.4 ensures that (id{k}, ∅) ∈ F(k− 1, k] for all k ∈ (i, j), so
Proposition 4.2 yields the desired result.

Proposition 4.6. Suppose that m ≥ 1 and (ik)k<m is a strictly in-
creasing sequence of integers. Then the pair

((i0 i1 · · · im−1) ∪
⋃
k<m−1 id(ik,ik+1),

⋃
k<m−1(ik ik + 1 · · · ik+1 − 1))

is in F(i0 − 1, im−1].

Proof. If m = 1, then this follows from Proposition 4.4. Otherwise,
(id(ik,ik+1), (ik ik + 1 · · · ik+1 − 1)) ∈ F [ik, ik+1) for all k < m − 1 by
Proposition 4.5, so Proposition 4.3 yields the desired result.

5. Extension

Given n ≥ 3 and ρ, σ : X ⇀X, we say that a fixed point x of ρ is
n-malleable if x ∈ Pern(σ), [x]σ ⊆ dom(ρ), and |[x]σ \ Per1(ρ)| = 1.

Figure 5. The extension provided by Proposition 5.1.

Proposition 5.1. Suppose that i < j, m ≥ 2, nk ≥ 3 for all k < m−2,
and (ρ, σ) ∈ F [i, j). Then there exists (ρ′, σ′) ∈ F(i−1, j+

∑
k<m−2 nk]

such that:

• ρ′ is obtained from ρ by adding a single cycle of length m and
nk − 1 nk-malleable fixed points for all k < m− 2.
• σ′ is obtained from σ by adding a cycle of length nk for all
k < m− 2.
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Proof. Recursively define i0 = i, i1 = j, and ik = ik−1 + nk−2 for all
2 ≤ k ≤ m−1. Set (ρ0, σ0) = (ρ, σ). For all 1 ≤ k ≤ m−2, Proposition
4.5 ensures that (ρk, σk) = (id(ik,ik+1), (ik ik + 1 · · · ik+1 − 1)) is in
F [ik, ik+1). So (ρ′, σ′) = ((i0 i1 · · · im−1) ∪

⋃
k≤m−2 ρk,

⋃
k≤m−2 σk) is

in F(i0 − 1, im−1] by Proposition 4.3. But i0 − 1 = i − 1 and im−1 =
j +

∑
k<m−2 nk.

Figure 6. The extension provided by Proposition 5.2.

Proposition 5.2. Suppose that i < j, m ≥ 3, nk ≥ 3 for all k < m−3,
and (ρ, σ) ∈ F [i, j). Then there exists (ρ′, σ′) ∈ F(i − 1, j + 1 +∑

k<m−3 nk] such that:

• ρ′ is obtained from ρ by adding a single cycle of length m and
nk − 1 nk-malleable fixed points for all k < m− 3.
• σ′ is obtained from σ by adding a fixed point and a cycle of

length nk for all k < m− 3.

Proof. Recursively define i0 = i, i1 = j, i2 = j+1, and ik = ik−1 +nk−3
for all 3 ≤ k ≤ m − 1. Set (ρ0, σ0) = (ρ, σ). For all 1 ≤ k ≤ m − 2,
Proposition 4.5 ensures that (ρk, σk) = (id(ik,ik+1), (ik ik+1 · · · ik+1−1))
is in F [ik, ik+1). So (ρ′, σ′) = ((i0 i1 · · · im−1)∪

⋃
k≤m−2 ρk,

⋃
k≤m−2 σk)

is in F(i0 − 1, im−1] by Proposition 4.3. But i0 − 1 = i− 1 and im−1 =
j + 1 +

∑
k<m−3 nk.

Figure 7. The extension provided by Proposition 5.3.

Proposition 5.3. Suppose that i < j, n ≥ 3, nk ≥ 3 for all k < n− 3,
and (ρ, σ) ∈ F(i, j]. Then there exists (ρ′, σ′) ∈ F [i−2−

∑
k<n−3(nk +

1), j + 1) such that:

• ρ′ is obtained from ρ by adding n − 2 cycles of length two and
nk − 1 nk-malleable fixed points for all k < n− 3.
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• σ′ is obtained from σ by adding a single fixed point, a cycle of
length n, and a cycle of length of nk for all k < n− 3.

Proof. Recursively define in−1 = j, in−2 = i, in−3 = i − 2, and ik =
ik+1 − (nk + 1) for all k ≤ n − 4. Set (ρn−2, σn−2) = (ρ, σ). For all
k ≤ n− 3, Proposition 4.6 implies that

(ρk, σk) = (id(ik+1,ik+1) ∪ (ik + 1 ik+1), (ik + 1 ik + 2 · · · ik+1 − 1))

is in F(ik, ik+1]. So (ρ′, σ′) = (
⋃
k≤n−2 ρk, (i0 i1 · · · in−1) ∪

⋃
k≤n−2 σk)

is in F [i0, in−1 +1) by Proposition 4.2. But i−2−
∑

k<n−3(nk+1) = i0
and j + 1 = in−1 + 1.

Figure 8. The extension provided by Proposition 5.4.

Proposition 5.4. Suppose that i < j, m ≥ 2, n ≥ 2, nk,` ≥ 3 for
all k < m − 1 and ` < n − 2, and (ρ, σ) ∈ F(i, j]. Then there exists
(ρ′, σ′) ∈ F [i−

∑
k<m−1,`<n−2 nk,`, j + 1) such that:

• ρ′ is obtained from ρ by adding n − 2 cycles of length m and
nk,`−1 nk,`-malleable fixed points for all k < m−1 and ` < n−2.
• σ′ is obtained from σ by adding a cycle of length n and a cycle

of length nk,` for all k < m− 1 and ` < n− 2.

Proof. Recursively define in−1 = j, in−2 = i, i` = i`+1 −
∑

k<m−1 nk,`,
i0,` = i` + 1, and ik,` = ik−1,` + nk−1,` for k ≤ m− 1 and ` ≤ n− 3. Set
(ρn−2, σn−2) = (ρ, σ). For all ` ≤ n−3, Proposition 4.6 implies that the
pair (ρ`, σ`), given by ρ` = (i0,` i1,` · · · im−1,`)∪

⋃
k<m−1 id(ik,`,ik+1,`) and

σ` =
⋃
k<m`−1(ik,` ik,`+1 · · · ik+1,`−1), is in F(i`, i`+1]. So Proposition

4.2 yields that (ρ′, σ′) = (
⋃
`≤n−2 ρ`, (i0 i1 · · · in−1) ∪

⋃
`≤n−2 σ`) is in

F [i0, in−1 + 1). But i−
∑

k<m−1,`<n−2 nk,` = i0 and j+ 1 = in−1 + 1.

We say that a fixed point x of ρ is anti-malleable if x ∈ Per2(σ),
[x]σ ⊆ dom(ρ), and |[x]σ \ Per1(ρ)| = 1.
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Figure 9. The extension provided by Proposition 5.5.

Proposition 5.5. Suppose that i < j, m ≥ 2, n ≥ 3, nk,` ≥ 3 for
all k < m − 1 and ` < n − 3, and (ρ, σ) ∈ F(i, j]. Then there exists
(ρ′, σ′) ∈ F [i− 1−

∑
k<m−1,`<n−3 nk,`, j + 1) such that:

• ρ′ is obtained from ρ by adding a single anti-malleable fixed
point, n− 3 cycles of length m, and nk,`− 1 nk,`-malleable fixed
points for all k < m− 1 and ` < n− 3.
• σ′ is obtained from σ by adding a cycle of length n and a cycle

of length nk,` for all k < m− 1 and ` < n− 3.

Proof. Recursively define in−1 = j, in−2 = i, in−3 = i − 1, i` = i`+1 −∑
k<m−1 nk,`, i0,` = i` + 1, and ik,` = ik−1,` + nk−1,` for k ≤ m− 1 and

` ≤ n − 4. Set (ρn−2, σn−2) = (ρ, σ). For all ` ≤ n − 3, Proposition
4.6 implies that the pair (ρ`, σ`), given by ρ` = (i0,` i1,` · · · im−1,`) ∪⋃
k<m−1 id(ik,`,ik+1,`) and σ` =

⋃
k<m−1(ik,` ik,` + 1 · · · ik+1,` − 1), is in

F(i`, i`+1]. So (ρ′, σ′) = (
⋃
`≤n−2 ρ`, (i0 i1 · · · in−1) ∪

⋃
`≤n−2 σ`) is in

F [i0, in−1 + 1) by Proposition 4.2. But i− 1−
∑

k<m−1,`<n−3 nk,` = i0
and j + 1 = in−1 + 1.

6. The main result

The special case of Theorem B where ρ or σ has finite order is a
consequence of Propositions 2.1 and 2.3 and:

Theorem 6.1. Suppose that m ≥ 2, ρ, σ ∈ Sym(Z) are periodic, and
Perm(ρ) and Per≥3(σ) are infinite. Then SZ ∈ Cl(ρ)Cl(σ).

Proof. For all integers i < j, set F0(i, j) = F [i, j) and F1(i, j) = F(i, j].
Fix an enumeration (πn, On)n∈N of the pairs of the form (π,O), where
π ∈ {ρ, σ} and O ∈ O(π). Then there is an infinite set N ⊆ N and
p < 2 such that πn = σ, par(|On|) = p, and 3 ≤ |On| ≤ |On+1| for all
n ∈ N . Fix n−1 ∈ N , set N0 = N\{n−1}, and apply Proposition 4.5 to
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find i0 < j0 and (ρ0, σ0) ∈ F0(i0, j0) such that every point of dom(ρ0) is
a malleable fixed point and the lone orbit of σ0 has cardinality |On−1|.

Suppose that k is a natural number for which we have found ik < jk,
a cofinite set Nk ⊆ N, and (ρk, σk) ∈ Fpar(k)(ik, jk). If k ∈ 2N, then
let nk be the least element of Nk for which (πnk

= ρ and |Onk
| ≥ 2) or

(πnk
= σ, |Onk

| = 1, and m ≥ 3). If k ∈ 4N + 1, then let nk be the
least element of Nk for which (πnk

= σ, |Onk
| = 1, and m = 2), (πnk

=
σ and |Onk

| = 2), or (πnk
= ρ and |Onk

| = 1). And if k ∈ 4N + 3, then
let nk be the least element of Nk for which πnk

= σ and |Onk
| ≥ 3.

Lemma 6.2. For some `k ∈ N and any set Fk ⊆ N ∩ (Nk \ {n})
of cardinality `k, there exist ik+1 < ik, jk+1 > jk, and (ρk+1, σk+1) ∈
Fpar(k+1)(ik+1, jk+1) such that:

• ρk+1 is obtained from ρk by adding a set of cycles of length k
and |On| − 1 |On|-malleable fixed points for all n ∈ Fk, as well
as a cycle of length |Onk

| if (πnk
= ρ and |Onk

| ≥ 2) and an
anti-malleable fixed point if (πnk

= ρ and |Onk
| = 1).

• σk+1 is obtained from σk by adding a cycle of length |On| for all
n ∈ Fk, as well as a cycle of length |On| if πnk

= σ.

Proof. If k ∈ 2N, then the desired result follows from Propositions 5.1
and 5.2. Otherwise, it follows from Propositions 5.3–5.5.

Set Nk+1 = Nk \ (Fk ∪ {nk}).
Define ρ∞ =

⋃
k∈N ρk and σ∞ =

⋃
k∈N σk. As (ik)k∈N is strictly

decreasing and (jk)k∈N is strictly increasing, these are permutations of
Z whose composition is SZ. As Fk 6= ∅ for all k ∈ 4N + 3, it follows
that ¬0 < |Mal(ρ∞, σ∞) ∩ Per2N+n(σ∞)| < ℵ0 for all n ∈ 2N + p.
And clearly Mal(ρ∞, σ∞) ∩ Per2N+(1−p)(σ∞) = ∅. As the fact that⋂
k∈NNk = ∅ ensures that ρ∞ � ∼(Mal(ρ∞, σ∞) ∩ Per1(ρ∞)) ∼= ρ and

σ∞ ∼= σ, Proposition 3.3 yields conjugates ρ′ of ρ and σ′ of σ for which
ρ′ ◦ σ′ = ρ∞ ◦ σ∞ = SZ.

The fact that every almost involution has finite order and [Mor89,
Theorem A] therefore yield Theorem B.
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