PERIODIC PERMUTATIONS AND THE SUCCESSOR
B. MILLER

ABSTRACT. We investigate pairs of conjugacy classes of periodic
permutations of Z whose product contains the successor function.

INTRODUCTION

Let Sym(X) denote the symmetric group of all permutations of X.
The orbit of a point x € X under a permutation 7 of X is given by
[z], = {7'(z) | i € Z}. We say that 7 is almost trivial if 7(z) = z for
cofinitely many x € X, an almost involution if 72 is almost trivial, and
(o-)periodic if every orbit is finite. Define C(7) = >° .1 — 2/|[z]/]
and Cl(1) = {oc o100 ! |0 € Sym(X)}. The successor function on Z
is given by S%(i) =i + 1 for all i € Z. Here we prove the following:

Theorem A. Suppose that p,o € Sym(Z) are almost involutions and
SZ € Cl(p)Cl(c). Then C(p)+ C(o) > —1.

Theorem B. Suppose that p,o € Sym(Z) are periodic but not almost
trivial and p or o is not an almost involution. Then S% € Cl(p)Cl(o).

The special case of Theorem [B| where neither p nor ¢ is an almost
involution follows from [Mor89, Theorem A]. As far as I am aware,
however, the special case where p or ¢ is an almost involution was
not previously known. Regardless, the real purpose of this paper is to
introduce ideas and language—in the simplest possible context—that
can be used to investigate the finite-order elements R and S of the full
group of an aperiodic Borel automorphism 7" with the property that
T € CI(R)CI(S). This topic will be explored in a future paper.

In {1}, we prove Theorem[A] In §2] we note a symmetry that removes
the need to repeat arguments. In §3] we establish a fact concerning
elimination of fixed points. In §4] we describe the simplest finite ap-
proximations to pairs (p, o) for which SZ € Cl(p)Cl(c). In , we use
these as building blocks to construct extensions of more general finite
approximations. And in §6], we prove the special case of Theorem [B]
where p or ¢ has finite order.
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1. THE CASE OF TWO ALMOST INVOLUTIONS
For all R C X2, define graphy(7) = graph(7) N R.

Proposition 1.1. Suppose that = is a linear ordering of a finite set F'
and 7 € Sym(F'). Then |graph, (7)| > 1 and |graph_(7)| < [F| — 1.
Proof. Let x be the <-maximal element of F. Then x » 7(x), so
|graphy (7)| > 1. But [graph(7)| = |F|, thus |graph_(7)| < |[F| -1. ®
Define O(7) = {[z], | * € X}. For all sets K of cardinals, define
Perg(7) = {z € X | |[z];| € K} and Ok (1) = O(7 | Perg(r)). Put
graph’z(7) = graph(7 | ~Pery(7)) N R.
Proposition 1.2. Suppose that T is an almost involution of a set X

and = is a binary relation on X whose restriction to each orbit of T is
a linear order. Then C(t) > |graph’,(7)| — |graph{ (7)|.

Proof. As |graph’ (7)| <} pco. () (|01—1) and |graph (7)| = [O=s(7)
=

by Proposition [[.1] the desired result follows from the fact that C(7)
ZOGO(T)(’O| —-2)= 206023(7—)(|O| —1) = [Ox3(7)[ — [O1(7)].

Given 79, 71 € Sym(X), define 7pllTy € Sym(X x2) by (rollmy)(z, k) =
(1x(z), k) for all z € X and k < 2. Let < denote any binary relation on
Z x 2 with the property that (i,k) < (j, k) <= i <jforalli,jeZ
and k < 2. Theorem [A] follows from Proposition [I.2] and:
Proposition 1.3. Suppose that 19, 71 € Sym(Z) and S = tgo;. Then
|graphl (7o 11 71)| < [graph’, (1o 11 7y)[ + 1.

Proof. Define I, J: graph(mo 11 7y) — (Z x 2)* by
. . k), (i, k if 7, 7 € Pery(7) and
(.8, o)) = § 0 (1) g € Pera()
((i,k), (4, k)) otherwise
and
for all 4,5 € Z and k < 2.
Lemma 1.4. J(graph(mo 11 7)) C graph(m 11 7y).

Proof. Suppose that ((i,k), (j,k)) € graph(ro I 7). If & = 0, then
() =5 =82 —-1) = (pomn)(j—1), s0i=m7(j—1), thus
J((7,0),(5,0)) = ((j — 1,1),(4,1)) € graph(ro I 7). If & = 1, then
71(i) = j, 80 10(j) = (10 0 11)(¢) = S%(i) =i + 1, thus J((4,1), (j,1)) =
((7,0), (i +1,0)) € graph(ro 1 71). =

Lemma 1.5. J(graph_ (71l 71)) = graph, (7o 11 71).



PERIODIC PERMUTATIONS AND THE SUCCESSOR 3
Proof. Note that ((i,k), (j,k)) € graph_(ro 1l 7y) <= i < j <
j—(1—k) >it+k < J((, ),(],k))Egraphi(TgHTl). b=
Define 1g: R — 2 by 1g(z,y) =1 <= z R y. The length of
((1,k), (j, k)) € graph(ro 11 7y) is given by |((i, k), (5, k)| = i — j.
Lemma 1.6. If (i, k), (j. k)) € graph(roim), then |J((i. k), (j. )| =
(i, k), G k)] + (—1)1<09),

Proof. Note that i < j <= i+k<j—(1—k),s

(G = (A =k) = (i +K)| = (1)< (i + k) — (J—(l—k)))
= (1)< =)+ 1)
= Ji = |+ (1<),
from which the desired result immediately follows. 5

Let G be the group generated by I and J. The orbit of ((i, k), (j, k))
under G is given by [((i, k), (j,k))]c = {9 ((1,k),(5,k)) | g € G}. Set
O(G) = {l((, k), G, k)le | (@), (5, F)) € graph(ro 11 71) }.

Lemma 1.7. Suppose that O € O(G). Then graphl (7o 1 71) N O # 0.

Proof. Fix ((i,k),(j,k)) € O. We can assume that ((i,k), (j,k)) ¢
graph! (1o Il ;). By replacing ((i, k), (4, k)) with I((¢,k), (j, k)) if nec-
essary, we can therefore assume that ((i, k), (j,k)) € graph_ (7o LI 7).
For all n € N, note that if ((in, ky), (Jn, kn)) = (L o J)"((i, k), (4,k))
is in graph_ (7o 11 71), then J((in, kn), (Jn, kn)) € graph, (7o 1 71) and
| T ((ins Kon)s (Gins kin))| = [((iny n)s (Jins kin))|—1 by Lemmas[l.5 and [1.6] If
J((ins k), (jn kin)) ¢ graphl (7o 1171), then ((in+1, kns1), (Jns1: bns1)) €
graph_(mollry). Set n = |i—j|—1 and note that if J((im, km), (Jm, km)) ¢
graph! (1o Il 71) for all m < n, then J((i, k), (jn, kn)) = 0, in which
case J((in, kn), (jn, kn)) € graphl (7o 1 7). b

FIGURE 1. A finite orbit of G.
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Lemma 1.8. Suppose that O € O(G).
(1) If|O] < No, then |graphl (rolI71)NO| = |graph’, (rollm)NO| = 1.
(2) If |O| = Ny, then O is a cofinite subset of graph(ry 11 71),
|graphl (7o 1 7) N O| = 1, and graph (1o 1171) N O = 0.

Proof. By Lemma there exists ((7, k), (j,k)) € graphl (711 71) N O.
For all n € N, note that if ((i,, kn), (jn, kn)) = (L o J)"((i, k), (j, k)) is
in graph, (7o Il 71), then Lemma [1.5 ensures that J((i,, k), (Jn, kn)) €
graph_ (7o 1 7). And if J((in, kn), (jn, kn)) ¢ graph’ (o 11 71), then
((ns1, kng1), Unss Bng1)) € grapht (7o L 71).

Suppose now that n is the least natural number with the property
that J((in, kn), (jn, kn)) € graph’ (7o I 71). Then ((i,k), (j,k)) is in
grapht (7o1171)NO, J((in, kn), (jn, kn)) is in graph’, (7o1171)NO, and the
pairs of the form J((i,m, k), Gy km)) and (i1, Kmr1)s Gmst, Fms1)),
for m < n, are in Pery(791171)? and make up the rest of O, so (1) holds.

If there is no n € N for which J((i, kn), (jn, kn)) € graph’ (7o 11 71),
then ((i,k), (j, k)) is in graphl (1o II 7;) N O and the pairs of the form
J((iny kn)s (Gn, kn)) and ((4p21, kns1)s (Jnat, kns1)), for n € NJ are in
Pery (7 11 71)? and make up the rest of O, so graph’, (o 11 71) N O = 0.
And a straightforward induction shows that iy, =i + n, js, = j — n,
o1 =i+ (n+k), jony1 =7 —(n+(1—k)), and k,, = k for all n € N,

so graph(ro1171) \ O C ({i,i+1,...,5} x 2)%, thus (2) holds. <

As at most one orbit of G can be cofinite, Lemma [1.8| ensures that

lgraphl (7o 1 71)| = |O(G)| < |graph’ (7o I 71)| + 1. =
2. DuALS

We use f: X — Y to denote a partial injection of X into Y. For all
0: 7 —Z,define 5: Z — Z by 5(i) = —o~1(—i) for all i € Z.

Proposition 2.1. Suppose that o: 7 ~— 7. Then 0 =0.
Proof. If i € Z, then a(i) = —(7)"*(—i), so a(—a(i)) = —i. But
o(—a(i)) = =o' (a(i)), so i = a7 (a(s)), thus o(i) = 7(i). X
Proposition 2.2. Suppose that p,o: Z — Z. Then poo =7 o p.
Proof. Observe that
(@op)(i) = =0~ (=(=p'(=1)))

— —(o o p (=)

= —(poo)H(—i)

=pool(i)
for all 1 € Z. X
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Define F = {(p: Z —Z,0: Z —7Z) | poo = S% | dom(poo)}.
Proposition 2.3. (p,0) € F < (7,p) € F.

Proof. Note that if i € Z and p,0: Z — Z, then (poo)(i) =i+ 1 <~
(poo) i+ 1) =i <= poo(—i—1) = —i, so the desired result
follows from Proposition [2.2] X

Let (ig 41 --- i) denote the permutation of {i,, | m < n} sending
I 10 Ty for all m < n.

Proposition 2.4. Suppose that n > 1, (im)m<n is strictly increasing,

p="(igi -+ in), and 0 = (—iy, —ip_y -+ —ip). Then p=7.

Proof. It m < n, then 5(iy,) = —0 ' (—im) = —(—ims1) = imr1- b

3. ELIMINATING FIXED POINTS

For all k£ € N, let par(k) denote the remainder when £ is divided by
two. For all p,o € Sym(X), set §(p,0) = {x € X | p(x) # o(z)} and

Mal(p, ) = {x € Pernys(0) | |[z]o \ Per1(p)| = 1}.

Proposition 3.1. Suppose that m > 1, p and o are permutations of
a set X, and ¥n > 3 =0 < |Mal(p, o) N Peranyn(0)| < Wo. Then there
are permutations p' and o’ of X such that:

(1) poo=pod,

(2) 3(p.p') = (0", (0')"
()Mal(7 o) N Peri(p) C
(4) Vn > 3 Mal(p, o) N Pe

') = Mal(p, o)
Per,,(p'), and
r,(0) C Per, (o).
Proof. Define Y = Mal(p,0) and Z =Y \ Per(p). For all n > 3, set
Y,, = Peronin(0) NY and Z,, = Peroyin(0) N Z. Fix an equivalence
relation Fy on Z, whose classes all have cardinality m?, as well as
To.1, o2 € Sym(Zy), whose graphs are contained in Fj, such that the
orbits of 7 1, T2, and my 3 = (M0 1 o7r0’2)_1 all have cardinality m. For
all n € (N+3)\ {4}, fix an equivalence relation F,, on Z,, whose classes
all have cardinality m, fix Tpar(n)n—2 € Sym(Z,,) whose orbits coincide
with the equivalence classes of F),, and set mpar(n)n—1 =

N Pery(p),

T
par(n),n—2
Then the support of 7 = idx\(y\z) U Up<2m21 o"ompo0 Mis Y\ Z,

1

so pf =pomand ¢’ =71 o0 satisfy conditions (1)—(3).

Lemma 3.2. Suppose that { < n — 1. Then

( ) rZ _(U Oﬂ-palr(n),fou.oﬂ-iln,>rzn' (*)
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Proof. The case ¢ = 0 is trivial. If £ > 0 and holds at ¢ — 1, then
(O_/)E an — (O'/ o (O_I)Z—l) an

= (000 om i1 ® O M) | Zn
= (o0 om0 0 WEalrm) D) 1 Zn
= (UZ © eralr(”),f o o O—E © Wpar(n) 197 ° W;alr(n)vl) r Zn
= (O-e © 7T;alr(n),ﬁ R ﬂ-;alr(n)»l) r Zn7
SO also holds at £. =

For all n > 3, set Y,! = Per,(¢) NY and Z/, = Per,(c) N Z. Lemma
ensures that Y, = Uzgn—l ol(Z!) = Uegn_1(0/)e(27lz> and

(@) 12, =(0"o() ) 2,
=(0'00" o ”;alr(n),nq ©---0 ﬂ_;alr(n),l) I Z,
— ('00™ ) 1 2,
— (o001 7,
idy,
so condition (4) also holds. X

We write p = o to indicate that p and ¢ are isomorphic.

Proposition 3.3. Suppose that m > 1, p and o are permutations of
a set X, ¥n >3 =0 < |[Mal(p, o) N Peronyn(0)| < Vo, and Per,,(p) is
infinite. Then there are permutations p' = p | ~(Mal(p, o) N Pery(p))
and o' = o of X for which poo = p oo’.

Proof. Proposition [3.1] yields p’, 0’ € Sym(X) such that poo = p’ oo’
and |Oy(p [ ~(Mal(p, o) NPery(p)))| = [Ox(p')] and |Ox(0)| = |Ox(0’)|

for all cardinals «. %

4. BUILDING BLOCKS

For all 7,5 € Z, we slightly abuse the usual notation by using (i, j),
[i,7), (4, 7], and [i, j] to denote the corresponding intervals of integers.

Set F(i,j] = {(p,o) € F | p: (i,j] = (i,j] and o: (i,4) — (i,5)},
noting that V(p,0) € F(i,j] dom(poo) = (i,j — 1].

Proposition 4.1. Ifi < j and (p,0) € F(i,j], then p(j) =i+ 1.
Proof. Observe that p((i,7 — 1]) = (poo)((i,j —1]) = (i + 1, 4] X

Set Fli,j) = {(p.0) € F | p: (i,j) = (i,j) and o: [i,j) = [i,))},
this time noting that V(p, o) € F(i, j] S%(j —1) ¢ rng(p), and therefore

V(p, o) € Fli, j] dom(poa) = [i,j — 1).
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F1GURE 2. The extension provided by Proposition 4.2|

Proposition 4.2. Suppose that n > 1, (iy)m<n is strictly increasing,
Vm < n (pm, 0m) € Fimsims1], £ = Upmen Pm> and o = (i iy -+ in)U
Unen @m- Then (p, o) € Flig, in + 1).

Proof. As [ig, i) = {im | m <n} U, (Gm, im+1 — 1], it follows that
(p,0) € Flig,in +1) <= Vk € [ig,in) (poo)(k) =k+1
< Vm<n (poo)(ipm) =in+1
= Ym < n plims1) = im + 1
<= Vm < n pp(ime1) = im + 1,
so Proposition yields the desired result. X

F1GURE 3. The extension provided by Proposition 4.3|

Proposition 4.3. Suppose that n > 1, (iy)m<n is strictly increasing,

Vm < n (pm,0m) € Flimsims1), p = (io 01 -+ in) U U, e Pm, and
0 =Upen0m- Then (p,o) € F(ig — 1,1y
Proof. By Propositions 2.1} 2.3}, 2.4 and [£.2] X

Proposition 4.4. Suppose that i € Z. Then (0,idyy) € Fli,i+1) and
(id{i},(l)) € F(i—1,1].

Proof. As [i,i) = (i — 1,4 — 1] = 0, the definitions of F[i,i + 1) and
F(i—1,1] yield that (p,0) € Fli,i+1) <= (p =0 and dom(o) = {i})
and (p,0) € F(i — 1,i] <= (dom(p) = {i} and o = 0). b
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FIGURE 4. Building blocks from Propositions [4.5] and [4.6]

Proposition 4.5. Suppose that i < j are integers. Then the pair
(idgyy, (G i4+1 -+ §=1)) is in F[i,j).

Proof. If i + 1 = j, then this follows from Proposition .4 Otherwise,
Proposition {4.4] ensures that (idgy,0) € F(k—1,k] for all k € (1, 5), so
Proposition yields the desired result. X

Proposition 4.6. Suppose that m > 1 and (iy)g<m 1S a strictly in-
creasing sequence of integers. Then the pair

(Go i1 -+ 1) U Upem—1 10k Upem1 Gk @ +1 - iy — 1))
18 1N f(@() - 17 im_l].

Proof. If m = 1, then this follows from Proposition [£.4] Otherwise,
(id(ik’ik+1), (Zk i+ 1 - ik+1 — 1)) € F[ik,ik+1> forall k <m —1 by
Proposition [£.5] so Proposition [4.3] yields the desired result. b

5. EXTENSION

Given n > 3 and p,o: X — X, we say that a fixed point z of p is
n-malleable if x € Per, (o), [x], C dom(p), and |[z], \ Peri(p)| = 1.

FIGURE 5. The extension provided by Proposition [5.1]

Proposition 5.1. Suppose thati < 7, m > 2, ng > 3 forallk < m—2,
and (p,0) € Fli,j). Then there exists (p/,0') € F(i—1,7+> s T
such that:
e o' is obtained from p by adding a single cycle of length m and
nk — 1 ng-malleable fized points for all k < m — 2.
e o' is obtained from o by adding a cycle of length ny for all
k<m—2.
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Proof. Recursively define iy = i, i, = j, and i = i5_1 + ng_o for all
2 <k <m-—1. Set (po,00) = (p,0). Forall 1 <k < m—2, Proposition
4.5| ensures that (o, o) = (idgigie,), (06 9 +1 -+ dgyr — 1)) is in
Flig, irg1). So (p/,0") = ((io i1 -+ tme1) UUperns Pis Upermo k) 18
in F(ig — 1,4,,—1] by Proposition . Butig—1=1i—1and i,_; =
j + Zk<m—2 Nng. X

FIGURE 6. The extension provided by Proposition [5.2]

Proposition 5.2. Suppose thati < 7, m > 3, ng > 3 for all k < m—3,
and (p,0) € Fli,j). Then there exists (p/,0') € F(i —1,j + 1+
Y hem—sz k| such that:
e o is obtained from p by adding a single cycle of length m and
ni — 1 ng-malleable fized points for all k < m — 3.
e o' is obtained from o by adding a fixed point and a cycle of
length ny, for all k < m — 3.

Proof. Recursively define ig =1, 11 = j, 4o = 7+ 1, and i), = ix_1+np_3
for all 3 <k <m —1. Set (pg,00) = (p,0). Forall 1 <k < m — 2,
Propositionensures that (pr, o) = (i, ip,0), (g 1 -+ dpy1—1))
is in Flig, igt1)- So (p,07) = (G091 =+ im—1) UUp<ms Pbs Up<ms k)
is in F(ip — 1,4,,—1] by Proposition . Butig—1=4i—1andi,_; =
j+1+zk<m_3nk. X

FIGURE 7. The extension provided by Proposition [5.3]

Proposition 5.3. Suppose thatt < 3, n > 3, np > 3 for allk < n—3,
and (p,0) € F(i,j]. Then there exists (p/,0') € Fli—2—=> 4, _3(ne+
1),j + 1) such that:
e o' is obtained from p by adding n — 2 cycles of length two and
nk — 1 ng-malleable fized points for all k < n — 3.
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e o' is obtained from o by adding a single fized point, a cycle of
length n, and a cycle of length of ny for all k <n — 3.

Proof. Recursively define 4, 1 = j, 1,9 = 1, i,_3 = ¢ — 2, and i} =
ikt1 — (ng + 1) for all £ < n —4. Set (pp—2,0,-2) = (p,0). For all
k <n — 3, Proposition [4.6] implies that

(P> on) = (41,00 YU Ok + 1 dkgr), (G + 10 +2 - dpyr — 1))

1S in .F(Zk, ik+1]. SO (p/, 0'/) = (Uk<n—2 Pk (Z() il s 'én—l) U ngn—Q O‘k)
is in Flio, 7n—1+ 1) by Proposition[f.2} But i =237, 4(nx+1) =g
and j+1 =i,y + 1. x

F1GURE 8. The extension provided by Proposition |5.4|

Proposition 5.4. Suppose that i < j, m > 2, n > 2, ngy > 3 for
alk <m—1and ¢ <n—2, and (p,0) € F(i,j|. Then there exists
(P 0") € Fli =D jcm_14en_oMke,J + 1) such that:
e o' is obtained from p by adding n — 2 cycles of length m and
ng¢—1 ng -malleable fixed points for allk < m—1 and £ < n—2.
e o' is obtained from o by adding a cycle of length n and a cycle
of length nyy for allk <m —1 and { <n — 2.

Proof. Recursively define i, 1 = J, 1,0 = 1, 1y = tp11 — Zk<m71 Nt
tog =1t¢+ 1, and igy = ig_1 0 +ng_10 for kK <m —1and £ <n —3. Set
(Pn—2,0n—2) = (p,0). Forall ¢ <n-—3, Propositionimplies that the
pair (/)e, O-E)a given by Pe = (iO,f il,f T imfl,é) UUk<m—1 id(ik,z,ik-o-Lz) and
op = Uk<m2_1(ik7g iket+1 -+ dgy10—1), is in F(ig, ip41]. So Proposition
yields that (p',0’) = <U5§n72 pe, (ig 11+ dp_1) U Uzgna og) is in
F[io, in—l + 1). But i — Zk<m—1,€<n—2 Nk = i() and j +1= in—l +1.

We say that a fixed point x of p is anti-malleable if © € Pery(o),
[#]o € dom(p), and [[z], \ Pery(p)| = 1.
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FI1GURE 9. The extension provided by Proposition |5.5]

Proposition 5.5. Suppose that i < j, m > 2, n > 3, nge > 3 for
allk <m—1and { <n—3, and (p,0) € F(i,j]. Then there exists
(p,0") € Fli—1 =3 citven—sg ks j + 1) such that:

e o is obtained from p by adding a single anti-malleable fized
point, n — 3 cycles of length m, and ny e — 1 ngg-malleable fized
points for allk <m —1 and { < n — 3.

e o' is obtained from o by adding a cycle of length n and a cycle
of length ny for allk <m —1 and { <n — 3.

Proof. Recursively define i,, 1 = j, tp,_0 =1, 1,3 =1 — 1, 1p = 1p11 —
Zk<m—1 N0, 'L'(),g = ig + 1, and ’L'k’g = ik—l,ﬂ + Ng—1¢ for k S m — 1 and
¢ <n—4. Set (pp_9,0,_2) = (p,0). For all £ < n — 3, Proposition
implies that the pair (pg, 0¢), given by pr = (ige t10 -+ tm-1,) U
Uk<m—1 id(ik,éyik+l,£) and Oy = Uk<m—1(ik,e ik,é +1 --- ik+1,€ - 1), is in
Fligie1]. So (p',0") = (Upenz pe, (io i1 -+ in—1) U Uy, 5 0¢) is in
Flio,in_1 + 1) by Proposition . Buti—1-— Zk<m71,€<_n73 Mo = T
and j+1 =14, 1+ 1. X

6. THE MAIN RESULT

The special case of Theorem [B| where p or ¢ has finite order is a
consequence of Propositions [2.1] and [2.3] and:

Theorem 6.1. Suppose that m > 2, p,o € Sym(Z) are periodic, and
Per,,(p) and Perss(co) are infinite. Then S € Cl(p)Cl(a).

Proof. For all integers i < j, set Fo(i,7) = Fli, j) and Fy (3, j) = F(3, ]
Fix an enumeration (7, O, )nen of the pairs of the form (7, O), where
m € {p,0} and O € O(nw). Then there is an infinite set N C N and
p < 2 such that 7, = o, par(|O,|) = p, and 3 < |O,] < |O,41]| for all
n € N. Fixn_; € N, set Ny =N\ {n_;}, and apply Proposition [4.5/to
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find ig < jo and (pg, 09) € Fo(io, jo) such that every point of dom(pp) is
a malleable fixed point and the lone orbit of oy has cardinality |O,, ,|.

Suppose that k is a natural number for which we have found 75 < ji,
a cofinite set Ny C N, and (pk, o) € Fpar() ik, ji). If k € 2N, then
let ng be the least element of Ny for which (7, = p and |0, | > 2) or
(Tn, = 0, |Op,| = 1, and m > 3). If k£ € 4N + 1, then let n; be the
least element of Ny for which (7, =0, |0,,| =1, and m = 2), (7, =
o and |O,, | =2), or (7,, = p and |O,, | =1). And if k¥ € 4N + 3, then
let ny be the least element of N, for which 7, = o and |O,, | > 3.

Lemma 6.2. For some {;; € N and any set F, € N N (N \ {n})
of cardinality Cy, there exist ixr1 < ik, jrs1 > Jr, and (Pri1,0k41) €
Fpar(et1) (tkt1, Jrr1) such that:
® ppi1 1S obtained from pr by adding a set of cycles of length k
and |O,| — 1 |O,|-malleable fized points for all n € Fy, as well
as a cycle of length |Oy,| if (mn, = p and |O,,| > 2) and an
anti-malleable fived point if (m,, = p and |O,,| = 1).
® 0y41 is obtained from oy by adding a cycle of length |O,,| for all
n € Fy, as well as a cycle of length |O,| if m,, = o.

Proof. If k € 2N| then the desired result follows from Propositions [5.1
and Otherwise, it follows from Propositions 5.5 I

Set Nk—i—l = Nk \ (Fk U {nk})

Define pog = Upeny Pe a0d 0o = Upen 0k As (ig)gen is strictly
decreasing and (ji)gen is strictly increasing, these are permutations of
7 whose composition is SZ. As Fy # () for all k € 4N + 3, it follows
that =0 < |Mal(pso, 0so) N Peranin(0s)| < Vo for all n € 2N + p.
And clearly Mal(pso,000) N Peroni(1-p)(0ao) = 0. As the fact that
Nien Nk = 0 ensures that po [ ~(Mal(pos, 050) N Pery(pso)) = p and
0o = 0, Proposition yields conjugates p’ of p and o’ of o for which
p o0 = ps ooy = ST =

The fact that every almost involution has finite order and [Mor89,
Theorem A] therefore yield Theorem
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