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Abstract. We introduce a notion of separability that holds of all
Borel automorphisms of standard Borel spaces and automorphisms
of complete Boolean algebras. We then prove that separable auto-
morphisms of σ-complete Boolean algebras are products of various
types of periodic automorphisms in their full groups. As appli-
cations, we show that a wide variety of groups of automorphisms
consist solely of commutators and satisfy the Bergman property,
that natural strengthenings of the Bergman property characterize
the inexistence of invariant Borel probability measures in standard
Borel spaces and standard measure spaces, and that the length four
normal closure of any Borel automorphism of R with uncountable
support is the group of all Borel automorphisms of R.

Introduction

A Borel space is a set X equipped with a σ-algebra of Borel subsets.
A function between Borel spaces is Borel if preimages of Borel sets are
Borel. A Borel automorphism of a Borel space is a Borel bijection of
the space with itself whose inverse is also Borel.

Given a binary relation R on a set X, we say that a family of subsets
of X separates R-related points if, for all distinct R-related points x
and y, there is a set in the family that contains x but not y. When
X is a Borel space, we say that R is separable if there is a countable
family of Borel subsets of X that separates R-related points. We say
that a Borel automorphism T : X → X is separable if the graphs of its
powers are separable. If there is a countable separating family of Borel
subsets of X, then every Borel automorphism of X is separable.

We say that a subrelation R of the orbit equivalence relation EX
Γ

generated by a countable group Γ of Borel automorphisms of X is Γ-
decomposable if there is a sequence (Bγ)γ∈Γ of Borel subsets of X with
the property that R =

⋃
γ∈Γ graph(γ � Bγ). We say that a partial func-

tion T : X ⇀ X is Γ-decomposable if its graph is Γ-decomposable. It is
easy to see that the set [Γ] of all Γ-decomposable Borel automorphisms
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of X forms a group under composition; we refer to it as the full group
of Γ. In the special case that there is a single Borel automorphism
T : X → X for which Γ is the group 〈T 〉 generated by T , we say that a
partial function S : X ⇀ X is T -decomposable if it is Γ-decomposable,
we define the full group of T to be the full group of Γ, and we use [T ]
to denote [Γ].

In what follows, we establish various algebraic properties of full
groups of separable Borel automorphisms. While these results essen-
tially appeared some time ago in [Mil04, §1], here we follow a more
systematic approach that yields substantially more readable proofs of
somewhat stronger theorems. This is only part of the justification for
publishing these results now, however, as questions have recently arisen
concerning analogs of properties of the group of Borel automorphisms
of R for the group of permutations of R/Q with Borel graphs, and the
answers to such questions—which will appear in a subsequent paper—
rely heavily upon the arguments presented here.

In §1, we consider involutions (i.e., functions I : X → X for which
I2 = idX). Although only the simplest Borel automorphisms are com-
positions of two Borel involutions in their full groups, we establish:

Theorem 1. Suppose that X is a Borel space and T : X → X is
a separable Borel automorphism. Then there are Borel involutions
I1, I2, I3 ∈ [T ] for which T = I3 ◦ I2 ◦ I1.

In §2, we consider more general products. We say that a permutation
is (a)periodic if all of its orbits are (in)finite. We show that separability
is not only sufficient for the above result, but necessary, even to obtain
an ostensibly weaker conclusion:

Theorem 2. Suppose that k ≥ 2, X is a Borel space, T : X → X is
an aperiodic Borel automorphism, and there are periodic Borel auto-
morphisms S1, . . . , Sk ∈ [T ] with the property that T = Sk ◦ · · · ◦ S1.
Then T is separable.

We then determine the circumstances under which an aperiodic sepa-
rable Borel automorphism is a composition of two Borel automorphisms
with prescribed periods in its full group:

Theorem 3. Suppose that k1 ≥ 2, k2 ≥ 3, X is a Borel space, and
T : X → X is an aperiodic separable Borel automorphism. Then there
exist S1, S2 ∈ [T ] such that every orbit of S1 has cardinality k1, every
orbit of S2 has cardinality 1 or k2, and T = S2 ◦ S1.

In §3, we show that every aperiodic separable Borel automorphism
is a special kind of commutator:
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Theorem 4. Suppose that k ≥ 3, X is a Borel space, and T : X →
X is an aperiodic separable Borel automorphism. Then there exist
S1, S2 ∈ [T ] such that S−1

1 and S2 are conjugate in [T ], every orbit of
S1 and S2 has cardinality 1 or k, and T = S2 ◦ S1.

We say that a countable group of permutations is aperiodic if all
of its orbits are infinite. More generally, we show that every Borel
automorphism in the full group of an aperiodic countable group of
separable Borel automorphisms is a special kind of commutator:

Theorem 5. Suppose that k ≥ 3, X is a Borel space, Γ is an aperiodic
countable group of separable Borel automorphisms of X, and T ∈ [Γ].
Then there exist S1, S2 ∈ [T ] such that S−1

1 and S2 are conjugate in [Γ],
every orbit of S1 and S2 has cardinality 1, 2, or k, and T = S2 ◦ S1.

A Borel measure on X is a measure µ on the Borel subsets of X. We
say that such a measure is Γ-invariant if µ(B) = µ(γB) for all Borel
sets B ⊆ X and γ ∈ Γ. As this easily implies that µ(B) = µ(T (B)) for
all Borel sets B ⊆ X and T ∈ [Γ], the special cases of Theorems 1, 3,
and 5 for Lebesgue-measure-preserving Borel automorphisms of [0, 1]
easily yield the results of [Ryz85].

In §4, we focus on Borel spaces X that are standard, in the sense
that the Borel structure on X is generated by a second-countable com-
plete metric on X. The support of a function T : X → X is given
by supp(T ) = {x ∈ X | x 6= T (x)}. Our main result is the follow-
ing strengthening of Shortt’s theorem that the quotient of the group
of Borel automorphisms of a standard Borel space by the subgroup of
permutations with countable supports is simple (see [Sho90]):

Theorem 6. Suppose that X is a standard Borel space and T : X → X
is a Borel automorphism with uncountable support. Then every Borel
automorphism S : X → X is a composition of four conjugates of T±1

by Borel automorphisms of X.

In §5, we consider algebraic properties originating in [Ber06]. We say
that a group Γ of Borel automorphisms of X is closed under countable
decomposition if [∆] ⊆ Γ for all countable subgroups ∆ of Γ. Given a
group Γ, we say that an increasing sequence (Γn)n∈N of subsets of Γ is
exhaustive if Γ =

⋃
n∈N Γn. We say that Γ has the Bergman property if,

for every exhaustive increasing sequence (Γn)n∈N of subsets of Γ, there
exists k ∈ N such that Γ = (Γk)

k. The following fact implies Bergman’s
theorem that the symmetric group of permutations of N has the latter
property (see [Ber06, Theorem 6]), as well as the analogous fact for the
group of Borel automorphisms of R (see [DG05, Theorem 3.4]):
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Theorem 7. Suppose that X is a Borel space and Γ is a group of
separable Borel automorphisms of X that is closed under countable
decomposition and has an aperiodic countable subgroup. Then Γ has
the Bergman property.

For each k ∈ N, we say that Γ has the k-Bergman property if, for
every exhaustive increasing sequence (Γn)n∈N of subsets of Γ, there
exists n ∈ N such that Γ = (Γn)k. When Γ is a countable group of
permutations of X, we say that a set Y ⊆ X is Γ-complete if X =
ΓY . We say that a countable group Γ of Borel automorphisms of X
is compressible if there is a Γ-decomposable injection T : X → X for
which ∼T (X) is Γ-complete. The proofs of [Ber06, Theorem 6] and
[DG05, Theorem 3.4] show that the corresponding groups have the
17-Bergman property, which is also an easy consequence of:

Theorem 8. Suppose that X is a Borel space and Γ is a group of
separable Borel automorphisms of X that is closed under countable
decomposition and has a compressible countable subgroup. Then Γ has
the 14-Bergman property.

As a corollary, we obtain the following characterization of the exis-
tence of invariant Borel probability measures:

Theorem 9. Suppose that k ≥ 14, X is a standard Borel space, and
Γ is an aperiodic countable group of Borel automorphisms of X. Then
exactly one of the following holds:

(1) There is a Γ-invariant Borel probability measure on X.
(2) The group [Γ] has the k-Bergman property.

We say that a Borel measure µ on X is Γ-quasi-invariant if µ(B) =
0 ⇐⇒ µ(γB) = 0 for all Borel sets B ⊆ X and γ ∈ Γ. Given
such a µ, let [Γ]/µ denote the quotient of [Γ] by the subgroup of Borel
automorphisms in [Γ] with µ-null supports. We also obtain:

Theorem 10. Suppose that k ≥ 14, X is a standard Borel space, Γ is
an aperiodic countable group of Borel automorphisms of X, and µ is
a Γ-quasi-invariant σ-finite Borel measure on X. Then exactly one of
the following holds:

(1) There is a Γ-invariant Borel probability measure ν � µ.
(2) The group [Γ]/µ has the k-Bergman property.

In §6, we generalize Theorems 1–5 and 7–8 to σ-complete Boolean
algebras. To achieve this, we use essentially the same arguments as
those utilized in [Fre04, §382M] to obtain the main result of [Ryz93]
as a consequence of Theorem 1. However, by avoiding the use of Stone
spaces, we eliminate the need for choice (beyond DC).
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1. Products of involutions

The saturation of a set Y ⊆ X under a partial injection T : X ⇀ X
is given by [Y ]T =

⋃
n∈Z T

n(dom(T n) ∩ Y ) (where T 0 is the identity
function on X), the T -orbit of a point x ∈ X is given by [x]T = [{x}]T ,
and a transversal of T is a set Y ⊆ X whose intersection with each
T -orbit is a singleton. When X is a Borel space, we say that a Borel
automorphism T : X → X is smooth if it admits a Borel transversal.
We begin this section by noting that the existence of involutions I, J ∈
[T ] for which T = I◦J is equivalent to a slight weakening of smoothness:

Proposition 1.1. Suppose that X is a Borel space and T : X → X is
a Borel automorphism. Then the following are equivalent:

(1) There are involutions I0, I1 ∈ [T ] for which T = I1 ◦ I0.
(2) There is a Borel set B ⊆ X whose intersection with each T -

orbit is a singleton or doubleton.

Proof. To see (1) =⇒ (2), define a function D : X → P(Z) by setting
D(x) = {n ∈ Z | I0(x) = T n(x)} for all x ∈ X.

Lemma 1.2. Suppose that x ∈ X. Then there is at most one point
y ∈ [x]T \ {x} for which D(x) ∩D(y) 6= ∅.

Proof. For all M ⊆ Z and n ∈ Z, define M − n = {m− n | m ∈M}.

Sublemma 1.3. If n ∈ Z, then D(T n(x)) = D(x)− 2n.

Proof. It is sufficient to show that D(x)−2n ⊆ D(T n(x)) for all n ∈ Z,
as this implies that D(T n(x))− 2(−n) ⊆ D((T−n ◦ T n)(x)) = D(x), so
D(T n(x)) ⊆ D(x)−2n, thus D(T n(x)) = D(x)−2n for all n ∈ Z. But
if m ∈ D(x) and n ∈ Z, then

(I0 ◦ T n)(x) = (I0 ◦ (I1 ◦ I0)n)(x)

= ((I0 ◦ I1)n ◦ I0)(x)

= (T−n ◦ I0)(x)

= Tm−n(x)

= (Tm−2n ◦ T n)(x),

so m− 2n ∈ D(T n(x)), thus D(x)− 2n ⊆ D(T n(x)).

If k = |[x]T | is infinite, then D(y) is a singleton for all y ∈ [x]T , so
Sublemma 1.3 ensures that ∀y ∈ [x]T \{x}D(x)∩D(y) = ∅. Otherwise,
D(y) is a translate of kZ for all y ∈ [x]T , in which case Sublemma 1.3
implies that ∀y ∈ [x]T \ {x} D(x) ∩ D(y) = ∅ if k is odd, whereas
∀y ∈ [x]T \ {x, T k/2(x)} D(x) ∩D(y) = ∅ if k is even.
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Fix Borel sets Bn ⊆ X for which I0 =
⋃
n∈Z T

n � Bn. Note that
if n ∈ N and x ∈ Bn, then n ∈ D(x), so Lemma 1.2 ensures that
Bn intersects each T -orbit in at most two points. Fix an enumeration
(kn)n∈N of Z and define B′n = Bkn\

⋃
m<n[Bkm ]T for all n ∈ N. Then the

set B =
⋃
n∈NB

′
n intersects each T -orbit in a singleton or doubleton.

To see (2) =⇒ (1), first recall that the hitting time function asso-
ciated with B and T is the map hTB : X → Z+ ∪ {∞} given by

hTB(x) =

{
n if n ∈ Z+ and x ∈ T−n(B) \

⋃
0<m<n T

−m(B) and

∞ if x /∈
⋃
n>0 T

−n(B),

and the return time function is the restriction rTB of hTB to B. De-

fine TB : (hTB)−1(Z+) → B by TB(x) = T h
T
B(x)(x). The corresponding

induced transformation is given by TB = TB � (rTB)−1(Z+). These func-
tions are clearly Borel (when Z+ ∪ {∞} is endowed with the power set
Borel structure).

Note that the set B∞ = (rTB)−1({∞}) intersects each infinite T -
orbit in a singleton and misses each finite T -orbit, whereas the set
B<∞ = {x ∈ (rTB)−1(Z+) | rTB(x) ≥ (rTB◦TB)(x)} misses each infinite T -
orbit and intersects each finite T -orbit in a singleton or a set of the form
{x, T k/2(x)}, where x ∈ X and k = |[x]T | is even. Set A = B<∞ ∪B∞.

Lemma 1.4. Suppose that m,n ∈ Z, x, y ∈ A, and T−m(x) = T−n(y).
Then Tm(x) = T n(y).

Proof. If x = y, then T−m(x) = T−n(y) = T−n(x), so x = Tm−n(x),
thus T n(y) = T n(x) = Tm(x). Otherwise, set k = |[x]T | = |[y]T |.
Then y = T−k/2(x) = T k/2(x), so T−m(x) = T−n(y) = T−k/2−n(x),
thus x = T−k/2+m−n(x), hence T k/2−m+n(x) = x, and it follows that
T n(y) = T k/2+n(x) = Tm(x).

Define an involution I1 ∈ [T ] by I1 =
⋃
n∈Z T

2n � T−n(A), as well as

I0 = I1 ◦ T
=

⋃
n∈Z(T 2n � T−n(A)) ◦ T

=
⋃
n∈Z T

2n ◦ (T � T−(n+1)(A))

=
⋃
n∈Z T

2n+1 � T−(n+1)(A).

Then I1 ◦ I0 = I1 ◦ I1 ◦ T = T and I2
0 = I0 ◦ I1 ◦ T = T−1 ◦ T = id.

Remark 1.5. In the special case that no T -orbit has even finite cardi-
nality, condition (2) of Proposition 1.1 is equivalent to the smoothness
of T . This can be established by noting that, in this case, the set A
from the proof of (2) =⇒ (1) is a transversal of EX

T .
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Remark 1.6. For future arguments, it will be important to note the
number of fixed points of the involutions I0 and I1 arising in the proof
of (2) =⇒ (1) along the T -orbit of each x ∈ A. Towards this end,
first observe that if n ∈ Z and y = T−n(x), then

I1(y) = y ⇐⇒ I1(T−n(x)) = T−n(x)

⇐⇒ T n(x) = T−n(x)

⇐⇒ T 2n(x) = x

and

I0(y) = y ⇐⇒ (I1 ◦ T )(T−n(x)) = T−n(x)

⇐⇒ I1(T−(n−1)(x)) = T−n(x)

⇐⇒ T n−1(x) = T−n(x)

⇐⇒ T 2n−1(x) = x.

If k = |[x]T | is infinite, then n = 0 is the unique solution to the first
equation and there are no solutions to the second, so x is the unique
fixed point of I1 � [x]T and I0 � [x]T has no fixed points. Otherwise,
the solutions to the first equation are given by 2n ≡ 0 (mod k) and
the solutions to the second are given by 2n − 1 ≡ 0 (mod k). If k is
odd, then n = 0 is the unique solution in k to the first congruence
and n = (k + 1)/2 is the unique solution in k to the second, so x is
the unique fixed point of I1 � [x]T and T−(k+1)/2(x) is the unique fixed
point of I0 � [x]T . If k is even, then n = 0 and n = k/2 are the unique
solutions in k to the first congruence and there are no solutions to the
second, so x and T−k/2(x) are the unique fixed points of I1 � [x]T and
I0 � [x]T has no fixed points.

Remark 1.7. By applying (2) =⇒ (1) to T−1, one obtains involutions
I0, I1 ∈ [T ] for which T = I1 ◦ I0 and the number of fixed points of I1

and I0 along each T -orbit is as in Remark 1.6, but with the roles of I1

and I0 reversed.

We next turn our attention to writing automorphisms as composi-
tions of three involutions.

Proposition 1.8. Suppose that X is a Borel space and T : X → X is
a Borel automorphism whose graph is separable. Then the support of
T is Borel.

Proof. Fix a sequence (Bn)n∈N of Borel sets separating graph(T )-related
points, and observe that supp(T ) =

⋃
n∈NBn \ T−1(Bn).

For all cardinals κ and sets X, let [X]κ denote the set of all subsets
of X of cardinality κ.
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Proposition 1.9. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X with Borel supports, B ⊆ X is
Borel, and k ≤ ℵ0. Then {x ∈ X | |B ∩ Γx| = k} is Borel.

Proof. It is enough to show that if k < ℵ0, then the corresponding set
A = {x ∈ X | |B ∩ Γx| ≥ k} is Borel. Towards this end, define C∆ =⋂
δ∈∆ δ

−1B and D∆ =
⋂
γ∈∆

⋂
δ∈∆\{γ} supp(γ−1δ) for all ∆ ∈ [Γ]k, and

observe that A =
⋃

∆∈[Γ]k C∆ ∩D∆.

Given a Borel automorphism T : X → X, let ≤T denote the quasi-
order onX given by x ≤T y ⇐⇒ ∃n ∈ N T n(x) = y and<T denote the
strict quasi-order on X given by x <T y ⇐⇒ (x ≤T y and ¬y ≤T x).
Given x, y ∈ X, set (x, y)T = {z ∈ X | x <T z <T y} (and define
[x, y)T , (x, y]T , and [x, y]T analogously). Given S ∈ [T ], we say that
a point x ∈ X is covered by a point y ∈ [x]T if y ≤T x <T S(y).
Observe that if such a y exists, then [x]T is infinite (since otherwise
<T � [x]T = ∅), so there is a ≤T -maximal such y. We use cS(x) to
denote this point. We say that S is T -covering if every point in X is
covered by a point in its T -orbit. Observe that the existence of such
an element of [T ] ensures that T is aperiodic. We say that S is T -non-
crossing if (x, S(x))T is S-invariant for all x ∈ X. We say that S is
T -oriented if S(x) ≤T x =⇒ ∀y ∈ [x]S y ≤T x for all x ∈ X.

A reduction of an equivalence relation E on a set X to an equivalence
relation F on a set Y is a function π : X → Y with the property that
w E x ⇐⇒ π(w) F π(x) for all w, x ∈ X.

Proposition 1.10. Suppose that X is a Borel space, T : X → X is
a Borel automorphism, S ∈ [T ] is T -covering, T -non-crossing, and T -
oriented, and R = S−1 ◦ T . Then cS is a reduction of EX

R to equality.

Proof. Fix x, y ∈ X. To see that cS(x) 6= cS(y) =⇒ ¬x EX
R y, it is

enough to handle the case that x EX
T y. By reversing the roles of x and

y if necessary, we can assume that x <T y. Then y <T (S ◦ cS)(x) =⇒
cS(x) ≤T cS(y) and cS(y) ≤T x =⇒ cS(y) ≤T cS(x), so the fact that
cS(x) 6= cS(y) ensures that (S ◦ cS)(x) ≤T y or x <T cS(y), in which
case y /∈ [cS(x), (S ◦ cS)(x))T or x /∈ [cS(y), (S ◦ cS)(y))T . To see that
¬x EX

R y, it is therefore sufficient to show the following:

Lemma 1.11. For all z ∈ X, the set [cS(z), (S◦cS)(z))T is R-invariant.

Proof. If z′ ∈ [cS(z), (S ◦ cS)(z))T , then T (z′) ∈ (cS(z), (S ◦ cS)(z)]T , so
T (z′) ∈ (cS(z), (S ◦ cS)(z))T or T (z′) = (S ◦ cS)(z). The S-invariance
of (cS(z), (S ◦ cS)(z))T ensures that R(z′) ∈ (cS(z), (S ◦ cS)(z))T in the
former case, and clearly R(z′) = cS(z) in the latter.
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To see that cS(x) = cS(y) =⇒ x EX
R y, note that cS is finite-to-one,

so—by the obvious induction—it is sufficient to establish the special
case where y is the ≤T -minimal element of [x]T for which x <T y and
cS(x) = cS(y). Observe that cS(z) ∈ (x, y)T for all z ∈ (x, y)T .

Lemma 1.12. There exists n ∈ N with the property that (Sn ◦T )(x) =
y and (Sm ◦ T )(x) <T (Sm+1 ◦ T )(x) for all m < n.

Proof. If n ∈ N, (Sm ◦ T )(x) <T (Sm+1 ◦ T )(x) for all m < n, and
(Sn◦T )(x) <T y, then (Sn◦T )(x) ∈ (x, y)T , so (cS◦Sn◦T )(x) ∈ (x, y)T .
As ((Sm ◦T )(x), (Sm+1 ◦T )(x))T is S-invariant for all m < n, it follows
that (cS ◦Sn◦T )(x) = (Sn◦T )(x), so (Sn◦T )(x) <T (Sn+1◦T )(x), and
the fact that cS(y) <T (Sn◦T )(x) <T y ensures that (Sn+1◦T )(x) ≤T y.
The obvious induction therefore yields the desired result.

As cS(y) <T y, it follows that S(y) ≤T y, in which case the fact
that ((Sm ◦ T )(x), (Sm+1 ◦ T )(x))T is S-invariant for all m < n ensures
that S(y) ≤T T (x). If S(y) <T T (x), then y 6= (S−1 ◦ T )(x), so the
fact that S is T -oriented ensures that (S−1 ◦ T )(x) <T T (x), thus the
S-invariance of ((S−1◦T )(x), T (x))T implies that cS(x) = (S−1◦T )(x);
but T (x) ≤T y, so cS(y) 6= (S−1 ◦ T )(x), contradicting the fact that
cS(x) = cS(y). It follows that S(y) = T (x), hence y = R(x).

Remark 1.13. As cS is finite-to-one, the conclusion of Proposition
1.10 immediately implies that R is periodic.

The vertical sections of a set R ⊆ X × Y are the sets of the form
Rx = {y ∈ Y | x R y}, where x ∈ X. The restriction of a binary
relation R on X to a set Y ⊆ X is the binary relation R � Y on Y
given by R � Y = R∩ (Y ×Y ). A digraph on X is an irreflexive binary
relation G on X, and a graph is a symmetric digraph. A set Y ⊆ X
is G-independent if G � Y = ∅, and an I-coloring of G is a function
c : X → I such that c−1({i}) is G-independent for all i ∈ I. Equip N
with the power set Borel structure, and note that the existence of a
Borel N-coloring of a digraph G on a Borel space X is equivalent to the
existence of a cover (Bn)n∈N of X by G-independent Borel sets. The
following facts are simple generalizations of results from [KST99, §4]:

Proposition 1.14. Suppose that X is a Borel space, Γ is a count-
able group of Borel automorphisms of X, and G is a separable Γ-
decomposable digraph on X whose vertical sections are finite. Then
there is a Borel N-coloring of G.

Proof. Fix Borel sets Aγ ⊆ X for which G =
⋃
γ∈Γ graph(γ � Aγ), as

well as an enumeration (Bn)n∈N of a family of Borel sets that separates
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G-related points and is closed under finite intersections. Then the set

Cn = {x ∈ Bn | Bn ∩Gx = ∅} = Bn \ (
⋃
γ∈ΓAγ ∩ γ−1Bn)

is Borel and G-independent for all n ∈ N. But X =
⋃
n∈NCn.

Proposition 1.15. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X, and G is a Γ-decomposable graph
on X that admits a Borel N-coloring. Then every G-independent Borel
set B ⊆ X is contained in a Borel maximal G-independent set.

Proof. Fix Borel sets Aγ ⊆ X for which G =
⋃
γ∈Γ graph(γ � Aγ), as

well as a cover (Bn)n∈N of X by G-independent Borel sets. Set C0 = B
and recursively define

Cn+1 = Cn ∪ {x ∈ Bn | ¬∃y ∈ Cn x G y}
= Cn ∪ (Bn \

⋃
γ∈Γ Aγ ∩ γ−1Cn)

for all n ∈ N. As each of these sets is Borel and G-independent, so too
is the set C∞ =

⋃
n∈NCn. To see that C∞ is a maximal G-independent

set, suppose that x ∈ X and C∞ ∪ {x} is G-independent, fix n ∈ N for
which x ∈ Bn, and observe that x ∈ Cn+1 ⊆ C∞.

The diagonal on X is given by ∆(X) = {(x, y) ∈ X × X | x = y}.
A transversal of an equivalence relation is a set that intersects every
equivalence class in a single point.

Proposition 1.16. Suppose that X is a Borel space, Γ is a countable
group of separable Borel automorphisms of X, and B ⊆ X is a Bor-
el set whose intersection with every Γ-orbit is finite. Then there is a
Borel transversal of EX

Γ � B.

Proof. Proposition 1.8 ensures that the graph

G = (EX
Γ \∆(X)) ∩ (B ×B)

=
⋃
γ∈Γ graph(γ � (supp(γ) ∩B ∩ γ−1B))

is Γ-decomposable. As it also has finite vertical sections and is separa-
ble, Propositions 1.14 and 1.15 yield a Borel maximal G-independent
set A ⊆ X. But the intersection of any such set with B is a transversal
of EX

Γ � B.

Given n > 0 and an aperiodic Borel automorphism T : X → X, we
say that a set Y ⊆ X is T≤n-independent (or T<(n+1)-independent) if
it is independent with respect to the digraph G =

⋃
1≤m≤n graph(Tm).

We also use RX
T to denote ≤T . Given a quasi-order R on X, we say

that a set Y ⊆ X is R-complete if it intersects every vertical section of
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R. A balanced marker sequence for T is a decreasing sequence (Bn)n∈N
of RX

T−1- and RX
T -complete Borel subsets of X such that

∀x ∈ X∃n ∈ N (x /∈ Bn and ∀i ∈ {±1} (T i)Bn(x) /∈ Bn+1).

Proposition 1.17. Suppose that X is a Borel space and T : X → X
is an aperiodic separable Borel automorphism. Then T has a balanced
marker sequence.

Proof. We first consider the special case of the proposition where there
is an EX

T -complete Borel set B ⊆ X with the property that the set
Bn = {x ∈ X | dT (x,B) ≥ n} is RX

T−1- and RX
T -complete for all n ∈ N,

where dT (x,B) = min{|i| | i ∈ Z and T i(x) ∈ B}. Clearly (Bn)n∈N is
decreasing. As |dT (x,B) − dT (T (x), B)| ≤ 1 for all x ∈ X, it follows
that, if x ∈ X and n > dT (x,B), then x /∈ Bn and dT ((T i)Bn(x), B) = n
for all i ∈ {±1}, so (T i)Bn(x) /∈ Bn+1 for all i ∈ {±1}, thus (Bn)n∈N is
a balanced marker sequence for T .

For the general case, define B0 = X. Given n ∈ N and an RX
T−1-

and RX
T -complete Borel set Bn ⊆ X, appeal to Propositions 1.14

and 1.15 to obtain a Borel maximal (TBn)≤2-independent set Bn+1 ⊆
Bn. A straightforward induction shows that rTBn is bounded below by
3n, so the set An = {x ∈ ∼Bn | ∀i ∈ {±1} (T i)Bn(x) /∈ Bn+1} contains⋃

0<i<3n(T i ◦ TBn)(Bn+1) for all n ∈ N. Set B = ∼
⋃
n∈NAn, and note

that the special case yields a balanced marker sequence for T � [B]T ,
whereas (Bn\[B]T )n∈N is a balanced marker sequence for T � ∼[B]T .

Proposition 1.18. Suppose that X is a Borel space and T : X → X is
an aperiodic separable Borel automorphism. Then there is a T -covering
T -non-crossing involution I ∈ [T ].

Proof. By Proposition 1.17, there is a balanced marker sequence (Bn)n∈N
for T . Let I be the involution agreeing with (T−i)Bn ◦(T i)Bn+1 ◦(T−i)Bn
on (T i)Bn(Bn+1) \ Bn+1 for all i ∈ {±1} and n ∈ N, and fixed else-
where. To see that I is T -covering, note that if n ∈ N, x ∈ ∼Bn,
(T i)Bn(x) /∈ Bn+1 for all i ∈ {±1}, and xi = ((T−i)Bn ◦ (T i)Bn+1

)(x)
for all i ∈ {±1}, then x−1 <T x <T x1 and I(x−1) = x1. To see that
I is T -non-crossing, suppose that y ∈ (x, I(x))T and let n be the max-
imal natural number for which x ∈ Bn. Then Bn+1 ∩ [x, I(x)]T = ∅.
Moreover, if I(y) 6= y and m is the maximal natural number for which
y ∈ Bm, then m < n and Bm+1 ∩ ([y, I(y)]T ∪ [I(y), y]T ) = ∅. As
x, I(x) ∈ Bn ⊆ Bm+1, it follows that x, I(x) /∈ [y, I(y)]T ∪ [I(y), y]T , so
I(y) ∈ (x, I(x))T .

We can now give the following:
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Proof of Theorem 1. By Propositions 1.8 and 1.9, the periodic part of
T , given by Per(T ) = {x ∈ X | |[x]T | < ℵ0}, is Borel. As Proposition
1.16 ensures that T � Per(T ) is smooth, Proposition 1.1 implies that it
is the composition of two involutions in its full group. We can therefore
assume that T is aperiodic, so Proposition 1.18 yields a T -covering
T -non-crossing involution I2 ∈ [T ]. As every involution in [T ] is T -
oriented, Remark 1.13 ensures that I2 ◦ T is periodic, so Propositions
1.1 and 1.16 yields involutions I0, I1 ∈ [I2 ◦ T ] ⊆ [T ] with the property
that I2 ◦ T = I1 ◦ I0, thus T = I2 ◦ I1 ◦ I0.

2. Products of periodic automorphisms

We begin this section with the following:

Proof of Theorem 2. Define φ : X → N by

φ(x) = min{n ∈ N |
⋃

1≤i≤k[x]Si ⊆ [T−n(x), T n(x)]T}.

As S1, . . . , Sk ∈ [T ], it follows that φ is Borel, thus so too is the set

B = {x ∈ X | ∀m ∈ Z∃n ∈ Z (φ ◦ T n)(x) 6= (φ ◦ Tm+n)(x)}.

Clearly B is T -invariant and (B ∩ (φ ◦ T n)−1({i}))(i,n)∈N×Z separates
EB
T �B-related points, so T � B is separable. Suppose, towards a con-

tradiction, that B 6= X. Then there exists x ∈ ∼B, in which case the
function n 7→ (φ ◦ T n)(x) is periodic, and therefore bounded. Define
m = maxφ([x]T ).

For all S ∈ [T ] and y ∈ [x]T , let nS(y) be the unique integer with the
property that S(y) = T nS(y)(y). Define nS = limn→∞

1
n

∑
i<n nS(T i(x)).

As nT = 1, we need only show that nSk◦···◦S1 6= 1, since this contradicts
our assumption that T = Sk ◦ · · · ◦ S1.

Towards this end, note that if 1 ≤ j ≤ k, n ≥ 2(2k − 1)m, and
I` = [T `m(x), T n−`m(x))T for all 0 ≤ ` ≤ 2k − 1, then

(Sj−1 ◦ · · · ◦ S1)−1([(Sj−1 ◦ · · · ◦ S1)(I2k−1)]Sj)

⊆ (Sj−1 ◦ · · · ◦ S1)−1([Ik]Sj)

⊆ (Sj−1 ◦ · · · ◦ S1)−1(Ik−1)

⊆ I0,

so [(Sj−1 ◦ · · · ◦ S1)(I2k−1)]Sj ⊆ (Sj−1 ◦ · · · ◦ S1)(I0). Define

Dj = (Sj−1 ◦ · · · ◦ S1)(I0) \ [(Sj−1 ◦ · · · ◦ S1)(I2k−1)]Sj
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and observe that

|Dj| ≤ |(Sj−1 ◦ · · · ◦ S1)(I0) \ (Sj−1 ◦ · · · ◦ S1)(I2k−1)|
= |(Sj−1 ◦ · · · ◦ S1)(I0 \ I2k−1)|
= |I0 \ I2k−1|
= 2(2k − 1)m.

Moreover, the Sj-invariance of [(Sj−1 ◦ · · · ◦ S1)(I2k−1)]Sj ensures that∑
y∈[(Sj−1◦···◦S1)(I2k−1)]Sj

nSj(y) = 0, for if y ∈ X and ` = |[y]Sj |, then∑
z∈[y]Sj

nSj(z) =
∑

i<`(nSj ◦ Sij)(y) = nS`j (y) = 0.

It now follows that if n ≥ 2(2k − 1)m, then
1
n

∑
i<n nSk◦···◦S1(T i(x))

= 1
n

∑
y∈I0 nSk◦···◦S1(y)

= 1
n

∑
1≤j≤k

∑
y∈I0(nSj ◦ Sj−1 ◦ · · · ◦ S1)(y)

= 1
n

∑
1≤j≤k

∑
y∈(Sj−1◦···◦S1)(I0) nSj(y)

= 1
n

∑
1≤j≤k

∑
y∈Dj nSj(y) + 1

n

∑
1≤j≤k

∑
y∈[(Sj−1◦···◦S1)(I2k−1)]Sj

nSj(y)

≤ 1
n

∑
1≤j≤k |Dj|m

≤ 2k(2k−1)m2

n
,

so nSk◦···◦S1 ≤ limn→∞
2k(2k−1)m2

n
= 0.

In order to construct T -covering T -non-crossing T -oriented elements
of [T ] with prescribed finite periods, we will need analogous finitary
notions. Given integers a and b, we will use the notation (a, b), (a, b],
[a, b), and [a, b] to denote the corresponding intervals of integers. Given
a permutation σ of [a, b], we say that a point i ∈ [a, b) is covered by a
point j ∈ [a, b) if j ≤ i < σ(j). If such a j exists, then we use cσ(i) to
denote the maximal such j. We say that σ is covering if every point in
[a, b) is covered by a point in [a, b).

Proposition 2.1. Suppose that a ≤ b are integers and σ is a permu-
tation of [a, b] for which σ(b) = a. Then σ is covering.

Proof. Given i ∈ [a, b), fix the least positive integer n with the property
that i < σn(b). As σ(b) = a, it follows that n > 1, so n−1 is a positive
integer, thus σn−1(b) ≤ i, hence σn−1(b) covers i.

We say that σ is non-crossing if ∀i ∈ [a, b] (i, σ(i)) is σ-invariant.

Proposition 2.2. Suppose that a ≤ b are integers and σ is a covering
non-crossing permutation of [a, b]. Then σ(b) = a.
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Proof. Suppose, towards a contradiction, that a < σ(b). As b does not
cover any point of [a, b), it follows that b 6= cσ(σ(b) − 1), so σ(b) 6=
(σ ◦ cσ)(σ(b) − 1), thus σ(b) ∈ (cσ(σ(b) − 1), (σ ◦ cσ)(σ(b) − 1)). As
b /∈ (cσ(σ(b)− 1), (σ ◦ cσ)(σ(b)− 1)), this contradicts the σ-invariance
of (cσ(σ(b)− 1), (σ ◦ cσ)(σ(b)− 1)).

The following observation eliminates the need to verify T -orientation,
thereby explaining why we do not consider its finitary analog:

Proposition 2.3. Suppose that T : X → X is an aperiodic Borel auto-
morphism of a Borel space and S ∈ [T ] is periodic and T -non-crossing.
Then S is T -oriented.

Proof. Suppose, towards a contradiction, that there exists x ∈ X for
which S(x) ≤T x but x is not the ≤T -maximal element of [x]S. As S
is periodic, there is a least n ∈ N for which x <T S

n(x), in which case
Sn(x) 6≤T Sn−1(x), so x 6= Sn−1(x), thus x ∈ (Sn−1(x), Sn(x))T . As
Sn−1(x), Sn(x) /∈ (Sn−1(x), Sn(x))T , this contradicts the S-invariance
of (Sn−1(x), Sn(x))T .

Given integers a ≤ i ≤ b and c ≤ d, define φ[a,b],[c,d],i : [a, i) ∪ (i, b] →
[a, i) ∪ (i+ d− c, b+ d− c] by

φ[a,b],[c,d],i(j) =

{
j if j ∈ [a, i) and

j + d− c if j ∈ (i, b],

and φ[c,d],i : [c, d] → [i, i + d − c] by φ[c,d],i(j) = i + j − c. Given
a permutation σ of [a, b] fixing i and a permutation τ of [c, d], the
amalgamation of σ and τ at i is the permutation of [a, b+ d− c] given
by σ ∗i τ = (φ[a,b],[c,d],i ◦ σ ◦ φ−1

[a,b],[c,d],i) ∪ (φ[c,d],i ◦ τ ◦ φ−1
[c,d],i).

Proposition 2.4. Suppose that a ≤ i ≤ b and c ≤ d are integers,
σ is a covering non-crossing permutation of [a, b] fixing i, and τ is a
covering non-crossing permutation of [c, d]. Then σ ∗i τ is covering
and non-crossing. Moreover, the corresponding function cσ∗iτ is the
unique extension of (φ[a,b],[c,d],i ◦ cσ ◦ φ−1

[a,b],[c,d],i) ∪ (φ[c,d],i ◦ cτ ◦ φ−1
[c,d],i)

with the property that cσ∗iτ (i+ d− c) = cσ(i).

Proof. If i ∈ {a, b}, then a = σ(a) or b = σ(b). As Proposition 2.2
ensures that a = σ(b), it follows that a = b, so σ ∗i τ = φ[c,d],i◦τ ◦φ−1

[c,d],i,

which easily yields the desired conclusion. We can therefore assume
that i ∈ (a, b).
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To see that σ ∗i τ is covering, appeal to Proposition 2.2 to see that

(σ ∗i τ)(b+ d− c) = (φ[a,b],[c,d],i ◦ σ ◦ φ−1
[a,b],[c,d],i)(b+ d− c)

= (φ[a,b],[c,d],i ◦ σ)(b)

= φ[a,b],[c,d],i(a)

= a,

and apply Proposition 2.1.
To see that σ ∗i τ is non-crossing, note first that if j ∈ [a, i) and

(σ ∗i τ)(j) ∈ (i+ d− c, b+ d− c], then the fact that σ is non-crossing
ensures that (j, σ(j)) is σ-invariant, in which case the fact that σ fixes
i implies that (j, i) ∪ (i, σ(j)) is σ-invariant, so

(σ ∗i τ)((j, (σ ∗i τ)(j)))

= (σ ∗i τ)((j, i) ∪ [i, i+ d− c] ∪ (i+ d− c, (σ ∗i τ)(j)))

= (φ[a,b],[c,d],i ◦ σ ◦ φ−1
[a,b],[c,d],i)((j, i)) ∪ [i, i+ d− c] ∪

(φ[a,b],[c,d],i ◦ σ ◦ φ−1
[a,b],[c,d],i)((i+ d− c, (φ[a,b],[c,d],i ◦ σ ◦ φ−1

[a,b],[c,d],i)(j)))

= (φ[a,b],[c,d],i ◦ σ)((j, i)) ∪ [i, i+ d− c] ∪ (φ[a,b],[c,d],i ◦ σ)((i, σ(j)))

= (φ[a,b],[c,d],i ◦ σ)((j, i) ∪ (i, σ(j))) ∪ [i, i+ d− c]
= φ[a,b],[c,d],i((j, i) ∪ (i, σ(j))) ∪ [i, i+ d− c]
= φ[a,b],[c,d],i((j, i)) ∪ [i, i+ d− c] ∪ φ[a,b],[c,d],i((i, σ(j)))

= (j, i) ∪ [i, i+ d− c] ∪ (i+ d− c, (φ[a,b],[c,d],i ◦ σ ◦ φ−1
[a,b],[c,d],i)(j))

= (j, (σ ∗i τ)(j)).

But if j ∈ [a, b+ d− c], j < i ⇐⇒ (σ ∗i τ)(j) < i, and

(φj, ρj) =

{
(φ[a,b],[c,d],i, σ) if j ∈ [a, i) ∪ (i+ d− c, b+ d− c] and

(φ[c,d],i, τ) if j ∈ [i, i+ d− c],

then the fact that ρj is non-crossing ensures that (φ−1
j (j), (ρj ◦φ−1

j )(j))
is ρj-invariant, so

(σ ∗i τ)((j, (σ ∗i τ)(j)))

= (φj ◦ ρj ◦ φ−1
j )((j, (φj ◦ ρj ◦ φ−1

j )(j)))

= (φj ◦ ρj)((φ−1
j (j), (ρj ◦ φ−1

j )(j)))

= φj((φ
−1
j (j), (ρj ◦ φ−1

j )(j)))

= (j, (σ ∗i τ)(j)).

To see that cσ∗iτ (i+d−c) = cσ(i), observe that no element of (cσ(i), i)
covers i+d−c (with respect to σ ∗i τ), no element of [i, i+d−c] covers
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i + d − c (again with respect to σ ∗i τ), and cσ(i) < i < (σ ◦ cσ)(i),
so (φ[a,b],[c,d],i ◦ cσ)(i) < i+ d− c < (φ[a,b],[c,d],i ◦ σ ◦ cσ)(i), thus cσ(i) <
i+ d− c < ((σ ∗i τ) ◦ cσ)(i).

Finally, suppose that j ∈ [a, b+d−c)\{i+d−c}. Then (cρj ◦φ−1
j )(j)

is the maximal element k of dom(ρj) for which k ≤ φ−1
j (j) < ρj(k), so

(φj ◦ cρj ◦ φ−1
j )(j) is the maximal element ` of φj(dom(ρj)) for which

` ≤ j < (φj ◦ ρj ◦ φ−1
j )(`). If j ∈ [a, i) ∪ (i + d − c, b + d − c), then

the fact that no element of [i, i+ d− c] covers j therefore ensures that
(φj ◦ cρj ◦ φ−1

j )(j) is the maximal element ` of [a, b + d − c] for which
` ≤ j < (σ ∗i τ)(`). If j ∈ [i, i + d− c), then the fact that no element
of (i+ d− c, b+ d− c] covers j therefore ensures that (φj ◦ cρj ◦φ−1

j )(j)
is the maximal element ` of [a, b+ d− c] for which ` ≤ j < (σ ∗i τ)(`).
In both cases, it follows that cσ∗iτ (j) = (φj ◦ cρj ◦ φ−1

j )(j).

Given natural numbers k1, k2 ≥ 2, we say that a permutation σ
of a finite subinterval of Z is (k1, k2)-dromedary if it is covering and
non-crossing, the cσ-preimage of every singleton has cardinality 0 or k1,
and every σ-orbit has cardinality 1 or k2. Let Succ denote the successor
function on Z.

Proposition 2.5. Suppose that k1 ≥ 2 and k2 ≥ 3. Then there is
a function f : N \ 2 → {1, 2, 3, 4} such that the following hold for all
integers a < b and (k1, k2)-dromedary permutations σ of (a, b]:

(1) For all n ∈ {1, 2, 3, 4}, there is an extension of σ to a (k1, k2)-
dromedary permutation of [a, b+ nk1(k2 − 1)).

(2) For all i > b + 1, there is an extension of σ to a (k1, k2)-
dromedary permutation τ of [a, b+ f(i− b)k1(k2−1)) for which
i /∈ supp(τ)∪{b+ f(i− b)k1(k2− 1), b+ f(i− b)k1(k2− 1) + 1}.

Proof. We first show that it is sufficient to establish the special case of
the proposition where a = 0. To see (1), note that if n ∈ {1, 2, 3, 4},
then the special case yields an extension τ ′ of Succ−a ◦ σ ◦ Succa to
a (k1, k2)-dromedary permutation of [0, b− a + nk1(k2 − 1)), in which
case Succa ◦ τ ′ ◦ Succ−a is an extension of σ to a (k1, k2)-dromedary
permutation of [a, b + nk1(k2 − 1)). To see (2), note that if i > b + 1,
then i − a > b − a + 1 and f((i − a) − (b − a)) = f(i − b), so the
special case yields an extension τ ′ of Succ−a ◦ σ ◦ Succa to a (k1, k2)-
dromedary permutation of [0, b − a + f(i − b)k1(k2 − 1)) for which
i−a /∈ supp(τ ′)∪{b−a+f(i−b)k1(k2−1), b−a+f(i−b)k1(k2−1)+1},
in which case Succa ◦ τ ′ ◦ Succ−a is an extension of σ to a (k1, k2)-
dromedary permutation τ of [a, b+f(i−b)k1(k2−1)) with the property
that i /∈ supp(τ) ∪ {b+ f(i− b)k1(k2 − 1), b+ f(i− b)k1(k2 − 1) + 1}.
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We next show that it is sufficient to establish the further special case
of the proposition where b = 1. To see (1), note that if n ∈ {1, 2, 3, 4},
then the further special case yields a (k1, k2)-dromedary permutation
τ ′ of [0, 1 +nk1(k2− 1)) for which τ ′(1) = 1, so Proposition 2.4 ensures
that τ ′ ∗1 σ is an extension of σ to a (k1, k2)-dromedary permutation of
[0, b+nk1(k2−1)). To see (2), note that if i > b+1, then i−(b−1) > 2
and f((i − (b − 1)) − 1) = f(i − b), so the further special case yields
a (k1, k2)-dromedary permutation τ ′ of [0, 1 + f(i− b)k1(k2 − 1)) with
τ ′(1) = 1 and i − (b − 1) /∈ supp(τ ′) ∪ {1 + f(i − b)k1(k2 − 1), 1 +
f(i − b)k1(k2 − 1) + 1}, in which case Proposition 2.4 ensures that
τ ′ ∗1 σ is an extension of σ to a (k1, k2)-dromedary permutation τ of
[0, b + f(i − b)k1(k2 − 1)) with the property that i /∈ supp(τ) ∪ {b +
f(i− b)k1(k2 − 1), b+ f(i− b)k1(k2 − 1) + 1}.

To establish the further special case, define f : N\2→ {1, 2, 3, 4} by

f(i) =


1 if i /∈ {jk1 − 1 | 0 < j < k2} ∪ {k1(k2 − 1), k1(k2 − 1) + 1},
2 if i ∈ {jk1 − 1 | 0 < j < k2},
3 if i = k1(k2 − 1), and

4 if i = k1(k2 − 1) + 1.

Define σ1 on [0, k1(k2 − 1)] by σ1 = (0 k1 · · · k1(k2 − 1)). Proposition
2.1 ensures that σ1 is covering, the fact that σ1 � (jk1, (j + 1)k1) is
the identity for all j < k2 − 1 implies that σ1 is non-crossing and the
cσ1-preimage of jk1 is [jk1, (j+ 1)k1) for all j < k2− 1, and the unique
non-trivial σ1-orbit is {jk1 | j < k2}, thus σ1 is (k1, k2)-dromedary. If
0 < j < n, then jk1−1 is fixed by σ1, so Proposition 2.4 ensures that the
permutation σ2,j = σ1 ∗jk1−1 σ1 is (k1, k2)-dromedary. As 1 is fixed by
σ1, it follows that jk1 is fixed by σ2,j for all 0 < j < k2, so Proposition
2.4 ensures that the permutation σ3 = σ2,k2−1 ∗k1(k2−1) σ1 is (k1, k2)-
dromedary. As 1 is fixed by σ1, it follows that k1(k2−1)+1 is fixed by σ3,
so Proposition 2.4 ensures that the permutation σ4 = σ3 ∗k1(k2−1)+1 σ1

is (k1, k2)-dromedary. As 1 is fixed by σ1, it follows that k1(k2− 1) + 2
is fixed by σ4.

To see (1), observe that σ1, σ2,j (for any 0 < j < k2), σ3, and σ4

are as desired. To see (2), suppose that i > 2. If f(i − 1) = 1, then
i /∈ {jk1 | 0 < j < k2} ∪ {k1(k2 − 1) + 1, k1(k2 − 1) + 2}, so the
permutation τ = σ1 is as desired. If f(i−1) = 2, then i = jk1 for some
0 < j < k2, in which case the permutation τ = σ2,j is as desired. If
f(i− 1) = 3, then i = k1(k2 − 1) + 1, so the permutation τ = σ3 is as
desired. And if f(i−1) = 4, then i = k1(k2−1)+2, so the permutation
τ = σ4 is as desired.
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Given integers a ≤ b and a permutation σ of [a, b], let σ denote the
permutation of [−b,−a] given by σ(i) = −σ−1(−i).

Proposition 2.6. Suppose that a ≤ b are integers and σ is a covering
non-crossing permutation of [a, b]. Then σ is a covering non-crossing
permutation of [−b,−a] with the property that cσ(i) = −(σ◦cσ)(−i−1)
for all i ∈ [−b,−a).

Proof. As Proposition 2.2 ensures that σ(−a) = −σ−1(a) = −b, Propo-
sition 2.1 implies that σ is covering. To see that σ is non-crossing, note
that if i ∈ [−b,−a], then the σ-invariance of (σ−1(−i),−i) ensures that

σ((i, σ(i))) = σ((i,−σ−1(−i)))

= −σ−1((σ−1(−i),−i))

= −(σ−1(−i),−i)
= (i,−σ−1(−i))
= (i, σ(i)).

Finally, note that if i ∈ [−b,−a) and j′ is the least element of (a, b] for
which σ−1(j′) ≤ −i− 1 < j′, then j′ = (σ ◦ cσ)(−i− 1), since otherwise
σ−1(j′) < cσ(−i − 1) ≤ −i − 1 < j′ < (σ ◦ cσ)(−i − 1), contradicting
the σ-invariance of (σ−1(j′), j′). It therefore follows that

cσ(i) = max{j ∈ [−b,−a) | j ≤ i < σ(j)}
= max{j ∈ [−b,−a) | j ≤ i < −σ−1(−j)}
= −min{j′ ∈ (a, b] | −j′ ≤ i < −σ−1(j′)}
= −min{j′ ∈ (a, b] | σ−1(j′) < −i ≤ j′}
= −min{j′ ∈ (a, b] | σ−1(j′) ≤ −i− 1 < j′}
= −(σ ◦ cσ)(−i− 1),

which completes the proof.

In what follows, we will implicitly use the straightforward observa-
tion that the map σ 7→ σ is an involution.

Proposition 2.7. Suppose that k1 ≥ 2 and k2 ≥ 3. Then there is
a function f : N \ 2 → {1, 2, 3, 4} such that the following hold for all
integers a < b and (k1, k2)-dromedary permutations σ of [a, b):

(1) For all n ∈ {1, 2, 3, 4}, there is an extension of σ to a (k1, k2)-
dromedary permutation of (a− nk1(k2 − 1), b].

(2) For all i < a − 1, there is an extension of σ to a (k1, k2)-
dromedary permutation τ of (a−f(a− i)k1(k2−1), b] for which
i /∈ supp(τ)∪{a−f(a− i)k1(k2−1)−1, a−f(a− i)k1(k2−1)}.
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Proof. To see (1), suppose that n ∈ {1, 2, 3, 4}, appeal to Proposi-
tion 2.6 to see that σ is a (k1, k2)-dromedary permutation of (−b,−a],
appeal to Proposition 2.5 to obtain an extension of σ to a (k1, k2)-
dromedary permutation τ ′ of [−b,−a+ nk1(k2 − 1)), and appeal once
more to Proposition 2.6 to see that τ ′ is an extension of σ to a (k1, k2)-
dromedary permutation of (a− nk1(k2 − 1), b].

To see (2), fix f : N \ 2 → {1, 2, 3, 4} as in Proposition 2.5, appeal
to Proposition 2.6 to see that σ is a (k1, k2)-dromedary permutation of
(−b,−a], and note that if i < a− 1, then −i > −a+ 1 and f(a− i) =
f((−i) − (−a)), so there is an extension of σ to a (k1, k2)-dromedary
permutation τ ′ of [−b,−a+ f(a− i)k1(k2− 1)) with the property that
−i /∈ supp(τ ′)∪{−a+f(a−i)k1(k2−1),−a+f(a−i)k1(k2−1)+1}, thus
one more application of Proposition 2.6 ensures that τ ′ is an extension
of σ to a (k1, k2)-dromedary permutation τ of (a−f(a− i)k1(k2−1), b]
with i /∈ supp(τ)∪{a−f(a− i)k1(k2−1)−1, a−f(a− i)k1(k2−1)}.

Proposition 2.8. Suppose that a < b, i < a − 1, j > b + 1, k1 ≥ 2,
and k2 ≥ 3 are integers and σ is a (k1, k2)-dromedary permutation of
(a, b]. Then there exist n ∈ {1, 2, . . . , 10} and an extension of σ to a
(k1, k2)-dromedary permutation τ of (a− nk1(k2 − 1), b + nk1(k2 − 1)]
with the property that i /∈ supp(τ)∪{a−nk1(k2−1)−1, a−nk1(k2−1)}
and j /∈ supp(τ) ∪ {b+ nk1(k2 − 1) + 1}.

Proof. If i < a − 4k1(k2 − 1) − 1 and f : N \ 2 → {1, 2, 3, 4} is the
function given by Proposition 2.5, then there is an extension of σ to a
(k1, k2)-dromedary permutation τ ′ of [a, b+f(j−b)k1(k2−1)) for which
j /∈ supp(τ ′)∪{b+f(j−b)k1(k2−1), b+f(j−b)k1(k2−1)+1}, so part
(1) of Proposition 2.7 yields the desired extension of τ ′ to a (k1, k2)-
dromedary permutation of (a−f(j−b)k1(k2−1), b+f(j−b)k1(k2−1)].

Similarly, if j > b + 4k1(k2 − 1) + 1 and f : N \ 2 → {1, 2, 3, 4}
is the function given by Proposition 2.7, then part (1) of Proposition
2.5 yields an extension of σ to a (k1, k2)-dromedary permutation τ ′ of
[a, b + f(a − i)k1(k2 − 1)), in which case the defining property of f
yields the desired extension of τ ′ to a (k1, k2)-dromedary permutation
τ of (a− f(a− i)k1(k2 − 1), b + f(a− i)k1(k2 − 1)] with the property
that i /∈ supp(τ)∪ {a− f(a− i)k1(k2 − 1)− 1, a− f(a− i)k1(k2 − 1)}.

It only remains to handle the case that a− 4k1(k2 − 1)− 1 ≤ i and
j ≤ b+4k1(k2−1)+1. We will recursively construct integers ae ≤ a and
be ≥ b, as well as extensions of σ to (k1, k2)-dromedary permutations
σe of (ae, be] with the property that i /∈ supp(σe) ∪ {ae − 1, ae} and
j /∈ supp(σe) ∪ {be + 1} for all natural numbers e ≤ 4. We begin by
setting a0 = a, b0 = b, and σ0 = σ. Suppose now that e < 4 and
we have already found ae, be, and σe. If there is an extension of σe to
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a (k1, k2)-dromedary permutation τe of [ae, be + k1(k2 − 1)) for which
j /∈ supp(τe)∪ {be + k1(k2− 1), be + k1(k2− 1) + 1}, then set me+1 = 1.
Otherwise, part (2) of Proposition 2.5 yields me+1 ∈ {2, 3, 4} with
the property that there is an extension of σe to a (k1, k2)-dromedary
permutation τe of [ae, be+me+1k1(k2−1)) for which j /∈ supp(τe)∪{be+
me+1k1(k2−1), be+me+1k1(k2−1)+1}. If there is an extension of τe to a
(k1, k2)-dromedary permutation σe+1 of (ae−k1(k2−1), be+me+1k1(k2−
1)] for which i /∈ supp(σe+1) ∪ {ae − k1(k2 − 1) − 1, ae − k1(k2 − 1)},
then set `e+1 = 1. Otherwise, part (2) of Proposition 2.7 yields `e+1 ∈
{2, 3, 4} with the property that there is an extension of τe to a (k1, k2)-
dromedary permutation σe+1 of (ae−`e+1k1(k2−1), be+me+1k1(k2−1)]
for which i /∈ supp(σe+1)∪{ae− `e+1k1(k2−1)−1, ae− `e+1k1(k2−1)}.
Setting ae+1 = ae− `e+1k1(k2− 1) and be+1 = be +me+1k1(k2− 1), this
completes the recursive construction.

Lemma 2.9. There is at most one e ∈ {1, 2, 3, 4} for which `e 6= 1, as
well as at most one e ∈ {1, 2, 3, 4} for which me 6= 1.

Proof. If e ∈ {1, 2, 3, 4} has the property that me 6= 1, then part (1) of
Proposition 2.5 ensures that j ∈ (be−1+1, be−1+k1(k2−1)+1], and since
the intervals of this form are pairwise disjoint, there is at most one such
e. Similarly, if e ∈ {1, 2, 3, 4} has the property that `e 6= 1, then part
(1) of Proposition 2.7 ensures that i ∈ [ae−1− k1(k2− 1)− 1, ae−1− 1),
and since the intervals of this form are also pairwise disjoint, there is
again at most one such e.

Define `max = max{`1, `2, `3, `4} and mmax = max{m1,m2,m3,m4}.
If `max = mmax , then set ` = 3 + `max = 3 + mmax and observe that
a4 = a − `k1(k2 − 1) and b4 = b + mk1(k2 − 1) by Lemma 2.9, so
the permutation τ = σ4 is as desired. Otherwise, set ` = 3 + `max +
mmax and observe that a4 − mmax k1(k2 − 1) = a − `k1(k2 − 1) and
b4 + `max k1(k2 − 1) = b+ `k1(k2 − 1) by Lemma 2.9, so an application
of part (1) of Propositions 2.5 and 2.7 yields the desired extension of
σ4 to a (k1, k2)-dromedary permutation τ of (a4−mmax k1(k2− 1), b4 +
`max k1(k2 − 1)].

Given an aperiodic Borel automorphism T : X → X, a T -gap in a
set Y ⊆ X is an interval of the form (y, TY (y))T , where y ∈ Y and
1 < rTY (y) <∞.

Proposition 2.10. Suppose that a, b > a + 1, k1 ≥ 2, and k2 ≥ 3
are integers, J ⊆ (a, b) is a set whose Succ-gaps have cardinality at
least 10k1(k2 − 1) − 1, and σ is a permutation of J whose restriction
to each Succ-gap in ∼J is (k1, k2)-dromedary. Then there exist c ∈
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[a− 10k1(k2− 1)− 4, a], d ∈ [b, b+ 10k1(k2− 1) + 4], and an extension
of σ to a (k1, k2)-dromedary permutation of (c, d].

Proof. We first show that it is sufficient to establish the special case
of the proposition where a = 10k1(k2 − 1) − 4. Let c′, d′, and τ ′

be the result of applying this special case to a′ = 10k1(k2 − 1) − 4,

b′ = b − (a − a′), J ′ = Succa
′−a(J), and σ′ = Succa

′−a ◦ σ ◦ Succa−a
′
,

and observe that the integers c = c′+ (a−a′) and d = d′+ (a−a′) and

the permutation τ = Succa−a
′ ◦ τ ′ ◦ Succa

′−a are as desired.
We next show that it is sufficient to establish the further special

case of the proposition where J is Succ<10k1(k2−1)-independent. Define
φ : N\(J∩Succ(J))→ N by φ(j) = |j\(J∩Succ(J))|. Then the set J ′ =

φ(J\Succ(J)) is Succ<10k1(k2−1)-independent, so the further special case
yields c′ ∈ [0, 10k1(k2 − 1) − 4], d′ ∈ [φ(b), φ(b) + 10k1(k2 − 1) + 4],
and an (k1, k2)-dromedary permutation τ ′ of (c′, d′] whose support is
disjoint from J ′. Let (ji)i<` be the strictly increasing enumeration of
J \ Succ(J) and define c0 = c′, d0 = d′, and τ0 = τ ′. For all i < `, set
Ci = φ−1({φ(ji)}), ci+1 = ci, and di+1 = di + |Ci \ {ji}|, and appeal
to Proposition 2.4 to see that the function τi+1 = τi ∗ji (σ � Ci) is a
(k1, k2)-dromedary permutation of (ci+1, di+1]. Then the permutation
τ = τ` is the desired extension of σ.

Finally, we establish the special case of the proposition where J is
Succ<10k1(k2−1)-independent (but a need not be 10k1(k2 − 1)− 4). Set
m = a+ b(b−a)/2c. As J is T<8-independent, by setting c0 = m−2 if
J intersects [m+1,m+4] and c0 = m+2 otherwise, we can ensure that
[c0−1, c0 + 2] is disjoint from J . As m−a and b− (m+ 1) are within 1
of one another, it follows that c0−a and b− (c0 +1) are within 5 of one
another. Note that a < c0 or c0 + 1 < b, since otherwise b−1 ≤ c0 ≤ a,
contradicting the fact that b > a + 1. Set d0 = c0 + 1, let τ0 be the
unique permutation of (c0, d0], and recursively apply Proposition 2.8
to ci, di, the maximum element of J below ci (or any integer strictly
below ci − 1 if there is no such element of J), the minimum element
of J above di (or any integer strictly above di + 1 if there is no such
element of J), k1, k2, and τi to obtain ni ∈ {1, . . . , 10} and an extension
of τi to a (k1, k2)-dromedary permutation τi+1 of (ci+1, di+1] for which
ci+1 = ci−nik1(k2−1), di+1 = di+nik1(k2−1), and supp(τi+1)∪{ci+1−
1, ci+1, di+1 +1} is disjoint from J (since J is T<10k1(k2−1)-independent),
noting that ci+1 − a and b− di+1 are within 5 of one another. Let i be
the maximal natural number for which a < ci or di < b. If a < ci, then
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ci+1 ≥ ci − 10k1(k2 − 1) > a− 10k1(k2 − 1) and

di+1 ≤ di + 10k1(k2 − 1)

= b+ 10k1(k2 − 1) + (di − b)
≤ b+ 10k1(k2 − 1) + (a− ci) + 5

≤ b+ 10k1(k2 − 1) + 4.

If di < b, then

ci+1 ≥ ci − 10k1(k2 − 1)

= a− 10k1(k2 − 1) + (ci − a)

≥ a− 10k1(k2 − 1) + (b− di)− 5

≥ a− 10k1(k2 − 1)− 4

and di+1 ≤ di+10k1(k2−1) < b+10k1(k2−1). In both cases, it follows
that the integers c = ci+1 and d = di+1 and the permutation τ = τi+1

are as desired.

Given n ≥ 1, k1 ≥ 2, k2 ≥ 3, an aperiodic bijection T : X → X,
and x ∈ X, we say that a permutation σ of [x, T n(x))T is T -(k1, k2)-
dromedary if the corresponding permutation θ−1 ◦ σ ◦ θ of n is (k1, k2)-
dromedary, where θ : n → [x, T n(x))T is given by θ(i) = T i(x) for all
i < n. We can now give the following:

Proof of Theorem 3. We will find a T -covering T -non-crossing Borel
automorphism S ∈ [T ] such that the preimage of every singleton under
cS has cardinality 0 or k1 and the orbit of every point under S has
cardinality 1 or k2. To see that this is sufficient, set S2 = S, appeal
to Proposition 2.3 to see that any such automorphism is T -oriented, so
Proposition 1.10 ensures that every orbit of the automorphism S1 =
S−1

2 ◦ T has cardinality k1, and the fact that S2 ∈ [T ] easily implies
that S1 ∈ [T ].

We will construct an exhaustive increasing sequence (Xi)i∈N of Borel
subsets of X, whose complements are RX

T−1- and RX
T -complete, as well

as T -decomposable bijections Si : Xi → Xi such that:

(1) ∀i ∈ N Si = Si+1 � Xi.
(2) ∀i ∈ N∀T -gaps I in ∼Xi Si � I is T -(k1, k2)-dromedary.

To see that this is sufficient, appeal to condition (1) to see that we
obtain a function S : X → X by setting S =

⋃
i∈N Si. To see that S

is injective, note that if x, y ∈ X have the property that S(x) = S(y)
and i ∈ N is sufficiently large that x, y ∈ Xi, then Si(x) = Si(y), so
x = y. To see that S is surjective, note that if y ∈ X and i ∈ N
is sufficiently large that y ∈ Xi, then there exists x ∈ Xi for which
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Si(x) = y, so S(x) = y. To see that S is T -decomposable, fix Borel sets
Bi,n ⊆ Xi with the property that Si =

⋃
n∈Z T

n � Bi,n for all i ∈ N, set
Bn =

⋃
i∈NBi,n for all n ∈ Z, and observe that S =

⋃
n∈Z T

n � Bn. To
see that the preimage of every singleton under cS has cardinality 0 or k1,
note that if x ∈ X and i ∈ N is sufficiently large that [x, S(x))T ⊆ Xi,
then c−1

S ({x}) = c−1
Si

({x}), and condition (2) ensures that the latter set
has cardinality 0 or k1. To see that the orbit of every point under S
has cardinality 1 or k2, note that if x ∈ X and i ∈ N is sufficiently
large that x ∈ Xi, then condition (2) implies that the orbit of x under
Si has cardinality 1 or k2 and coincides with the orbit of x under S.

Appeal to Propositions 1.14 and 1.15 to obtain an RX
T−1- and RX

T -

complete T<30k1(k2−1)+7-independent Borel set D ⊆ X. By Proposition
1.17, there is a balanced marker sequence (Di)i∈N for TD. For all a > 0,
b > a + 1, and i ∈ N, let Da,b,i+1 be the set of x ∈ Di+1 for which
TDi(x), (TDi)

2(x) /∈ Di+1, a = rTDi(x), and b = hT
T−1
Di

(Di+1)
(x).

To guarantee that (Xi)i∈N is exhaustive, it is enough to ensure that
(T a(x), T b(x))T ⊆ Xi+1 for all a > 0, b > a+1, i ∈ N, and x ∈ Da,b,i+1,
since the fact that (Di)i∈N is a balanced marker sequence ensures that
every point of X appears in an interval of this form. To guarantee
that the sets Xi are Borel and the recursive construction goes through,
we will construct Borel functions ai+1, bi+1 :

⋃
a>0

⋃
b>a+1Da,b,i+1 → N

such that:

(3) ∀a > 0∀b > a+1∀x ∈ Da,b,i+1 ai+1(x) ∈ [a−10k1(k2−1)−4, a].
(4) ∀a > 0∀b > a+ 1∀x ∈ Da,b,i+1 bi+1(x) ∈ [b, b+ 10k1(k2− 1) + 4].
(5) Xi+1\Xi =

⋃
a>0

⋃
b>a+1

⋃
x∈Da,b,i+1

(T ai+1(x)(x), T bi+1(x)(x)]T\Xi.

We begin by setting S0 = X0 = ∅. Suppose now that i ∈ N and we
have already found (aj)1≤j≤i, (bj)1≤j≤i, and Si.

Lemma 2.11. The size of each T -gap in Xi is at least 10k1(k2−1)−1.

Proof. Suppose that n > 1, x ∈ Xi, and rTXi(x) = n, so that (x, T n(x))T
is a T -gap in Xi. Then x and T n(x) are right and left endpoints of the
sorts of intervals appearing in condition (5), so conditions (3)–(5) yield
integers b ∈ [0, 10k1(k2 − 1) + 4] and a ∈ [−1, 10k1(k2 − 1) + 3] for
which T−b(x), T a+n(x) ∈ D. As the fact that n > 1 ensures that
−b ≤ 0 < a + n, the fact that D is T<30k1(k2−1)+7-independent implies
that 30k1(k2 − 1) + 7 ≤ b + a + n ≤ n + 20k1(k2 − 1) + 7, thus n ≥
10k1(k2 − 1).

Let Qi+1 be the set of quadruples q = (aq, bq, Jq, σq) with the prop-
erty that aq > 0, bq > aq + 1, Jq ⊆ (aq, bq) is a set whose Succ-gaps
have cardinality at least 10k1(k2 − 1) − 1, and σq is a permutation of
Jq whose restriction to each Succ-gap in ∼Jq is (k1, k2)-dromedary. For
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all q ∈ Qi+1, Proposition 2.10 yields cq ∈ [aq − 10k1(k2 − 1) − 4, aq],
dq ∈ [bq, bq + 10k1(k2 − 1) + 4], and an extension of σq to a (k1, k2)-
dromedary permutation τ q of (cq, dq]. Let Di+1,q be the set of all
x ∈ Daq ,bq ,i+1 satisfying the following conditions:

(a) ∀j ∈ (aq, bq) (j ∈ Jq ⇐⇒ T j(x) ∈ Xi).
(b) ∀j ∈ Jq (Si ◦ T j)(x) = T σ

q(j)(x).

Clearly
⋃
q∈Qi+1

Di+1,q ⊆
⋃
a>0

⋃
b>a+1Da,b,i+1 and Lemma 2.11 ensures

that the reverse inclusion holds. Define ai+1(x) = cq and bi+1(x) = dq

for all q ∈ Qi+1 and x ∈ Di+1,q.

Lemma 2.12. Suppose that a > 0, b > a + 1, and x ∈ Da,b,i+1. Then
(T ai+1(x)−1(x), T bi+1(x)+1(x)]T ∩Xi = (T a(x), T b(x)]T ∩Xi.

Proof. As condition (3) ensures that ai+1(x) ≤ a and condition (4)
implies that b ≤ bi+1(x), it is sufficient to show that

(T ai+1(x)−1(x), T a(x)]T ∩Xi = (T b(x), T bi+1(x)+1(x)]T ∩Xi = ∅.
Suppose, towards a contradiction, that this is false. Then condition (5)
yields a′ > 0, b′ > a′ + 1, i′ < i, and x′ ∈ Da′,b′,i′+1 for which

(T ai+1(x)−1(x), T a(x)]T ∩ (T ai′+1(x′)(x′), T bi′+1(x′)(x′)]T 6= ∅ (†)
or

(T b(x), T bi+1(x)+1(x)]T ∩ (T ai′+1(x′)(x′), T bi′+1(x′)(x′)]T 6= ∅. (‡)
To handle the case that (†) holds, note first that T ai′+1(x′)(x′) <T

T a(x) and T ai+1(x)−1(x) <T T bi′+1(x′)(x′). As x′, T a
′
(x′) ∈ Di′ and

Di′ is T≤10k1(k2−1)+4-independent, condition (3) implies that x′ <T

T ai′+1(x′)(x′), so x′ <T T a(x). As x′, T a(x) ∈ Di′+1, it follows that
TDi′+1

(x′) ≤T T a(x). As T b
′
(x′), TDi′+1

(x′) ∈ Di′ andDi′ is T
≤10k1(k2−1)+4-

independent, condition (4) ensures that T bi′+1(x′)(x′) <T TDi′+1
(x′), in

which case T bi′+1(x′)(x′) <T T
a(x), so T bi′+1(x′)(x′) ∈ [T ai+1(x)(x), T a(x))T .

But T a(x), T b
′
(x′) ∈ Di′ , condition (3) yields c ∈ (0, 10k1(k2−1)+4] for

which T a(x) = T bi′+1(x′)+c(x′), and condition (4) ensures that bi′+1(x′)−
b′ ∈ [0, 10k1(k2−1) + 4], contradicting the T≤20k1(k2−1)+8-independence
of Di′ .

To handle the case that (‡) holds, note first that T b(x) <T T
bi′+1(x′)(x′)

and T ai′+1(x′)(x′) <T T
bi+1(x)+1(x). As T b

′
(x′), TDi′+1

(x′) ∈ Di′ and Di′

is T≤10k1(k2−1)+4-independent, condition (4) implies that T bi′+1(x′)(x′) <T

TDi′+1
(x′), so T b(x) <T TDi′+1

(x′). As T b(x), TDi′+1
(x′) ∈ Di′+1, it fol-

lows that T b(x) ≤T x′. As x′, T a
′
(x′) ∈ Di′ and Di′ is T≤10k1(k2−1)+4-

independent, condition (3) ensures that x′ <T T ai′+1(x′)(x′), in which
case T b(x) <T T ai′+1(x′)(x′), so T ai′+1(x′)(x′) ∈ (T b(x), T bi+1(x)(x)]T .
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But T b(x), T a
′
(x′) ∈ Di′ , condition (3) ensures that a′ − ai′+1(x′) ∈

[0, 10k1(k2 − 1) + 4], and condition (4) yields c ∈ (0, 10k1(k2 − 1) + 4]
for which T b+c(x) = T ai′+1(x′)(x′), contradicting the T≤20k1(k2−1)+8-
independence of Di′ .

As D is T≤10k1(k2−1)+4-independent, conditions (3) and (4) imply that
if x ∈

⋃
a>0

⋃
b>a+1Da,b,i+1, then (T ai+1(x), T bi+1(x)]T ⊆ (x, TDi+1

(x))T .
As the intervals of the latter form are pairwise disjoint, those of the
former form are not only pairwise disjoint, but are not adjacent to one
another. Lemma 2.12 therefore ensures that the function Si+1 = Si ∪⋃
q∈Qi+1

⋃
j∈(cq ,dq ] T

τq(j)−j � T j(Di+1,q) is well-defined and as desired.

3. Commutators

An isomorphism of a permutation σ of a set X with a permutation
τ of a set Y is a bijection π : X → Y such that π ◦ σ = τ ◦ π. Given
integers a ≤ b and k ≥ 2, a pointed k-dromedary dyad on [a, b] is a
triple of the form u = (fu, σu, πu), where fu ∈ [a, b], σu is a covering
non-crossing permutation of [a, b] whose orbits all have cardinality 1 or
k and which fixes fu, and πu : [a, b] \ {fu} → [a, b) is an isomorphism
of σu � ([a, b] \ {fu}) with (Succ−1 ◦ σu) � [a, b).

Proposition 3.1. Suppose that a ≤ i ≤ b, c ≤ d, and n ≥ 2 are
integers, u is a pointed k-dromedary dyad on [a, b] for which fu 6= i but
σu fixes i, and v is a pointed k-dromedary dyad on [c, d]. Then:

(1) The integer i is not in {b, πu(i), (πu)−1(i)}.
(2) The domain of φ[a,b],[c,d],i ◦ πu ◦ φ−1

[a,b],[c,d],i is

([a, i) ∪ (i+ d− c, b+ d− c])\
{φ[a,b],[c,d],i(f

u), (φ[a,b],[c,d],i ◦ (πu)−1)(i)}.

(3) The domain of φ[c,d],i ◦ πv ◦ φ−1
[c,d],i is [i, i+ d− c] \ {φ[c,d],i(f

v)}.
(4) The triple w = (fw, σw, πw), where fw = φ[a,b],[c,d],i(f

u), σw =
σu ∗i σv, and πw is the extension of

(φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i) ∪ (φ[c,d],i ◦ πv ◦ φ−1

[c,d],i)

given by (φ[a,b],[c,d],i ◦ (πu)−1)(i) 7→ i + d − c and φ[c,d],i(f
v) 7→

(φ[a,b],[c,d],i◦πu)(i), is a pointed k-dromedary dyad on [a, b+d−c].
Proof. We begin with (1). To see that i 6= b, note that Proposition 2.2
would otherwise imply that a = σu(b) = b, contradicting the fact that
fu 6= i. To see that i 6= πu(i), note that i is a fixed point of σu, so πu(i)
is a fixed point of Succ−1 ◦σu, thus it cannot be a fixed point of σu. To
see that i 6= (πu)−1(i), note that i is a fixed point of σu, so it cannot be
a fixed point of Succ−1 ◦ σu, thus (πu)−1(i) is not a fixed point of σu.
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Lemma 3.2. Suppose that f and g are functions. Then dom(f ◦ g) =
g−1(dom(f)).

Proof. Simply observe that

x ∈ dom(f ◦ g) ⇐⇒ (x ∈ dom(g) and g(x) ∈ dom(f))

⇐⇒ x ∈ dom(g) ∩ g−1(dom(f))

⇐⇒ x ∈ g−1(dom(f)),

since g−1(dom(f)) ⊆ dom(g).

To see (2), appeal to Lemma 3.2 to obtain that

dom(φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i)

= (πu ◦ φ−1
[a,b],[c,d],i)

−1(dom(φ[a,b],[c,d],i))

= (φ[a,b],[c,d],i ◦ (πu)−1)([a, b] \ {i})
= φ[a,b],[c,d],i([a, b] \ {fu, (πu)−1(i)})
= ([a, i) ∪ (i+ d− c, b+ d− c])\
{φ[a,b],[c,d],i(f

u), (φ[a,b],[c,d],i ◦ (πu)−1)(i)}.

To see (3), appeal to Lemma 3.2 to obtain that

dom(φ[c,d],i ◦ πv ◦ φ−1
[c,d],i) = (πv ◦ φ−1

[c,d],i)
−1(dom(φ[c,d],i))

= (φ[c,d],i ◦ (πv)−1)([c, d])

= φ[c,d],i([c, d] \ {f v})
= [i, i+ d− c] \ {φ[c,d],i(f

v)}.

To see (4), first note that

σw(fw) = (σw ◦ φ[a,b],[c,d],i)(f
u)

= (φ[a,b],[c,d],i ◦ σu ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i)(f

u)

= (φ[a,b],[c,d],i ◦ σu)(fu)
= φ[a,b],[c,d],i(f

u)

= fw.

By Proposition 2.4, it only remains to show that πw is an isomorphism
of σw � ([a, b+ d− c] \ {fw}) with (Succ−1 ◦ σw) � [a, b+ d− c).

As the sets [a, b + d − c] \ {fw} and [a, b + d − c) are finite and
have the same cardinality, to see that πw is a bijection between them,
it is sufficient to establish that dom(πw) = [a, b + d − c] \ {fw} and
πw([a, b + d− c] \ {fw}) = [a, b + d− c). But the domain of πw is the
union of ([a, i) ∪ (i + d − c, b + d − c]) \ {fw, (φ[a,b],[c,d],i ◦ (πu)−1)(i)},
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[i, i+ d− c] \ {φ[c,d],i(f
v)}, and {(φ[a,b],[c,d],i ◦ (πu)−1)(i), φ[c,d],i(f

v)} by
(2) and (3), whereas

πw(([a, i) ∪ (i+ d− c, b+ d− c]) \ {fw, (φ[a,b],[c,d],i ◦ (πu)−1)(i)})
= (φ[a,b],[c,d],i ◦ πu ◦ φ−1

[a,b],[c,d],i)(([a, i) ∪ (i+ d− c, b+ d− c]) \
{fw, (φ[a,b],[c,d],i ◦ (πu)−1)(i)})

= (φ[a,b],[c,d],i ◦ πu)([a, b] \ {fu, i, (πu)−1(i)})
= φ[a,b],[c,d],i([a, b) \ {i, πu(i)})
= ([a, i) ∪ (i+ d− c, b+ d− c)) \ {(φ[a,b],[c,d],i ◦ πu)(i)}

and

πw([i, i+ d− c] \ {φ[c,d],i(f
v)})

= (φ[c,d],i ◦ πv ◦ φ−1
[c,d],i)([i, i+ d− c] \ {φ[c,d],i(f

v)})
= (φ[c,d],i ◦ πv)([c, d] \ {f v})
= φ[c,d],i([c, d))

= [i, i+ d− c),
and the image of [a, b+d−c] \{fw} under πw is the union of these sets
with {i+ d− c, (φ[a,b],[c,d],i ◦ πu)(i)}. It therefore only remains to show

that (πw ◦σw)(j) = (Succ−1 ◦σw ◦πw)(j) for all j ∈ [a, b+d−c] \{fw}.
We begin with the case that j ∈ dom(φ[a,b],[c,d],i ◦ πu ◦ φ−1

[a,b],[c,d],i),

which ensures that

(Succ−1 ◦ σw ◦ πw)(j)

= (Succ−1 ◦ σw ◦ φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i)(j)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ πu ◦ φ−1

[a,b],[c,d],i)(j)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ φ−1
[a,b],[c,d],i)(j).

If σw(j) ∈ dom(φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i), then

(πw ◦ σw)(j)

= (φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i ◦ σw)(j)

= (φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ σu ◦ φ−1

[a,b],[c,d],i)(j)

= (φ[a,b],[c,d],i ◦ πu ◦ σu ◦ φ−1
[a,b],[c,d],i)(j)

= (φ[a,b],[c,d],i ◦ Succ−1 ◦ σu ◦ πu ◦ φ−1
[a,b],[c,d],i)(j),

since (2) ensures that φ−1
[a,b],[c,d],i(j) 6= fu, in which case the fact that

Succ−1 ◦ φ[a,b],[c,d],i and φ[a,b],[c,d],i ◦ Succ−1 agree on the intersection of
their domains yields the desired conclusion. Otherwise, (2) ensures
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that σw(j) is fw or (φ[a,b],[c,d],i ◦ (πu)−1)(i). The former cannot happen,
as it would imply that j = (σw)−1(fw) = fw, and (2) ensures that fw

is not in dom(φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i). But the latter implies that

(πw ◦ σw)(j) = (πw ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i) = i + d − c, and since (1)
ensures that i 6= b, it follows that

(Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ φ−1
[a,b],[c,d],i)(j)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ φ−1
[a,b],[c,d],i ◦

(σw)−1 ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ φ−1
[a,b],[c,d],i ◦

φ[a,b],[c,d],i ◦ (σu)−1 ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ (σu)−1 ◦ (πu)−1)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ (πu ◦ σu)−1)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ (Succ−1 ◦ σu ◦ πu)−1)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu ◦ (πu)−1 ◦ (σu)−1 ◦ Succ)(i)

= (Succ−1 ◦ φ[a,b],[c,d],i ◦ Succ)(i)

= i+ d− c,

which yields the desired conclusion.
We next consider the case that j ∈ dom(φ[c,d],i ◦ πv ◦ φ−1

[c,d],i), which

ensures that

(Succ−1 ◦ σw ◦ πw)(j)

= (Succ−1 ◦ σw ◦ φ[c,d],i ◦ πv ◦ φ−1
[c,d],i)(j)

= (Succ−1 ◦ φ[c,d],i ◦ σv ◦ φ−1
[c,d],i ◦ φ[c,d],i ◦ πv ◦ φ−1

[c,d],i)(j)

= (Succ−1 ◦ φ[c,d],i ◦ σv ◦ πv ◦ φ−1
[c,d],i)(j).

Note that σw(j) ∈ dom(φ[c,d],i ◦ πv ◦ φ−1
[c,d],i), since otherwise (3) implies

that σw(j) = φ[c,d],i(f
v), in which case j = ((σw)−1 ◦ φ[c,d],i)(f

v) =
(φ[c,d],i ◦ (σv)−1 ◦φ−1

[c,d],i ◦φ[c,d],i)(f
v) = (φ[c,d],i ◦ (σv)−1)(f v) = φ[c,d],i(f

v),

and (3) ensures that φ[c,d],i(f
v) is not in dom(φ[c,d],i ◦ πv ◦ φ−1

[c,d],i). As
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(3) also implies that φ−1
[c,d],i(j) 6= f v, it follows that

(πw ◦ σw)(j)

= (φ[c,d],i ◦ πv ◦ φ−1
[c,d],i ◦ σw)(j)

= (φ[c,d],i ◦ πv ◦ φ−1
[c,d],i ◦ φ[c,d],i ◦ σv ◦ φ−1

[c,d],i)(j)

= (φ[c,d],i ◦ πv ◦ σv ◦ φ−1
[c,d],i)(j)

= (φ[c,d],i ◦ Succ−1 ◦ σv ◦ πv ◦ φ−1
[c,d],i)(j),

and since Succ−1 ◦ φ[c,d],i and φ[c,d],i ◦ Succ−1 agree on the intersection
of their domains, the desired conclusion follows.

To handle the case that j = (φ[a,b],[c,d],i ◦ (πu)−1)(i), note first that
(πu)−1(i) 6= fu, since fu /∈ dom(πu). It follows that (σu ◦ (πu)−1)(i) 6=
fu, since otherwise (πu)−1(i) = (σu)−1(fu) = fu. As we already showed
that (σu ◦ (πu)−1)(i) 6= (πu)−1(i) at the end of the first paragraph of
the proof, (2) ensures that (φ[a,b],[c,d],i ◦ σu ◦ (πu)−1)(i) is in the domain
of φ[a,b],[c,d],i ◦πu ◦φ−1

[a,b],[c,d],i. As Proposition 2.2 implies that c = σv(d),

it follows that

(πw ◦ σw)(j) = (πw ◦ σw ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i)

= (πw ◦ φ[a,b],[c,d],i ◦ σu ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i)

= (πw ◦ φ[a,b],[c,d],i ◦ σu ◦ (πu)−1)(i)

= (φ[a,b],[c,d],i ◦ πu ◦ φ−1
[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ σu ◦ (πu)−1)(i)

= (φ[a,b],[c,d],i ◦ πu ◦ σu ◦ (πu)−1)(i)

= (φ[a,b],[c,d],i ◦ Succ−1 ◦ σu ◦ πu ◦ (πu)−1)(i)

= (φ[a,b],[c,d],i ◦ Succ−1 ◦ σu)(i)
= (φ[a,b],[c,d],i ◦ Succ−1)(i)

= Succ−1(i)

= (Succ−1 ◦ φ[c,d],i)(c)

= (Succ−1 ◦ φ[c,d],i ◦ σv)(d)

= (Succ−1 ◦ φ[c,d],i ◦ φ−1
[c,d],i ◦ σw ◦ φ[c,d],i)(d)

= (Succ−1 ◦ σw ◦ φ[c,d],i)(d)

= (Succ−1 ◦ σw)(i+ d− c)
= (Succ−1 ◦ σw ◦ πw ◦ φ[a,b],[c,d],i ◦ (πu)−1)(i)

= (Succ−1 ◦ σw ◦ πw)(j).



30 B.D. MILLER

In order to handle the final case that j = φ[c,d],i(f
v), note that

(Succ−1 ◦ σw ◦ πw)(j)

= (Succ−1 ◦ σw ◦ πw ◦ φ[c,d],i)(f
v)

= (Succ−1 ◦ σw ◦ φ[a,b],[c,d],i ◦ πu)(i)
= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ φ−1

[a,b],[c,d],i ◦ φ[a,b],[c,d],i ◦ πu)(i)
= (Succ−1 ◦ φ[a,b],[c,d],i ◦ σu ◦ πu)(i)

and

(πw ◦ σw)(j) = (πw ◦ σw ◦ φ[c,d],i)(f
v)

= (πw ◦ φ[c,d],i ◦ σv ◦ φ−1
[c,d],i ◦ φ[c,d],i)(f

v)

= (πw ◦ φ[c,d],i ◦ σv)(f v)
= (πw ◦ φ[c,d],i)(f

v)

= (φ[a,b],[c,d],i ◦ πu)(i)
= (φ[a,b],[c,d],i ◦ πu ◦ σu)(i)
= (φ[a,b],[c,d],i ◦ Succ−1 ◦ σu ◦ πu)(i),

so the fact that Succ−1 ◦ φ[a,b],[c,d],i and φ[a,b],[c,d],i ◦ Succ−1 agree on the
intersection of their domains yields the desired result.

Given integers and pointed k-dromedary dyads satisfying the hy-
potheses of Proposition 3.1, the amalgamation of u and v at i, denoted
by u ∗i v, is the pointed k-dromedary dyad w appearing in the conclu-
sion of Proposition 3.1. We say that a pointed k-dromedary dyad u is
extended by a pointed k-dromedary dyad v if fu 6= f v, σu v σv, and
πu v πv.

Proposition 3.3. Suppose that k ≥ 3. Then there is a function g : N\
2 → {1, 2, 3} such that the following hold for all integers a < b and
pointed k-dromedary dyads u on (a, b]:

(1) For all n ∈ {1, 2, 3}, there is an extension of u to a pointed k-
dromedary dyad on [a, b+ 2n(k − 1)).

(2) For all i > b + 1, there is an extension of u to a pointed k-
dromedary dyad v on [a, b + 2g(i − b)(k − 1)) with i /∈ {f v} ∪
supp(σv) ∪ {b+ 2g(i− b)(k − 1), b+ 2g(i− b)(k − 1) + 1}.

Proof. We first show that it is sufficient to establish the special case
of the proposition where a = 0. To see (1), note that if n ∈ {1, 2, 3},
then the special case yields an extension v′ of (fu − a, Succ−a ◦ σu ◦
Succa, Succ−a◦πu◦Succa) to a pointed k-dromedary dyad on [0, b−a+
2n(k−1)), in which case (f v

′
+a, Succa◦σv′◦Succ−a, Succa◦πv′◦Succ−a)
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is an extension of u to a pointed k-dromedary dyad on [a, b + 2n(k −
1)). To see (2), note that if i > b + 1, then i − a > b − a + 1 and
g((i − a) − (b − a)) = g(i − b), so the special case yields an extension
v′ of (fu − a, Succ−a ◦ σu ◦ Succa, Succ−a ◦ πu ◦ Succa) to a pointed
k-dromedary dyad on [0, b − a + 2g(i − b)(k − 1)) for which i − a /∈
{f v′}∪supp(σv

′
)∪{b−a+2g(i−b)(k−1), b−a+2g(i−b)(k−1)+1}, thus

(f v
′
+a, Succa◦σv′◦Succ−a, Succa◦πv′◦Succ−a) is an extension of u to a

pointed k-dromedary dyad v on [a, b+2g(i−b)(k−1)) with the property
that i /∈ {f v}∪ supp(σv)∪{b+2g(i−b)(k−1), b+2g(i−b)(k−1)+1}.

We next show that it is sufficient to establish the further special
case where b = 1. To see (1), note that if n ∈ {1, 2, 3}, then the
further special case gives rise to a pointed k-dromedary dyad v′ on
[0, 1 + 2n(k − 1)) for which f v

′ 6= 1 but σv
′
(1) = 1, so Proposition

3.1 ensures that v′ ∗1 u is an extension of u to a pointed k-dromedary
dyad on [0, b + 2n(k − 1)). To see (2), note that if i > b + 1, then
i − (b − 1) > 2 and g((i − (b − 1)) − 1) = g(i − b), so the further
special case yields a pointed k-dromedary dyad v′ on [0, 1 + 2g(i −
b)(k− 1)) with the property that f v

′ 6= 1, σv
′
(1) = 1, and i− (b− 1) /∈

{f v′}∪ supp(σv
′
)∪{1 + 2g(i− b)(k− 1), 1 + 2g(i− b)(k− 1) + 1}, thus

Proposition 3.1 ensures that v′ ∗1 u is an extension of u to a pointed
k-dromedary dyad v on [a, b+ 2g(i− b)(k− 1)) with the property that
i /∈ {f v} ∪ supp(σv) ∪ {b+ 2g(i− b)(k − 1), b+ 2g(i− b)(k − 1) + 1}.

To establish the further special case, define g : N \ 2→ {1, 2, 3} by

g(i) =


1 if i /∈ [k − 1, 2k),

2 if i ∈ [k − 1, 2k − 2), and

3 if i ∈ {2k − 2, 2k − 1}.

Define σ1 on [0, 2k− 2] by σ1 = (0 k k+ 1 · · · 2k− 2). Proposition 2.1
ensures that σ1 is covering, and the fact that σ1 � (0, k) is the identity
implies that σ1 is non-crossing. A straightforward calculation reveals
that (Succ−1 ◦ σ1) � [0, 2k − 2) = (k − 1 k − 2 · · · 0).

Lemma 3.4. There is a pointed k-dromedary dyad u1 with the property
that fu1 = 2 and σu1 = σ1.

Proof. It is sufficient to observe that σ1 has one orbit of cardinality k
that does not include 2 and fixes all other points of its domain, and
(Succ−1 ◦ σ1) � [0, 2k − 2) has one orbit of cardinality k and fixes all
other points of its domain.
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Proposition 2.4 ensures that the permutations

σ2 = σ1 ∗k−1 σ1

= (0 3k − 2 3k − 1 · · · 4k − 4)(k − 1 2k − 1 2k · · · 3k − 3)

and

σ3 = σ2 ∗2k−2 σ1

= (0 5k − 4 5k − 3 · · · 6k − 6)(k − 1 4k − 3 4k − 2 · · · 5k − 5)

(2k − 2 3k − 2 3k − 1 · · · 4k − 4)

are covering and non-crossing. Another straightforward calculation
reveals that

(Succ−1 ◦ σ2) � [0, 4k − 4) = (3k − 3 k − 2 k − 3 · · · 0)

(2k − 2 2k − 3 · · · k − 1)

and

(Succ−1 ◦ σ3) � [0, 6k − 6) = (5k − 5 k − 2 k − 3 · · · 0)

(4k − 4 2k − 3 2k − 4 · · · k − 1)

(3k − 3 3k − 4 · · · 2k − 2).

Lemma 3.5. Suppose that n ∈ {2, 3}. Then there are pointed k-
dromedary dyads un and vn for which 1, fun, and f vn are pairwise
distinct but σun = σvn = σn.

Proof. It is enough to note that σn and (Succ−1◦σn) � [0, 2nk−2n) have
n orbits of cardinality k and fix all other points of their domains, as this
ensures that the former has at least 1 + 2nk−2n−nk = 1 +nk−2n =
1 + n(k − 2) ≥ 3 fixed points.

To see (1), observe that if wn ∈ {un, vn} for all n ∈ {2, 3}, then
u1, w2, and w3 are as desired. To see (2), suppose that i > 2. If
g(i−1) = 1, then i /∈ [k, 2k+1), so v = u1 is as desired. If g(i−1) = 2,
then i ∈ [k, 2k−1), so v = u2 or v = v2 is as desired. And if g(i−1) = 3,
then i ∈ {2k − 1, 2k}, so v = u3 or v = v3 is as desired.

Given integers a ≤ b and a pointed n-dromedary dyad u on [a, b],
let u denote the triple (fu, σu, πu), where fu = −fu, σu = σu, and
πu : [−b,−a] \ {fu} → [−b,−a) is given by πu(i) = −(Succ ◦ πu)(−i).

Proposition 3.6. Suppose that a ≤ b and k ≥ 2 are integers and u is
a pointed k-dromedary dyad on [a, b]. Then u is a pointed k-dromedary
dyad on [−b,−a].
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Proof. Proposition 2.6 ensures that σu is a covering non-crossing per-
mutation of [−b,−a] whose orbits all have cardinality 1 or k. To see
that fu is a fixed point of σu, note that

σu(fu) = −(σu)−1(−fu)
= −(σu)−1(fu)

= −fu

= fu.

Finally, note that πu = πu ◦ σu ◦ (σu)−1 = Succ−1 ◦ σu ◦ πu ◦ (σu)−1, so
(σu)−1 ◦ Succ ◦ πu = πu ◦ (σu)−1, thus

(πu ◦ σu)(i) = πu(−(σu)−1(−i))
= −(Succ ◦ πu ◦ (σu)−1)(−i)
= −(Succ ◦ (σu)−1 ◦ Succ ◦ πu)(−i)
= Succ−1(−((σu)−1 ◦ Succ ◦ πu)(−i))
= (Succ−1 ◦ σu)(−(Succ ◦ πu)(−i))
= (Succ−1 ◦ σu ◦ πu)(i)

for all i ∈ [−b,−a] \ {fu}.

Proposition 3.7. Suppose that k ≥ 3. Then there is a function g : N\
2 → {1, 2, 3} such that the following hold for all integers a < b and
pointed k-dromedary dyads u on [a, b):

(1) For all n ∈ {1, 2, 3}, there is an extension of u to a pointed
k-dromedary dyad on (a− 2n(k − 1), b].

(2) For all i < a − 1, there is an extension of u to a pointed k-
dromedary dyad v on (a − 2g(a − i)(k − 1), b] with i /∈ {f v} ∪
supp(σv) ∪ {a− 2g(a− i)(k − 1)− 1, a− 2g(a− i)(k − 1)}.

Proof. To see (1), suppose that n ∈ {1, 2, 3}, appeal to Proposition 3.6
to see that u is a pointed k-dromedary dyad on (−b,−a], appeal to
Proposition 3.3 to obtain an extension of u to a pointed k-dromedary
dyad v′ on [−b,−a+ 2n(k − 1)), and appeal once more to Proposition
3.6 to see that v′ is an extension of u to a pointed k-dromedary dyad
on (a− 2n(k − 1), b].

To see (2), fix g : N \ 2 → {1, 2, 3} as in Proposition 3.3, appeal
to Proposition 3.6 to see that u is a pointed k-dromedary dyad on
(−b, a], and note that if i < a − 1, then −i > −a + 1 and g(a − i) =
g((−i)− (−a)), so there is an extension of u to a pointed k-dromedary
dyad v′ on [−b,−a+2g(a−i)(k−1)) for which −i /∈ {f v′}∪supp(σv

′
)∪

{−a + 2g(a − i)(k − 1),−a + 2g(a − i)(k − 1) + 1}, thus one more
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application of Proposition 3.6 ensures that v′ is an extension of u to
a pointed k-dromedary dyad v on (a − 2g(a − i)(k − 1), b] for which
i /∈ {f v}∪ supp(σv)∪{a−2g(a− i)(k−1)−1, a−2g(a− i)(k−1)}.

Proposition 3.8. Suppose that a < b, i < a − 1, j > b + 1, and
k ≥ 3 are integers and u is a pointed k-dromedary dyad on (a, b].
Then there exist n ∈ {1, 2, . . . , 7} and an extension of u to a pointed
k-dromedary dyad v on (a− 2n(k− 1), b+ 2n(k− 1)] with the property
that i /∈ {f v} ∪ supp(σv) ∪ {a − 2n(k − 1) − 1, a − 2n(k − 1)} and
j /∈ {f v} ∪ supp(σv) ∪ {b+ 2n(k − 1) + 1}.

Proof. If i < a − 6(k − 1) − 1 and g : N \ 2 → {1, 2, 3} is the function
given by Proposition 3.3, then there is an extension of u to a pointed
k-dromedary dyad v′ on [a, b+ 2g(j − b)(k − 1)) for which j /∈ {f v′} ∪
supp(σv

′
) ∪ {b + 2g(j − b)(k − 1), b + 2g(j − b)(k − 1) + 1}, so part

(1) of Proposition 3.7 yields the desired extension of v′ to a pointed
k-dromedary dyad on (a− 2g(j − b)(k − 1), b+ 2g(j − b)(k − 1)].

Similarly, if j > b + 6(k − 1) + 1 and g : N \ 2 → {1, 2, 3} is the
function given by Proposition 3.7, then part (1) of Proposition 3.3
yields an extension of u to a pointed k-dromedary permutation v′ on
[a, b+ 2g(a− i)(k− 1)), in which case the defining property of g yields
the desired extension of v′ to a pointed k-dromedary dyad v on (a −
2g(a− i)(k− 1), b+ 2g(a− i)(k− 1)] with the property that i /∈ {f v}∪
supp(σv) ∪ {a− 2g(a− i)(k − 1)− 1, a− 2g(a− i)(k − 1)}.

It only remains to handle the case that a − 6(k − 1) − 1 ≤ i and
j ≤ b+ 6(k− 1) + 1. We will recursively construct integers ae ≤ a and
be ≥ b, as well as extensions of u to pointed k-dromedary dyads ue on
(ae, be] with the property that i /∈ {fue} ∪ supp(σue)∪ {ae− 1, ae} and
j /∈ {fue} ∪ supp(σue) ∪ {be + 1} for all natural numbers e ≤ 3. We
begin by setting a0 = a, b0 = b, and u0 = u. Suppose now that e < 3
and we have already found ae, be, and ue. If there is an extension of
ue to a pointed k-dromedary dyad ve on [ae, be + 2(k − 1)) for which
j /∈ {f ve}∪supp(σve)∪{be+2(k−1), be+2(k−1)+1}, then set me+1 = 1.
Otherwise, part (2) of Proposition 3.3 yields me+1 ∈ {2, 3} with the
property that there is an extension of ue to a pointed k-dromedary dyad
ve on [ae, be + 2me+1(k − 1)) for which j /∈ {f ve} ∪ supp(σve) ∪ {be +
2me+1(k− 1), be + 2me+1(k− 1) + 1}. If there is an extension of ve to a
pointed k-dromedary dyad ue+1 on (ae−2(k−1), be+2me+1(k−1)] for
which i /∈ {fue+1}∪ supp(σue+1)∪{ae−2(k−1)−1, ae−2(k−1)}, then
set `e+1 = 1. Otherwise, part (2) of Proposition 3.7 yields `e+1 ∈ {2, 3}
with the property that there is an extension of ve to a pointed k-
dromedary dyad ue+1 on (ae−2`e+1(k−1), be+2me+1(k−1)] for which
i /∈ {fue+1} ∪ supp(σue+1) ∪ {ae − 2`e+1(k − 1)− 1, ae − 2`e+1(k − 1)}.
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Setting ae+1 = ae − 2`e+1(k − 1) and be+1 = be + 2me+1(k − 1), this
completes the recursive construction.

Lemma 3.9. There is at most one e ∈ {1, 2, 3} for which `e 6= 1, as
well as at most one e ∈ {1, 2, 3} for which me 6= 1.

Proof. If e ∈ {1, 2, 3} has the property that me 6= 1, then part (1) of
Proposition 3.3 ensures that j ∈ (be−1 +1, be−1 +2(k−1)+1], and since
the intervals of this form are pairwise disjoint, there is at most one such
e. Similarly, if e ∈ {1, 2, 3} has the property that `e 6= 1, then part (1)
of Proposition 3.7 ensures that i ∈ [ae−1 − 2(k − 1)− 1, ae−1 − 1), and
since the intervals of this form are also pairwise disjoint, there is again
at most one such e.

Define `max = max{`1, `2, `3} and mmax = max{m1,m2,m3}. If
`max = mmax , then set n = 2 + `max = 2 + mmax and note that
a3 = a − 2n(k − 1) and b3 = b + 2n(k − 1) by Lemma 3.9, so the
pointed k-dromedary dyad v = u3 is as desired. Otherwise, set n =
2 + `max +mmax and note that a3− 2mmax (k− 1) = a− 2n(k− 1) and
b3+2`max (k−1) = b+2n(k−1) by Lemma 3.9, so an application of part
(1) of Propositions 3.3 and 3.7 yields the desired extension of u3 to a
pointed k-dromedary dyad v on (a3−2mmax (k−1), b3+2`max (k−1)].

Proposition 3.10. Suppose that a > 0, b > a + 1, and k ≥ 3 are
integers, J ⊆ (a, b) is a set whose Succ-gaps have cardinality at least
14(k− 1)− 1, I ⊆ J intersects each T -gap in ∼J in a singleton, σ is a
permutation of J , π : J \ I → J ∩ Succ−1(J), and uC = (fC , σC , πC) is
a pointed k-dromedary dyad on C, where fC is the unique element of
C ∩ I, σC = σ � C, and πC = π � (C \ I) for every Succ-gap C in ∼J .
Then there exist c ∈ [a−14(k−1)−4, a], d ∈ [b, b+14(k−1)+4], and
a simultaneous extension of each uC to a pointed k-dromedary dyad v
on (c, d].

Proof. We first show that it is sufficient to establish the special case of
the proposition where a = 14(k− 1)− 4. Let c′, d′, and v′ be the result
of applying this special case to a′ = 14(k − 1) − 4, b′ = b − (a − a′),
J ′ = Succa

′−a(J), I ′ = Succa
′−a(I), σ′ = Succa

′−a ◦ σ ◦ Succa−a
′
, and

π′ = Succa
′−a◦π◦Succa−a

′
, and observe that the integers c = c′+(a−a′)

and d = d′ + (a− a′) and the triple v = (f v
′
+ (a− a′), Succa−a

′ ◦ σv′ ◦
Succa

′−a, Succa−a
′ ◦ πv′ ◦ Succa

′−a) are as desired.
We next show that it is sufficient to establish the further special

case of the proposition where J is Succ<14(k−1)-independent. Define
φ : N \ (J ∩ Succ(J))→ N by φ(j) = |j \ (J ∩ Succ(J))|. Then the set

J ′ = φ(J \ Succ(J)) is Succ<14(k−1)-independent, so the further special
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case yields c′ ∈ [0, 14(k − 1)− 4], d′ ∈ [φ(b), φ(b) + 14(k − 1) + 4], and
a pointed k-dromedary dyad v′ on (c′, d′] for which {f v′} ∪ supp(σv

′
)

is disjoint from J ′. Let (ji)i<` be the strictly increasing enumeration
of J \ Succ(J) and define c0 = c′, d0 = d′, and v0 = v′. For all i < `,
set Ci = φ−1({φ(ji)}), ci+1 = ci, and di+1 = di + |Ci \ {ji}|, and appeal
to Proposition 3.1 to see that the triple vi+1 = vi ∗ji uCi is a pointed
k-dromedary dyad on (ci+1, di+1]. Then the triple v = v` is the desired
extension of u.

Finally, we establish the special case of the proposition where J
is Succ<14(k−1)-independent (but a need not be 14(k − 1) − 4). Set
m = a+ b(b− a)/2c. As J is T<8-independent, by setting c0 = m− 2
if J intersects [m+ 1,m+ 4] and c0 = m+ 2 otherwise, we can ensure
that [c0 − 1, c0 + 2] is disjoint from J . As m − a and b − (m + 1) are
within 1 of one another, it follows that c0 − a and b − (c0 + 1) are
within 5 of one another. Note that a < c0 or c0 +1 < b, since otherwise
b−1 ≤ c0 ≤ a, contradicting the fact that b > a+1. Set d0 = c0 +1, let
v0 be the unique pointed k-dromedary dyad on (c0, d0], and recursively
apply Proposition 3.8 to ci, di, the maximum element of J below ci (or
any integer strictly below ci − 1 if there is no such element of J), the
minimum element of J above di (or any integer strictly above di + 1 if
there is no such element of J), k, and vi to obtain ni ∈ {1, . . . , 7} and
an extension of vi to a pointed k-dromedary dyad vi+1 on (ci+1, di+1]
with the property that ci+1 = ci−2ni(k−1), di+1 = di+2ni(k−1), and
{f vi+1}∪supp(σvi+1)∪{ci+1−1, ci+1, di+1+1} is disjoint from J (since J
is T<14(k−1)-independent), noting that ci+1−a and b−di+1 are within 5
of one another. Let i be the maximal natural number for which a < ci
or di < b. If a < ci, then ci+1 ≥ ci − 14(k − 1) > a− 14(k − 1) and

di+1 ≤ di + 14(k − 1)

= b+ 14(k − 1) + (di − b)
≤ b+ 14(k − 1) + (a− ci) + 5

≤ b+ 14(k − 1) + 4.

If di < b, then

ci+1 ≥ ci − 14(k − 1)

= a− 14(k − 1) + (ci − a)

≥ a− 14(k − 1) + (b− di)− 5

≥ a− 14(k − 1)− 4
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and di+1 ≤ di + 14(k− 1) < b+ 14(k− 1). In both cases, it follows that
the integers c = ci+1 and d = di+1 and the pointed k-dromedary dyad
v = vi+1 are as desired.

Given k ≥ 3, n ≥ 1, an aperiodic bijection T : X → X, and
x ∈ X, we say that a triple (f, σ, π) is a pointed k-dromedary T -dyad
on [x, T n(x))T if f ∈ [x, T n(x))T , σ is a permutation of [x, T n(x))T ,
π : [x, T n(x))T \{f} → [x, T n−1(x))T , and (θ−1(f), θ−1◦σ◦θ, θ−1◦π◦θ)
is a pointed k-dromedary dyad on n, where θ : n→ [x, T n(x))T is given
by θ(i) = T i(x) for all i < n. We can now give the following:

Proof of Theorem 4. We will find S ∈ [T ], whose orbits all have cardi-
nality 1 or k, that is conjugate to T−1 ◦ S in [T ]. To see that this is
sufficient, set S2 = S and observe that every orbit of the automorphism
S1 = S−1

2 ◦ T has cardinality 1 or k and the fact that S2 ∈ [T ] easily
implies that S1 ∈ [T ]..

We will construct an exhaustive increasing sequence (Xi)i∈N of Borel
subsets of X whose complements are RX

T−1- and RX
T -complete, Borel

sets Fi ⊆ Xi intersecting every T -gap in ∼Xi in a singleton, T -decom-
posable injections Pi : Xi \ Fi → Xi ∩ T−1(Xi), and T -decomposable
bijections Si : Xi → Xi such that:

(1) ∀i ∈ N Pi = Pi+1 � (Xi \ Fi).
(2) ∀i ∈ N Si = Si+1 � Xi.
(3) ∀i ∈ N∀x ∈ Xi+1 \ Xi C

x
i+1 ∩ Fi+1 ∩ Xi = ∅, where Cx

i is the
unique T -gap in ∼Xi containing x for all i ∈ N and x ∈ Xi, and

(4) ∀i ∈ N∀x ∈ Xi (fxi , S
x
i , P

x
i ) is a pointed k-dromedary T -dyad on

Cx
i , where fxi ∈ Cx

i ∩Fi, Sxi = Si � Cx
i , and P x

i = Pi � (Cx
i \Fi).

To see that this is sufficient, note first that each x ∈ X appears in at
most finitely many Fi, for if i ∈ N is sufficiently large that x ∈ Xi and
j > i is sufficiently large that Cx

i 6= Cx
j , then condition (3) ensures

that x /∈ Fj. Conditions (1) and (2) therefore ensure that we obtain
functions P, S : X → X by setting P =

⋃
i∈N Pi and S =

⋃
i∈N Si. To

see that P and S are injective, note that if x, y ∈ X have the property
that P (x) = P (y) or S(x) = S(y) and i ∈ N has the property that
x, y ∈ Xi \ Fi, then Pi(x) = Pi(y) or Si(x) = Si(y), so x = y. To
see that P and S are surjective, note that if z ∈ X and i ∈ N is
sufficiently large that z ∈ Xi ∩ T−1(Xi), then there exist x, y ∈ Xi

for which Pi(x) = z and Si(y) = z, so P (x) = z and S(y) = z. To
see that P and S are T -decomposable, fix Borel sets Ai,n, Bi,n ⊆ Xi

with the property that Pi =
⋃
n∈Z T

n � Ai,n and Si =
⋃
n∈Z T

n � Bi,n

for all i ∈ N, set An =
⋃
i∈NAi,n and Bn =

⋃
i∈NBi,n for all n ∈ Z,

and observe that P =
⋃
n∈Z T

n � An and S =
⋃
n∈Z T

n � Bn. To see
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that P is an isomorphism of S with T−1 ◦ S, note that if x ∈ X and
i ∈ N has the property that x ∈ Xi \ Fi, then condition (4) ensures
that (Pi ◦Si)(x) = (T−1 ◦Si ◦Pi)(x), so (P ◦S)(x) = (T−1 ◦S ◦P )(x).
To see that the orbit of every point under S has cardinality 1 or k,
note that if x ∈ X and i ∈ N is sufficiently large that x ∈ Xi, then
condition (4) implies that the orbit of x under Si has cardinality 1 or
k and coincides with the orbit of x under S.

Appeal to Propositions 1.14 and 1.15 to obtain an RX
T−1- and RX

T -

complete T<42(k−1)+7-independent Borel set D ⊆ X. By Proposition
1.17, there is a balanced marker sequence (Di)i∈N for TD. For all a > 0,
b > a + 1, and i ∈ N, let Da,b,i+1 be the set of x ∈ Di+1 for which
TDi(x), (TDi)

2(x) /∈ Di+1, a = rTDi(x), and b = hT
T−1
Di

(Di+1)
(x).

To guarantee that (Xi)i∈N is exhaustive, it is enough to ensure that
(T a(x), T b(x))T ⊆ Xi+1 for all a > 0, b > a+1, i ∈ N, and x ∈ Da,b,i+1,
since the fact that (Di)i∈N is a balanced marker sequence ensures that
every point of X appears in an interval of this form. To guarantee
that the sets Xi are Borel and the recursive construction goes through,
we will construct Borel functions ai+1, bi+1 :

⋃
a>0

⋃
b>a+1Da,b,i+1 → N

such that:

(5) ∀a > 0∀b > a+ 1∀x ∈ Da,b,i+1 ai(x) ∈ [a− 14(k − 1)− 4, a].
(6) ∀a > 0∀b > a+ 1∀x ∈ Da,b,i+1 bi(x) ∈ [b, b+ 14(k − 1) + 4].
(7) Xi+1\Xi =

⋃
a>0

⋃
b>a+1

⋃
x∈Da,b,i+1

(T ai+1(x)(x), T bi+1(x)(x)]T\Xi.

We begin by setting F0 = P0 = S0 = X0 = ∅. Suppose now that
i ∈ N and we have already found (aj)1≤j≤i, (bj)1≤j≤i, Fi, Pi, and Si.

Lemma 3.11. The size of each T -gap in Xi is at least 14(k − 1)− 1.

Proof. Suppose that n > 1, x ∈ Xi, and rTXi(x) = n, so that (x, T n(x))T
is a T -gap in Xi. Then x and T n(x) are right and left endpoints of
the sorts of intervals appearing in condition (7), so conditions (5)–(7)
yield integers b ∈ [0, 14(k − 1) + 4] and a ∈ [−1, 14(k − 1) + 3] for
which T−b(x), T a+n(x) ∈ D. As the fact that n > 1 ensures that
−b ≤ 0 < a + n, the fact that D is T<42(k−1)+7-independent implies
that 42(k−1)+7 ≤ b+a+n ≤ n+28(k−1)+7, thus n ≥ 14(k−1).

Let Qi+1 be the set of quadruples q = (aq, bq, Jq, (Iq, σq, πq)) with
the property that aq > 0, bq > aq + 1, Jq ⊆ (aq, bq) is a set whose Succ-
gaps have cardinality at least 14(k − 1) − 1, Iq ⊆ Jq intersects each
Succ-gap in ∼Jq in a singleton, σq is a permutation of Jq, πq : Jq \Iq →
Jq∩Succ−1(Jq), and uC = (fC , σC , πC) is a pointed k-dromedary dyad
on C, where fC is the unique element of C ∩ Iq, σC = σ � C, and πC =
π � (C \ Iq) for every Succ-gap C in ∼Jq. For all q ∈ Qi+1, Proposition
3.10 yields cq ∈ [aq− 14(k− 1)− 4, aq], dq ∈ [bq, bq + 14(k− 1) + 4], and
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a simultaneous extension of each uC to a pointed k-dromedary dyad vq

on (cq, dq]. Let Di+1,q be the set of all x ∈ Daq ,bq ,i+1 such that:

(a) ∀j ∈ (aq, bq) (j ∈ Jq ⇐⇒ T j(x) ∈ Xi).
(b) ∀j ∈ Jq (j ∈ Iq ⇐⇒ T j(x) ∈ Fi).
(c) ∀j ∈ Jq \ Iq (Pi ◦ T j)(x) = T π

q(j)(x).
(d) ∀j ∈ Jq (Si ◦ T j)(x) = T σ

q(j)(x).

Clearly
⋃
q∈Qi+1

Di+1,q ⊆
⋃
a>0

⋃
b>a+1Da,b,i+1 and Lemma 3.11 ensures

that the reverse inclusion holds. Define ai+1(x) = cq and bi+1(x) = dq

for all q ∈ Qi+1 and x ∈ Di+1,q.

Lemma 3.12. Suppose that a > 0, b > a + 1, and x ∈ Da,b,i+1. Then
(T ai+1(x)−1(x), T bi+1(x)+1(x)]T ∩Xi = (T a(x), T b(x)]T ∩Xi.

Proof. As condition (5) ensures that ai+1(x) ≤ a and condition (6)
implies that b ≤ bi+1(x), it is sufficient to show that

(T ai+1(x)−1(x), T a(x)]T ∩Xi = (T b(x), T bi+1(x)+1(x)]T ∩Xi = ∅.
Suppose, towards a contradiction, that this is false. Then condition (7)
yields a′ > 0, b′ > a′ + 1, i′ < i, and x′ ∈ Da′,b′,i′+1 for which

(T ai+1(x)−1(x), T a(x)]T ∩ (T ai′+1(x′)(x′), T bi′+1(x′)(x′)]T 6= ∅ (†)
or

(T b(x), T bi+1(x)+1(x)]T ∩ (T ai′+1(x′)(x′), T bi′+1(x′)(x′)]T 6= ∅. (‡)

To handle the case that (†) holds, note first that T ai′+1(x′)(x′) <T

T a(x) and T ai+1(x)−1(x) <T T
bi′+1(x′)(x′). As x′, T a

′
(x′) ∈ Di′ and Di′ is

T≤14(k−1)+4-independent, condition (5) implies that x′ <T T
ai′+1(x′)(x′),

so x′ <T T a(x). As x′, T a(x) ∈ Di′+1, it follows that TDi′+1
(x′) ≤T

T a(x). As T b
′
(x′), TDi′+1

(x′) ∈ Di′ and Di′ is T≤14(k−1)+4-independent,

condition (6) ensures that T bi′+1(x′)(x′) <T TDi′+1
(x′), in which case

T bi′+1(x′)(x′) <T T a(x), so T bi′+1(x′)(x′) ∈ [T ai+1(x)(x), T a(x))T . But
T a(x), T b

′
(x′) ∈ Di′ , condition (5) yields c ∈ (0, 14(k−1)+4] for which

T a(x) = T bi′+1(x′)+c(x′), and condition (6) ensures that bi′+1(x′)− b′ ∈
[0, 14(k − 1) + 4], contradicting the T≤28(k−1)+8-independence of Di′ .

To handle the case that (‡) holds, note first that T b(x) <T T
bi′+1(x′)(x′)

and T ai′+1(x′)(x′) <T T
bi+1(x)+1(x). As T b

′
(x′), TDi′+1

(x′) ∈ Di′ and Di′

is T≤14(k−1)+4-independent, condition (6) implies that T bi′+1(x′)(x′) <T

TDi′+1
(x′), so T b(x) <T TDi′+1

(x′). As T b(x), TDi′+1
(x′) ∈ Di′+1, it

follows that T b(x) ≤T x′. As x′, T a
′
(x′) ∈ Di′ and Di′ is T≤14(k−1)+4-

independent, condition (5) ensures that x′ <T T ai′+1(x′)(x′), in which
case T b(x) <T T ai′+1(x′)(x′), so T ai′+1(x′)(x′) ∈ (T b(x), T bi+1(x)(x)]T .
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But T b(x), T a
′
(x′) ∈ Di′ , condition (5) ensures that a′ − ai′+1(x′) ∈

[0, 14(k−1)+4], and condition (6) yields c ∈ (0, 14(k−1)+4] for which
T b(x) = T ai′+1(x′)−c(x′), contradicting the T≤28(k−1)+8-independence of
Di′ .

As D is T≤14(k−1)+4-independent, conditions (5) and (6) imply that
if x ∈

⋃
a>0

⋃
b>a+1Da,b,i+1, then (T ai+1(x), T bi+1(x)]T ⊆ (x, TDi+1

(x))T .
As the intervals of the latter form are pairwise disjoint, those of the
former form are not only pairwise disjoint, but are not adjacent to one
another. Lemma 3.12 therefore ensures that the functions

Pi+1 = Pi ∪
⋃
q∈Qi+1

⋃
j∈(cq ,dq ]\Iq T

πv
q
(j)−j � T j(Di+1,q)

and

Si+1 = Si ∪
⋃
q∈Qi+1

⋃
j∈(cq ,dq ] T

σv
q
(j)−j � T j(Di+1,q)

are well-defined and as desired.

To obtain further results of this form, we need several preliminaries.

Proposition 3.13. Suppose that {1} ⊆ K ⊆ Z+, K * {1, 2}, X is
a Borel space, and T : X → X is an aperiodic smooth Borel automor-
phism. Then there exist R, S ∈ [T ], whose orbits all have cardinality
in K and for which each possibility occurs infinitely often on every
T -orbit, such that T = S ◦R.

Proof. To see that it is sufficient to establish the special case of the
proposition where X = Z and T = Succ, suppose that ρ and σ are
permutations of Z, whose orbits all have cardinality in K and for which
each possibility occurs infinitely often, such that Succ = σ ◦ ρ. Fix a
Borel transversal B ⊆ X of EX

T and observe that the functions R =⋃
n∈Z T

ρ(n)−n � T n(B) and S =
⋃
n∈Z T

σ(n)−n � T n(B) are as desired.
It remains to establish the special case. For all k ≥ 2, let τk be the

permutation of [0, 2k − 2] given by τk = (0 k k + 1 · · · 2k − 2). Then

cτk(i) =

{
0 if i < k and

i otherwise

for all i ∈ [0, 2k − 2). It follows that every τk-orbit and non-empty
cτk-preimage of a singleton has cardinality 1 or k. Moreover, every
possibility occurs with the sole exception that there is no singleton
whose cτk-preimage has cardinality 1 when k = 2. Fix an enumeration
(kn)n∈N of K \ {1} in which every element of K \ {1} appears infinitely
often, set i0 = 1, and let σ0 be the trivial permutation of [1, 1]. Given
n ∈ N, in > 0, and a permutation σn of [1 − n, in], define in+1 =
in + 2kn − 3 and appeal to Proposition 2.4 to see that the extension
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of σn to [−n, in+1], given by σn+1 = (Succ−n ◦ τkn ◦ Succn) ∗1−n σn, is
covering and non-crossing. It follows that the function σ =

⋃
n∈N σn is

Succ-covering and Succ-non-crossing. As it is also periodic, Proposition
2.3 ensures that it is Succ-oriented. A straightforward induction reveals
that the cardinality of every σ-orbit and non-empty cσ-preimage of a
singleton is in K. To see that every possibility in K \ {1} occurs
infinitely often, note that σn+1 and cσn+1 have one more such orbit and
preimage than σn and cσn whenever kn = k. To see that 1 also occurs
infinitely often, note that σn+1 and cσn+1 have one more such orbit and
preimage than σn and cσn whenever kn ≥ 3 (hence the requirement
that {1} ⊆ K and K * {1, 2}). Proposition 1.10 therefore implies that
σ and ρ = σ−1 ◦ Succ are as desired.

Remark 3.14. In the special case that K is finite, the proof of The-
orem 3 can be modified to show that smoothness can be weakened to
separability in the statement of Proposition 3.13.

A partial transversal of an equivalence relation E on a set X is a set
Y ⊆ X that intersects each E-class in at most one point.

Proposition 3.15. Suppose that X is a Borel space and Γ is a count-
able group of Borel automorphisms of X. Then there is a Borel transver-
sal B ⊆ X of EX

Γ if and only if there is a cover (Bn)n∈N of X by Borel
partial transversals of EX

Γ .

Proof. If B ⊆ X is a Borel transversal of EX
Γ , then (γB)γ∈Γ is a cover

of X by Borel transversals of EX
Γ . Conversely, if there is a cover of

X by countably-many Borel partial transversals of EX
Γ , then EX

Γ is
separable and the graph G = EX

Γ \ ∆(X) has a Borel N-coloring. As
G =

⋃
γ∈Γ graph(γ � supp(γ)), Proposition 1.8 ensures that it is Γ-

decomposable, so Proposition 1.15 yields a Borel transversal of EX
Γ .

A countable group Γ of Borel automorphisms of a Borel space X is
smooth if EX

Γ admits a Borel transversal.

Proposition 3.16. Suppose that k ≤ ℵ0, X is a Borel space, Γ is a
smooth countable group of Borel automorphisms of X, and B ⊆ X is a
Borel set whose intersection with each Γ-orbit has cardinality k. Then
there is a partition of B into k Borel transversals of EX

Γ � B.

Proof. We first handle the case that k is finite. By the pigeonhole
principle, it is sufficient to recursively construct a sequence (Bn)n<k of
pairwise disjoint Borel transversals of EX

Γ � B. Suppose that n < k
and we have already found (Bm)m<n. Then Proposition 3.15 ensures
that the graph Gn = (EX

Γ \∆(X))∩ ((B \
⋃
m<nBm)× (B \

⋃
m<nBm)
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has a Borel N-coloring. As

Gn =
⋃
γ∈Γ graph(γ � supp(γ)) ∩ ((B \

⋃
m<nBm)× (B \

⋃
m<nBm)),

Proposition 1.8 implies that it is Γ-decomposable. Proposition 1.15
therefore yields a Borel maximal Gn-independent set B′n ⊆ X, so the
set Bn = B′n ∩ (B \

⋃
m<nBm) is a Borel transversal of EX

Γ � B, which
completes the recursive construction.

In order to handle the case that k is infinite, extra care must be taken
to ensure that the resulting transversals cover X, since the pigeonhole
principle no longer suffices to yield this conclusion. We nevertheless
proceed in essentially the same fashion, but first appeal to Proposition
3.15 to obtain a cover (An)n∈N of B by Borel partial transversals of
EX

Γ � B, and require that An ⊆ B′n when applying Proposition 1.15 in
the recursive construction, which ensures that

⋃
m≤nAm ⊆

⋃
m≤nBm.

In particular, it follows that
⋃
n∈NAn ⊆

⋃
n∈NBn, so the fact that

B =
⋃
n∈NAn implies that B =

⋃
n∈NBn.

Proposition 3.17. Suppose that X is a Borel space, Γ is a smooth
countable group of Borel automorphisms of X, A,B ⊆ X are Borel,
and |A∩Γx| = |B∩Γx| for all x ∈ X. Then there is a Γ-decomposable
bijection π : A→ B.

Proof. Proposition 1.9 ensures that, by partitioning X into countably-
many Γ-invariant Borel sets, we can assume that there exists k ≤ ℵ0

such that |A ∩ Γx| = |B ∩ Γx| = k for all x ∈ X. Proposition 3.16
then yields partitions (An)n<k and (Bn)n<k of A and B into Borel
transversals of EX

Γ , so the function π =
⋃
γ∈Γ γ � (

⋃
n<k An ∩ γ−1Bn) is

as desired.

For each k ≤ ℵ0, the period k part of a bijection T : X → X is given
by Perk(T ) = {x ∈ X | |[x]T | = k}.

Proposition 3.18. Suppose that X is a Borel space, Γ is a smooth
countable group of Borel automorphisms of X, and S, T ∈ [Γ] have
the property that |(Perk(S) ∩ Γx)/EX

S | = |(Perk(T ) ∩ Γx)/EX
T | for all

1 ≤ k ≤ ℵ0 and x ∈ X. Then S is conjugate to T in [Γ].

Proof. By Proposition 3.15, there are Borel transversals A ⊆ X and
B ⊆ X of EX

S and EX
T . For all 1 ≤ k ≤ ℵ0, define Ak = A ∩ Perk(S)

and Bk = B ∩ Perk(T ), appeal to Proposition 3.17 to obtain a Γ-
decomposable bijection πk : Ak → Bk, and set φk =

⋃
n∈Z T

n ◦πk ◦S−n.
Then the function φ =

⋃
1≤k≤ℵ0

φk is as desired.

For each equivalence relation E on a set X and n ∈ N, let [X]nE
denote the family of all sets S ∈ [X]n such that S ×S ⊆ E, and define
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[X]<ℵ0 =
⋃
n∈N[X]n and [X]<ℵ0

E =
⋃
n∈N[X]nE. Given a countable group

Γ of permutations of a set X and a set Y ⊆ X, let [Y ]nΓ and [Y ]<ℵ0
Γ

denote [Y ]n
EXΓ �Y

and [Y ]<ℵ0

EXΓ �Y
. When X is a Borel space and Γ is a

countable group of Borel automorphisms of X, we say that a family
S ⊆ [X]<ℵ0

Γ is Γ-decomposable if there is a sequence (B∆)∆∈[Γ]<ℵ0 of Bor-
el subsets of X with the property that S =

⋃
∆∈[Γ]<ℵ0{∆x | x ∈ B∆}.

Proposition 3.19. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X, B ⊆ X is Borel, and F is a finite
subequivalence relation of EX

Γ � B for which B/F is Γ-decomposable.
Then F is Γ-decomposable.

Proof. Fix Borel sets B∆ ⊆ X with B/F =
⋃

∆∈[Γ]<ℵ0{∆x | x ∈ B∆}.
Then F =

⋃
∆∈[Γ]<ℵ0

⋃
γ,δ∈∆ graph(γδ−1 � δB∆).

Proposition 3.20. Suppose that X is a Borel space, Γ is a countable
group of separable Borel automorphisms of X, and S ⊆ [X]<ℵ0

Γ is Γ-
decomposable. Then there is a Γ-decomposable maximal family R ⊆ S
of pairwise disjoint sets.

Proof. Fix Borel sets B∆ ⊆ X for which S =
⋃

∆∈[Γ]<ℵ0{∆x | x ∈ B∆}.
For all ∆ ∈ [Γ]<ℵ0 , let G∆ be the graph on X with respect to which x
and y are neighbors if and only if x 6= y, x, y ∈ B∆, and ∆x ∩∆y 6= ∅.
Then G∆ =

⋃
γ,δ∈∆ graph(δ−1γ � (B∆ ∩ γ−1δB∆ ∩ supp(δ−1γ))), so

Proposition 1.8 ensures that G∆ is Γ-decomposable. As G∆ has finite
vertical sections, Proposition 1.14 yields a Borel N-coloring of G∆. Fix
an enumeration (∆n)n∈N of [Γ]<ℵ0 .

We will recursively find Borel sets Bn ⊆ B∆n for which the sets in
the family Rn =

⋃
m<n{∆mx | x ∈ Bm} are pairwise disjoint. Given

n ∈ N for which we have already found (Bm)m<n, define

Cn = {x ∈ B∆n | ∆nx ∩
⋃
Rn = ∅}

= B∆n \
⋃
m<n

⋃
δm∈∆m

⋃
δn∈∆n

δ−1
n δmBm.

Then the graph Gn = G∆n ∩ (Cn×Cn) is Γ-decomposable, so Proposi-
tion 1.15 yields a Borel maximal Gn-independent set Dn ⊆ X. Define
Bn = Cn ∩ Dn and observe that the sets in the corresponding family
Rn+1 are pairwise disjoint, which completes the recursive construction.

Note that the sets in the familyR∞ =
⋃
n∈NRn are pairwise disjoint.

To see that it is a maximal family of pairwise disjoint sets in S, suppose
that S ∈ S, fix n ∈ N and x ∈ B∆n for which S = ∆nx, and observe
that if S ∩

⋃
Rn = ∅, then x ∈ Cn, so there exists y ∈ Cn ∩ Dn for

which ∆nx ∩∆ny 6= ∅, thus S ∩
⋃
Rn+1 6= ∅.
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Proposition 3.21. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X whose supports are Borel, R is a
Γ-decomposable binary relation on X, and γ, δ ∈ Γ. Then the corre-
sponding set B = {x ∈ X | γ · x R δ · x} is Borel.

Proof. Fix Borel sets Bλ ⊆ X for which R =
⋃
λ∈Γ graph(λ � Bλ) and

observe that B =
⋃
λ∈Γ{x ∈ X | γ · x ∈ Bλ and λγ · x = δ · x} =⋃

λ∈Γ γ
−1Bλ \ supp(δ−1λγ).

Proposition 3.22. Suppose that k ∈ Z+, X is a Borel space, Γ is a
countable group of Borel automorphisms of X whose supports are Bor-
el, B ⊆ X is Borel, and G is a Γ-decomposable graph on X. Then the
set S = {S ∈ [B]kΓ | S is G-independent} is Γ-decomposable.

Proof. For all ∆ ∈ [Γ]k, define

B∆ = {x ∈ X | ∀δ ∈ ∆ δ · x ∈ B and

∀δ ∈ ∆∀γ ∈ ∆ \ {δ} (γ · x 6= δ · x and ¬γ · x G δ · x)}
=

⋂
δ∈∆ δ

−1B ∩
⋂
δ∈∆

⋂
γ∈∆\{δ}{x ∈ supp(δ−1γ) | ¬γ · x G δ · x}.

Then S =
⋃

∆∈[Γ]k{∆x | x ∈ B∆}, so Proposition 3.21 ensures that it
is Γ-decomposable.

Proposition 3.23. Suppose that k ∈ Z+, X is a Borel space, Γ is a
countable group of separable Borel automorphisms of X, B ⊆ X is a
Borel set whose intersection with each Γ-orbit is infinite, and G is a
Γ-decomposable graph on X whose vertical sections are finite. Then
there is a Γ-decomposable equivalence relation F on B whose classes
are G-independent and have cardinality k.

Proof. We first establish the special case where Γ is smooth. Fix enu-
merations (γn)n∈N of Γ and (∆n)n∈N of [Γ]k. For all s ∈ N<N, Proposi-
tions 1.8 and 3.21 ensure that the set As of x ∈ X such that

(1) ∀i < |s|∀δ ∈ ∆s(i) δ · x ∈ B,
(2) ∀i < |s|∀δ ∈ ∆s(i)∀γ ∈ ∆s(i)\{δ} (γ ·x 6= δ ·x and ¬γ ·x G δ ·x),
(3) ∀i < |s| (γi · x ∈ B =⇒ ∃j < |s| γi · x ∈ ∆s(j)x), and
(4) ∀i < j < |s| ∆s(i)x ∩∆s(j)x = ∅

is Borel. Fix a Borel transversal B∅ ⊆ X of EX
Γ and recursively define

Bsa(n) = (Asa(n) \
⋃
m<nAsa(m)) ∩ Bs for all n ∈ N and s ∈ N<N.

Then the family S =
⋃
n∈N

⋃
s∈Nn+1{∆s(n)x | x ∈ Bs} partitions X and

Proposition 3.19 ensures that the equivalence relation F on X, given
by X/F = S, is as desired.

To establish the general case, appeal to Propositions 3.20 and 3.22 to
obtain a Γ-decomposable maximal family S ⊆ [X]kΓ of pairwise disjoint
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G-independent subsets of B of cardinality k. Then the Borel set B =
∼
⋃
S intersects every Γ-orbit in a finite set, so Proposition 1.16 ensures

that EX
Γ � ΓB is smooth. By the previous paragraph, we can therefore

assume that X =
⋃
S, in which case Proposition 3.19 implies that the

equivalence relation F on X, given by X/F = S, is as desired.

Proposition 3.24. Suppose that X is a Borel space and T : X → X is
a separable Borel automorphism of a Borel space whose orbits all have
finite odd cardinality. Then there are involutions I1, I2 ∈ [T ], conjugate
in [T ], such that T = I2 ◦ I1.

Proof. As Proposition 1.16 ensures that T is smooth, Remark 1.6 yields
involutions I1, I2 ∈ [T ], each having exactly one fixed point on every
T -orbit, such that T = I2 ◦ I1. But Proposition 3.17 implies that I1

and I2 are conjugate in [T ].

For each set K of countable cardinals, the period K part of a bijection
T : X → X is given by PerK(T ) =

⋃
k∈K Perk(T ). We can now give

the following:

Proof of Theorem 5. We first handle the special case of the proposition
where Γx ∩ Per2N(T ) is finite but non-empty for all x ∈ X, in which
case Proposition 1.16 ensures that Γ is smooth. We will consider three
subcases; the desired special case will then follow from Proposition 1.9,
since it ensures that X can be partitioned into three Γ-invariant Borel
sets, each falling into at least one of these cases.

Suppose first that Γx \ supp(T ) is infinite for all x ∈ X, appeal to
Proposition 3.16 to obtain a partition (Bn)n∈N of ∼supp(T ) into Borel
transversals of EX

Γ � ∼supp(T ), fix an involution ι of N whose support
is infinite and co-infinite, and define I =

⋃
γ∈Γ

⋃
n∈N γ � (Bn∩γ−1Bι(n)).

As Proposition 3.15 ensures that T � supp(T ) is smooth, Proposition
1.1 yields involutions I1, I2 ∈ [T � supp(T )] with the property that
T � supp(T ) = I2 ◦ I1, in which case Proposition 3.18 implies that the
involutions Sk = I ∪ Ik, for 1 ≤ k ≤ 2, are as desired.

Suppose next that Γx ∩ Per2N+3(T ) is infinite for all x ∈ X. As
Proposition 3.15 ensures that T is smooth, Remark 1.6 yields involu-
tions I1, I2 ∈ [T � Per2N+3(T )], each having exactly one fixed point on
every (T � Per2N+3(T ))-orbit, for which T � Per2N+3(T ) = I2 ◦ I1, and
Proposition 1.1 yields involutions J1, J2 ∈ [T � ∼Per2N+3(T )] for which
T � ∼Per2N+3(T ) = J2 ◦ J1, in which case Proposition 3.18 implies that
the involutions Sk = Ik ∪ Jk, for 1 ≤ k ≤ 2, are as desired.

Suppose finally that the aperiodic part of T , given by Aper(T ) =
∼Per(T ), is Γ-complete. As Proposition 3.15 ensures that T � Aper(T )
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is smooth, it follows from Proposition 3.13 that there are automor-
phisms R1, R2 ∈ [T � Aper(T )], whose orbits are all of cardinality 1, 2,
or n and for which each possibility occurs infinitely often on every orbit
of T � Aper(T ), with the property that T � Aper(T ) = R2 ◦ R1. As
Proposition 3.15 also ensures that T � Per(T ) is smooth, Proposition
1.1 yields involutions I1, I2 ∈ [T � Per(T )] for which T � Per(T ) =
I2 ◦ I1, in which case Proposition 3.18 implies that the automorphisms
Sk = Ik ∪Rk, for 1 ≤ k ≤ 2, are as desired.

We now consider the general case. As Proposition 1.9 ensures that
{x ∈ X | Γx ∩ Per2N(T ) is finite but non-empty} is Borel, by throwing
out this set, we can assume that Γx ∩ Per2N(T ) is empty or infinite
for all x ∈ X. As Theorem 4 yields the case that T is aperiodic and
Proposition 3.24 yields the case that every T -orbit has finite odd car-
dinality even without the assumption that Γ is aperiodic, Proposition
1.9 allows us to assume that X = Per2N(T ).

Appeal to Proposition 1.16 to obtain a Borel transversal B ⊆ X of
T . By Proposition 3.23, there is a Γ-decomposable equivalence rela-
tion F on B whose classes are all of cardinality 2. As the involution
H generating F is Γ-decomposable and therefore Borel, another appli-
cation of Proposition 1.16 yields a Borel transversal A ⊆ B of F . By
Remark 1.6, there are involutions I1, I2 ∈ [T � [A]T ] with the prop-
erty that I2 has exactly two fixed points on every orbit of T � [A]T ,
I1 has no fixed points, and T � [A]T = I2 ◦ I1, as well as involutions
J1, J2 ∈ [T � [B \ A]T ] such that J2 has no fixed points, J1 has exactly
two fixed points on every orbit of T � [B\A]T , and T � [B\A]T = J2◦J1.
As the group ∆ generated by H and T is smooth, Proposition 3.18 im-
plies that the involutions Sk = Ik∪Jk, for 1 ≤ k ≤ 2, are as desired.

4. Normal closures

We begin this section with a variant of Proposition 3.18:

Proposition 4.1. Suppose that X and Y are standard Borel spaces
and S : X → X and T : Y → Y are smooth Borel automorphisms with
the property that |Perk(S)/EX

S | = |Perk(T )/EY
T | for all 1 ≤ k ≤ ℵ0.

Then S and T are Borel isomorphic.

Proof. Fix Borel transversals A ⊆ X and B ⊆ Y of S and T . For all
1 ≤ k ≤ ℵ0, appeal to Proposition 1.9 and the isomorphism theorem
for Borel subsets of standard Borel spaces (see, for example, [Kec95,
Corollary 13.4 and Theorem 15.6]) to obtain a Borel isomorphism
πk : A ∩ Perk(S) → B ∩ Perk(T ), and define φk =

⋃
n∈Z T

n ◦ πk ◦ S−n.
Then the function φ =

⋃
1≤k≤ℵ0

φk is as desired.
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The commutator of g and h is given by [g, h] = ghg−1h−1.

Proposition 4.2. Suppose that X is a standard Borel space, {1} ⊆
K ⊆ Z+, and T : X → X is a Borel automorphism whose support is
uncountable. Then there is a Borel automorphism S : X → X for which
the cardinalities of the orbits of [S, T ] are in K and each possibility
occurs uncountably often.

Proof. By Proposition 1.15, there is a T -independent Borel set B ⊆ X
that intersects every non-trivial T -orbit. As B is uncountable, the
isomorphism theorem for Borel subsets of standard Borel spaces ensures
that it is Borel isomorphic to R×K, so there is a partition (Bk)k∈K of
B into uncountable Borel sets. As the isomorphism theorem for Borel
subsets of standard Borel spaces (or the fact that R is Borel isomorphic
to R× k) also implies that each Bk is Borel isomorphic to R× k, there
is a Borel automorphism Sk : Bk → Bk whose orbits have cardinality k
for all k ∈ K. Define S = (

⋃
k∈K Sk) ∪ (id∼B). If k ∈ K, then

(S ◦ T ◦ S−1 ◦ T−1) � Bk = S ◦ T ◦ (S−1 � T−1(Bk)) ◦ T−1

= S ◦ T ◦ (idT−1(Bk)) ◦ T−1

= (S ◦ T ◦ id ◦ T−1) � Bk

= S � Bk

= Sk

and

(S ◦ T ◦ S−1 ◦ T−1) � T (Bk) = S ◦ T ◦ (S−1 � Bk) ◦ T−1

= (S � T (Bk)) ◦ T ◦ S−1
k ◦ T−1

= (idT (Bk)) ◦ T ◦ S−1
k ◦ T−1

= T ◦ S−1
k ◦ T−1,

so |[x][S,T ]| = k for all x ∈ Bk ∪ T (Bk). But

(S ◦ T ◦ S−1 ◦ T−1) � ∼(B ∪ T (B))

= S ◦ T ◦ (S−1 � ∼(T−1(B) ∪B)) ◦ T−1

= S ◦ T ◦ (id∼(T−1(B)∪B)) ◦ T−1

= (S ◦ T ◦ id ◦ T−1) � ∼(B ∪ T (B))

= S � ∼(B ∪ T (B))

= id∼(B∪T (B)),

so |[x][S,T ]| = 1 for all x ∈ ∼(B ∪ T (B)).
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Proposition 4.3. Suppose that X is an uncountable standard Borel
space and T : X → X is a smooth Borel automorphism. Then there
are Borel involutions I, J : X → X, with uncountable co-uncountable
supports, for which T = I ◦ J .

Proof. We first handle the special case that T = id. As the isomorphism
theorem for standard Borel spaces ensures that X is Borel isomorphic
to R× 2, there is an uncountable co-uncountable Borel set A ⊆ X. As
the isomorphism theorem for Borel subsets of standard Borel spaces
(or the fact that R is Borel isomorphic to R × 2) also implies that A
is Borel isomorphic to R× 2, there is an uncountable Borel set B ⊆ A
for which there is a Borel isomorphism π : B → A \ B, in which case
the functions I = J = π±1 ∪ id∼A are as desired.

We next handle the special case that T has no fixed points. Fix a
Borel transversal A ⊆ X of T . As A is uncountable, the isomorphism
theorem for Borel subsets of standard Borel spaces ensures that A is
Borel isomorphic to R× 2, so there is an uncountable Borel set B ⊆ A
with the property that A \ B is also uncountable. Set C = [B]T and
appeal to Remark 1.6 to obtain Borel involutions I ′, J ′ ∈ [T � C] for
which I ′ has a fixed point on every orbit of T � C and T � C = I ′ ◦ J ′,
as well as Borel involutions I ′′, J ′′ ∈ [T � ∼C] for which J ′′ has a fixed
point on every orbit of T � ∼C and T � ∼C = I ′′ ◦ J ′′. Then the
functions I = I ′ ∪ I ′′ and J = J ′ ∪ J ′′ are as desired.

We now handle the general case. Fix 1 ≤ k ≤ ℵ0 for which Perk(T )
is uncountable. As Proposition 1.9 ensures that this set is Borel, and
therefore standard Borel by [Kec95, Corollary 13.4], the special cases
yield Borel involutions I ′, J ′ : Perk(T )→ Perk(T ), with uncountable co-
uncountable supports, for which T � Perk(T ) = I ′ ◦ J ′. By Proposition
1.1, there are Borel involutions I ′′, J ′′ : ∼Perk(T )→ ∼Perk(T ) with the
property that T � ∼Perk(T ) = I ′′◦J ′′. But then the functions I = I ′∪I ′′
and J = J ′ ∪ J ′′ are as desired.

Proposition 4.4. Suppose that X is a standard Borel space, {1, 2} (
K ⊆ Z+, and T : X → X is a non-smooth Borel automorphism. Then
there exist R, S ∈ [T ], whose orbits all have cardinality in K and for
which each possibility occurs uncountably often, such that T = R ◦ S.

Proof. As Proposition 1.9 ensures that Per(T ) is Borel and Proposition
1.16 implies that T � Per(T ) is smooth, Proposition 1.1 yields Borel
involutions I ′, J ′ ∈ [T � Per(T )] for which T � Per(T ) = I ′ ◦ J ′. By
Silver’s perfect set theorem (see, for example, [Sil80], although the
special case we need is far simpler to prove), there is an uncountable
T -invariant Borel set B ⊆ Aper(T ) for which T � B is smooth. By
Proposition 3.13, there exist R′′, S ′′ ∈ [T � B], whose orbits all have
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cardinality in K and for which each possibility occurs on every orbit
of T � B, such that T � B = R′′ ◦ S ′′. Fix k ∈ K \ {1, 2}, and appeal
to Theorem 3 to obtain R′′′, S ′′′ ∈ [T � (Aper(T ) \B)], whose orbits all
have cardinality 1 or k, such that T � (Aper(T ) \B) = R′′′ ◦ S ′′′. Then
the functions R = I ′∪R′′∪R′′′ and S = J ′∪S ′′∪S ′′′ are as desired.

Remark 4.5. In the special case that K is finite, the need for Silver’s
theorem can be eliminated by replacing the use of Proposition 3.13
with that of Remark 3.14.

We can now give the following:

Proof of Theorem 6. Note first that if I : X → X is a Borel automor-
phism for which there is a Borel automorphism R : X → X such that
I is Borel isomorphic to [R, T ] as witnessed by P : X → X, then

I = P−1 ◦ [R, T ] ◦ P
= P−1 ◦R ◦ T ◦R−1 ◦ T−1 ◦ P
= (P−1 ◦R ◦ T ◦R−1 ◦ P ) ◦ (P−1 ◦ T−1 ◦ P ),

so I is a composition of two conjugates of T±1. In particular, it is
sufficient to show that S is a composition of two such automorphisms.

We first handle the case that S is smooth. By Proposition 4.2, there
is a Borel automorphism R : X → X for which [R, T ] is an involution
with uncountable co-uncountable support. By Proposition 4.3, there
are Borel involutions I, J : X → X, with uncountable co-uncountable
supports, for which S = I ◦ J . But Proposition 4.1 ensures that I, J ,
and [R, T ] are Borel isomorphic.

We now consider the case that S is not smooth. By Proposition
4.2, there is a Borel automorphism R : X → X for which every orbit
of [R, T ] has cardinality 1, 2, or 3, and each possibility occurs un-
countably often. By Proposition 4.4, there are Borel automorphisms
I, J : X → X, whose orbits all have cardinality 1, 2, or 3 and for which
each possibility occurs uncountably often, such that S = I ◦ J . But
Proposition 4.1 ensures that I, J , and [R, T ] are Borel isomorphic.

5. Bergman’s property

The saturation of a set Y ⊆ X with respect to an equivalence relation
E on X is given by [Y ]E = {x ∈ X | ∃y ∈ Y x E y}.

Proposition 5.1. Suppose that X is a Borel space, T : X → X is a
Borel automorphism whose orbits all have the same cardinality, and
E is a T -decomposable equivalence relation on X. Then there exists
S ∈ [T ] for which E = EX

S .



50 B.D. MILLER

Proof. Fix Borel sets Bn ⊆ X such that E =
⋃
n∈Z graph(T n � Bn).

Suppose first that every T -orbit has cardinality k ∈ Z+. For all
1 ≤ j ≤ k, define Aj =

⋃
i∈j+kZBi. Then the function S : X → X,

given by S =
⋃

1≤j≤k T
j � (Aj \

⋃
1≤i<j Ai), is as desired. So we can

assume that T is aperiodic.
For all N ∈ [N]<ℵ0 , fix a transitive permutation σN of N and define

BN = (
⋂
n∈N Bn) \ (

⋃
n∈Z\N Bn). Then the map SN : [BN ]E → [BN ]E,

given by SN =
⋃
n∈N T

σN (n)−n � T n(BN), generates E � [BN ]E, so the
function S<∞ =

⋃
N∈[N]<ℵ0 SN generates E �

⋃
N∈[N]<ℵ0 [BN ]E.

Fix a transitive permutation σ of Z+. For all N ∈ [N]<ℵ0 , define

B−N = (
⋂
n∈N Bn \

⋃
n∈N\N Bn) ∩ (

⋂
n∈N

⋃
m≥nB−m)

and

B+
N = (

⋂
n∈N B−n \

⋃
n∈N\N B−n) ∩ (

⋂
n∈N

⋃
m≥nBm).

For all k ∈ Z+ and ∗ ∈ {−,+}, set B∗k =
⋃
N∈[N]k B

∗
N and define

S∗k : B∗k → B∗σ(k) by S∗k =
⋃
n∈Z T

n � (B∗k ∩ T−n(B∗σ(k))). Then the

function S∗ =
⋃
k∈Z+ S∗k generates E �

⋃
k∈Z+ B∗k for all ∗ ∈ {−,+}.

Set BZ = (
⋂
n∈N

⋃
m≥nB−m) ∩ (

⋂
n∈N

⋃
m≥nBm) and note that the

map SZ : BZ → BZ, given by SZ =
⋃
n∈Z+ T n � (BZ∩(Bn\

⋃
1≤m<nBm)),

generates E � BZ, so the map S = S<∞∪S−∪S+∪SZ is as desired.

In the special case where T is separable, the hypothesis on the car-
dinalities of the T -orbits is unnecessary:

Proposition 5.2. Suppose that X is a Borel space, T : X → X is a
Borel automorphism of X whose powers have Borel supports, and E is
a T -decomposable equivalence relation on X. Then there exists S ∈ [T ]
for which E = EX

S .

Proof. By Propositions 1.8 and 5.1, there exists Sk ∈ [T � Perk(T )]
such that E � Perk(T ) = E

Perk(T )
Sk

for all 1 ≤ k ≤ ℵ0. Then the function
S =

⋃
1≤k≤ℵ0

Sk is as desired.

To extend this result further, we need one more basic observation:

Proposition 5.3. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X whose supports are Borel, ∆ is a
countable subgroup of Γ, and R is a Γ-decomposable binary relation on
X. Then EX

∆ ∩R is ∆-decomposable.

Proof. By Proposition 3.21, the set Bδ = {x ∈ X | x R δ · x} is Borel
for all δ ∈ ∆. But EX

∆ ∩R =
⋃
δ∈∆ graph(δ � Bδ).

Finally, we have the following:
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Proposition 5.4. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X whose supports are Borel, and E is
a Γ-decomposable equivalence relation on X. Then there exists ∆ ≤ [Γ]
for which E = EX

∆ .

Proof. For all γ ∈ Γ, Proposition 5.3 ensures that E∩EX
γ is γ-decompo-

sable, so Proposition 5.2 yields Tγ ∈ [γ] for which E∩EX
γ = EX

Tγ
. Then

the group ∆ generated by {Tγ | γ ∈ Γ} is as desired.

Proposition 5.5. Suppose that X is a Borel space, Γ is a countable
group of separable Borel automorphisms of X, Y ⊆ X is Γ-invariant,
and T ∈ [Γ � Y ]. Then there exists S ∈ [Γ] such that S � Y = T .

Proof. Fix Borel sets Bγ ⊆ X such that T =
⋃
γ∈Γ γ � (Bγ ∩ Y ). We

can clearly assume that the sets Bγ are pairwise disjoint. Then the
Γ-invariant set

B = {x ∈ X | (Bγ ∩ Γx)γ∈Γ and (γBγ ∩ Γx)γ∈Γ both partition Γx}
= {x ∈ X | ∀γ ∈ Γ∀i < 2∃δ ∈ ∆ γ · x ∈ δiBδ \

⋃
λ∈Γ\{δ} λ

iBλ}
=

⋂
γ∈Γ

⋂
i<2

⋃
δ∈Γ γ

−1(δiBδ \
⋃
λ∈Γ\{δ} λ

iBλ)

is Borel and the function S = id∼B ∪
⋃
γ∈Γ γ � (B ∩ Bγ) is the desired

extension of T to an element of [Γ].

Given a countable group Γ of Borel automorphisms of a Borel space
X, we say that a set Y ⊆ X is Γ-large if there is a finite set ∆ ⊆ [Γ]
for which X = ∆Y .

Proposition 5.6. Suppose that X is a Borel space and Γ is an ape-
riodic countable group of separable Borel automorphisms of X. Then
there is a sequence (Bn)n∈N of pairwise disjoint Γ-large Borel subsets
of X.

Proof. It is sufficient to show that every Γ-large Borel set A ⊆ X can be
partitioned into two Γ-large Borel subsets. Towards this end, note that
|A∩Γx| = ℵ0 for all x ∈ X, so Proposition 3.23 yields a Γ-decomposable
equivalence relation F on A whose classes have cardinality 2. As the in-
volution I generating F is Γ-decomposable and therefore Borel, Propo-
sition 1.16 yields a Borel transversal B ⊆ A of F . Set C = A \ B. As
I ∪ id∼A ∈ [Γ], the fact that A = B∪C = B∪ I(B) = C ∪ I(C) implies
that B and C are Γ-large.

For all sets ∆ ⊆ Γ and Y ⊆ X, define ∆{Y } = {δ ∈ ∆ | Y = δY }
and ∆ � Y = {δ � Y | δ ∈ ∆}.



52 B.D. MILLER

Proposition 5.7. Suppose that X is a Borel space, Γ is a group of
separable Borel automorphisms of X that is closed under countable
decomposition, ∆ is an aperiodic countable subgroup of Γ, and (Γn)n∈N
is an exhaustive increasing sequence of subsets of Γ. Then there exist
a ∆-large Borel set B ⊆ X and n ∈ N for which Γ{B} � B ⊆ Γn � B
and [∆]{B} � B ⊆ (Γn ∩ [∆]) � B.

Proof. Appeal to Proposition 5.6 to obtain a sequence (Bn)n∈N of pair-
wise disjoint ∆-large Borel subsets of X. It is sufficient to show that if
Λ is a subgroup of Γ containing ∆ that is closed under countable de-
composition, then Λ{Bn} � Bn ⊆ (Γn ∩Λ) � Bn for all but finitely many
n ∈ N. Suppose, towards a contradiction, that there is an infinite set
N ⊆ N such that there exists λn ∈ (Λ{Bn} � Bn) \ ((Γn ∩ Λ) � Bn) for
all n ∈ N . As Λ is closed under countable decomposition, it contains
the automorphism λ = (

⋃
n∈N λn) ∪ (id � ∼

⋃
n∈N Bn). As the latter is

in Γn for all but finitely many n ∈ N, and therefore for some n ∈ N ,
this contradicts the fact that λn = λ � Bn is not in (Γn ∩ Λ) � Bn.

Define ∆Y = {δ ∈ ∆ | ∀y ∈ Y y = δ · y}.
Proposition 5.8. Suppose that X is a Borel space, Γ is a group of
separable Borel automorphisms of X that is closed under countable
decomposition, ∆ is an aperiodic countable subgroup of Γ, and (Γn)n∈N
is an exhaustive increasing sequence of subsets of Γ. Then there exist
a ∆-large Borel set B ⊆ X and n ∈ N for which Γ{B} � B ⊆ Γn � B,
[∆]{B} � B ⊆ (Γn ∩ [∆]) � B, and Γ∼B ⊆ (Γn)4.

Proof. By replacing each Γn with Γn ∩ Γ−1
n , we can assume that each

Γn is symmetric. By Proposition 5.7, there exist a ∆-large Borel set
X ′ ⊆ X and n′ ∈ N with the property that Γ{X′} � X ′ ⊆ Γn′ � X ′

and [∆]{X′} � X ′ ⊆ (Γn′ ∩ [∆]) � X ′, so Γ{B} � B ⊆ Γn′ � B and
[∆]{B} � B ⊆ (Γn′ ∩ [∆]) � B for all Borel sets B ⊆ X ′. As the diagonal
on X is the graph of the identity function on X and EX

∆ � X
′ =⋃

γ∈Γ graph(γ � (supp(γ) ∩ X ′ ∩ γ−1X ′)), it follows from Proposition
1.8 that the union of these two equivalence relations is Γ-decomposable,
so Proposition 5.4 yields a countable subgroup ∆′ of [∆] for which EX

∆′

is the aforementioned union. Set Γ′ = Γ∼X′ and Γ′n = (Γn)∼X′ for all
n ∈ N. As ∆ is aperiodic and X ′ is ∆-large, it follows that ∆′ � X ′ is
aperiodic, so Proposition 5.7 yields a (∆′ � X ′)-large Borel set B ⊆ X ′

and n ≥ n′ for which (Γ′ � X ′){B} � B ⊆ (Γ′n � X
′) � B. Then

Γ′{B} � B = (Γ′ � X ′){B} � B ⊆ (Γ′n � X
′) � B = Γ′n � B and B is

∆-large. As the diagonal on X is the graph of the identity function
on X and EX

∆ � B =
⋃
γ∈Γ graph(γ � (supp(γ) ∩B ∩ γ−1B)), it follows

from Proposition 1.8 that the union of these two equivalence relations
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is Γ-decomposable, so Proposition 5.4 yields a countable subgroup ∆′′

of [∆] for which EX
∆′′ is the aforementioned union.

It remains to show that if γ ∈ Γ∼B, then γ ∈ (Γn)4. By Theorem 5,
there exist δ, λ ∈ [〈{γ � B} ∪ (∆′′ � B)〉] for which γ � B = [δ, λ]. Then
δ ∪ id∼B ∈ Γ and λ ∪ id∼B ∈ Γ′, so there are extensions δ′ ∈ Γn′ and
λ′ ∈ Γ′n of δ ∪ idX′\B and λ ∪ id∼X′ . Then

[δ′, λ′] � B = δ′λ′(δ′)−1(λ′)−1 � B

= δλδ−1λ−1

= [δ, λ]

= γ � B,

[δ′, λ′] � (X ′ \B) = δ′λ′(δ′)−1(λ′)−1 � (X ′ \B)

= δ′λ′((δ′)−1 � (X ′ \B))(λ′)−1

= δ′(λ′ � (X ′ \B))(λ′)−1

= δ′ � (X ′ \B)

= idX′\B,

and

[δ′, λ′] � ∼X ′ = δ′λ′(δ′)−1(λ′)−1 � ∼X ′

= δ′λ′(δ′)−1 � ∼X ′

= δ′(λ′ � ∼X ′)(δ′)−1

= (δ′ � ∼X ′)(δ′)−1

= id∼X′ ,

so γ = [δ′, λ′] ∈ (Γn)4.

We can now give the following:

Proof of Theorem 7. By Proposition 5.8, there exist n ∈ N and a ∆-
large Borel set A ⊆ X for which Γ∼A ⊆ (Γn)4. As in the proof of
Proposition 5.6, there exist a Borel set B ⊆ A and an involution ιA ∈
[∆] such that ιAB = A \ B. Fix k ∈ N and δi ∈ [∆] with the property
that X =

⋃
i<k δiB. Without loss of generality, we can assume that

δ0 = id and δ1 = ιA. Set Bj = δjB \
⋃
i<j δiB for all j < k.

Lemma 5.9. Suppose that i ≤ j < k. Then there is an involution
ιi,j ∈ [∆] for which ιi,j(Bi ∪Bj) ⊆ A.

Proof. We can assume that j ≥ 2, since otherwise the identity func-
tion is as desired. If i = 0, then (ιAδ

−1
j � Bj)

±1 ∪ id∼(Bj∪ιAδ−1
j Bj)

is
as desired. If i = 1, then (δ−1

j � Bj)
±1 ∪ id∼(Bj∪δ−1

j Bj)
is as desired.
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If i = j, then either of the last two functions is as desired. And
(δ−1
i � Bi)

±1 ∪ (ιAδ
−1
j � Bj)

±1 ∪ id∼(Bi∪Bj∪δ−1
i Bi∪ιAδ−1

j Bj)
is as desired oth-

erwise.

By increasing n, we can assume that ιi,j ∈ Γn for all i ≤ j < k.
We will show that Γ ⊆ (Γn)9k(k+1). By Theorem 1, it is sufficient to
show that every involution ι ∈ Γ is in (Γn)3k(k+1). Towards this end,
set Bi,j = (Bi ∩ ιBj) ∪ (ιBi ∩ Bj) and ι′i,j = ιi,j(ι � Bi,j)ιi,j ∪ id∼ιi,jBi,j
for all i ≤ j < k. Then ι =

∏
i≤j<k ιi,jι

′
i,jιi,j ∈ (ΓnΓ∼AΓn)k(k+1)/2 ⊆

(Γn)6k(k+1)/2 = (Γn)3k(k+1).

In order to establish a similar result concerning the k-Bergman prop-
erty, we again need several preliminaries.

Proposition 5.10. Suppose that X is a Borel space, Γ is a count-
able group of Borel automorphisms of X, and A,B ⊆ X are Borel.
Then there is a Γ-invariant Borel set Y ⊆ X for which there are Γ-
decomposable injections φ : A ∩ Y → B ∩ Y and ψ : B \ Y → A \ Y .

Proof. Fix an enumeration (γn)n∈N of Γ and recursively define sets
An = (A \

⋃
m<nAm) ∩ γ−1

n (B \
⋃
m<n γmAm). Set A∞ =

⋃
n∈NAn and

B∞ =
⋃
n∈N γnAn, and observe that the function π =

⋃
n∈N γn � An is

a bijection of A∞ with B∞.

Lemma 5.11. If x ∈ X, then A ∩ Γx ⊆ A∞ or B ∩ Γx ⊆ B∞.

Proof. Suppose that there exists y ∈ (A∩Γx)\A∞. Given z ∈ B∩Γx,
fix n ∈ N for which γn · y = z, and observe that the facts that y /∈ An
and y ∈ A \

⋃
m<nAm ensure that y /∈ γ−1

n (B \
⋃
m<n γmAm), in which

case z /∈ B \
⋃
m<n γmAm, so z ∈ B∞, thus B ∩ Γx ⊆ B∞.

It follows that the set Y = {x ∈ X | A ∩ Γx ⊆ A∞} = ∼Γ(A \ A∞)
and the maps φ = π � (A∩Y ) and ψ = π−1 � (B \Y ) are as desired.

A Borel embedding of a Borel space X into a Borel space Y is a Borel
injection φ : X → Y sending Borel sets to Borel sets.

Proposition 5.12 (Schröder–Bernstein). Suppose that X and Y are
Borel spaces and φ : X → Y and ψ : Y → X are Borel embeddings.
Then there is a Borel set B ⊆ ψ(Y ) for which (φ � ∼B) ∪ (ψ−1 � B) is
a Borel isomorphism of X with Y .

Proof. Endow the set Z = X
∐
Y with the smallest Borel structure

containing the Borel subsets of X and Y . Then the function T : Z → Z,
given by T = φ ∪ ψ, is a Borel embedding. Define C =

⋂
n∈N T

n(Z).
If z ∈ C, then the orbit of z under T is finite or of type Z, so both

φ and ψ−1 induce bijections of [z]T ∩ X with [z]T ∩ Y . If z ∈ ∼C,
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then there is a unique point w ∈ [z]T \T (Z), in which case φ induces a
bijection of [z]T ∩X with [z]T ∩Y if w ∈ X, and ψ−1 induces a bijection
of [z]T ∩ X with [z]T ∩ Y if w ∈ Y . In particular, it follows that the
set B = [Y \ φ(X)]T ∩X is as desired.

Given a countable group Γ of Borel automorphisms of a Borel space
X, a Γ-compression of a Borel set B ⊆ X is a Γ-decomposable injection
φ : B → B for which B ⊆ Γ(B \φ(B)). A set B ⊆ X is Γ-compressible
if there is a Γ-compression of B.

Proposition 5.13. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X, and B ⊆ X is a Γ-compressible
Borel set. Then there is a Γ-decomposable bijection π : ΓB → B.

Proof. By Proposition 5.12, it is sufficient to produce a Γ-decomposable
injection π : ΓB → B. Towards this end, fix an enumeration (γn)n∈N of
Γ, as well as a Γ-compression φ : B → B ofB, and setA = B\φ(B). For
all n ∈ N, define An = γ−1

n A\
⋃
m<n γ

−1
m A and π =

⋃
n∈N(φn ◦γn) � An.

As the sets of the form φn(A), for n ∈ N, are pairwise disjoint and
contained in B, it follows that π is as desired.

Proposition 5.14. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X, and B ⊆ X is a Γ-compressible
Borel set. Then there is an involution I ∈ [Γ] for which ΓB = B∪I(B).

Proof. Fix a Γ-compression φ : B → B ofB and set A = B\φ(B). Then
the sets C = (ΓB \ B) ∪

⋃
n∈N φ

2n(A) and D =
⋃
n∈N φ

2n+1(A) are Γ-
compressible and ΓB = ΓC = ΓD, so two applications of Proposition
5.13 yield a Γ-decomposable bijection π : C → D, in which case the
function I = π±1∪ id∼(C∪D) is an involution and the fact that ΓB\B ⊆
C = π−1(D) = I(D) ⊆ I(B) ensures that ΓB = B ∪ I(B).

Proposition 5.15. Suppose that X is a Borel space, Γ is a countable
group of Borel automorphisms of X, A ⊆ X is a Borel set, T ∈ [Γ],
and A ∪ T (A) is Γ-compressible. Then A is Γ-compressible.

Proof. Note that if D ⊆ X is a Borel set and φ : D → D is a Γ-
compression of D, then the definition of the induced transformation φC
from the proof of Proposition 1.1 makes sense for any Borel set C ⊆ D
(even though φ is not surjective). Setting C ′ = C∩

⋃
n∈N φ

n(C\φ(C))∩⋂
n∈N

⋃
m≥n φ

−m(C), it follows that φC′ is a Γ-compression of C ′.
Define B = T (A), fix a Γ-compression φ of the set D = A ∪ B,

and observe that the functions ψ = φA′ ∪ idA∩(ΓA′\A′) and ψ′ = (φB′ �
(B′ \ ΓA′)) ∪ idB∩(ΓB′\(B′∪ΓA′)) are Γ-compressions of A ∩ ΓA′ and B ∩
(ΓB′ \ΓA′), so T−1 ◦ψ′ ◦T is a Γ-compression of A∩ (ΓB′ \ΓA′), thus
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ψ∪(T−1◦ψ′◦T ) is a Γ-compression of A∩(ΓA′∪ΓB′). To see that A is
Γ-compressible, it therefore only remains to show that A ⊆ ΓA′ ∪ΓB′.

Suppose that x ∈ A. Then there exists y ∈ (D \ φ(D)) ∩ Γx. Fix
C ∈ {A,B} for which y ∈

⋂
n∈N

⋃
m≥n φ

−m(C), let n be the least
natural number such that the point z = φn(y) is in C, and observe
that z ∈ C \ φ(C), so z ∈ C ′, thus x ∈ Γz ⊆ ΓA′ ∪ ΓB′.

A countable group Γ of Borel automorphisms of a Borel space X is
compressible if X is Γ-compressible.

Proposition 5.16. Suppose that X is a Borel space, Γ is a compress-
ible countable group of Borel automorphisms of X, and A ⊆ X is a
Γ-complete Borel set. Then the following are equivalent:

(1) The set A is Γ-compressible.
(2) There is an involution I ∈ [Γ] for which X = A ∪ I(A).
(3) The set A is Γ-large.

Proof. As (1) =⇒ (2) follows from Proposition 5.14 and (2) =⇒ (3)
is trivial, it is sufficient to show that (3) =⇒ (1). By the obvious
induction, we need only show that if n ∈ Z+ and (Ti)i≤n is a sequence
of elements of [Γ] for which A ∪

⋃
i≤n Ti(A) is Γ-compressible, then

A ∪
⋃
i<n Ti(A) is Γ-compressible. But if B = A ∪

⋃
i<n Ti(A), then

A ∪
⋃
i≤n Tn(A) ⊆ B ∪ Tn(B), so B ∪ Tn(B) is Γ-compressible, thus

Proposition 5.15 ensures that B is Γ-compressible.

We can now give the following:

Proof of Theorem 8. By Proposition 5.8, there exist a ∆-large Borel
set B ⊆ X and n ∈ N with the property that Γ{B} � B ⊆ Γn � B,
[∆]{B} � B ⊆ (Γn ∩ [∆]) � B, and Γ∼B ⊆ (Γn)4. As Proposition
5.6 ensures that B can be partitioned into two ∆-large Borel sets, by
replacing B with one of these sets we can assume that the set A = ∼B is
also ∆-large. Another application of Proposition 5.6 yields a partition
of this set B into ∆-large Borel sets C,D ⊆ X.

Lemma 5.17. There is an involution ι ∈ [∆] for which ιB = A ∪ C.

Proof. By Propositions 5.13 and 5.16, there is a ∆-decomposable bi-
jection π : D → A. Then the function ι = π±1 ∪ idC is as desired.

By increasing n, we can assume that ι ∈ Γn.

Lemma 5.18. The sets Γ{A∪C} � (A ∪ C) and [∆]{A∪C} � (A ∪ C) are
contained in (Γn)3 � (A ∪ C) and (Γn ∩ [∆])3 � (A ∪ C).
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Proof. If γ ∈ Γ{A∪C}, then ιγι ∈ Γ{B}, so there exists δ ∈ Γn for which
ιγι � B = δ � B, thus

γ � (A ∪ C) = ιιγιι � (A ∪ C)

= ι(ιγι � B)ι

= ι(δ � B)ι

= ιδι � (A ∪ C),

hence γ � (A ∪ C) ∈ (Γn)3 � (A ∪ C). Moreover, if γ ∈ [∆], then there
is such a δ in [∆], so γ � (A ∪ C) ∈ (Γn ∩ [∆])3 � (A ∪ C).

As Γ{A} � A ⊆ Γ{A∪C} � A and [∆]{A} � A ⊆ [∆]{A∪C} � A, Lemma
5.18 implies the analogous fact in which A ∪ C is replaced with A.

It remains to show that if γ ∈ Γ, then γ ∈ (Γn)14.

Lemma 5.19. There is a Borel automorphism T ∈ (Γn ∩ [∆])3 for
which B \ T−1(γA) is 〈∆ ∪ {γ}〉-large.

Proof. By Proposition 5.10, there is a partition of X into 〈∆ ∪ {γ}〉-
invariant Borel sets Y, Z ⊆ X for which there are 〈∆ ∪ {γ}〉-decompo-
sable injections φ : (A\γA)∩Y → (B \γA)∩Y and ψ : (B \γA)∩Z →
(A \ γA)∩Z. Then the extension of φ±1 to X supported by the union
of (A \ γA) ∩ Y and its image under φ is in [〈∆ ∪ {γ}〉], as is the
extension of ψ±1 to X supported by the union of (B \ γA) ∩ Z and
its image under ψ. As B is ∆-large, it follows that γB = ∼γA =
(A\γA)∪(B\γA) is 〈∆∪{γ}〉-large, thus (B\γA)∩Y is (〈∆∪{γ}〉 � Y )-
large and (A \ γA) ∩ Z is (〈∆ ∪ {γ}〉 � Z)-large. As A and C are
∆-large, Propositions 5.13 and 5.16 yield a ∆-decomposable bijection
π : A ∩ Z → C ∩ Z. Then π±1 ∪ id(D∪Y ) ∈ [∆], so Lemma 5.18 yields
T ∈ (Γn∩ [∆])3 for which T � (A∪C) = π±1∪ id(A∪C)∩Y . The fact that

T−1((B \ γA) ∩ Y ) = T−1(B ∩ Y ) \ T−1(γA)

= (Y \ T−1(A ∩ Y )) \ T−1(γA)

= (Y \ (A ∩ Y )) \ T−1(γA)

= (B ∩ Y ) \ T−1(γA)

= (B \ T−1(γA)) ∩ Y
and

T−1((A \ γA) ∩ Z) = T−1(A ∩ Z) \ T−1(γA)

= (C ∩ Z) \ T−1(γA)

⊆ (B ∩ Z) \ T−1(γA)

= (B \ T−1(γA)) ∩ Z
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ensures both that (B \ T−1(γA)) ∩ Y is (〈∆ ∪ {γ}〉 � Y )-large and
(B \ T−1(γA)) ∩ Z is (〈∆ ∪ {γ}〉 � Z)-large, thus B \ T−1(γA) is
〈∆ ∪ {γ}〉-large.

Lemma 5.20. There is a Borel automorphism S ∈ Γn for which (S−1◦
T−1)(γA) ⊆ A∪C and (A∪C)\ (S−1 ◦T−1)(γA) is 〈∆∪{γ, S}〉-large.

Proof. By Proposition 5.6, there is a partition of B \ T−1(γA) into
〈∆∪ {γ}〉-large Borel sets C ′, D′ ⊆ X. By Propositions 5.13 and 5.16,
there are 〈∆∪{γ}〉-decomposable bijections φ : C → (B∩T−1(γA))∪C ′
and ψ : D → D′. Then idA ∪ φ ∪ ψ ∈ [〈∆ ∪ {γ}〉] ≤ Γ, so there exists
S ∈ Γn for which S � B = φ ∪ ψ, in which case

(S−1 ◦ T−1)(γA) = S−1(A ∩ T−1(γA)) ∪ S−1(B ∩ T−1(γA)) ⊆ A ∪ C
and C ′ ⊆ S(C) \ T−1(γA), so S(A ∪ C) \ T−1(γA) is 〈∆ ∪ {γ}〉-large,
thus (A ∪ C) \ (S−1 ◦ T−1)(γA) is 〈∆ ∪ {γ, S}〉-large.

Lemma 5.21. There exists R ∈ (Γn)3 with (R−1◦S−1◦T−1)(γA) = A.

Proof. By Propositions 5.13 and 5.16, there are 〈∆∪{γ, S}〉-decompo-
sable bijections φ : A→ (S−1 ◦ T−1)(γA) and ψ : C → (A∪C) \ (S−1 ◦
T−1)(γA). Then φ∪ψ∪ idD ∈ [〈∆∪{γ, S}〉] ≤ Γ, so Lemma 5.18 yields
R ∈ (Γn)3 for which R � A = φ, and clearly any such automorphism is
as desired.

By the comment immediately following the proof of Lemma 5.18,
there exists Q ∈ (Γn)3 for which Q � A = (R−1◦S−1◦T−1◦γ) � A. Then
supp(Q−1◦R−1◦S−1◦T−1◦γ) ⊆ B, so Q−1◦R−1◦S−1◦T−1◦γ ∈ (Γn)4,
thus γ ∈ (T ◦ S ◦R ◦Q)(Γn)4 ⊆ (Γn)3Γn(Γn)3(Γn)3(Γn)4 = (Γn)14.

Given a set X, a partial function d : X × X ⇀ R, ε > 0, and a set
Y ⊆ X, define Bd(Y, ε) = {x ∈ X | ∃y ∈ Y d(x, y) < ε}. Given a
binary relation R on X, define R−1 = {(y, x) ∈ X × X | x R y} and
R±1 = R∪R−1. Given a Borel measure µ on a Borel space X and Borel
automorphisms S, T : X → X for which supp(S−1T ) is Borel, define

dµ(S, T ) = µ(supp(S−1T )) = µ({x ∈ X | S(x) 6= T (x)}).
Proposition 5.22. Suppose that X is a Borel space, Γ is an aperiodic
countable group of separable Borel automorphisms of X, there is a Γ-
invariant Borel probability measure µ on X, ε < 1, and k ∈ Z+. Then
there is an exhaustive increasing sequence (Γn)n∈N of subsets of [Γ] with
the property that ∀n ∈ N [Γ] 6= Bdµ((Γn)k, ε).

Proof. As Γ is countable, there is an exhaustive increasing sequence
(∆n)n∈N of finite subsets of Γ. For all n ∈ N, define

Γn = {γ ∈ [Γ] | µ({x ∈ X | γ · x /∈ ∆nx}) ≤ (1− ε)/k}.
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The fact that (∆n)n∈N is increasing ensures that so too is (Γn)n∈N. The
fact that µ(X) <∞ implies that [Γ] =

⋃
n∈N Γn.

Lemma 5.23. If γ ∈ (Γn)k, then µ({x ∈ X | γ · x /∈ (∆n)kx}) ≤ 1− ε.

Proof. Fix γi ∈ Γn with the property that γ =
∏

i<k γi. For all j < k,
set Bj = {x ∈ X | (

∏
i≤j γi) · x /∈ ∆n(

∏
i<j γi) · x} and note that

µ(Bj) = µ((
∏

i<j γi)Bj) = µ({x ∈ X | γj · x /∈ ∆nx}) ≤ (1− ε)/k since

µ is Γ-invariant. As {x ∈ X | γ · x /∈ (∆n)kx} ⊆
⋃
j<k Bj, it follows

that µ({x ∈ X | γ · x /∈ (∆n)kx}) ≤
∑

j<k µ(Bj) ≤ 1− ε.

Let G be the digraph on X with respect to which distinct points
x and y are related if and only if y ∈ (∆n)kx. Then the vertical
sections of G±1 are finite, so Propositions 1.8, 3.22, and 3.23 yield
a Γ-decomposable equivalence relation F on X whose classes are G-
independent sets of cardinality two. Let ι be the involution whose
graph is F \∆(X), and appeal to Lemma 5.23 to see that if γ ∈ (Γn)k,
then dµ(γ, ι) ≥ µ({x ∈ X | γ · x ∈ (∆n)k}) ≥ ε.

Finally, we can give the following:

Proof of Theorem 9. By Proposition 5.22, we need only show ¬(1) =⇒
(2). As Becker–Kechris’s generalization of Nadkarni’s theorem (see
[Nad90] and [BK96, Theorem 4.3.1]) ensures that Γ is compressible,
this follows from Theorem 8.

Proof of Theorem 10. Again by Proposition 5.22, we need only show
¬(1) =⇒ (2). As the generalization of Hopf’s theorem analogous to
Becker–Kechris’s generalization of Nadkarni’s theorem (see [Hop32]
and [Nad98, §10]) yields a Γ-invariant µ-conull Borel set B ⊆ X for
which the corresponding group Γ � B compressible, Theorem 8 ensures
that [Γ � B] has the k-Bergman property, thus so too does [Γ]/µ.

6. Boolean algebras

For each Boolean algebra B, set B+ = B\{0}, let E0(B) denote the
equivalence relation on Dec(BN

+) = {x ∈ BN
+ | ∀n ∈ N x(n+1) ≤ x(n)}

given by x E0(B) y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m), and define
XB = Dec(BN

+)/E0(B). Note that if b ∈ B, then the set

Ñb = {x ∈ Dec(BN
+) | ∃n ∈ N x(n) ≤ b}

= {x ∈ Dec(BN
+) | ∃n ∈ N∀m ≥ n x(m) ≤ b}

is E0(B)-invariant. Define Nb = Ñb/E0(B) for all b ∈ B.
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Proposition 6.1. Suppose that B is a Boolean algebra and b ∈ B.
Then b = 0 ⇐⇒ Nb = ∅.

Proof. Clearly N0 = ∅. But if b 6= 0, then the E0(B)-class of the
N-sequence with constant value b is in Nb, so Nb 6= ∅.

Proposition 6.2. Suppose that B is a Boolean algebra and a, b ∈ B.
Then Na·b = Na ∩Nb.

Proof. If [x]E0(B) ∈ Na·b, then there exists n ∈ N for which x(n) ≤ a · b,
so x(n) ≤ a and x(n) ≤ b, thus [x]E0(B) ∈ Na ∩ Nb. Conversely, if
[x]E0(B) ∈ Na ∩ Nb, then there exist m,n ∈ N for which x(m) ≤ a and
x(n) ≤ b, so x(max{m,n}) ≤ a · b, thus [x]E0(B) ∈ Na·b.

Proposition 6.2 ensures that the sets of the form Nb are closed under
finite intersections. Endow XB with the topology they generate.

Proposition 6.3. Suppose that B is a Boolean algebra and B ⊆ B.
Then ΣB = 1 if and only if

⋃
b∈BNb is dense.

Proof. Note first that if a, b ∈ B, then Propositions 6.1 and 6.2 ensure
that b ≤ −a ⇐⇒ a · b = 0 ⇐⇒ Na·b = ∅ ⇐⇒ Na ∩ Nb = ∅. But
ΣB 6= 1 if and only if there is a non-zero element a of B such that
∀b ∈ B b ≤ −a, whereas Propositions 6.1 and 6.2 imply that

⋃
b∈BNb

is not dense if and only if there is a non-zero element a of B such that
∀b ∈ B Na ∩Nb = ∅.

We say that a topological space is a Baire space if countable inter-
sections of dense open sets are dense.

Proposition 6.4. Suppose that B is a Boolean algebra. Then XB is
a Baire space.

Proof. By Propositions 6.1 and 6.2, it is sufficient to show that if b is a
non-zero element of B and (Un)n∈N is a sequence of dense open subsets
of XB, then Nb ∩

⋂
n∈N Un 6= ∅. Towards this end, set b0 = b. Given

n ∈ N and a non-zero element bn ≤ b of B for which Nbn ⊆
⋂
m<n Um,

note that Nbn ∩ Un is a non-empty open set by Proposition 6.1, so
Propositions 6.1 and 6.2 yield a non-zero element bn+1 of B such that
Nbn+1 ⊆ Nbn ∩ Un, in which case Nbn+1−bn ⊆ Nbn+1 \ Nbn = ∅, thus
Proposition 6.1 ensures that bn+1 − bn = 0, hence bn+1 ≤ bn. It only
remains to observe that [(bn)n∈N]E0(B) ∈

⋂
n∈NNbn ⊆ Nb ∩

⋂
n∈N Un.

So as to avoid confusion with the Borel structure generated by the
underlying topology, we use the term σ-Borel to refer to the Borel
structure on each set X ⊆ XB generated by the sets of the form Nb∩X.
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Proposition 6.5. Suppose that B is a σ-complete Boolean algebra and
B ⊆ XB is σ-Borel. Then there exists b ∈ B with the property that
B 4 Nb is meager.

Proof. By induction on the construction of B. If there exists b ∈ B
for which B = Nb, then B 4 Nb = ∅. If there exists a ∈ B for which
(∼B) 4 Na is meager, then set b = −a and note that Na ⊆ ∼Nb, so

B 4 Nb = (∼B) 4 (∼Nb)
⊆ ((∼B) 4 Na) ∪ (Na 4 (∼Nb))
= ((∼B) 4 Na) ∪ ((∼Nb) \ Na)
= ((∼B) 4 Na) ∪ ((∼Nb) ∩ (∼Na))
= ((∼B) 4 Na) ∪ ∼(Nb ∪Na),

which is meager by Proposition 6.3. If there exist σ-Borel sets Bn ⊆ X
and bn ∈ B such that B =

⋃
n∈NBn and Bn 4 Nbn is meager for all

n ∈ N, then set b =
∑

n∈N bn and note that
⋃
n∈NNbn ⊆ Nb ⊆ ∼N−b, so

B 4 Nb ⊆ (B 4 (
⋃
n∈NNbn)) ∪ ((

⋃
n∈NNbn) 4 Nb)

= ((
⋃
n∈NBn) 4 (

⋃
n∈NNbn)) ∪ (Nb \

⋃
n∈NNbn)

⊆ (
⋃
n∈NBn 4 Nbn) ∪ (Nb ∩ (∼

⋃
n∈NNbn))

⊆ (
⋃
n∈NBn 4 Nbn) ∪ ((∼N−b) ∩ (∼

⋃
n∈NNbn))

= (
⋃
n∈NBn 4 Nbn) ∪ ∼(N−b ∪

⋃
n∈NNbn),

which is meager by Proposition 6.3.

Recall that a subset of a topological space is Gδ if it is a countable
intersection of open sets.

Proposition 6.6. Suppose that X is a Baire space, Γ is a countable
group of homeomorphisms of X, and Y ⊆ X is comeager. Then there
is a Γ-invariant dense Gδ set Z ⊆ Y .

Proof. Fix dense open sets Un ⊆ X for which
⋂
n∈N Un ⊆ Y . Then the

fact that γ is a homeomorphism ensures that γUn is dense and open
for all γ ∈ Γ and n ∈ N, so the Γ-invariant set Z =

⋂
γ∈Γ

⋂
n∈N γUn is

Gδ and the fact that X is a Baire space implies that Z is dense.

For each order homomorphism φ : A→ B between Boolean algebras,
define φ̄ : XA → XB by φ̄([x]E0(A)) = [φ ◦ x]E0(B). Given a set Φ of such
homomorphisms, define Φ̄ = {φ̄ | φ ∈ Φ}.

Proposition 6.7. Suppose that A is a Boolean algebra. Then idA = idXA
.

Proof. If x ∈ Dec(AN
+), then idA([x]E0(A)) = [idA ◦ x]E0(A) = [x]E0(A).
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Proposition 6.8. Suppose that A, B, and C are Boolean algebras
and φ : A → B and ψ : B → C are order homomorphisms. Then
ψ ◦ φ = ψ̄ ◦ φ̄.

Proof. If x ∈ Dec(AN
+), then ψ ◦ φ([x]E0(A)) = [ψ ◦ φ ◦ x]E0(C) whereas

(ψ̄ ◦ φ̄)([x]E0(A)) = ψ̄([φ ◦ x]E0(B)) = [ψ ◦ φ ◦ x]E0(C).

Proposition 6.9. Suppose that A and B are Boolean algebras and
π : A→ B is an isomorphism. Then π̄−1 = π−1 and π̄(Na) = Nπ(a) for
all a ∈ A, so π̄ is both a homeomorphism and a σ-Borel isomorphism.

Proof. Note first that π̄−1 = π−1, since π−1 ◦ π̄ = π−1 ◦ π = idA = idXA

and π̄ ◦ π−1 = π ◦ π−1 = idB = idXB
by Propositions 6.7 and 6.8. It

follows that if a ∈ A and y ∈ Dec(BN
+), then

[y]E0(B) ∈ π̄(Na) ⇐⇒ π−1([y]E0(B)) ∈ Na
⇐⇒ [π−1 ◦ y]E0(A) ∈ Na
⇐⇒ ∃n ∈ N (π−1 ◦ y)(n) ≤ a

⇐⇒ ∃n ∈ N y(n) ≤ π(a)

⇐⇒ [y]E0(B) ∈ Nπ(a),

so π̄(Na) = Nπ(a) for all a ∈ A. This easily implies that π̄ sends open
sets to open sets. As π̄ is bijective, it also ensures that π̄ sends σ-Borel
sets to σ-Borel sets. But the analogous fact holds of π−1 and therefore
of π̄−1, so π̄ is a homeomorphism and a σ-Borel isomorphism.

Given a countable group Γ of automorphisms of a σ-complete Bool-
ean algebra B, we say that a function φ : B→ B is Γ-decomposable if
there is a partition (bγ)γ∈Γ of 1 such that ∀b ∈ B φ(b) =

∑
γ∈Γ γ(b ·bγ).

Clearly every such function is an order homomorphism. As Proposi-
tions 6.7–6.9 ensure that Γ̄ is a countable group of σ-Borel automor-
phisms of XB, we can also consider our earlier notion of Γ̄-decomposa-
bility for σ-Borel partial functions on XB.

Proposition 6.10. Suppose that B is a σ-complete Boolean algebra,
Γ is a countable group of automorphisms of B, and φ : B → B is Γ-
decomposable. Then there is a dense open set U ⊆ XB with the property
that φ̄ � U is Γ̄-decomposable.

Proof. Fix a partition (bγ)γ∈Γ of 1 with the property that ∀b ∈ B φ(b) =∑
γ∈Γ γ(b ·bγ). By Proposition 6.3, the open set U =

⋃
γ∈ΓNbγ is dense.

To see that φ̄ � U =
⋃
γ∈Γ γ̄ � Nbγ , note that if γ ∈ Γ and [x]E0(B) ∈ Nbγ ,

then (φ◦x)(n) = (γ◦x)(n) for all n ∈ N sufficiently large that x(n) ≤ bγ,
so φ ◦ x E0(B) γ ◦ x, thus φ̄([x]E0(B)) = γ̄ · [x]E0(B).
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For all b ∈ B, endow the set Bb = {a ∈ B | a ≤ b} with the Boolean
algebra structure it inherits from B.

Proposition 6.11. Suppose that B is a σ-complete Boolean algebra,
Γ is a countable group of automorphisms of B, (bγ)γ∈Γ is a partition
of 1, and φ : B → B is given by φ(b) =

∑
γ∈Γ γ(b · bγ) for all b ∈ B.

Then the following are equivalent:

(1) The function φ is an isomorphism of B with Bφ(1).
(2) The function φ is injective.
(3) The sequence (γbγ)γ∈Γ is a partition of φ(1).

Proof. Clearly (1) =⇒ (2). To see ¬(3) =⇒ ¬(2), note that
φ(1) =

∑
γ∈Γ γbγ, so if (γbγ)γ∈Γ is not a partition of φ(1), then there are

distinct γ, δ ∈ Γ for which the element of B given by b =
∏

λ∈{γ,δ} λbλ
is not zero, and since λ−1b ≤ bλ for all λ ∈ {γ, δ}, it follows that γ−1b
and δ−1b are distinct non-zero elements of B but φ(λ−1b) = λλ−1b = b
for all λ ∈ {γ, δ}, so φ is not injective. To see (3) =⇒ (1), note that
φ � Bbγ = γ � Bbγ is an isomorphism of Bbγ with Bγbγ for all γ ∈ Γ,
so if (bγ)γ∈Γ and (γbγ)γ∈Γ are partitions of 1 and φ(1), then φ is an
isomorphism of B with Bφ(1).

The following two observations ensure that if Γ is a countable group
of automorphisms of a σ-complete Boolean algebra B, then the set of
Γ-decomposable automorphisms of B is also a group.

Proposition 6.12. Suppose that B is a σ-complete Boolean algebra, Γ
is a countable group of automorphisms of B, and π is a Γ-decomposable
automorphism of B. Then π−1 is Γ-decomposable.

Proof. Fix a partition (aγ)γ∈Γ of 1 with the property that ∀b ∈ B π(b) =∑
γ∈Γ γ(b · aγ) and define bγ = γ−1aγ−1 for all γ ∈ Γ. Proposition 6.11

ensures that (bγ)γ∈Γ is a partition of 1. Moreover, if b ≤ bγ, then
γb ≤ aγ−1 , so π(γb) = γ−1γb = b, thus π−1(b) = γb, hence if b ∈ B,
then π−1(b) =

∑
γ∈Γ π

−1(b · bγ) =
∑

γ∈Γ γ(b · bγ).

Proposition 6.13. Suppose that B is a σ-complete Boolean algebra,
Γ is a countable group of automorphisms of B, and φ, ψ : B → B are
Γ-decomposable. Then φ ◦ ψ is Γ-decomposable.

Proof. Fix partitions (cγ)γ∈Γ and (dδ)δ∈Γ of 1 with the property that
∀b ∈ B φ(b) =

∑
γ∈Γ γ(b · cγ) and ∀b ∈ B ψ(b) =

∑
δ∈Γ δ(b · dδ) and de-

fine bγ,δ = (δ−1cγ)·dδ for all γ, δ ∈ Γ and bλ =
∑

γ∈Γ bγ,γ−1λ for all λ ∈ Γ.
As (cγ)γ∈Γ is a partition of 1, so too is (δ−1cγ)γ∈Γ for all δ ∈ Γ, thus
(bγ,δ)γ∈Γ is a partition of dδ for all δ ∈ Γ. As (dδ)δ∈Γ is a partition of 1,
so too is (bγ,δ)γ,δ∈Γ. As ({(γ, γ−1λ) | γ ∈ Γ})λ∈Γ is a partition of Γ×Γ,
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it follows that (bλ)λ∈Γ is a partition of 1. Moreover, if b ≤ bγ,δ, then
δb ≤ cγ and b ≤ dδ, hence (φ◦ψ)(b) = φ(δb) = γδb, thus if b ≤ bλ, then

(φ ◦ ψ)(b) =
∑

γ∈Γ(φ ◦ ψ)(b · bγ,γ−1λ)

=
∑

γ∈Γ γγ
−1λ(b · bγ,γ−1λ)

= λ(b · bλ),
so if b ∈ B, then (φ ◦ ψ)(b) =

∑
λ∈Γ(φ ◦ ψ)(b · bλ) =

∑
λ∈Γ λ(b · bλ).

The full group of a countable group Γ of automorphisms of a σ-
complete Boolean algebra B is the group [Γ] of Γ-decomposable auto-
morphisms of B. In the special case that there is a single automorphism
π of B that generates Γ, we define the full group of π to be the full
group of Γ. We also use [π] to denote [Γ].

Proposition 6.14. Suppose that B is a σ-complete Boolean algebra, Γ
is a countable group of automorphisms of B, and π ∈ [Γ]. Then there
is a Γ̄-invariant dense Gδ set X ⊆ XB for which π̄ � X ∈ [Γ̄ � X].

Proof. By Proposition 6.10, there is a dense open set U ⊆ XB for which
π̄ � U is Γ̄-decomposable. As Proposition 6.9 ensures that each element
of Γ̄ is a homeomorphism, Proposition 6.6 yields a Γ̄-invariant dense
Gδ set X ⊆ U . As X is π̄-invariant and Proposition 6.9 also implies
that π̄ is a σ-Borel automorphism, it follows that π̄ � X ∈ [Γ̄ � X].

In order to generalize the converse of Proposition 6.14, we will need:

Proposition 6.15. Suppose that B is a Boolean algebra, a and b are
elements of B, A and B are subsets of XB for which A 4 Na and
B 4 Nb are meager, and φ and ψ are automorphisms of B.

(1) If φ(a) · ψ(b) = 0, then φ̄(Na) ∩ ψ̄(Nb) = ∅.
(2) If φ̄(A) ∩ ψ̄(B) = ∅, then φ(a) · ψ(b) = 0.

Proof. To establish (1), appeal to Propositions 6.1, 6.2, and 6.9 to see
that φ̄(Na) ∩ ψ̄(Nb) = Nφ(a) ∩Nψ(b) = Nφ(a)·ψ(b) = N0 = ∅.

To establish (2), first apply Propositions 6.2 and 6.9 to see that

Nφ(a)·ψ(b) = Nφ(a) ∩Nψ(b)

= φ̄(Na) ∩ ψ̄(Nb)
⊆ (φ̄(A) 4 φ̄(Na)) ∪ (ψ̄(B) 4 ψ̄(Nb))
= φ̄(A 4 Na) ∪ ψ̄(B 4 Nb).

As Proposition 6.9 ensures that φ̄ and ψ̄ are homeomorphisms, it follows
that the last set is meager, so Proposition 6.4 implies that the first is
empty, thus Proposition 6.1 ensures that φ(a) · ψ(b) = 0.
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Given a property P of elements of a topological space X, we write
∀∗x ∈ X P (x) to indicate that {x ∈ X | P (x)} is comeager.

Proposition 6.16. Suppose that B is a σ-complete Boolean algebra, Γ
is a countable group of automorphisms of B, X ⊆ XB is a Γ̄-invariant
comeager set, and T ∈ [Γ̄ � X]. Then there exists π ∈ [Γ] such that
∀∗x ∈ XB π̄(x) = T (x).

Proof. Fix a partition (Bγ)γ∈Γ of X into σ-Borel subsets of X for which
T =

⋃
γ∈Γ γ̄ � Bγ. For each γ ∈ Γ, Proposition 6.5 yields bγ ∈ B such

that Bγ 4 Nbγ is meager. As Proposition 6.7 ensures that idB = idXB
,

Proposition 6.15 implies that (bγ)γ∈Γ and (γbγ)γ∈Γ are sequences of
pairwise disjoint elements of B. As X =

⋃
γ∈Γ Bγ =

⋃
γ∈Γ γ̄Bγ and

Proposition 6.9 ensures that each element of Γ̄ is a homeomorphism,
it follows that

⋃
γ∈ΓNbγ and

⋃
γ∈Γ γ̄Nbγ are comeager, thus so too is⋃

γ∈ΓNγbγ by another application of Proposition 6.9. Proposition 6.4
therefore implies that

⋃
γ∈ΓNbγ and

⋃
γ∈ΓNγbγ are dense, so Propo-

sition 6.3 ensures that (bγ)γ∈Γ and (γbγ)γ∈Γ are partitions of 1, thus
Proposition 6.11 implies that we obtain an element of [Γ] by setting
π(b) =

∑
γ∈Γ γ(b · bγ) for all b ∈ B. But the set Y =

⋃
γ∈ΓBγ ∩Nbγ

is comeager and if [y]E0(B) ∈ Y , then there exists γ ∈ Γ for which
[y]E0(B) ∈ Bγ ∩ Nbγ , and if n ∈ N is sufficiently large that y(n) ≤ bγ,
then (π ◦ y)(n) = (γ ◦ y)(n), so π ◦ y E0(B) γ ◦ y, in which case
π̄([y]E0(B)) = γ̄ · [y]E0(B) = T ([y]E0(B)), thus π̄ � Y = T � Y .

We next turn to a basic observation concerning Boolean algebras:

Proposition 6.17. Suppose that B is a Boolean algebra, b ∈ B, and
φ and ψ are automorphisms of B for which φ(b) 6= ψ(b). Then there is
a non-zero element a ≤ b of B with the property that φ(a) · ψ(a) = 0.

Proof. As at least one of φ(b) − ψ(b) and ψ(b) − φ(b) is not zero, the
same holds of the elements of B given by

c = φ−1(φ(b)− ψ(b)) = b− (φ−1 ◦ ψ)(b)

and

d = ψ−1(ψ(b)− φ(b)) = b− (ψ−1 ◦ φ)(b),

so it only remains to note that φ(c) · ψ(c) ≤ (φ(b) − ψ(b)) · ψ(b) = 0
and φ(d) · ψ(d) ≤ φ(b) · (ψ(b)− φ(b)) = 0, thus c or d is as desired.

The following corollary ensures that the automorphism satisfying the
conclusion of Proposition 6.16 is uniquely determined:

Proposition 6.18. Suppose that B is a Boolean algebra and φ and ψ
are automorphisms of B with the property that ∀∗x ∈ XB φ̄(x) = ψ̄(x).
Then φ = ψ.
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Proof. If there exists b ∈ B for which φ(b) 6= ψ(b), then Proposition
6.17 yields a non-zero element a ≤ b of B with the property that
φ(a) · ψ(a) = 0, so Proposition 6.15 ensures that φ̄(Na) ∩ ψ̄(Na) = ∅,
thus φ̄(x) 6= ψ̄(x) for all x ∈ Na, contradicting Proposition 6.4.

Given an automorphism π of B, we say that an element b of B is
π-independent if b · π(b) = 0. We say that an automorphism π of
a σ-complete Boolean algebra B is separable if there are countable
sets Bk ⊆ B of πk-independent elements of B with the property that
∀k ∈ Z+∀a ≤ −ΣBk a = πk(a).

Proposition 6.19. Suppose that B is a σ-complete Boolean algebra
and π is a separable automorphism of B. Then there is a π̄-invariant
dense Gδ set X ⊆ XB for which π̄ � X is a separable σ-Borel automor-
phism.

Proof. Proposition 6.9 ensures that π̄ is a σ-Borel automorphism, thus
so too is its restriction to any π̄-invariant set. For all k ∈ Z+, fix
a countable set Bk ⊆ B of πk-independent elements of B with the
property that a = πk(a) for all a ≤ −ΣBk. As Proposition 6.7 implies
that idB = idXB

, Proposition 6.15 ensures that each set in the family
Bk = {Nb | b ∈ Bk} is π̄k-independent. As Proposition 6.3 implies that
the open set Uk = N−ΣBk ∪

⋃
Bk is dense, it follows that

⋂
k∈Z+ Uk

is comeager. As Proposition 6.9 ensures that π̄ is a homeomorphism,
Proposition 6.6 yields a π̄-invariant dense Gδ set X ⊆

⋂
k∈Z+ Uk. But

if k ∈ Z+ and [x]E0(B) ∈ X \
⋃
Bk, then [x]E0(B) ∈ N−ΣBk , and if n ∈ N

is sufficiently large that x(n) ≤ −ΣBk, then x(n) = (πk ◦ x)(n), so
x E0(B) πk ◦ x, thus [x]E0(B) = π̄k([x]E0(B)).

Proposition 6.20. Suppose that B is a σ-complete Boolean algebra,
π is an automorphism of B, and there is a π̄-invariant comeager set
X ⊆ XB for which π̄ � X is a separable σ-Borel automorphism. Then
π is separable.

Proof. For all k ∈ Z+, Proposition 1.8 ensures that the support of
π̄k � X is a σ-Borel subset of X, so Proposition 1.14 implies that it
is the union of a countable set Bk of π̄k-independent σ-Borel subsets
of X. By Proposition 6.5, there is a function φk : Bk → B with the
property that B 4 Nφk(B) is meager for all B ∈ Bk. As Proposition 6.7
ensures that idB = idXB

, Proposition 6.15 implies that the elements of
the set Bk = φk(Bk) are πk-independent. Suppose, towards a contra-
diction, that there is a non-zero element c ≤ −ΣBk of B for which
c 6= πk(c). Proposition 6.17 then yields a non-zero πk-independent el-
ement d ≤ c of B. As idB = idXB

, Proposition 6.15 ensures that Nd
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is π̄k-independent and therefore contained in the support of π̄k. As
Proposition 6.4 implies that Nd is not meager, there exists B ∈ Bk for
which B∩Nd is not meager. Setting b = φk(B), it follows that Nb∩Nd
is not meager, so Proposition 6.2 ensures that Nb·d is not meager, thus
Proposition 6.1 implies that b ·d is not zero, contradicting the fact that
d ≤ −ΣBk ≤ −b.

Given a non-zero element b of B and a property P of elements of B,
we write ∀Ba ≤ b P (a) to indicate that ∀0 < a′ ≤ b∃0 < a ≤ a′ P (a).

Proposition 6.21. Suppose that B is a Boolean algebra, b is a non-
zero element of B, k ∈ Z+, and (πi)i<k is a sequence of automorphisms
of B such that ∀i < j < k∀Ba ≤ b πi(a) 6= πj(a). Then there is a non-
zero element a ≤ b of B such that ∀i < j < k πi(a) · πj(a) = 0.

Proof. Fix an enumeration (in, jn)n<k(k−1)/2 of {(i, j) ∈ k × k | i < j},
set a′0 = b, and given n < k(k− 1)/2 and a non-zero element a′n ≤ b of
B, fix a non-zero element an ≤ a′n of B for which πin(an) 6= πjn(an) and
appeal to Proposition 6.17 to obtain a non-zero element a′n+1 ≤ an of
B such that πin(a′n+1) · πjn(a′n+1) = 0. Then a′k(k−1)/2 is as desired.

We say that a countable group Γ of automorphisms of B is aperiodic
on a non-zero element b of B if

∀k ∈ Z+∀Bc ≤ b∃(γi)i<k ∈ Γk∀i < j < k∀Bd ≤ c γid 6= γjd.

When b = 1, we also say that Γ is aperiodic. For all k ∈ N, the period
≥ k part of a countable group Γ of permutations of a set X is given by
Per≥k(Γ) = {x ∈ X | |Γx| ≥ k}.

Proposition 6.22. Suppose that B is a Boolean algebra, b is a non-
zero element of B, and Γ is a countable group of automorphisms of B
that is aperiodic on b. Then the aperiodic part of Γ̄ is comeager in Nb.

Proof. It is sufficient to show that if k ∈ Z+, then the period ≥ k part
of Γ̄ contains a dense open subset of Nb. But if c′ ≤ b is a non-zero
element of B, then the aperiodicity of Γ on b yields a non-zero element
c ≤ c′ of B and (γi)i<k ∈ Γk such that ∀i < j < k∀Bd ≤ c γid 6= γjd,
so Proposition 6.21 gives rise to a non-zero element d ≤ c of B such
that ∀i < j < k (γid) · (γjd) = 0, and if [x]E0(B) ∈ Nd and n ∈ N
is sufficiently large that x(n) ≤ d, then (γi ◦ x)(n) · (γj ◦ x)(n) = 0
for all i < j < k, so ¬γi ◦ x E0(B) γj ◦ x for all i < j < k, thus
γi · [x]E0(B) 6= γj · [x]E0(B) for all i < j < k, hence Nd ⊆ Per≥k(Γ̄).

We say that an automorphism π of B is aperiodic on a non-zero
element b of B if ∀k ∈ Z+∀Ba ≤ b a 6= πk(a). When b = 1, we also say
that π is aperiodic.
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Proposition 6.23. Suppose that B is a Boolean algebra, b is a non-
zero element of B, and π is an automorphism of B. Then π is aperiodic
on b if and only if 〈π〉 is aperiodic on b.

Proof. Suppose first that π is aperiodic on b. To see that 〈π〉 is ape-
riodic on b, suppose that k ∈ Z+ and c′ ≤ b is a non-zero element of
B. Then the aperiodicity of π on b ensures that ∀Bc ≤ c′ c 6= πi(c)
for all 0 < i < k, so ∀Bc ≤ c′ πi(c) 6= πj(c) for all i < j < k,
thus Proposition 6.21 yields a non-zero element c ≤ c′ of B such that
∀i < j < k πi(c) · πj(c) = 0. Setting γi = πi for all i < k, it follows
that γid 6= γjd for all non-zero elements d ≤ c of B and i < j < k.

Suppose now that 〈π〉 is aperiodic on b. To see that π is aperiodic on
b, suppose that k ∈ Z+ and a′ ≤ b is a non-zero element of B, appeal to
the aperiodicity of 〈π〉 on b to obtain a non-zero element a′′ ≤ a′ of B
and (ni)i<k+1 ∈ Zk+1 such that ∀i < j < k+1∀Ba ≤ a′′ πni(a) 6= πnj(a),
and fix i < j < k + 1 for which nj − ni is divisible by n, as well as
an element a ≤ a′′ of B with the property that πni(a) 6= πnj(a). Then
a 6= πnj−ni(a), so a 6= πn(a).

Given a non-zero element b of B and a property P of elements of B,
we write ∃Ba ≤ b P (a) to indicate that ∃0 < a′ ≤ b∀0 < a ≤ a′ P (a).
We say that π is periodic if ∀b > 0∃k ∈ Z+∃Ba ≤ b a = πk(a), or
equivalently, if π is not aperiodic on any non-zero element of B.

Proposition 6.24. Suppose that B is a Boolean algebra and π is a
periodic automorphism of B. Then the periodic part of π̄ contains a
dense open set.

Proof. It is sufficient to note that if b is a non-zero element of B, then
the periodicity of π yields k ∈ Z+ and a non-zero element a′ ≤ b
of B such that a = πk(a) for all a ≤ a′, and if [x]E0(B) ∈ Na′ and
n ∈ N is sufficiently large that x(n) ≤ a′, then x(n) = (πk ◦ x)(n), so
x E0(B) πk ◦ x, thus [x]E0(B) = π̄k([x]E0(B)), hence Na′ ⊆ Per(π̄).

Suppose now that K ⊆ Z+. We say that π has strict period K if
∀b > 0∃k ∈ K∃Ba ≤ b k = min{i ∈ Z+ | a = πi(a)}.
Proposition 6.25. Suppose that B is a Boolean algebra, K ⊆ Z+ is
finite, and π is an automorphism of B that has strict period K. Then
πlcm(K) = idB.

Proof. If there exists b ∈ B for which b 6= πlcm(K)(b), then Proposition
6.17 yields a non-zero πlcm(K)-independent element c ≤ b of B, but
the fact that π has strict period K yields a non-zero element d ≤ c
of B for which d = πlcm(K)(d), contradicting the fact that d is also
πlcm(K)-independent.
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Proposition 6.26. Suppose that B is a Boolean algebra and π is a
periodic automorphism of B. Then π has strict period Z+.

Proof. If b is a non-zero element of B, then the periodicity of π yields
k ∈ Z+ for which there is a non-zero element a′ ≤ b of B such that
a = πk(a) for all a ≤ a′. Let k be the least such positive integer
and fix such an a′. Then ∀Ba ≤ a′ a 6= πi(a) for all 0 < i < k, so
∀Ba ≤ a′ πi(a) 6= πj(a) for all i < j < k, thus Proposition 6.21 yields a
non-zero element a′′ ≤ a′ of B such that ∀i < j < k πi(a′′) ·πj(a′′) = 0,
in which case k = min{i ∈ Z+ | a = πi(a)} for all non-zero elements
a ≤ a′′ of B.

Proposition 6.27. Suppose that B is a Boolean algebra, K ⊆ Z+,
and π is an automorphism of B for which the period K part of π̄ is
comeager. Then π has strict period K.

Proof. Note first that π cannot be aperiodic on any non-zero element
b of B, since otherwise Propositions 6.22 and 6.23 ensure that the
aperiodic part of π̄ is comeager in Nb, contradicting Proposition 6.4.
Proposition 6.26 therefore implies that π has strict period Z+, so we
need only show that if a′ is a non-zero element of B and k ∈ Z+ has the
property that ∀0 < a ≤ a′ k = min{i ∈ Z+ | a = πi(a)}, then k ∈ K.
But if [x]E0(B) ∈ Na′ and n ∈ N is sufficiently large that x(n) ≤ a′,
then k = min{i ∈ Z+ | x(n) = (πi ◦ x)(n)}, so

k = min{i ∈ Z+ | x E0(B) πi ◦ x}
= min{i ∈ Z+ | [x]E0(B) = π̄i([x]E0(B))},

thus Na′ ⊆ Perk(π̄), hence Proposition 6.4 ensures that k ∈ K.

Given a countable group Γ of automorphisms of a σ-complete Bool-
ean algebra B, we say that an element b of B is Γ-complete if 1 =∑

γ∈Γ γb. A Γ-compression is a Γ-decomposable injection φ : B → B

for which −φ(1) is Γ-complete. We say that Γ is compressible if there
is such a Γ-compression.

Proposition 6.28. Suppose that B is a σ-complete Boolean algebra, Γ
is a countable group of automorphisms of B, and φ is a Γ-compression.
Then there is a Γ̄-invariant dense Gδ set X ⊆ XB for which φ̄ � X is
a Γ̄-compression of X.

Proof. By Proposition 6.10, there is a dense open set U ⊆ XB for which
φ̄ � U is Γ-decomposable. As φ̄(XB) ⊆ Nφ(1) ⊆ ∼N−φ(1), Proposition
6.9 ensures that

⋃
γ∈ΓNγ(−φ(1)) =

⋃
γ∈Γ γ̄N−φ(1) ⊆

⋃
γ∈Γ γ̄(∼φ̄(XB)). As

Proposition 6.3 implies that the first of these sets is dense, the last
is comeager. As Proposition 6.9 ensures that each element of Γ̄ is
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a homeomorphism, Proposition 6.6 yields a Γ̄-invariant dense Gδ set
X ⊆ U ∩

⋃
γ∈Γ γ̄(∼φ̄(XB)). As Proposition 6.11 implies that φ is an

isomorphism of B with Bφ(1), Proposition 6.9 ensures that φ̄ is injec-
tive, so to see that φ̄ � X is a Γ̄-compression of X, it only remains to
note that X ⊆

⋃
γ∈Γ γ̄(∼φ̄(XB)) ⊆

⋃
γ∈Γ γ̄(∼φ̄(X)).

An involution of B is an automorphism π of B for which π2 = idB.

Theorem 6.29. Suppose that B is a σ-complete Boolean algebra and π
is a separable automorphism of B. Then there are involutions ι1, ι2, ι3 ∈
[π] for which π = ι3 ◦ ι2 ◦ ι1.

Proof. By Proposition 6.19, there is a π̄-invariant dense Gδ set X ⊆ XB

for which π̄ � X is a separable σ-Borel automorphism. By Theorem
1, there are involutions I1, I2, I3 ∈ [π̄ � X] with the property that
π̄ � X = I3 ◦ I2 ◦ I1. By Propositions 6.6, 6.9, and 6.16, there exist
ι1, ι2, ι3 ∈ [π] and a π̄-invariant dense Gδ set Y ⊆ X with the property
that ∀1 ≤ i ≤ 3 ιi � Y = Ii � Y . Then ιi

2(y) = I2
i (y) = y and

π̄(y) = (I3 ◦ I2 ◦ I1)(y) = (ι3 ◦ ι2 ◦ ι1)(y) for all 1 ≤ i ≤ 3 and y ∈ Y , so
ιi is an involution for all 1 ≤ i ≤ 3 and π = ι3 ◦ ι2 ◦ ι1 by Propositions
6.8 and 6.18.

Theorem 6.30. Suppose that k ≥ 2, B is a σ-complete Boolean al-
gebra, π is an aperiodic automorphism of B, and there are periodic
automorphisms φ1, . . . , φk ∈ [π] with the property that π = φk ◦ · · · ◦φ1.
Then π is separable.

Proof. By Propositions 6.6, 6.9, 6.14, 6.22, 6.23, and 6.24, there is a π̄-
invariant dense Gδ set X ⊆ XB such that π̄ � X is an aperiodic σ-Borel
automorphism and ∀1 ≤ i ≤ k φi � X is a periodic element of [π � X].
As Proposition 6.8 ensures that π̄ = φk ◦ · · · ◦ φ1, Theorem 2 implies
that π̄ � X is separable, thus so too is π by Proposition 6.20.

Theorem 6.31. Suppose that k1 ≥ 2, k2 ≥ 3, B is a σ-complete Bool-
ean algebra, and π is an aperiodic separable automorphism of B. Then
there exist φ1, φ2 ∈ [π] such that φ1 has strict period {k1}, φ2 has strict
period {1, k2}, and π = φ2 ◦ φ1.

Proof. By Propositions 6.6, 6.9, 6.19, 6.22, and 6.23, there is a π̄-
invariant dense Gδ set X ⊆ XB such that π̄ � X is an aperiodic separa-
ble σ-Borel automorphism. By Theorem 3, there exist S1, S2 ∈ [π̄ � X]
for which every orbit of S1 has cardinality k1, every orbit of S2 has
cardinality 1 or k2, and π̄ � X = S2 ◦ S1. By Propositions 6.6, 6.9,
and 6.16, there exist φ1, φ2 ∈ [π] and a π̄-invariant dense Gδ set Y ⊆
X such that ∀1 ≤ i ≤ 2 φi � Y = Si � Y . Then |[y]φ1

| = |[y]S1| = k1,
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|[y]φ2
| = |[y]S2| ∈ {1, k2}, and π̄(y) = (S2 ◦ S1)(y) = (φ2 ◦ φ1)(y) for all

y ∈ Y , so φ1 and φ2 have strict periods {k1} and {1, k2} by Proposition
6.27 and π = φ2 ◦ φ1 by Propositions 6.8 and 6.18.

Theorem 6.32. Suppose that k ≥ 3, B is a σ-complete Boolean alge-
bra, and π is an aperiodic separable automorphism of B. Then there
exist φ1, φ2 ∈ [π] such that φ−1

1 and φ2 are conjugate in [π], φ1 and φ2

have strict period {1, k}, and π = φ2 ◦ φ1.

Proof. By Propositions 6.6, 6.9, 6.19, 6.22, and 6.23, there is a π̄-
invariant dense Gδ set X ⊆ XB with the property that π̄ � X is
an aperiodic separable σ-Borel automorphism. By Theorem 4, there
exist S, S1, S2 ∈ [π̄ � X] with the property that every orbit of S1

and S2 has cardinality 1 or k, S−1
1 = S ◦ S2 ◦ S−1, and π̄ � X =

S2 ◦ S1. By Propositions 6.6, 6.9, and 6.16, there exist φ, φ1, φ2 ∈ [π]
and a π̄-invariant dense Gδ set Y ⊆ X such that φ̄ � Y = S � Y and
∀1 ≤ i ≤ 2 φi � Y = Si � Y . Then |[y]φi | = |[y]Si | ∈ {1, k} for all 1 ≤
i ≤ 2, φ1

−1
(y) = S−1

1 (y) = (S ◦ S2 ◦ S−1)(y) = (φ̄ ◦ φ2 ◦ φ̄−1)(y), and
π̄(y) = (S2 ◦ S1)(y) = (φ2 ◦ φ1)(y) for all y ∈ Y , so φi has strict period
{1, k} for all 1 ≤ i ≤ 2 by Proposition 6.27 and φ−1

1 = φ ◦ φ2 ◦ φ−1 and
π = φ2 ◦ φ1 by Propositions 6.8 and 6.18.

Theorem 6.33. Suppose that k ≥ 3, B is a σ-complete Boolean alge-
bra, Γ is an aperiodic countable group of separable automorphisms of
B, and π ∈ [Γ]. Then there exist φ1, φ2 ∈ [π] such that φ−1

1 and φ2 are
conjugate in [Γ], φ1 and φ2 have strict period {1, 2, k}, and π = φ2 ◦φ1.

Proof. By Propositions 6.6, 6.9, 6.14, 6.19, and 6.22, there is a Γ̄-invari-
ant dense Gδ set X ⊆ XB such that Γ̄ � X is an aperiodic group of sep-
arable σ-Borel automorphisms and π̄ � X ∈ [Γ̄ � X]. Theorem 4 yields
S ∈ [Γ̄ � X] and S1, S2 ∈ [π̄ � X] for which every orbit of S1 and S2 has
cardinality 1, 2, or k, S−1

1 = S ◦ S2 ◦ S−1, and π̄ � X = S2 ◦ S1. By
Propositions 6.6, 6.9, and 6.16, there exist φ ∈ [Γ], φ1, φ2 ∈ [π], and a
Γ̄-invariant dense Gδ set Y ⊆ X with the property that φ̄ � Y = S � Y
and ∀1 ≤ i ≤ 2 φi � Y = Si � Y . Then |[y]φi | = |[y]Si | ∈ {1, 2, k} for all
1 ≤ i ≤ 2, φ1

−1
(y) = S−1

1 (y) = (S ◦S2 ◦S−1)(y) = (φ̄◦φ2 ◦ φ̄−1)(y), and
π̄(y) = (S2 ◦ S1)(y) = (φ2 ◦ φ1)(y) for all y ∈ Y , so φi has strict period
{1, 2, k} for all 1 ≤ i ≤ 2 by Proposition 6.27 and φ−1

1 = φ ◦ φ2 ◦ φ−1

and π = φ2 ◦ φ1 by Propositions 6.8 and 6.18.

We say that a group Γ of automorphisms of a σ-complete Boolean
algebra is closed under countable decomposition if [∆] ⊆ Γ for every
countable subgroup ∆ of Γ.
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Theorem 6.34. Suppose that B is a σ-complete Boolean algebra and
Γ is a group of separable automorphisms of B that is closed under
countable decomposition and has an aperiodic countable subgroup ∆.
Then Γ has the Bergman property.

Proof. We first reduce the theorem to the special case where Γ = [∆].
Suppose, towards a contradiction, that Γ does not have the Bergman
property. Then there is an exhaustive increasing sequence (Γn)n∈N of
subsets of Γ with the property that there exists γn ∈ Γ \ (Γn)n for all
n ∈ N. Let ∆′ be the group generated by {γn | n ∈ N} ∪∆ and define
Γ′ = [∆′] and Γ′n = Γ′ ∩ Γn for all n ∈ N. Then γn ∈ Γ′ \ (Γ′n)n for all
n ∈ N, so Γ′ does not have the Bergman property, contradicting the
aforementioned special case of the theorem.

To establish the special case, suppose that (Γn)n∈N is an exhaustive
increasing sequence of subsets of Γ and appeal to Propositions 6.6, 6.9,
6.19, and 6.22 to obtain a ∆̄-invariant dense Gδ set X ⊆ XB for which
∆̄ � X is an aperiodic group of separable σ-Borel automorphisms. For
all n ∈ N, let Γ′n be the set of σ-Borel automorphisms of X that agree
with an element of Γn on a comeager set. Proposition 6.16 ensures
that (Γ′n)n∈N is an exhaustive increasing sequence of subsets of [∆̄ � X],
so Theorem 7 yields k ∈ N for which [∆̄ � X] = (Γ′k)

k. To see that
Γ = (Γk)

k, suppose that γ ∈ Γ, apply Proposition 6.14 to obtain
T ∈ [∆̄ � X] with the property that ∀∗x ∈ XB γ̄ · x = T (x), and fix
T1, . . . , Tk ∈ Γ′k for which T = Tk ◦ · · · ◦ T1, as well as γ1, . . . , γk ∈ Γk
with the property that ∀∗x ∈ XB γi · x = Ti(x) for all 1 ≤ i ≤ k. By
Propositions 6.6 and 6.9, there is a ∆̄-invariant dense Gδ set Y ⊆ X
such that γ̄ � Y = T � Y and ∀1 ≤ i ≤ k γi � Y = Ti � Y , so γ̄ � Y =
T � Y = (Tk ◦ · · · ◦ T1) � Y = (γk · · · γ1) � Y , thus γ = γk · · · γ1 ∈ (Γk)

k

by Propositions 6.8 and 6.18.

Theorem 6.35. Suppose that B is a σ-complete Boolean algebra and
Γ is a group of separable automorphisms of B that is closed under
countable decomposition and has a compressible countable subgroup ∆.
Then Γ has the 14-Bergman property.

Proof. We first reduce the theorem to the special case where Γ = [∆].
Suppose, towards a contradiction, that Γ does not have the 14-Berg-
man property. Then there is an exhaustive increasing sequence (Γn)n∈N
of subsets of Γ with the property that there exists γn ∈ Γ\(Γn)14 for all
n ∈ N. Let ∆′ be the group generated by {γn | n ∈ N} ∪∆ and define
Γ′ = [∆′] and Γ′n = Γ′ ∩ Γn for all n ∈ N. Then γn ∈ Γ′ \ (Γ′n)14 for
all n ∈ N, so Γ′ does not have the 14-Bergman property, contradicting
the aforementioned special case of the theorem.
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To establish the special case, suppose that (Γn)n∈N is an exhaustive
increasing sequence of subsets of Γ and appeal to Propositions 6.6, 6.9,
6.19, and 6.28 to obtain a ∆̄-invariant dense Gδ set X ⊆ XB for which
∆̄ � X is an aperiodic group of separable σ-Borel automorphisms. For
all n ∈ N, let Γ′n be the set of σ-Borel automorphisms of X that agree
with an element of Γn on a comeager set. Proposition 6.16 ensures
that (Γ′n)n∈N is an exhaustive increasing sequence of subsets of [∆̄ � X],
so Theorem 8 yields n ∈ N for which [∆̄ � X] = (Γ′n)14. To see that
Γ = (Γn)14, suppose that γ ∈ Γ, apply Proposition 6.14 to obtain
T ∈ [∆̄ � X] with the property that ∀∗x ∈ XB γ̄ · x = T (x), and fix
T1, . . . , T14 ∈ Γ′n for which T = T14 ◦ · · · ◦T1, as well as γ1, . . . , γ14 ∈ Γn
with the property that ∀∗x ∈ XB γi · x = Ti(x) for all 1 ≤ i ≤ 14. By
Propositions 6.6 and 6.9, there is a ∆̄-invariant dense Gδ set Y ⊆ X
such that γ̄ � Y = T � Y and ∀1 ≤ i ≤ 14 γi � Y = Ti � Y ,
so γ̄ � Y = T � Y = (T14 ◦ · · · ◦ T1) � Y = (γ14 · · · γ1) � Y , thus
γ = γ14 · · · γ1 ∈ (Γn)14 by Propositions 6.8 and 6.18.

We close this section with the observation from [Fre04, §382M] that
all automorphisms of complete Boolean algebras are separable in the
presence of full choice, thereby eliminating the need for separability
in the hypotheses of the special cases of Theorems 6.29 and 6.31–6.35
for complete Boolean algebras under AC. The first of these simplified
special cases was originally established in [Ryz93].

Proposition 6.36 (AC). Suppose that B is a complete Boolean algebra.
Then every automorphism of B is separable.

Proof. We will establish the ostensibly stronger fact that if π is an
automorphism of B, then there is a π-independent element b of B with
the property that a = π(a) for all elements a ≤ −(π−1(b) + b + π(b))
of B. Towards this end, note that if (bα)α<γ is a strictly increasing
sequence of π-independent elements of B, then the element of B given
by b =

∑
α<γ bα is itself π-independent, for if b · π(b) 6= 0, then there

exist α < γ such that bα · π(b) 6= 0 and β < γ such that bα · π(bβ) 6= 0,
contradicting the fact that bmax{α,β} is π-independent. It follows that
there is a maximal such sequence, in which case the corresponding
ordinal γ is a successor, so the corresponding element b of B is bγ−1. But
if there is an element c ≤ −(π−1(b) + b+π(b)) of B for which c 6= π(c),
then Proposition 6.17 yields a non-zero π-independent element d ≤ c
of B, and since b ·π(d) = π(π−1(b) ·d), it follows that (b+d) ·π(b+d) =
(b ·π(b))+(b ·π(d))+(d ·π(b))+(d ·π(d)) = 0, so b+d is π-independent,
contradicting the maximality of (bα)α<γ.
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Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks],
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