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BENJAMIN D. MILLER

ABSTRACT. We introduce a notion of separability that holds of all
Borel automorphisms of standard Borel spaces and automorphisms
of complete Boolean algebras. We then prove that separable auto-
morphisms of o-complete Boolean algebras are products of various
types of periodic automorphisms in their full groups. As appli-
cations, we show that a wide variety of groups of automorphisms
consist solely of commutators and satisfy the Bergman property,
that natural strengthenings of the Bergman property characterize
the inexistence of invariant Borel probability measures in standard
Borel spaces and standard measure spaces, and that the length four
normal closure of any Borel automorphism of R with uncountable
support is the group of all Borel automorphisms of R.

INTRODUCTION

A Borel space is a set X equipped with a o-algebra of Borel subsets.
A function between Borel spaces is Borel if preimages of Borel sets are
Borel. A Borel automorphism of a Borel space is a Borel bijection of
the space with itself whose inverse is also Borel.

Given a binary relation R on a set X, we say that a family of subsets
of X separates R-related points if, for all distinct R-related points x
and y, there is a set in the family that contains x but not y. When
X is a Borel space, we say that R is separable if there is a countable
family of Borel subsets of X that separates R-related points. We say
that a Borel automorphism 7': X — X is separable if the graphs of its
powers are separable. If there is a countable separating family of Borel
subsets of X, then every Borel automorphism of X is separable.

We say that a subrelation R of the orbit equivalence relation EX
generated by a countable group I' of Borel automorphisms of X is I'-
decomposable if there is a sequence (B, ),er of Borel subsets of X with
the property that R = .. graph(y [ B,). We say that a partial func-
tion T: X — X is I'-decomposable if its graph is I'-decomposable. It is
easy to see that the set [I'] of all [-decomposable Borel automorphisms
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of X forms a group under composition; we refer to it as the full group
of I'. In the special case that there is a single Borel automorphism
T: X — X for which I is the group (T") generated by T, we say that a
partial function S: X — X is T-decomposable if it is I'-decomposable,
we define the full group of T to be the full group of T', and we use [T]
to denote [I'].

In what follows, we establish various algebraic properties of full
groups of separable Borel automorphisms. While these results essen-
tially appeared some time ago in [Mil04, §1], here we follow a more
systematic approach that yields substantially more readable proofs of
somewhat stronger theorems. This is only part of the justification for
publishing these results now, however, as questions have recently arisen
concerning analogs of properties of the group of Borel automorphisms
of R for the group of permutations of R/Q with Borel graphs, and the
answers to such questions—which will appear in a subsequent paper—
rely heavily upon the arguments presented here.

In we consider involutions (i.e., functions [: X — X for which
I? = idy). Although only the simplest Borel automorphisms are com-
positions of two Borel involutions in their full groups, we establish:

Theorem 1. Suppose that X is a Borel space and T: X — X 1is
a separable Borel automorphism. Then there are Borel involutions
Il,IQ,Ig S [T] fO’/’ which T = .[3 olyol;.

In §2] we consider more general products. We say that a permutation
is (a)periodic if all of its orbits are (in)finite. We show that separability
is not only sufficient for the above result, but necessary, even to obtain
an ostensibly weaker conclusion:

Theorem 2. Suppose that k > 2, X is a Borel space, T: X — X 1is
an aperiodic Borel automorphism, and there are periodic Borel auto-
morphisms Si, ..., Sk € [T] with the property that T = Sk o---0 5.
Then T is separable.

We then determine the circumstances under which an aperiodic sepa-
rable Borel automorphism is a composition of two Borel automorphisms
with prescribed periods in its full group:

Theorem 3. Suppose that ki > 2, ko > 3, X is a Borel space, and
T: X — X is an aperiodic separable Borel automorphism. Then there
exist S1,Ss € [T] such that every orbit of S1 has cardinality ki, every
orbit of So has cardinality 1 or ko, and T = Sy 0 57.

In §3] we show that every aperiodic separable Borel automorphism
is a special kind of commutator:
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Theorem 4. Suppose that k > 3, X is a Borel space, and T: X —
X is an apertodic separable Borel automorphism. Then there exist
Sy, Sy € [T] such that S;* and Sy are conjugate in [T], every orbit of
S1 and S has cardinality 1 or k, and T = Sy 0 5].

We say that a countable group of permutations is aperiodic if all
of its orbits are infinite. More generally, we show that every Borel
automorphism in the full group of an aperiodic countable group of
separable Borel automorphisms is a special kind of commutator:

Theorem 5. Suppose that k > 3, X is a Borel space, I is an aperiodic
countable group of separable Borel automorphisms of X, and T € [T'].
Then there exist Sy, Sy € [T] such that S;' and Sy are conjugate in [I],
every orbit of S1 and Sy has cardinality 1, 2, or k, and T = S5 0 .5;.

A Borel measure on X is a measure p on the Borel subsets of X. We
say that such a measure is I'-invariant if p(B) = pu(yB) for all Borel
sets B C X and v € I'. As this easily implies that u(B) = u(T(B)) for
all Borel sets B C X and T € [I'], the special cases of Theorems [1] [3]
and [5| for Lebesgue-measure-preserving Borel automorphisms of [0, 1]
easily yield the results of [Ryz85].

In §4 we focus on Borel spaces X that are standard, in the sense
that the Borel structure on X is generated by a second-countable com-
plete metric on X. The support of a function T: X — X is given
by supp(7T) = {z € X | x # T(x)}. Our main result is the follow-
ing strengthening of Shortt’s theorem that the quotient of the group
of Borel automorphisms of a standard Borel space by the subgroup of
permutations with countable supports is simple (see [Sho90]):

Theorem 6. Suppose that X is a standard Borel space andT: X — X
15 a Borel automorphism with uncountable support. Then every Borel
automorphism S: X — X is a composition of four conjugates of T**
by Borel automorphisms of X.

In §5| we consider algebraic properties originating in [Ber06]. We say
that a group I' of Borel automorphisms of X is closed under countable
decomposition if [A] C T for all countable subgroups A of I'. Given a
group ', we say that an increasing sequence (I',,),en of subsets of T is
ezhaustive if I' = |, .y I'n. We say that I' has the Bergman property if,
for every exhaustive increasing sequence (I';,),en of subsets of T', there
exists k € N such that I' = (I';)*. The following fact implies Bergman’s
theorem that the symmetric group of permutations of N has the latter
property (see [Ber06, Theorem 6]), as well as the analogous fact for the
group of Borel automorphisms of R (see [DG05, Theorem 3.4]):
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Theorem 7. Suppose that X is a Borel space and I' is a group of
separable Borel automorphisms of X that is closed under countable
decomposition and has an aperiodic countable subgroup. Then I' has
the Bergman property.

For each k € N, we say that [ has the k-Bergman property if, for
every exhaustive increasing sequence (I',)nen of subsets of T', there
exists n € N such that I' = (I',)*. When T is a countable group of
permutations of X, we say that a set Y C X is I'-complete if X =
I'Y. We say that a countable group I' of Borel automorphisms of X
is compressible if there is a I'-decomposable injection T: X — X for
which ~T'(X) is I'-complete. The proofs of [Ber06, Theorem 6] and
[DGO5, Theorem 3.4] show that the corresponding groups have the
17-Bergman property, which is also an easy consequence of:

Theorem 8. Suppose that X is a Borel space and I is a group of
separable Borel automorphisms of X that is closed under countable
decomposition and has a compressible countable subgroup. Then I' has
the 14-Bergman property.

As a corollary, we obtain the following characterization of the exis-
tence of invariant Borel probability measures:

Theorem 9. Suppose that k > 14, X is a standard Borel space, and
[' is an aperiodic countable group of Borel automorphisms of X. Then
ezxactly one of the following holds:

(1) There is a T-invariant Borel probability measure on X .
(2) The group [I'] has the k-Bergman property.

We say that a Borel measure p on X is I'-quasi-invariant if u(B) =
0 <= u(yB) = 0 for all Borel sets B C X and v € I". Given
such a p, let [I'] /1 denote the quotient of [I'] by the subgroup of Borel
automorphisms in [I'] with g-null supports. We also obtain:

Theorem 10. Suppose that k > 14, X is a standard Borel space, I is
an aperiodic countable group of Borel automorphisms of X, and p is
a I'-quasi-invariant o-finite Borel measure on X. Then exactly one of
the following holds:

(1) There is a I'-invariant Borel probability measure v < .
(2) The group [I']/p has the k-Bergman property.

In §6] we generalize Theorems and to o-complete Boolean
algebras. To achieve this, we use essentially the same arguments as
those utilized in [Fre04, §382M] to obtain the main result of [Ryz93]
as a consequence of Theorem [} However, by avoiding the use of Stone
spaces, we eliminate the need for choice (beyond DC).
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1. PRODUCTS OF INVOLUTIONS

The saturation of a set Y C X under a partial injection 7T: X — X
is given by [Y]r = U,z T"(dom(T™) NY) (where TV is the identity
function on X)), the T-orbit of a point = € X is given by [z]r = [{z}]r,
and a transversal of T is a set Y C X whose intersection with each
T-orbit is a singleton. When X is a Borel space, we say that a Borel
automorphism 7": X — X is smooth if it admits a Borel transversal.
We begin this section by noting that the existence of involutions 7, J €
[T’ for which T' = Io.J is equivalent to a slight weakening of smoothness:

Proposition 1.1. Suppose that X is a Borel space and T: X — X 1is
a Borel automorphism. Then the following are equivalent:
(1) There are involutions Iy, I € [T for which T = I o 1.
(2) There is a Borel set B C X whose intersection with each T'-
orbit is a singleton or doubleton.

Proof. To see (1) = (2), define a function D: X — P(Z) by setting
D(x)={neZ)| Iy(z) =T"(z)} for all x € X.

Lemma 1.2. Suppose that x € X. Then there is at most one point
y € [z]7 \ {z} for which D(x) N D(y) # 0.

Proof. For all M C Z and n € Z, define M —n={m —n|me M}.
Sublemma 1.3. Ifn € Z, then D(T"(z)) = D(z) — 2n.

Proof. 1t is sufficient to show that D(z) —2n C D(T"(z)) for all n € Z,
as this implies that D(T"(z)) —2(—n) C D((T"" o T™)(z)) = D(x), so
D(T™(z)) C D(z) —2n, thus D(T™(z)) = D(x) —2n for all n € Z. But
if m € D(x) and n € Z, then

(Io o T () = (g (I 0 Io)")(x)
= ((lo o )" o Ip)(x)
= (T o Iy)(x)
=T1m"(z)
= (T2 o 1) (),
som —2n € D(T"(z)), thus D(x) — 2n C D(T"(z)). 5

If & = |[z]r| is infinite, then D(y) is a singleton for all y € [z]r, so
Sublemmall.3|ensures that Vy € [z]r\{z} D(z)ND(y) = 0. Otherwise,
D(y) is a translate of kZ for all y € [z]r, in which case Sublemma
implies that Yy € [z]r \ {z} D(z) N D(y) = 0 if k is odd, whereas
Yy € [z]7 \ {z, T*?(z)} D(z) N D(y) = 0 if k is even. I
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Fix Borel sets B, € X for which Iy = J,.,T" | B,. Note that
if n € Nand x € B, then n € D(x), so Lemma ensures that
B,, intersects each T-orbit in at most two points. Fix an enumeration
(kn)nen of Z and define B, = By, \U,,,,[ Bk, |7 for all n € N. Then the
set B = J,,cn By, intersects each T-orbit in a singleton or doubleton.

To see (2) = (1), first recall that the hitting time function asso-
ciated with B and T is the map h%: X — Z* U {co} given by

W () = n ifneZ"and v € T7"(B) \ Upcpmen I'~™(B) and
v oo ifw & U, T7"(B),

and the return time function is the restriction rL of h% to B. De-
fine Tg: (RL) " (Z*) — B by Tp(z) = T"s@)(z). The corresponding
induced transformation is given by Ty = Tz | (r5)~Y(Z"). These func-
tions are clearly Borel (when Z* U {oco} is endowed with the power set
Borel structure).

Note that the set By, = (r§)~'({oo}) intersects each infinite T-
orbit in a singleton and misses each finite T-orbit, whereas the set
Beow ={x € (r5)"YZ*) | rL(2) > (r§oTg)(z)} misses each infinite T-
orbit and intersects each finite T-orbit in a singleton or a set of the form
{2, T%?(x)}, where x € X and k = |[z]7| is even. Set A = B, U B.,.

Lemma 1.4. Suppose that m,n € Z, v,y € A, and T~ (z) =T "(y).
Then T™(x) =T™(y).

Proof. If x =y, then T-™(z) = T "(y) = T""(x), so v = T™ "(x),
thus 7" (y) = T"(x) = T™(x). Otherwise, set k = |[z]r| = |[y]r].
Then y = T7%2(x) = T*?(x), so T"™(x) = T (y) = T~*?>™(z),
thus @ = T~F/2*m="(x), hence T*/?~™*"(z) = z, and it follows that

To(y) = TH#n(2) = T(z).
Define an involution I; € [T] by I) = J,c, T*" | T""(A), as well as
]0 = Il oT

= Unez(T*" 1T7(A)) o T

=Uner T%" o (T | T-"1(4))

= Upep T | T-(+D)(A),
Then [yoly=110l;0T =T and IgzloofloT:T_loT:id. X
Remark 1.5. In the special case that no T-orbit has even finite cardi-
nality, condition (2) of Proposition is equivalent to the smoothness

of T. This can be established by noting that, in this case, the set A
from the proof of (2) = (1) is a transversal of E:¥.
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Remark 1.6. For future arguments, it will be important to note the
number of fixed points of the involutions Iy and [; arising in the proof
of (2) = (1) along the T-orbit of each x € A. Towards this end,
first observe that if n € Z and y = T~"(x), then

L(y) =y < LT () =T"(x)
= T"(z) =T"(z)
— T*"(z)==x
and
L(y) =y = (LoT)(T(z)) =T "(x)
= LT D@) =T ()
— T z)=T"(x)
— T (z) =1z.

If k = |[z]7| is infinite, then n = 0 is the unique solution to the first
equation and there are no solutions to the second, so x is the unique
fixed point of I) | [z]r and Iy | [z]r has no fixed points. Otherwise,
the solutions to the first equation are given by 2n = 0 (mod k) and
the solutions to the second are given by 2n — 1 = 0 (mod k). If k is
odd, then n = 0 is the unique solution in k to the first congruence
and n = (k + 1)/2 is the unique solution in k to the second, so z is
the unique fixed point of I; | [x]7 and T~*+1/2(z) is the unique fixed
point of Iy [ [z]r. If k is even, then n = 0 and n = k/2 are the unique
solutions in k to the first congruence and there are no solutions to the
second, so x and T~*/2(z) are the unique fixed points of I; | [x]r and
Iy | [x]7 has no fixed points.

Remark 1.7. By applying (2) = (1) to ™!, one obtains involutions
Iy, I € [T] for which T = I o Iy and the number of fixed points of I

and I, along each T-orbit is as in Remark but with the roles of I;
and I, reversed.

We next turn our attention to writing automorphisms as composi-
tions of three involutions.

Proposition 1.8. Suppose that X is a Borel space and T: X — X 1is
a Borel automorphism whose graph is separable. Then the support of
T s Borel.

Proof. Fix a sequence (B,,),en of Borel sets separating graph(T)-related
points, and observe that supp(T) = J,,cny B \ T (By)- b

For all cardinals x and sets X, let [X]* denote the set of all subsets
of X of cardinality k.
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Proposition 1.9. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X with Borel supports, B C X 1is
Borel, and k <Wq. Then {x € X | |[BNT'z| =k} is Borel.

Proof. 1t is enough to show that if k& < N, then the corresponding set
A={z e X ||BNTz| > k} is Borel. Towards this end, define Ca =
Nsca 0B and Da = (Nen Niseargyy Supp(y~'9) for all A € [T, and
observe that A = UAG[W Ca N Dx. X

Given a Borel automorphism 7: X — X, let <7 denote the quasi-
order on X givenby x <r y <= dn € NT"(x) = y and <r denote the
strict quasi-order on X given by z <r y <= (x <r y and —y <p x).
Given z,y € X, set (z,y)r = {2z € X | z <r z <r y} (and define
[z, y)r, (z,y|r, and [z, y]r analogously). Given S € [T], we say that
a point x € X is covered by a point y € [z]r if y <r x <7 S(y).
Observe that if such a y exists, then [z] is infinite (since otherwise
<r | [z]r = 0), so there is a <p-maximal such y. We use cg(z) to
denote this point. We say that S is T'-covering if every point in X is
covered by a point in its T-orbit. Observe that the existence of such
an element of [T'] ensures that T is aperiodic. We say that S is T-non-
crossing if (x,S(x))r is S-invariant for all z € X. We say that S is
T-oriented if S(z) <rx = Vy € [z]sy <raforalz e X.

A reduction of an equivalence relation E on a set X to an equivalence
relation £’ on a set Y is a function 7: X — Y with the property that
wEzr < w(w) F n(z) for all w,x € X.

Proposition 1.10. Suppose that X s a Borel space, T: X — X 1s
a Borel automorphism, S € [T is T-covering, T-non-crossing, and T -
oriented, and R = S™ o T.. Then cs is a reduction of Ex to equality.

Proof. Fix z,y € X. To see that cg(z) # cs(y) = —x Ep vy, it is
enough to handle the case that x E y. By reversing the roles of x and
y if necessary, we can assume that © <r y. Then y <r (Socg)(r) =
cs(z) <t cs(y) and cs(y) <r v = cs(y) <r cs(x), so the fact that
cs(x) # cs(y) ensures that (S o cg)(z) <r y or x <r cs(y), in which
case y ¢ [cs(x), (S0 cs)(x))r or z ¢ [es(y), (S o cs)(y))r. To see that
—x E3 vy, it is therefore sufficient to show the following:

Lemma 1.11. Forall z € X, the set [cs(z), (Socs)(2))r is R-invariant.

Proof. 1f 2" € [cg(2), (Socs)(2))r, then T(2') € (cs(2), (Socs)(2)]r, so
T(Z) € (cs(2),(Socs)(z))r or T(2') = (Socs)(z). The S-invariance
of (es(2), (S ocs)(2))r ensures that R(2') € (cs(z), (Socs)(z))r in the

former case, and clearly R(z2') = cg(2) in the latter. 53
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To see that cs(x) = cs(y) = x EX y, note that cg is finite-to-one,
so—by the obvious induction—it is sufficient to establish the special
case where y is the <p-minimal element of [z]y for which x <7 y and
cs(x) = cs(y). Observe that cg(z) € (z,y)r for all z € (z,y)r.

Lemma 1.12. There exists n € N with the property that (S"oT)(z) =
y and (S™ o T)(z) <r (S™ o T)(x) for allm < n.

Proof. if n € N, (S™ o T)(x) <r (S™! o T)(z) for all m < n, and
(S™oT)(x) <r y, then (S™oT)(x) € (x,y)r, so (cgoS™oT)(x) € (z,y)r.
As ((S™oT)(x), (S™ 1 oT)(x))r is S-invariant for all m < n, it follows
that (csoS"oT)(x) = (S"oT)(x), so (S"oT)(zx) <7 (S"oT)(x), and
the fact that cs(y) <7 (S™oT)(z) <r y ensures that (S""1oT)(z) <7 .
The obvious induction therefore yields the desired result. 53

As cs(y) <r v, it follows that S(y) <r y, in which case the fact
that ((S™oT)(z),(S™ 1 oT)(z))r is S-invariant for all m < n ensures
that S(y) <r T(z). If S(y) <r T(x), then y # (S~ o T)(x), so the
fact that S is T-oriented ensures that (S~ o T)(x) <7 T'(x), thus the
S-invariance of ((S™'oT)(x), T(x))r implies that cs(z) = (S™'oT)(z);
but T(z) <7 y, so cs(y) # (S~ o T)(z), contradicting the fact that
cs(x) = cs(y). It follows that S(y) = T'(x), hence y = R(z). X

Remark 1.13. As cg is finite-to-one, the conclusion of Proposition
[1.10] immediately implies that R is periodic.

The wvertical sections of a set R C X x Y are the sets of the form
R, ={y €Y | x Ry}, where x € X. The restriction of a binary
relation R on X to a set Y C X is the binary relation R [ Y on Y
givenby R[Y = RN(Y xY). A digraph on X is an irreflexive binary
relation G on X, and a graph is a symmetric digraph. A set Y C X
is G-independent if G ['Y = (), and an I-coloring of G is a function
c: X — I such that ¢7*({i}) is G-independent for all i € I. Equip N
with the power set Borel structure, and note that the existence of a
Borel N-coloring of a digraph G on a Borel space X is equivalent to the
existence of a cover (B,)n,en of X by G-independent Borel sets. The
following facts are simple generalizations of results from [KST99, §4]:

Proposition 1.14. Suppose that X is a Borel space, ' is a count-
able group of Borel automorphisms of X, and G is a separable T'-
decomposable digraph on X whose vertical sections are finite. Then
there is a Borel N-coloring of G.

Proof. Fix Borel sets A, C X for which G = {J . graph(y [ A,), as
well as an enumeration (B,,),en of a family of Borel sets that separates
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G-related points and is closed under finite intersections. Then the set
C,={r€eB,|B,NG,=0}=8,\ (Uyer 44 N~y 'B,)
is Borel and G-independent for all n € N. But X =,y Cn. X

Proposition 1.15. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X, and G is a I'-decomposable graph
on X that admits a Borel N-coloring. Then every G-independent Borel
set B C X 1is contained in a Borel mazimal G-independent set.

Proof. Fix Borel sets A, C X for which G = {J crgraph(y [ A,), as
well as a cover (B,,)nen of X by G-independent Borel sets. Set Cyp = B
and recursively define

Coy1=CoU{zeB,|yel, zGy}
=Cp U (B \ Uwel" A, N0y

for all n € N. As each of these sets is Borel and G-independent, so too
is the set Coo = J,,ery Cn- To see that Cy is a maximal G-independent
set, suppose that € X and Cw U{z} is G-independent, fix n € N for
which x € B,,, and observe that x € C,;; C C. X

The diagonal on X is given by A(X) = {(z,y) € X x X | x = y}.
A transversal of an equivalence relation is a set that intersects every
equivalence class in a single point.

Proposition 1.16. Suppose that X is a Borel space, ' is a countable
group of separable Borel automorphisms of X, and B C X is a Bor-
el set whose intersection with every I'-orbit is finite. Then there is a
Borel transversal of B | B.

Proof. Proposition [I.8] ensures that the graph
G = (Ef \ A(X))N (B x B)
= U, er graph(y | (supp(y) N BN~y 'B))

is I'-decomposable. As it also has finite vertical sections and is separa-
ble, Propositions and yield a Borel maximal G-independent
set A C X. But the intersection of any such set with B is a transversal
of EX | B. X

Given n > 0 and an aperiodic Borel automorphism 7: X — X, we
say that a set Y C X is T<"-independent (or T<"*V_independent) if
it is independent with respect to the digraph G' = |, .,,~,, graph(7™).
We also use R to denote <p. Given a quasi-order R on X, we say
that a set Y C X is R-complete if it intersects every vertical section of
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R. A balanced marker sequence for T' is a decreasing sequence (By,)nen
of R¥_,- and R7-complete Borel subsets of X such that

Ve € Xdn €N (z ¢ B, and Vi € {+1} (T%)5 () & Bny1)-

Proposition 1.17. Suppose that X is a Borel space and T: X — X
1s an aperiodic separable Borel automorphism. Then T has a balanced
marker sequence.

Proof. We first consider the special case of the proposition where there
is an E:X-complete Borel set B C X with the property that the set
B, ={z € X | dr(z, B) > n} is R¥_,- and Ry-complete for all n € N,
where dr(x, B) = min{|i| | i € Z and T"(x) € B}. Clearly (B,)nen is
decreasing. As |dr(z, B) — dr(T(z),B)| < 1 for all x € X, it follows
that, if v € X andn > dr(z, B), thenx ¢ B, and dr((1%) 5 (), B) =n
for all i € {1}, so (T%)z (v) & By for all i € {£1}, thus (By)nen is
a balanced marker sequence for T

For the general case, define By = X. Given n € N and an R¥_,-
and Rf¥-complete Borel set B, C X, appeal to Propositions h
and to obtain a Borel maximal (T, )<*-independent set B, 1 C
B,,. A straightforward induction shows thzﬂgn is bounded below by
3", so the set A, = {z € ~B,, | Vi € {£1} (T")g (v) & B,11} contains
Uocicgn(T" 0 T, )(By1) for all n € N. Set B = ~|J,,cy An, and note
that the special case yields a balanced marker sequence for T' | [B]r,
whereas (B, \ [B]r)nen is a balanced marker sequence for T' | ~[Blr. X

Proposition 1.18. Suppose that X is a Borel space and T: X — X s
an aperiodic separable Borel automorphism. Then there is a T -covering
T-non-crossing involution I € [T'.

Proof. By Proposition , there is a balanced marker sequence (B, )nen
for T. Let I be the involution agreeing with ('), o(T%) g, ,, o (T "),
on (T g, (Bns1) \ Buyy for all i € {£1} and n € N, and fixed else-
where. To see that [ is T-covering, note that if n € N, x € ~B,,

(T%)p, () & Bnya for all i € {£1}, and @; = (T7")p, o (T"),,,)(2)
for all © € {£1}, then 1 <7 x <¢ 1 and I(x_;) = z1. To see that
I is T-non-crossing, suppose that y € (z, I(x))r and let n be the max-
imal natural number for which x € B,,. Then B,; N [z, [(x)]r = 0.
Moreover, if I(y) # y and m is the maximal natural number for which
y € B, then m < n and B,,41 N ([y, [(y)|r U [I(y),y]r) = 0. As
z,1(x) € B, C By, it follows that x, I(z) ¢ [y, I(y)]r U[L(y), y]r, so
I(y) € (2, [(x))r. x

We can now give the following:
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Proof of Theorem [ By Propositions and the periodic part of
T, given by Per(T) = {z € X | |[z]r| < No}, is Borel. As Proposition
ensures that 7' | Per(T") is smooth, Proposition implies that it
is the composition of two involutions in its full group. We can therefore
assume that 7T is aperiodic, so Proposition yields a T-covering
T-non-crossing involution Iy € [T]. As every involution in [T] is T-
oriented, Remark ensures that I, o T is periodic, so Propositions
and yields involutions Iy, I € [Iy 0 T] C [T] with the property
thatIQOTzllolo,thUSTZIQOjlolo. X

2. PRODUCTS OF PERIODIC AUTOMORPHISMS

We begin this section with the following:
Proof of Theorem[J Define ¢: X — N by
¢(r) = min{n € N | Ui, le]s; C [T77(2), T (2)]r}-
As Sy,..., S, € [T], it follows that ¢ is Borel, thus so too is the set
B={xe X |VmeZIneZ (poT")(x)# (¢poT™™")(x)}.

Clearly B is T-invariant and (B N (¢ o T™)"1({i}))@nenxz separates
ETB[B—related points, so T' [ B is separable. Suppose, towards a con-
tradiction, that B # X. Then there exists x € ~B, in which case the
function n — (¢ o T™)(z) is periodic, and therefore bounded. Define
m = max ¢([z]r).

For all S € [T] and y € [z]r, let ng(y) be the unique integer with the
property that S(y) = T"5®)(y). Define g = lim,,_yo0 2 3", ng(T"(z)).
As np = 1, we need only show that 7g,...05, # 1, since this contradicts
our assumption that T'= S o---0 5.

Towards this end, note that if 1 < j < k, n > 2(2k — 1)m, and
Iy = [T (z), T" " (x))p for all 0 < ¢ < 2k — 1, then

(Sjr10---08) M ([(Sj—1 00 81)(Tax-1)]s;)

C (Sj—10---081)  ([Ik]s,)
C (Sjor 0+ 081)  (Ij-1)

g IO)
SO [(Sj—l O---0 Sl)(lgk_l)]gj Q (Sj—l O:++-0 51)(10) Define

Dj=(Sj-10---051){o) \ [(Sj-1 0+ 0851)(Iax-1)]s;
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and observe that
[Dj| < |(Sj-10---051)(Jo) \ (Sj—1 0+ 051)(I2k-1)]
= |(Sj—1 0051 (Lo \ Log-1)|
= |Io \ Ior—1|
= 2(2k — 1)m.
Moreover, the Sj-invariance of [(Sj_1 o --- 0 51)(I2—1)]s, ensures that
Eye[(sjflo_.osl)(1%71)]%_ ng,(y) =0, for if y € X and £ = |[y]s,|, then
Zze[y}sj ns, (z) = 3;(ns; © S;)(y) = gt (y) = 0.
It now follows that if n > 2(2k — 1)m, then
LS Mooy (T7(2))
= % Zyejo NSpo--051 (y)
= % Zlgjgk Zyelo(nsj 0Sj_10---05)(y)
= % Zlgjgk Zye(Sj_lo---osl)(Io) ns; (y)
= Licj<k > _yen, s, () + = <<k Zye[(S]--lo~~-osl)(lzk_1)]sj ns; (y)
%Zlgjgk |Dj[m

2k(2k—1)m?

n )

IN

IA

2k(2k—1)m* _ 0.

SO ﬁSko~-~oS1 < hmn—)oo n

X

In order to construct T-covering T-non-crossing T -oriented elements
of [T] with prescribed finite periods, we will need analogous finitary
notions. Given integers a and b, we will use the notation (a,b), (a, b,
la,b), and [a, b] to denote the corresponding intervals of integers. Given
a permutation o of [a, b], we say that a point i € [a,b) is covered by a
point j € [a,b) if j < i < o(j). If such a j exists, then we use ¢,(i) to
denote the maximal such 7. We say that o is covering if every point in
[a, ) is covered by a point in [a, b).

Proposition 2.1. Suppose that a < b are integers and o is a permu-
tation of |a,b] for which o(b) = a. Then o is covering.

Proof. Given i € [a,b), fix the least positive integer n with the property
that ¢ < 0™(b). As o(b) = a, it follows that n > 1, so n — 1 is a positive
integer, thus 6"~ 1(b) <4, hence 6" 1(b) covers 1. X

We say that o is non-crossing if Vi € [a,b] (i,0(i)) is o-invariant.
Proposition 2.2. Suppose that a < b are integers and o is a covering
non-crossing permutation of [a,b]. Then o(b) = a.
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Proof. Suppose, towards a contradiction, that a < o(b). As b does not
cover any point of [a,b), it follows that b # c,(o(b) — 1), so o(b) #

(0 0¢5)(a(b) — 1), thus a(b) € (¢5(0(b) = 1), (0 0cr)(a(b) —1)). As

b¢ (cs(0(b) —1),(c0cy)(o(b) — 1)), this contradicts the o-invariance

of (cy(a(b) — 1), (0 0cy)(a(b) —1)). X

The following observation eliminates the need to verify T-orientation,
thereby explaining why we do not consider its finitary analog:

Proposition 2.3. Suppose that'T': X — X is an aperiodic Borel auto-
morphism of a Borel space and S € [T is periodic and T-non-crossing.
Then S is T-oriented.

Proof. Suppose, towards a contradiction, that there exists x € X for
which S(z) <7 x but z is not the <p-maximal element of [z]s. As S
is periodic, there is a least n € N for which = < S™(z), in which case
S™(z) £r S"Y(z), so x # S"}(z), thus z € (S"!(x),S"(x))r. As
S (z), S™(x) ¢ (S Y(x),S™(x))r, this contradicts the S-invariance
of (™ (z), S™(x))r. b

Given integers a < i < b and ¢ < d, define ¢jqp) (e, [a,7) U (4,0] —
la, i) U(i+d—c,b+d—c| by

| if j € [a,i) and
qb[a,b],[c,d],z(]) = {j +d—c ifje(i,b)],

and Qg [c,d] — [i,i+d—c] by ¢rq.(j) =i+ j—c Given
a permutation o of [a,b] fixing i and a permutation 7 of [c,d], the
amalgamation of o and 7 at 7 is the permutation of [a,b+ d — ¢] given

bya-* 7—_(¢[ab] [cd]loao¢[ab [Cd ) (¢[Cd]zOTO¢[Cd] )

Proposition 2.4. Suppose that a < 1 < b and ¢ < d are integers,
o is a covering non-crossing permutation of [a,b] fizing i, and T is a
covering non-crossing permutation of [c,d]. Then o *; T is covering
and non-crossing. Moreover, the corresponding function cy.,, is the
unique extension of (pap je,d)i © Co © QS[_a,lb},[c,d],i) U (Pe,api © ¢ © qb[_c}d] l)
with the property that ¢y..(i +d — ¢) = ¢, (i).

Proof. 1f i € {a,b}, then a = o(a) or b = o(b). As Proposition
ensures that a = o(b), it follows that a = b, 50 0 *; T = P q viOTogb[_c,d],i’
which easily yields the desired conclusion. We can therefore assume
that ¢ € (a,b).
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To see that o *; 7 is covering, appeal to Proposition [2.2] to see that
(0% T)(b+d = ¢) = (Pap,fedi © T © By o) 0+ d —©)

= (Pla,p) fe.a),i © 0)(b)
gbab] c,d] z( )

and apply Proposition [2.1]

To see that o *; T is non-crossing, note first that if j € [a,4) and
(0%, 7)(j) € (i +d—c,b+d— ], then the fact that ¢ is non-crossing
ensures that (7,0(7)) is o-invariant, in which case the fact that o fixes
i implies that (j,7) U (i,0(j)) is o-invariant, so

(0% 7)((J, (0 % 7)(4)))
=(ox7)((J,)Uli,i+d—cU(i+d—c,(o*71)(J)))
= (Dlap]ed)i ©T © 925[;11,]7[07,1] Q@) Ul i+d—d U
(Dla,b] fesdlsi © T © Dparpy ey, ) (0 d = € (Dot fesd)si © T © Dy ey ) ()
= (@bl edi ©0)((J,8)) Uit + d — ] U (Do) fe.ai © 0)((4,0(5)))
= (Plap],leai © 0)((J, 1) U (2,0(4))) Ui, i+ d — (]
= Plap) fei((J,7) U (i,0(4))) Ui,i +d — ]
= Pa] fe.a),i((J,9) U [i,0 +d — ] U dap e.ai((4,0(5)))
= () Ul i+d = U (i +d— ¢ (Bapedi © 0 © P feas) 1))
= (4, (0 *: 7)(4))-
Butif j€la,b+d—c],j<i <= (0% 7)(j) <i, and
(65, p:) = {(¢[a7b},[c7d]7i,a) if jela,i)U(i+d—c,b+d—c| and
s (Ple.dinT) if j€li,i+d—d,

then the fact that p; is non-crossing ensures that (gb;l(j), (pjo (ﬁ;l)(j))
is pj-invariant, so

(0 7)((J, (0 *; 7)(4)))
= (¢ 0pj 0 ;)4 (050 pjo¢; 1))
= (¢ 0 p)((0;(5), (pj 0 ¢; 1) (1))
= 0;((951(5), (ps 0 6;1)(4)))
= (4, (0 % 7)(j))-

To see that ¢y, (i+d—c) = ¢, (i), observe that no element of (¢, (i), %)
covers i +d —c (with respect to o *; 7), no element of [i,i+d —¢| covers
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i+ d — ¢ (again with respect to o *; 7), and ¢,(i) < i < (0 0 ¢,)(1),
SO (Plap),[ed),i © Co) (1) < i+ d—c < (Plap),je,d),i © T © Co)(E), thus ¢, (i) <
i+d—c<((o%7)ocy)(q).

Finally, suppose that j € [a,b+d—c)\{i+d—c}. Then (c,, 0¢;")(j)
is the maximal element k of dom(p;) for which k < ¢;'(j) < p;(k), so
(¢j 0 ¢p, 0 ¢;")(j) is the maximal element ¢ of ¢;(dom(p;)) for which
(< j<(pjopiod;)(0). If j€lai)U(i4+d—cb+d—c), then
the fact that no element of [i,i 4+ d — ] covers j therefore ensures that
(¢j © ¢y, 005 ')(j) is the maximal element £ of [a, b+ d — ¢] for which
(<j<(ox* 7)) If j€li,i+d—c), then the fact that no element
of (i4d —c,b+d—c] covers j therefore ensures that (¢;oc,, o gzﬁj_l) (7)
is the maximal element ¢ of [a,b+ d — ¢] for which ¢ < j < (o *; 7)(¢).
In both cases, it follows that cg..-(j) = (¢; 0 ¢y, © ¢j_1)(j). X

Given natural numbers ki, ky > 2, we say that a permutation o
of a finite subinterval of Z is (ki, k2)-dromedary if it is covering and
non-crossing, the c,-preimage of every singleton has cardinality 0 or £,
and every o-orbit has cardinality 1 or k5. Let Succ denote the successor
function on Z.

Proposition 2.5. Suppose that ki1 > 2 and ko > 3. Then there is
a function f: N\ 2 — {1,2,3,4} such that the following hold for all
integers a < b and (k1, ka)-dromedary permutations o of (a,bl:

(1) For alln € {1,2,3,4}, there is an extension of o to a (ki,ks)-
dromedary permutation of [a, b+ nky (ke — 1)).

(2) For all i > b+ 1, there is an extension of o to a (ki,ks)-
dromedary permutation T of [a,b+ f(i —b)k1 (ko — 1)) for which
i & supp(T)U{b+ f(i = b)k1(ka —1),04 f(i —b)k1 (ko — 1)+ 1}.

Proof. We first show that it is sufficient to establish the special case of
the proposition where a = 0. To see (1), note that if n € {1,2,3,4},
then the special case yields an extension 7/ of Succ™® o o o Succ” to
a (ki, k2)-dromedary permutation of [0,b — a + nki(ky — 1)), in which
case Succ” o 7" o Succ™® is an extension of o to a (ky, ke)-dromedary
permutation of [a,b + nki(ke — 1)). To see (2), note that if i > b+ 1,
then i —a > b—a+ 1 and f((i —a) — (b—a)) = f(i —b), so the
special case yields an extension 7" of Succ™ o ¢ o Succ® to a (kq, ko)-
dromedary permutation of [0,b — a + f(i — b)ki(ke — 1)) for which
i—a ¢ supp(7")U{b—a+ f(i—=b)ki(ka—1),b—a+ f(i—)k1 (ko —1)+1},
in which case Succ® o 7" o Succ™ is an extension of o to a (ki ks)-
dromedary permutation 7 of [a, b+ f(i—b)ki (ko — 1)) with the property
that ¢ & supp(7) U{b+ f(i — b)k1(ka — 1),b+ f(i — b)ky (ko — 1) + 1}.
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We next show that it is sufficient to establish the further special case
of the proposition where b = 1. To see (1), note that if n € {1,2, 3,4},
then the further special case yields a (ki, k2)-dromedary permutation
7" of [0, 14 nky (ks — 1)) for which 7/(1) = 1, so Proposition [2.4] ensures
that 7/ %1 o is an extension of o to a (ky, ko )-dromedary permutation of
[0,b4+mnki(ka—1)). To see (2), note that if i > b+1, theni—(b—1) > 2
and f((i — (b—1)) — 1) = f(i — b), so the further special case yields
a (ki, kg)-dromedary permutation 7’ of [0, 1+ f(i — b)k; (ks — 1)) with
7'(1) = 1land ¢ — (b — 1) ¢ supp(7") U {1l + f(i — b)ki(ka — 1),1 +
f(i — b)ki(ky — 1) + 1}, in which case Proposition ensures that
7' %1 o is an extension of o to a (ki, kg)-dromedary permutation 7 of
0,04+ f(i — b)ky(ky — 1)) with the property that i ¢ supp(7) U {b +
fE—=0)ki(ke —1),b+ f(i — b)ky (ko — 1) + 1}.

To establish the further special case, define f: N\ 2 — {1,2,3,4} by

ifi¢ {jhky—1|0<j <k} U{ky(ky—1),ky(ky—1)+1},
ifie{jk1 —1]0<j<ko},

if i = ky(ke — 1), and

if i = ky(ky — 1) + 1.

fi) =

N N

Define o1 on [0, ki (ks — 1)] by 01 = (0 ky -+ ki(ka — 1)). Proposition
ensures that oy is covering, the fact that oy | (jki,(j + 1)k1) is
the identity for all 7 < ko — 1 implies that oy is non-crossing and the
Co,-preimage of jky is [jkq, (j + 1)kp) for all j < ko — 1, and the unique
non-trivial oq-orbit is {jk; | j < k2}, thus oy is (k1, ko)-dromedary. If
0 < j < n, then jk;—1is fixed by o1, so Proposition [2.4)ensures that the
permutation oy ; = 0y *j5,—1 01 is (ky, k2)-dromedary. As 1 is fixed by
o1, it follows that jk; is fixed by oy ; for all 0 < j < ky, so Proposition
ensures that the permutation o3 = 09,1 * (ke—1) 01 18 (1, k2)-
dromedary. As 1 is fixed by o7y, it follows that k1 (ko—1)+1 is fixed by o3,
so Proposition ensures that the permutation oy = 03 *p, (k,—1)+1 01
is (ki, ko)-dromedary. As 1 is fixed by oy, it follows that kq (ko — 1) 42
is fixed by oy.

To see (1), observe that oy, o9, (for any 0 < j < k3), 03, and o4
are as desired. To see (2), suppose that i > 2. If f(i — 1) = 1, then
1 ¢ {jkl ’ 0 < j < ]{2} U {]ﬁ(kg — 1) + 1,]€1(k2 — 1) + 2}, so the
permutation 7 = oy is as desired. If f(i —1) = 2, then ¢ = jk; for some
0 < j < ko, in which case the permutation 7 = o9 ; is as desired. If
f(t —1) =3, then ¢ = ky(ko — 1) + 1, so the permutation 7 = o3 is as
desired. And if f(i—1) = 4, then i = ky (ko — 1) +2, so the permutation
T = 04 1S as desired. X
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Given integers a < b and a permutation o of [a, b], let @ denote the
permutation of [—b, —a| given by (i) = —o~!(—1i).

Proposition 2.6. Suppose that a < b are integers and o is a covering
non-crossing permutation of la,b]. Then & is a covering non-crossing
permutation of [—b, —a| with the property that c5(i) = —(0oc¢,)(—i—1)
for alli € [—b, —a).

Proof. As Propositionensures that o(—a) = —o~!(a) = —b, Propo-
sition [2.1|implies that & is covering. To see that & is non-crossing, note
that if i € [—b, —a], then the o-invariance of (¢71(—1), —i) ensures that

o((i,o(i))) = o((i, —o~(=i)))
= =0~ (o7 (i), =)
= (o7 (=0), )
= (i, =07 (~i))
= (6,9(9))-
Finally, note that if i € [-b, —a) and j' is the least element of (a, b] for
which 071(j") < —i—1 < j/, then j' = (6 0¢,)(—i— 1), since otherwise
o M(j) <c,(—i—1) < —i—1<j" < (00c¢,)(—i— 1), contradicting
the o-invariance of (671(5"),7'). It therefore follows that
(i) = max{j € [b,—a) | j <1 < 7(})}
=max{j € [-b,—a) | j <i < —07'(=))}
= —min{j’ € (a,] | —j' <i < —07'(j")}
= —min{j’ € (a,8] [ 07(j’) < —i < j'}
= —min{j’ € (a,0] | o7'(j") < =i =1 <j'}
=—(0oc,)(—1—1),
which completes the proof. X

In what follows, we will implicitly use the straightforward observa-
tion that the map o — @ is an involution.

Proposition 2.7. Suppose that ki > 2 and ko > 3. Then there is
a function f: N\ 2 — {1,2,3,4} such that the following hold for all
integers a < b and (ky, ka)-dromedary permutations o of |a,b):
(1) For alln € {1,2,3,4}, there is an extension of o to a (ki,ks)-
dromedary permutation of (a — nky(ky — 1),0].
(2) For all i < a — 1, there is an extension of o to a (ki,ks)-
dromedary permutation T of (a — f(a—1)ki (ko —1),b] for which
i ¢ supp(T)U{a— fla—i)ki(ka—1)—1,a— fla—1i)ki(ka—1)}.
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Proof. To see (1), suppose that n € {1,2,3,4}, appeal to Proposi-
tion to see that @ is a (ky, k2)-dromedary permutation of (—b, —al,
appeal to Proposition to obtain an extension of & to a (ki ks)-
dromedary permutation 7’ of [—b, —a + nk; (k2 — 1)), and appeal once
more to Proposition [2.6to see that 7/ is an extension of o to a (ki, k2)-
dromedary permutation of (a — nky(ky — 1),b].

To see (2), fix f: N\ 2 — {1,2,3,4} as in Proposition [2.5, appeal
to Proposition to see that @ is a (ki, k2)-dromedary permutation of
(—b, —a], and note that if i <a—1, then —i > —a+ 1 and f(a —1i) =
f((=i) — (—a)), so there is an extension of & to a (ki, k2)-dromedary
permutation 7’ of [=b, —a + f(a —i)k1 (ko — 1)) with the property that
—i ¢ supp(7)U{—a+f(a—i)k1(ka—1), —a+ f(a—i)ki(ka—1)+1}, thus
one more application of Proposition ensures that 7/ is an extension
of o to a (ky, k2)-dromedary permutation 7 of (a — f(a—i)ki (ko — 1), b]
with ¢ & supp(T)U{a— fla—i)ki(ka—1)—1,a— f(a—i)ki(ke—1)}. ®

Proposition 2.8. Suppose that a < b, 1 <a—1,7>b+1, ky > 2,
and ko > 3 are integers and o is a (ki, ke)-dromedary permutation of
(a,b]. Then there exist n € {1,2,...,10} and an extension of o to a
(k1, k2)-dromedary permutation T of (a — nky(ke — 1),b + nky(ky — 1)]
with the property that i ¢ supp(17)U{a—nki(ke—1)—1,a—nk;(ke—1)}
and j ¢ supp(7) U {b+ nky(ke — 1) + 1}.

Proof. If i < a — 4ky(ke — 1) — 1 and f: N\ 2 — {1,2,3,4} is the
function given by Proposition [2.5] then there is an extension of o to a
(k1, ka)-dromedary permutation 7’ of [a, b+ f(j —b)k1 (k2 —1)) for which
J & supp(r') U{b-+ £(G — b (ko — 1), b+ £ — bYka (ks — 1)+ 1}, 50 part
(1) of Proposition yields the desired extension of 7/ to a (ki, k2)-
dromedary permutation of (a— f(j —b)ki(ka—1),0+ f(j —b)k1 (ko —1)].

Similarly, if j > b+ 4ki(ke — 1) + 1 and f: N\ 2 — {1,2,3,4}
is the function given by Proposition [2.7, then part (1) of Proposition
yields an extension of o to a (ki, kz)-dromedary permutation 7’ of
la,b+ f(a — i)ki(ke — 1)), in which case the defining property of f
yields the desired extension of 7" to a (k1, ko)-dromedary permutation
T of (a— fla—1i)ki(ks — 1),b+ f(a —i)ki(ky — 1)] with the property
that i ¢ supp(7)U{a — f(a —i)ki(ke — 1) —1,a — f(a —1)ki (k2 — 1)}.

It only remains to handle the case that a — 4k;(ky — 1) — 1 < i and
J < b+4ki(ko—1)+1. We will recursively construct integers a., < a and
be > b, as well as extensions of ¢ to (ki, k2)-dromedary permutations
o of (ae,b.] with the property that ¢ ¢ supp(c.) U {a. — 1,a.} and
j ¢ supp(oe) U {b. + 1} for all natural numbers e < 4. We begin by
setting ap = a, by = b, and o0y = 0. Suppose now that e < 4 and
we have already found a., b., and o.. If there is an extension of o, to
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a (ki, ke)-dromedary permutation 7. of [a.,b. + ki(k2 — 1)) for which
J & supp(7e) U {be + k1(ka — 1), b + k1 (ko — 1) + 1}, then set meyq = 1.
Otherwise, part (2) of Proposition yields mq.1 € {2,3,4} with
the property that there is an extension of o, to a (kq, ko)-dromedary
permutation 7, of [ae, be+mey 1k (ke —1)) for which j ¢ supp(7.)U{b.+
Mer1kt(ka—1), be+mey1ki(ka—1)+1}. If there is an extension of 7, to a
(k1, k2)-dromedary permutation ooy 1 of (ae—k1(ko—1), be+mey1k1(ka—
1)] for which i ¢ supp(cet1) U {ae — ki(ka — 1) — 1,a, — ki(ka — 1)},
then set (.,1 = 1. Otherwise, part (2) of Proposition yields l.41 €
{2, 3,4} with the property that there is an extension of 7. to a (ky, k2)-
dromedary permutation oeyq of (ae —Flei1k1(ka—1), be+mey1ki (ko —1)]
for which ¢ & supp(ces1)U{ae—Ller1ki(ko—1)—1,ac — L1k (ko —1)}.
Setting aei1 = ae — ley1k1(ka — 1) and beyq = be + mey1ky (ke — 1), this
completes the recursive construction.

Lemma 2.9. There is at most one e € {1,2,3,4} for which £, # 1, as
well as at most one e € {1,2,3,4} for which m, # 1.

Proof. 1f e € {1,2, 3,4} has the property that m, # 1, then part (1) of
Propositionensures that j € (be—1+1, be—1+ki(ka—1)41], and since
the intervals of this form are pairwise disjoint, there is at most one such
e. Similarly, if e € {1,2,3,4} has the property that ¢, # 1, then part
(1) of Proposition [2.7| ensures that i € [ac—1 — k1(ke —1) — 1, a1 — 1),
and since the intervals of this form are also pairwise disjoint, there is
again at most one such e. =

Define lax = max{ly, ls, (3,04} and my.x = max{ms, ms, ms, my}.
If (hax = Mumax, then set £ = 3 + (o = 3 + Mumax and observe that
agy = a — lky(ky — 1) and by = b+ mky(ks — 1) by Lemma SO
the permutation 7 = o4 is as desired. Otherwise, set £ = 3 + lax +
Mmax and observe that ay — Muyaxk1(ks — 1) = a — lky(ky — 1) and
by + lax k1(ko — 1) = b+ ki (ko — 1) by Lemma so an application
of part (1) of Propositions and yields the desired extension of
o4 to a (ki, ks)-dromedary permutation 7 of (ag — Muyax k1 (k2 — 1), by +

gmax kl(kQ - 1)] X

Given an aperiodic Borel automorphism 7': X — X, a T-gap in a
set Y C X is an interval of the form (y,Ty(y))r, where y € Y and
1 <ri(y) < oo

Proposition 2.10. Suppose that a, b > a+ 1, ky > 2, and ky > 3
are integers, J C (a,b) is a set whose Succ-gaps have cardinality at
least 10k1(koy — 1) — 1, and o is a permutation of J whose restriction
to each Succ-gap in ~J is (ky, ks)-dromedary. Then there exist ¢ €
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l[a —10ky (ko — 1) — 4,a], d € [b,b+ 10k (ky — 1) +4], and an extension
of o to a (ki, ke)-dromedary permutation of (c,d].

Proof. We first show that it is sufficient to establish the special case
of the proposition where a = 10k;(ky — 1) — 4. Let ¢, d', and 7’
be the result of applying this special case to @’ = 10ki(ky — 1) — 4,
V=b—(a—d), J =Succ® J), and 0’ = Succ® o o o Succ®?,
and observe that the integers ¢ = ¢ + (a—a') and d = d' + (e —a’) and
the permutation 7 = Succ® ® o 7/ 0 Succ” ~* are as desired.

We next show that it is sufficient to establish the further special
case of the proposition where .J is Succ<'%1(*2=_independent. Define
¢: N\ (JNSuce(J)) — Nby ¢(5) = [7\(JNSucc(J))|. Then the set J' =
¢(J\Suce(J)) is Suce %1 *2=D_independent, so the further special case
vields ¢ € [0,10k; (ke — 1) — 4], d' € [¢(D), p(b) + 10k1(ky — 1) + 4],
and an (ki, k2)-dromedary permutation 7’ of (¢, d’] whose support is
disjoint from J'. Let (j;)i<¢ be the strictly increasing enumeration of
J \ Succ(J) and define ¢y = ¢, dy = d’, and 79 = 7/. For all i < ¢, set
Ci = o '({0(4i)}), civ1 = ¢, and diyqy = d; + |Cy \ {ji}|, and appeal
to Proposition to see that the function 7,11 = 7 *;, (o [ C;) is a
(k1, k2)-dromedary permutation of (¢;y1,d;41]. Then the permutation
T = 7y is the desired extension of o.

Finally, we establish the special case of the proposition where J is
Succ<'%1k2=1)_independent (but a need not be 10k, (ky — 1) — 4). Set
m=a+ |[(b—a)/2]. As Jis T<%-independent, by setting cg = m — 2 if
J intersects [m+1, m+4] and ¢y = m+2 otherwise, we can ensure that
[co—1,¢o+2] is disjoint from J. As m —a and b— (m+ 1) are within 1
of one another, it follows that ¢o —a and b— (¢o+ 1) are within 5 of one
another. Note that a < ¢ or ¢g+ 1 < b, since otherwise b—1 < ¢y < a,
contradicting the fact that b > a + 1. Set dy = c¢o + 1, let 7y be the
unique permutation of (cg,dp], and recursively apply Proposition
to ¢;, d;, the maximum element of J below ¢; (or any integer strictly
below ¢; — 1 if there is no such element of J), the minimum element
of J above d; (or any integer strictly above d; + 1 if there is no such
element of J), k1, ko, and 7; to obtain n; € {1,...,10} and an extension
of 7; to a (ky, ko)-dromedary permutation 7,41 of (¢;11,d;+1] for which
Cit1 = ¢i—niki(ka—1), dig1 = di+n;k (k2 —1), and supp(7iy1)U{cit1—
1, i1, dip1 41} is disjoint from J (since J is T<'%1(*2=1_independent),
noting that ¢;;1 —a and b — d;;; are within 5 of one another. Let ¢ be
the maximal natural number for which a < ¢; or d; < b. If a < ¢;, then
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Ciy1 > ¢; — 10ky (ke — 1) > a — 10ky (k2 — 1) and
diyr < d;+ 10ky (ke — 1)
=b+ 10ky (ke — 1)+ (d; — 1)
<b+10ki(ks — 1)+ (a—c;)+5
< b+ 10k (ko — 1) + 4.
If d; < b, then
Civ1 > ¢; — 10k (ky — 1)
=a— 10k (ks — 1) + (¢; — a)
>a— 10k (ke — 1)+ (b—4d;) =5
> a— 10k (ky — 1) — 4

and d;11 < d;+10k1 (ko —1) < b+10k1 (ks —1). In both cases, it follows
that the integers ¢ = ¢;11 and d = d;;; and the permutation 7 = 7,4
are as desired. %4

Given n > 1, ky > 2, ks > 3, an aperiodic bijection T: X — X,
and z € X, we say that a permutation o of [z, T"(z))r is T-(k1, k2)-
dromedary if the corresponding permutation ' oc o6 of n is (ky, ks)-
dromedary, where 0: n — [z, T"(x))r is given by 6(i) = T*(x) for all
1 < n. We can now give the following:

Proof of Theorem[3. We will find a T-covering T-non-crossing Borel
automorphism S € [T'] such that the preimage of every singleton under
cs has cardinality 0 or k; and the orbit of every point under S has
cardinality 1 or ky. To see that this is sufficient, set S, = S, appeal
to Proposition to see that any such automorphism is T-oriented, so
Proposition [1.10] ensures that every orbit of the automorphism S; =
Syt o T has cardinality k;, and the fact that S, € [T)] easily implies
that S; € [T]

We will construct an exhaustive increasing sequence (X;);en of Borel
subsets of X, whose complements are Rfﬁ_l— and R#-complete, as well
as T-decomposable bijections 5;: X; — X; such that:

(2) Vi € NVT-gaps I in ~X; S; | I is T-(ky, ko)-dromedary.
To see that this is sufficient, appeal to condition (1) to see that we
obtain a function S: X — X by setting S = [J,cySi- To see that S
is injective, note that if x,y € X have the property that S(z) = S(y)
and i € N is sufficiently large that =,y € X;, then S;(x) = S;(y), so
x = y. To see that S is surjective, note that if y € X and i € N
is sufficiently large that y € X;, then there exists x € X, for which
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Si(x) =y, so0 S(x) =y. To see that S is T- decomposable, fix Borel sets
B;, € X; with the property that S; = (., 7" | Bin for all i € N, set
By, = U,en Biyn for all n € Z, and observe that S =, ., T" | B,. To
see that the preimage of every singleton under cg has cardinality 0 or &,
note that if z € X and ¢ € N is sufficiently large that [z, S(x))r C X,
then c¢g' ({z}) = ¢g' ({2}), and condition (2) ensures that the latter set
has cardinality O or k;. To see that the orbit of every point under S
has cardinality 1 or ks, note that if z € X and ¢ € N is sufficiently
large that = € X;, then condition (2) implies that the orbit of x under
S; has cardinality 1 or ks and coincides with the orbit of x under S.

Appeal to Propositions m and - to obtain an RT - and Rf-
complete T<30%k1(k2=1)+7_independent Borel set D C X. By Proposition
, there is a balanced marker sequence (D;);en for Tp. For all a > 0,
b>a+1, and ¢ € N, let Dyp,;1 be the set of z € D,y for which
TDi(x)7<TD¢> ( ) ¢DZ+1a a_rD( ) andb_h;—l )(x)

To guarantee that (X;);en is exhaustive, it is eﬁouglll to ensure that
(T(x), T"(z))r C Xjyq foralla >0,b>a+1,i €N, and x € D,pi11,
since the fact that (D;);en is a balanced marker sequence ensures that
every point of X appears in an interval of this form. To guarantee
that the sets X; are Borel and the recursive construction goes through,
we will construct Borel functions a1, 041 Ugsg Upsast Papitt — N
such that:

(3) Ya > 0Vb > a+1Vzx € Da,b,i+1 CLZ'Jrl(l’) S [CL— 10k, (kg — 1) —4, a].

(4) Ya > 0Vb > a+ 1Vx € Da,b,i—l—l bi+1(l’) S [b b+ ].Okl(kg — 1) +4]

(5) Xz‘+1\Xz‘ = Ua>0 Ub>a+1 UIGDa,bﬂ-H(T%H(I)( ) Tbit1(w) ( )]T\X

We begin by setting Sy = Xy = 0. Suppose now that ¢ € N and we
have already found (aj)lgjgi, (bj)1§j§i7 and Sz

Lemma 2.11. The size of each T-gap in X; is at least 10k (ko —1)—1.

Proof. Suppose that n > 1, z € X, and % () = n, so that (z,T"(x))r
is a T-gap in X;. Then z and T"(x) are right and left endpoints of the
sorts of intervals appearing in condition (5), so conditions (3)—(5) yield
integers b € [0,10ky (ke — 1) + 4] and a € [—1,10k (ks — 1) + 3] for
which T7°(z), T*""(z) € D. As the fact that n > 1 ensures that
—b < 0 < a+n, the fact that D is T<3%1(k2=D+7_jndependent implies
that 30k (ke — 1) +7 < b+4+a+n < n+ 20k (ks — 1) + 7, thus n >
10k (ko — 1). b

Let Q11 be the set of quadruples ¢ = (a4,b?, J9, 0%) with the prop-
erty that a? > 0, b7 > a9+ 1, J7 C (a%,b7) is a set whose Succ-gaps
have cardinality at least 10k; (ko — 1) — 1, and o9 is a permutation of
J? whose restriction to each Succ-gap in ~J? is (ky, k2)-dromedary. For
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all ¢ € Q;,1, Proposition yields ¢? € [a? — 10k (ko — 1) — 4, a7,
d? € [b?, b7 + 10k (k2 — 1) + 4], and an extension of o7 to a (ky, ks)-
dromedary permutation 7¢ of (¢?,d?. Let D,;y1, be the set of all
2 € Dga pa it satisfying the following conditions:

(a) Vj € (a%,0?) (j € JT < Ti(z) € X;).

(b) Vj € J9 (S; 0 T9)(x) = T7"U) ().
Clearly quQiH Dii14 € Uaso Upsast Dap,iv1 and Lemma E ensures
that the reverse inclusion holds. Define a;,1(z) = ¢? and b;y1(x) = d?
for all g € Qi41 and o € Diyq 4.

Lemma 2.12. Suppose thata >0, b > a+ 1, and x € Dyp 1. Then
(T @1 (), Tl @ ()] N X = (T%(x), T (x)]r N X;.

Proof. As condition (3) ensures that a;41(x) < a and condition (4)
implies that b < b;y1(x), it is sufficient to show that

(Tai+1($)_1(x)7 Ta(x)]T NX, = (Tb(:r), Thit1(z)+1 (x)]T NX,=0.

Suppose, towards a contradiction, that this is false. Then condition (5)
yields @' > 0,6 > a' + 1, ¢ <i, and 2’ € Dy y ;741 for which

(T (@), T (@) 0 (T @), TR @ @)y £0 (6)
or
(T(a), T @ @)y 0 (T @), T (@] £0. (3)

To handle the case that (1) holds, note first that 7%+ (/) <
T%(z) and T+ @~1(g) <p Tlrn@)(2)). As o/, T¥(2') € Dy and
Dy is T='0(k2=+4 independent, condition (3) implies that =’/ <z
Tor+1 @) (2), so o' <p T*x). As 2/, T%x) € Dy, it follows that
Tp,, (z) <p T%(x). AsT?(2'),Tp,,(z') € Dy and Dy is T<10ki(ham1)¥4.
independent, condition (4) ensures that 7%+ @) (z') <q Tp,,, ('), in
which case T%+1 @) (2') <p T(x), so TP+ @) (2') € [T+ @) (), T(x)).
But 7%(z), T" (2') € Dy, condition (3) yields ¢ € (0, 10k (ky—1)4-4] for
which T%(z) = T+1(=)+¢(2"), and condition (4) ensures that by (2')—
v € [0, 10k (ky — 1) +4], contradicting the 7<2%1(h2=)+8_independence
of Di/.

To handle the case that (1) holds, note first that T°(z) <p T +1@)(z")
and T+ (') <p TUrn @+ (7). As Tb/(x’),TDi,H(m’) € D, and Dy
is T=10k1 (k2=D)+4_ip dependent, condition (4) implies that 7% +1(*) (') <,
Tp,,, ('), so T"(x) <r Tp, (). As T"(x),Tp, ,(2') € Diy, it fol-
lows that T°(x) <p 2’. As 2/, T%(2') € Dy and Dy is T<'0k(ke—1)+4
independent, condition (3) ensures that 2’ <7 T%+1)(2/), in which
case T(z) <p T+ @) (2), so T+ () € (T%x), T+ @) (1)]p.
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But T%(z), T (') € Dy, condition (3) ensures that o’ — ay1(2') €
[0, 10k; (k2 — 1) + 4], and condition (4) yields ¢ € (0, 10k (ko — 1) + 4]
for which Tt*¢(z) = T+ ('), contradicting the T=20k(k2—1)+8
independence of D;.

As D is T<'%%1(k2=1)+4_jpdependent, conditions (3) and (4) imply that
ifze Ua>0 Ub>a+1 Da,b,i-ﬁ-la then (TaiH ($), Thit (x)]T - (37, TDi+1 (x))T
As the intervals of the latter form are pairwise disjoint, those of the
former form are not only pairwise disjoint, but are not adjacent to one
another. Lemma therefore ensures that the function S; 1, = S; U
Useorn Useter.an T™'D=3 | TI(Dyy 1 4) is well-defined and as desired. ®

X

3. COMMUTATORS

An isomorphism of a permutation o of a set X with a permutation
7 of a set Y is a bijection 7: X — Y such that too = 7 ox. Given
integers a < b and k > 2, a pointed k-dromedary dyad on [a,b] is a
triple of the form u = (f*,o", "), where f* € [a,b], " is a covering
non-crossing permutation of [a, b] whose orbits all have cardinality 1 or
k and which fixes f*, and 7%: [a,b] \ {f*} — [a,b) is an isomorphism
of " | ([a,b] \ {f"}) with (Succ™ o o%) | [a,]).
Proposition 3.1. Suppose that a < i < b, ¢ < d, and n > 2 are
integers, u is a pointed k-dromedary dyad on |a,b] for which f* # i but
o fizes i, and v is a pointed k-dromedary dyad on [c,d]. Then:
(1) The integer i is not in {b, (i), (7*)~ () }.
(2) The domain of ¢jap) [cai © T © gb[;}b}’[ad]’i is
([a, i) U(i+d—c,b+d—c|)\
{Pa] lc.ai(f*); (Do) feai © (1) 7H)(0)}-
(3) The domain of ¢cq,; 0w o ¢[_c,1d} gis i+ d—c \{dreai(f)}-
(4) The triple w = (f*, 0", "), where f* = Gp)jca,i([*), 0¥ =
o" x; 0¥, and ™ is the extension of
(Bl el © T © Oy rears) U (Pledri © T 0 by i)
given by (P jed,i © (1) 1)(@) — i +d—c and Gpq,:(f") —
(la] [e,a,i0m") (%), is a pointed k-dromedary dyad on [a, b+d—c].

Proof. We begin with (1). To see that i # b, note that Proposition
would otherwise imply that a = o%(b) = b, contradicting the fact that
f*#1i. To see that i # 7%(i), note that 7 is a fixed point of o*, so 7% (%)
is a fixed point of Succ ! oo*, thus it cannot be a fixed point of o%. To
see that i # (7%)71(4), note that 7 is a fixed point of ¢*, so it cannot be
a fixed point of Succ™ o ¢%, thus (7%)~'(4) is not a fixed point of o*.
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Lemma 3.2. Suppose that f and g are functions. Then dom(f o g) =
g~ (dom(f)).
Proof. Simply observe that
z € dom(fog) <= (z € dom(g) and g(x) € dom(f))
<= x € dom(g) N g *(dom(f))
<= v € g '(dom(f)),

since g~ *(dom(f)) C dom(g). )
To see (2), appeal to Lemma [3.2 to obtain that

dom(@fa) e i © T © Dl [e.a) 1)
= (m"o ¢[71,1b],[c,d} ,i)_l(dom@[a,b],[c,d} i)
= (Dfap) feari © () 7)([a, 0] \ {i})
= Olaseai(la, 0] \ {f*, ()71 (0)})
= ([a,)) U(i+d—c,b+d—c])\
{Pastfeai(f"): (Papfeai o (7)) (D)}
To see (3), appeal to Lemma 3.2 to obtain that
dom (¢, 07" 0 Cb[_c,ld] =m0 Cb[_c,ld] 27 (dom(@peq1,0))
= (eai© (7)) ([e, d])
= Gealle, d \{f"})
= [ii+ d =\ {Jea ()}
To see (4), first note that

a(f*) = (0" 0 Py jea.i) (f*)
= (Dot feudli © T © Dpary) feuds © Platl lei) ()
= (Dlap][ea)i © ) (f*)

Prab) jedi ([*)
f’UJ

By Proposition [2.4] it only remains to show that 7% is an isomorphism
of 0 | ([a,b+d —c] \ {f*}) with (Succ™oc™) | [a,b+d — c).

As the sets [a,b+d — ] \ {f"} and [a,b + d — ¢) are finite and
have the same cardinality, to see that 7 is a bijection between them,
it is sufficient to establish that dom(7*) = [a, b+ d — ¢] \ {f“} and
7 ([a,b+d— ]\ {f“}) = [a,b+d — ¢). But the domain of 7 is the
union of ([a,7) U (i +d —c,b+d—c]) \ {f*, (ap]fed.i © (7)) (i)},
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[Z7Z + d— C] \ {¢[C,d],i(fv)}v and {(gb[a,b},[c,d],i o (ﬂ—u)il)(i)a ¢[c,d],i(fv)} by
(2) and (3), whereas

m((la, ) U (i +d —c,b+d— )\ {f", (Bap) feai © () 71)(0)})
= (Pa] feudli © T © Dl e ) ([a50) U (1 +d = ¢, b+ d —c]) \
{f*, (B fei © (T*)7H)(0)})
= (Blap) i © 7)) ([a, O] \ {f*, 4, (7)71(8)})
= Plap] ed)i([a 0) \ {7, 7(i)})
=(la,)) U (i +d—c,b+d =)\ {(Pap) fc.ai ©T)(i)}
and
([, i+ d = ] \ {Pea.i(f*)})
= (Peaiom 0 ¢[;}d]7i)([i,i +d = \{Pea.i(f")})
= (@eai o) (e, d] \ {f*})
= Plei(le, d))
=[i,i+d—c),

and the image of [a,b+d—c] \ {f*} under 7* is the union of these sets
with {i +d — ¢, (Pap),je.a),s © ) (2)}. It therefore only remains to show
that (7% 00%)(j) = (Succ ' oo or®)(j) for all j € [a, b+d—c] \{f*}.

We begin with the case that j € dom(¢pae.q, © T © ¢ab] fe.d] i ),
which ensures that

(Succ™ o 0™ o ) (5)

= (Succ™

00" 0 Plag fe.d)i © T © Oy ro.a1.i) ()
= (Succ™ 0 Ga g fed)i © 0" O By feari © Plabl fesdli © T O Pialy 1o 1) (4)
= (Succ™ © Glap e © 0" O T 0 Py o ()
If 0(j) € dom(¢jap) c,q,i © T © ¢[;’1b]’[c’d]7i), then
(70 0")(j)
= (lap][e.),i © T © Qﬁ}lb (e © ) ()
= (Dot feudli © T © Dparyl fend.i © Plabl ledli © T © Pay 1o.1.) ()
= (PLap] feai 0T 00" °¢[ab] [e,d] i ) ()
= (Dot fei © Succ™ 0 g om0 bty 0 ()

since (2) ensures that gb[a .o i () # f*, in which case the fact that
Succ™! o Plap),fe,d),i A0d P p] [c,d)i © Succ 1 agree on the intersection of
their domains yields the desired conclusion. Otherwise, (2) ensures
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that 0 (j) is f* or (Pap e, © (7*) 7 1)(4). The former cannot happen,
as it would imply that j = (¢%)~1(f*) = f*, and (2) ensures that fv
is not in dom(¢yap) c,q,i © T © ¢ab] A } z) ut the latter implies that

(7 0 0®)(j) = (7 © P e © (7*)1)(i) = i+ d — ¢, and since (1)
ensures that ¢ # b, it follows that

(Suce™ 0 Glqp) e,d),i © " 0 T © ¢[:1,1b},[c,d],i)(j)
= (Succ™" 0 Plap) e 0 TV 0T O ¢[71,1b],[c,d],i °©
(0) 7 0 Pl fea,i © () 7H)(0)
= (Succ™ 0 Gl feai 00 0T O ¢[;,1b],[c,d],i °
Plap feai© (0) 1o (b[;,lb],[c,d ; © Plafed)i © (7)71)(0)
(Suce™ 0 Gl jedi © 0 0T 0 (64) o (m) ) (4)
= (Suce™ 0 Pl i © oM o T o (T 0 0™) (i)
(Suce™ 0 Plap e i © 0% 0T o (Suce ! o ot o ) 7)(4)
(Suce™ 0 ppap) edpi © o o T o ()~ o (6) 7" o Suce)(i)
= (Succ™ 0 Gl fea.i © Suce) (i)
=i+d—oc,

which yields the desired conclusion.
We next consider the case that j € dom(¢y.q, 0 7 o ¢[_Cld] ;), which
ensures that

(Succ™ 0 0¥ 0 7)(4)
T o0% o dpgiom o ¢[;1¢1]Z)(J>
= (Succ™' 0 g gi00v 0 (b[;}d],i O Pled)i O O ¢[;}d],¢)(j)

"o leai 00 om0 g n ) ()

= (Succ

= (Succ

Note that ¢ (j) € dom(¢je,q; 0 7" © ¢[;}d} ), since otherwise (3) implies
that 0“(j) = ¢ea:(f), in which case j = ((6“) © ¢ra)(fY) =
(Peaio(0”)” O¢[c,d],@0¢[c,d],¢)(fv) = (P io (@) NY) = peai(f*),
and (3) ensures that ¢p.q(f”) is not in dom(¢p.q,; o 7 o ¢[7;,1¢1],¢>~ As
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(3) also implies that (b[;}d],i( j) # fv, it follows that

(0 0™)(j)
= (Bpeai 0 0 Gy 0 0)(J)
= (Pled)i © T © Py s © Dlesd,i © 0° © Doy ()
= (Pedi 0T 0% 0 By )(4)
= (Pe,qi © Succ too? om0 ¢[;il]7i)(j),
and since Succ™! o Gled),i and Ppe.q) © Suce ™! agree on the intersection
of their domains, the desired conclusion follows.

To handle the case that j = (¢ap, (e, © (%) 1)(4), note first that
(7*)~1(i) # f*, since f* ¢ dom(n"). Tt follows that (o“ o (7%)~1)(i) #
1, since otherwise (7%)~1(i) = (o*)71(f*) = f*. As we already showed
that (0% o (7*)71) (i) # (7*)7'(i) at the end of the first paragraph of
the proof, (2) ensures that (@q 4 (c,q.© 0" o (7*)7)(4) is in the domain
of Glap) ea)i 0T O Qb[;,lb],[qd],i' As Proposition implies that ¢ = o"(d),
it follows that

(7 0 0)(j) = (7 0 0" 0 Prap) e © () )(4)

= (7" 0 Plap) fed] i © O © ¢@}b]7[c,d] 4 © Plap fedi © (1) 1)(9)

= (7" 0 Plapl,fei © 0 0 (7)) (7)

= (Plaled)i © T O Dlay) fesdi © Plasblfed)i © 0 0 ()71 ()

= (Ppap) feari © T 0 0% o (1) 71)(4)

= (@] [e,d.i © Succ o g% oo (%) 1) (i)

= (<Z5[a,b],[c,d],z' o Succ™! o a")(7)

= (Plafea)i © Suce™)(d)

= Succ (1)

(Suce™ 0 Ple.api)(c)
(Suce™ o Gpeai 0 0°)(d)
(Suce™ 0 peai © gb[—c}d]’i 00" 0 Peai)(d)

= (Succ™ 00" 0 Peq4)(d)
(
(
(

7Tw

Succ ™! o 0¥)(i 4+ d — ¢)
o 0% om0 P e, o () 1) ()

Succ™' o g¥ o )(5).
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In order to handle the final case that j = ¢p.q:(f"), note that
(Suce™ 0 0™ o 7)(4)
= (Succtoo¥ o o Pled.i)(f*)
= (Succtoovo Play) fed i © T)(7)
= (Succ™ © Plap fed)i © T O Play fedli © Plast] fesd) i © T*)(7)
= (Succ™ 0 Gl feai © 0" 0 ) (i)
and
(7 0 0™ 0 Pleai) (f*)
(7 0 Ple.api 0 0¥ 0 gb[_c,ld} i © Ppeai) (f7)
(7 0 Preai 0 o¥)(f°)
(7 0 Pre,ai) (f*)
Dlay) jed)i © T) (1)
Plab) e.d),i © T 0 0)(i)

= (Pla,b] fear.i © Succ™ " o ™ o w)(4),

(7 0 0™)(j)

= (
= (

so the fact that Succ™ o Plap),ed)i a0 Dap] [e,d]i © Succ™! agree on the
intersection of their domains yields the desired result. X

Given integers and pointed k-dromedary dyads satisfying the hy-
potheses of Proposition 3.1] the amalgamation of u and v at i, denoted
by u *; v, is the pointed k-dromedary dyad w appearing in the conclu-
sion of Proposition 3.1} We say that a pointed k-dromedary dyad u is
extended by a pointed k-dromedary dyad v if f* # f¥, ¢“ C ¢, and
N

Proposition 3.3. Suppose that k > 3. Then there is a function g: N\
2 — {1,2,3} such that the following hold for all integers a < b and
pointed k-dromedary dyads u on (a,bl:

(1) For alln € {1,2,3}, there is an extension of u to a pointed k-
dromedary dyad on [a,b+ 2n(k — 1)).

(2) For all i > b+ 1, there is an extension of u to a pointed k-
dromedary dyad v on [a,b+ 2g(i — b)(k — 1)) with i ¢ {f'} U
supp(c?) U{b+2g(i —b)(k—1),b+ 2¢g(i — b)(k — 1) + 1}.

Proof. We first show that it is sufficient to establish the special case
of the proposition where a = 0. To see (1), note that if n € {1,2,3},
then the special case yields an extension v" of (f* — a,Succ ™ o g% o
Succ?, Succ™ o oSucc?) to a pointed k-dromedary dyad on [0,b—a+
2n(k—1)), in which case (f*'4a, Succ®oo? oSucc™, Succ®or” oSucc™*)



COMPOSITIONS OF PERIODIC AUTOMORPHISMS 31

is an extension of u to a pointed k-dromedary dyad on [a,b + 2n(k —
1)). To see (2), note that if i > b+ 1, then i —a > b—a+ 1 and
g((i —a) — (b—a)) = g(i — b), so the special case yields an extension
v of (f* — a,Succ™ o o o Succ®,Succ * o ™ o Succ?) to a pointed
k-dromedary dyad on [0,b — a + 2g(i — b)(k — 1)) for which i —a ¢
{ " Yusupp(a¥ )U{b—a-+2g(i—b)(k—1),b—a-+2g(i—b)(k—1)+1}, thus
(f¥ +a,Succ®oc” oSuce™®, Succ®on” oSuce™?) is an extension of u to a
pointed k-dromedary dyad v on [a, b+2¢(i—b)(k—1)) with the property
that ¢ ¢ {f"}Usupp(c?)U{b+2g(i—b)(k—1),b+2g(i—0b)(k—1)+1}.

We next show that it is sufficient to establish the further special
case where b = 1. To see (1), note that if n € {1,2,3}, then the
further special case gives rise to a pointed k-dromedary dyad v’ on
(0,1 + 2n(k — 1)) for which f # 1 but ¢¥(1) = 1, so Proposition
ensures that v’ %; u is an extension of u to a pointed k-dromedary
dyad on [0,b + 2n(k — 1)). To see (2), note that if ¢ > b+ 1, then
i—(b—-1) >2and g((i — (b—1)) — 1) = g(i — b), so the further
special case yields a pointed k-dromedary dyad v" on [0,1 + 2¢(i —
b)(k — 1)) with the property that f* # 1, 0¥ (1) =1, and i — (b—1) ¢
{f"YuUsupp(c?)U{1+2g(i —b)(k—1),142g(i — b)(k — 1) + 1}, thus
Proposition ensures that v’ *; u is an extension of u to a pointed
k-dromedary dyad v on [a,b+ 2¢g(i —b)(k — 1)) with the property that
i ¢ {f'} Usupp(c”)U{b+2¢9(i —b)(k —1),b+2g(i —b)(k — 1) + 1}.

To establish the further special case, define g: N\ 2 — {1,2,3} by

1 ifid [k—1,2k),
g(@)=<2 ifielk—1,2k—2),and
3 ifie{2k—22k—1}.

Define o1 on [0,2k —2] by o1 = (0 k k+1 --- 2k —2). Proposition [2.1]
ensures that oy is covering, and the fact that oy | (0, k) is the identity
implies that oy is non-crossing. A straightforward calculation reveals

that (Succ ™ ooy) [ 0,2k —2) =(k—1k—2 --- 0).

Lemma 3.4. There is a pointed k-dromedary dyad u, with the property
that f** =2 and o™ = 0.

Proof. 1t is sufficient to observe that o; has one orbit of cardinality k
that does not include 2 and fixes all other points of its domain, and
(Succ™ o 01) | [0,2k — 2) has one orbit of cardinality & and fixes all
other points of its domain. X
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Proposition [2.4] ensures that the permutations
09 = 01 *¥k—1 01
—(03k—23k—1 - 4k—4)(k—12k—12k --- 3k —3)
and
03 = 02 *2k-2 01
— 05k —45k—3 - 6k —6)(k—14k—34k—2 --- 5k — 5)
2k —23k—23k—1 .- 4k —4)

are covering and non-crossing. Another straightforward calculation
reveals that

(Succ ™t ooy) [ [0,4k —4) =Bk —3k—2k—3 --- 0)
(2k—22k—3 -~ k—1)
and
=(Bk—-5k—2k—3---0)
(4 — 42k —32k—4 --- k—1)
(3k —33k—4 - 2k —2).

(Succ™t o 03) | [0,6k — 6)

Lemma 3.5. Suppose that n € {2,3}. Then there are pointed k-
dromedary dyads u, and v, for which 1, f*, and f’» are pairwise
distinct but o' = o' = o,,.

Proof. Tt is enough to note that o,, and (Succ™'oa,,) | [0,2nk—2n) have
n orbits of cardinality k and fix all other points of their domains, as this
ensures that the former has at least 14 2nk —2n —nk =1+ nk —2n =
1+ n(k —2) > 3 fixed points. =

To see (1), observe that if w, € {u,,v,} for all n € {2,3}, then
uy, wy, and ws are as desired. To see (2), suppose that ¢ > 2. If
g(i—1) =1, theni ¢ [k,2k+1), so v = u; is as desired. If g(i —1) = 2,
theni € [k,2k—1),s0 v = ug or v = vy is as desired. And if g(i—1) = 3,
then i € {2k — 1,2k}, so v = uz or v = vy is as desired. X

Given integers a < b and a pointed n-dromedary dyad u on [a,b],
let w denote the triple (f*, 0" 7%), where f* = —f" o% = 0%, and
7 [=b,—a] \ {f*} = [~b, —a) is given by (i) = —(Succ o ) (—1).

Proposition 3.6. Suppose that a < b and k > 2 are integers and u is

a pointed k-dromedary dyad on [a,b]. Then u is a pointed k-dromedary
dyad on [—b, —a].
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Proof. Proposition ensures that o is a covering non-crossing per-
mutation of [—b, —a] whose orbits all have cardinality 1 or k. To see
that f“ is a fixed point of o%, note that

(") = (") (1)
= ()

O.U
O.’LL
u

Finally, note that 7% = 7 0 g“ o (0*)~! = Succ™
(6“)' o Succ o = 7% 0 (¢¥)7!, thus

(7" 0 0%)(i) = 7"(—(0") "} (1))
Succ o o (o)1) (—1)

Succ o (6*)~1 o Succ o ) (—1)

1 1

oo om o (0")7t so

-
-
= Succ™ ' (—((6™) 7! o Succ o ) (—1))

Succ™t 0 0%)(—(Succ o ) (—1))

~(
= (Succ ! o 0¥ o (i)
for all i € [—b, —a] \ {f"}. X

Proposition 3.7. Suppose that k > 3. Then there is a function g: N\
2 — {1,2,3} such that the following hold for all integers a < b and
pointed k-dromedary dyads u on [a,b):

(1) For all n € {1,2,3}, there is an extension of u to a pointed
k-dromedary dyad on (a — 2n(k — 1), b].

(2) For all i < a — 1, there is an extension of u to a pointed k-
dromedary dyad v on (a — 2g(a —i)(k — 1),b] with i ¢ {f*} U
supp(c?) U{a —2g(a —i)(k—1) —1,a — 2g(a — 7)(k — 1)}.

Proof. To see (1), suppose that n € {1,2,3}, appeal to Proposition [3.]
to see that @ is a pointed k-dromedary dyad on (—b, —al, appeal to
Proposition to obtain an extension of @ to a pointed k-dromedary
dyad v" on [—b, —a + 2n(k — 1)), and appeal once more to Proposition
to see that v/ is an extension of u to a pointed k-dromedary dyad
on (a —2n(k —1),b].

To see (2), fix g: N\ 2 — {1,2,3} as in Proposition [3.3] appeal
to Proposition to see that uw is a pointed k-dromedary dyad on
(—b,al, and note that if i < a — 1, then —i > —a + 1 and g(a — i) =
g((—=i) — (—a)), so there is an extension of @ to a pointed k-dromedary
dyad v on [—b, —a+2g(a—1)(k—1)) for which —i ¢ {f"'}Usupp(c*)U
{—a+ 2g(a —i)(k — 1),—a + 2g(a — i)(k — 1) + 1}, thus one more
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application of Proposition [3.6] ensures that v is an extension of u to
a pointed k-dromedary dyad v on (¢ — 2g(a — ¢)(k — 1), b] for which
i ¢ {f"}Usupp(o”)U{a—2g9(a—i)(k—1)—1,a—=2g(a—i)(k-1)}. =

Proposition 3.8. Suppose that a < b, i < a—1, 5 > b+ 1, and
k > 3 are integers and u is a pointed k-dromedary dyad on (a,b].
Then there exist n € {1,2,...,7} and an extension of u to a pointed
k-dromedary dyad v on (a —2n(k —1),b+ 2n(k — 1)] with the property
that i ¢ {f"} Usupp(c¥) U {a — 2n(k — 1) — 1,a — 2n(k — 1)} and
J¢{f'tUsupp(c?)U{b+2n(k—1)+1}.

Proof. If i <a—6(k—1) —1and g: N\ 2 — {1,2,3} is the function
given by Proposition [3.3] then there is an extension of u to a pointed
k-dromedary dyad v’ on [a, b+ 2g(j — b)(k — 1)) for which j ¢ {f"} U
supp(c?) U {b + 2g(j — b)(k — 1),b + 2g(j — b)(k — 1) + 1}, so part
(1) of Proposition yields the desired extension of v' to a pointed
k-dromedary dyad on (a —2¢g(j — b)(k — 1),b+ 2g(j — b)(k — 1)].

Similarly, if j > b+ 6(k—1)+ 1 and ¢g: N\ 2 — {1,2,3} is the
function given by Proposition then part (1) of Proposition
yields an extension of u to a pointed k-dromedary permutation v’ on
la,b+2g(a—i)(k—1)), in which case the defining property of g yields
the desired extension of v to a pointed k-dromedary dyad v on (a —
2g(a—1i)(k—1),b+2g(a—1i)(k —1)] with the property that ¢ ¢ {f"} U
supp(c?)U{a —2¢g(a —i)(k —1) —1,a — 2g(a — i)(k — 1)}.

It only remains to handle the case that a — 6(k — 1) — 1 < ¢ and
Jj<b+6(k—1)+1. We will recursively construct integers a, < a and
b, > b, as well as extensions of u to pointed k-dromedary dyads u. on
(@e, be] with the property that i ¢ {f“} Usupp(c*)U {a. — 1, a.} and
Jj & {f*} Usupp(c™) U {b. + 1} for all natural numbers e < 3. We
begin by setting ag = a, by = b, and uyg = u. Suppose now that e < 3
and we have already found a., b., and u.. If there is an extension of
ue to a pointed k-dromedary dyad v, on [a, b, + 2(k — 1)) for which
J ¢ {f’ }Usupp(o¥)U{b.+2(k—1),b.+2(k—1)+1}, then set meyq = 1.
Otherwise, part (2) of Proposition yields mey1 € {2,3} with the
property that there is an extension of u, to a pointed k-dromedary dyad
Ve ON [de, be + 2meyq(k — 1)) for which j ¢ {f%} Usupp(c¥) U {b. +
2Mes1(k —1),be +2meyq(k — 1) + 1}. If there is an extension of v, to a
pointed k-dromedary dyad ueq1 on (a. —2(k—1),be +2mey 1 (k—1)] for
which ¢ & {f"+ }Usupp(o¥+)U{a.—2(k—1)—1,a.—2(k—1)}, then
set Ley1 = 1. Otherwise, part (2) of Proposition [3.7] yields (.41 € {2,3}
with the property that there is an extension of v, to a pointed k-
dromedary dyad w. 1 on (ae —20ei1(k—1),be+2meyq(k—1)] for which
i ¢ {fUt} Usupp(ot)U{ae — 2lei1(k — 1) — 1,a. — 2041 (k — 1)}
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Setting aey1 = ae — 20e1(k — 1) and beyy = be + 2mei1(k — 1), this
completes the recursive construction.

Lemma 3.9. There is at most one e € {1,2,3} for which £, # 1, as
well as at most one e € {1,2,3} for which m. # 1.

Proof. 1f e € {1,2,3} has the property that m. # 1, then part (1) of
Proposition 3.3 ensures that j € (be_1+1,b._1+2(k—1)+1], and since
the intervals of this form are pairwise disjoint, there is at most one such
e. Similarly, if e € {1,2,3} has the property that ¢, # 1, then part (1)
of Proposition [3.7 ensures that i € [ae—1 —2(k —1) —1,a.-1 — 1), and
since the intervals of this form are also pairwise disjoint, there is again

at most one such e. X
Define lpax = max{ly,¥ls, 03} and My = max{mi, mg, mg}. If
lrax = Mmax, then set n = 2 + (.0 = 2 + Mumax and note that

a3 = a —2n(k — 1) and by = b+ 2n(k — 1) by Lemma [3.9) so the
pointed k-dromedary dyad v = wug is as desired. Otherwise, set n =
2+ lpax + Mpmax and note that ag — 2myay (K — 1) = a —2n(k — 1) and
b3+2lmax (k—1) = b+2n(k—1) by Lemma[3.9] so an application of part
(1) of Propositions and [3.7] yields the desired extension of ug to a
pointed k-dromedary dyad v on (a3—2mmax (k—1), b3+20max (k—1)]. K

Proposition 3.10. Suppose that a > 0, b > a+ 1, and k > 3 are
integers, J C (a,b) is a set whose Succ-gaps have cardinality at least
14(k —1) —1, I C J intersects each T-gap in ~J in a singleton, o is a
permutation of J, w: J\ I — JNSucc '(J), and u® = (f¢, 0, 7) is
a pointed k-dromedary dyad on C, where f€ is the unique element of
CNnI,o=01C, and 7% =71 (C\I) for every Succ-gap C in ~J.
Then there exist ¢ € [a—14(k—1)—4,a], d € [b,0+14(k—1)+4], and
a simultaneous extension of each u® to a pointed k-dromedary dyad v

on (c,d].

Proof. We first show that it is sufficient to establish the special case of
the proposition where a = 14(k —1) —4. Let ¢, d’, and v' be the result
of applying this special case to @’ = 14(k —1) — 4,V = b — (a — d’),
J' = Succ® ~(J), I' = Succ® (1), o' = Succ® " o o 0 Succ®™®, and
7' = Suce? “%oroSucc®™®, and observe that the integers ¢ = ¢/+(a—a’)
and d = d' + (a — &) and the triple v = (f*" + (a — @’), Succ® ¥ 0 ¥ o
Suce® ™, Succ?™@ o ¥ o Succ® ~%) are as desired.

We next show that it is sufficient to establish the further special
case of the proposition where .J is Succ~"**~Y_independent. Define
¢: N\ (JNSuce(J)) = Nby o(7) =[5\ (JNSuce(J))|. Then the set
J' = ¢(J \ Succ(J)) is Succ=*~V_independent, so the further special
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case yields ¢ € [0,14(k — 1) — 4], d' € [p(b), #(b) + 14(k — 1) + 4], and
a pointed k-dromedary dyad v’ on (¢, d’] for which {f¥'} U supp(c?’)
is disjoint from J’. Let (j;)i<¢ be the strictly increasing enumeration
of J \ Succ(J) and define ¢y = ¢, dy = d’, and vy = v'. For all i < ¢,
set Oz = qﬁ_l({qb(]z)}), Ci+1 = G, and di+1 = dl + |CZ \ {j2}|7 and appeal
to Proposition to see that the triple v;11 = v; %, u% is a pointed
k-dromedary dyad on (¢;;1,d;11]. Then the triple v = v, is the desired
extension of w.

Finally, we establish the special case of the proposition where J
is Succ<**Y_independent (but a need not be 14(k — 1) — 4). Set
m=a+ |(b—a)/2|. As J is T<%-independent, by setting ¢y = m — 2
if J intersects [m + 1, m + 4] and ¢y = m + 2 otherwise, we can ensure
that [co — 1, ¢ + 2] is disjoint from J. As m —a and b — (m + 1) are
within 1 of one another, it follows that ¢y — a and b — (co + 1) are
within 5 of one another. Note that a < ¢y or ¢g+1 < b, since otherwise
b—1 < ¢y < a, contradicting the fact that b > a+1. Set dy = ¢o+1, let
vo be the unique pointed k-dromedary dyad on (co, do|, and recursively
apply Proposition to ¢;, d;, the maximum element of J below ¢; (or
any integer strictly below ¢; — 1 if there is no such element of J), the
minimum element of J above d; (or any integer strictly above d; + 1 if
there is no such element of J), k, and v; to obtain n; € {1,...,7} and
an extension of v; to a pointed k-dromedary dyad v;11 on (¢;y1,d;q1]
with the property that ¢;+1 = ¢;—2n;(k—1), diy1 = d; +2n;(k—1), and
{fr+ }Usupp(c¥i+)U{cit1—1, ¢it1, diy1+1} is disjoint from J (since J
is T<(*=1)_independent), noting that c;1; —a and b—d;,, are within 5
of one another. Let ¢ be the maximal natural number for which a < ¢;
ord; <b. If a<c;, then ¢;41 > ¢; —14(k—1) >a —14(k — 1) and

diy1 < d;+14(k — 1)
= b4 14(k — 1) + (d; — b)
<b+1lk—-1)+(a—c¢)+5
< b4 14(k —1) + 4.

If d; < b, then

Civ1 > ¢ — 14(k —1)
—a—14(k - 1)
>a—14(k—1)
>q— 14k — 1)

—a)

(ci
(b

+
+
—4
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and d;11 < d;+14(k—1) < b+14(k—1). In both cases, it follows that
the integers ¢ = ¢;11 and d = d;;1 and the pointed k-dromedary dyad
v = v;41 are as desired. X

Given k > 3, n > 1, an aperiodic bijection T: X — X, and
x € X, we say that a triple (f, o, m) is a pointed k-dromedary T-dyad
on [z, T™(x))r if f € [, T"(x))r, o is a permutation of [z, T"(x))r,
7 [z, T"(2))r \{f} = [z, T" 7 (x))7r, and (071(f),07 0o0h,07  omo)
is a pointed k-dromedary dyad on n, where 6: n — [z, T"(x))r is given
by 0(i) = T%(x) for all i < n. We can now give the following:

Proof of Theorem[f} We will find S € [T, whose orbits all have cardi-
nality 1 or k&, that is conjugate to 77! o S in [T]. To see that this is
sufficient, set Sy = .S and observe that every orbit of the automorphism
S; = Sy ' o T has cardinality 1 or k and the fact that Sy € [T] easily
implies that S; € [T7]..

We will construct an exhaustive increasing sequence (X;);en of Borel
subsets of X whose complements are Ry ;- and R7-complete, Borel
sets F; C X, intersecting every T-gap in ~X; in a singleton, T-decom-
posable injections P;: X; \ F; — X; N T7!(X;), and T-decomposable
bijections S;: X; — X; such that:

(1) Vie N P, =Py [ (Xi\ F)).

(3) Vi € NVz € X; 11 \ X; CF N Fpy N X; = 0, where CF is the
unique T-gap in ~X; containing z for all € N and x € X;, and

(4) Vi € NVz € X; (fF,SF, PF) is a pointed k-dromedary T-dyad on
Cz, where ff € C# N F,, §7 = $; | CF, and PP = P, | (CF\ ).

To see that this is sufficient, note first that each x € X appears in at
most finitely many F;, for if ¢ € N is sufficiently large that z € X; and
j > i is sufficiently large that C7 # C¥, then condition (3) ensures
that = ¢ F;. Conditions (1) and (2) therefore ensure that we obtain
functions P, S: X — X by setting P = |J,.y P and S = U,y Si- To
see that P and S are injective, note that if x,y € X have the property
that P(xz) = P(y) or S(x) = S(y) and i € N has the property that
z,y € X; \ Fj, then P(z) = P,(y) or S;(z) = Si(y), so x = y. To
see that P and S are surjective, note that if z € X and ¢+ € N is
sufficiently large that z € X; N T71(X;), then there exist z,y € X;
for which Pj(z) = z and S;(y) = z, so P(z) = z and S(y) = 2. To
see that P and S are T-decomposable, fix Borel sets A;,, B;, C X;
with the property that P, = |J,c, 7" | Ain and S; = U,ez T | Bim
for all i € N, set A, = ey Ain and By, = [,y Bin for all n € Z,
and observe that P =J, ., 7" [ A, and S =, ., T" | B,. To see

neZ neL
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that P is an isomorphism of S with 77! o S, note that if x € X and
i € N has the property that € X; \ F;, then condition (4) ensures
that (P;0.S;)(z) = (T 0 S;0 P)(z),s0 (PoS)(z) = (T"'oSoP)(x).
To see that the orbit of every point under S has cardinality 1 or k,
note that if x € X and ¢ € N is sufficiently large that x € X;, then
condition (4) implies that the orbit of # under S; has cardinality 1 or
k and coincides with the orblt of z under S.

Appeal to Propositions and |1 - to obtain an Ry ;- and Rj-
complete T<42(k=1D+7_ mdependent Borel set D C X. By Proposition
[1.17] there is a balanced marker sequence (D;);en for Tp. For all a > 0,
b>a-+1, and i € N, let Dabzﬂ be the set of x € D;y; for which
To,(2),(Tp)*(2)  Dyyr, a=rh, (o), and b= hE ., ()

To guarantee that (X;);en is exhaustive, it is eﬁough to ensure that
(T(z), Tb(z))r € Xiy1 foralla > 0,b>a+1,i € N and x € Doy i1,
since the fact that (D;);en is a balanced marker sequence ensures that
every point of X appears in an interval of this form. To guarantee
that the sets X; are Borel and the recursive construction goes through,
we will construct Borel functions a1, bi41: Ugsg Upsast Papitt — N
such that:

(5) Va > 0Vb > a + 1Vz € Dy i1 ai(z) € [a — 14(k — 1) — 4, al.

(6) Ya > 0Vb > a + 1Vx S Da,b,i—f—l bz<l’) € [b7 b + 14(]{3 — ].) + 4]

(7) Xi+1\Xi = Ua>0 Ub>a+1 U.Z’EDa,b,i+1 <Tai+1(x)( ) Tblﬂ(x ( )]T\X

We begin by setting Fy = Py = Sy = Xy = 0. Suppose now that
i € N and we have already found (a;)1<j<i, (bj)1<j<i, Fi, P;, and S;.

Lemma 3.11. The size of each T-gap in X; is at least 14(k — 1) — 1.

Proof. Suppose that n > 1, z € X;, and r% (x) = n, so that (z, T"(z))r
is a T-gap in X;. Then z and T™(z) are right and left endpoints of
the sorts of intervals appearing in condition (7), so conditions (5)—(7)
yield integers b € [0,14(k — 1) + 4] and a € [-1,14(k — 1) + 3] for
which T7%(z), T*""(z) € D. As the fact that n > 1 ensures that
—b < 0 < a+ n, the fact that D is T<***=D+7_independent implies
that 42(k—1)+7 < b+a+n < n+28(k—1)+7, thusn > 14(k—1). =

Let Q;1+1 be the set of quadruples ¢ = (a%,b?, J%, (19,07 77)) with
the property that a? > 0, b7 > a?+ 1, J? C (a?,b?) is a set whose Succ-
gaps have cardinality at least 14(k — 1) — 1, [9 C J7 intersects each
Succ-gap in ~J9 in a singleton, 09 is a permutation of J4, w?: J7\ [? —
J1NSucc ' (J9), and u® = (f¢, 0%, 7¢) is a pointed k-dromedary dyad
on C, where f¢ is the unique element of CNI9, ¢ = ¢ | C, and 7¢ =
7 | (C\ I?) for every Succ-gap C' in ~J%. For all ¢ € Q;,1, Proposition
310 yields ¢ € [a? — 14(k — 1) —4,a%], d? € [b?, b7+ 14(k — 1) + 4], and
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a simultaneous extension of each ¢ to a pointed k-dromedary dyad v9
on (c¢?,d?. Let D;y1, be the set of all © € Dyq pa i1 such that:

(a) Vj € (a9,0?) (j € J1 < T'(x) € X;).

(b)VieJi(jel! — T/(z) € F}).

() Vj € JINTY (P,oTo)(x) = T~0)(x).

(d) Vj € J4 (S0 TY)(z) = T7"V(x).
Clearly quQiH Dii14 € Uaso Upsast Dap,iv1 and Lemma 3.11: ensures
that the reverse inclusion holds. Define a;1(x) = ¢? and b;1(x) = d4
forall ¢ € Qi41 and @ € D;yq 4.

Lemma 3.12. Suppose that a >0, b > a+ 1, and x € Dyp 1. Then
(Torr @=L (), o @H ()] N X, = (T(2), T (z)]7 N X;.

Proof. As condition (5) ensures that a;41(x) < a and condition (6)
implies that b < b;41(x), it is sufficient to show that

(T (0), T (@) 0 X, = (T(@), T O (@)l 0 X =0,

Suppose, towards a contradiction, that this is false. Then condition (7)
yields @' > 0,6 > a' + 1, ¢ <, and &’ € Dy y ;41 for which

(T2 @), T (@)} O (T2 @), T O @] £0 (1)
(T (), T4 (@) 1 (T2 ), T @) (@] £0. (1)

To handle the case that (1) holds, note first that 7%+ () (/) <p
T%(z) and T4+ @1 (g) <7 TP+ @) ("), As 2/, T (2') € Dy and Dy is
T=14kE=D+4_independent, condition (5) implies that 2/ <p T%+1@)(z/),
so 2’ <p T%(z). As 2/,T%x) € Diyy, it follows that Tp,,  (z') <r
T%(x). As TV ('), Tp, ,(¢') € Dy and Dj is T~ independent,
condition (6) ensures that T+ @) (z") < Tp, ., (z'), in which case
Tl @) (o)) <p Tz), so T+ (2)) € [T+ @)(z), T%x))p. But
T(z), T" (2') € Dy, condition (5) yields ¢ € (0, 14(k — 1) +4] for which
T(z) = T+1#)%¢(2") and condition (6) ensures that by, (z') — ¥ €
[0,14(k — 1) + 4], contradicting the T<2(*=D+8_independence of D;.

To handle the case that (1) holds, note first that T°(z) <p T +1@) (1)
and T+ (') <p TV @+ (7). As Tb/(x’),TDi,H(m’) € D,y and Dy
is 7<140:=1+4independent, condition (6) implies that T+ (2) <q
Tp,,, (2'), so T’(x) <p Tp,  (2'). As T%(z),Tp, (') € Dy, it
follows that T%(x) <7 2’. As 2/, 7% (') € Dy and Dy is T=MkE-1+4
independent, condition (5) ensures that 2’ <7 T+ (2/) in which
case T(z) <p T+ @) (2), so T+ () € (T*x), TV+ @) (x)]p.
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But T%(z), T (') € Dy, condition (5) ensures that o’ — ay1(2') €
0, 14(k—1)+4], and condition (6) yields ¢ € (0, 14(k—1)+4] for which
Tb(z) = To+1(#)=¢(z'), contradicting the T<?*-D+8_independence of
D;. X

As D is T<%*=D+4independent, conditions (5) and (6) imply that
if 2 € Upoo Upsast Dapiitt, then (T4 (), T+ (x)]p C (2, Tp,,, (x))7.
As the intervals of the latter form are pairwise disjoint, those of the
former form are not only pairwise disjoint, but are not adjacent to one
another. Lemma [3.12] therefore ensures that the functions

Prii = PiUU, o, Useaane T™ 977 | TH(Dig1,y)
and
Siv1 = SiUUeqn, Userenan T D=0 | TI(Dyy1 )
are well-defined and as desired. X
To obtain further results of this form, we need several preliminaries.

Proposition 3.13. Suppose that {1} C K C Z*, K ¢ {1,2}, X is
a Borel space, and T: X — X is an aperiodic smooth Borel automor-
phism. Then there exist R, S € [T], whose orbits all have cardinality

in K and for which each possibility occurs infinitely often on every
T-orbit, such that T = S o R.

Proof. To see that it is sufficient to establish the special case of the
proposition where X = 7Z and T' = Succ, suppose that p and o are
permutations of Z, whose orbits all have cardinality in K and for which
each possibility occurs infinitely often, such that Succ = 0o p. Fix a
Borel transversal B C X of Es¥ and observe that the functions R =
Uper TP~ 1 T"(B) and S = |J,,o,, T°™ =" | T"(B) are as desired.
It remains to establish the special case. For all k > 2, let 7, be the
permutation of [0,2k — 2] given by 7, = (0 k k+1 --- 2k —2). Then

) 0 ifi<kand
CTk<Z> =

1 otherwise

for all 7 € [0,2k — 2). It follows that every 74-orbit and non-empty
¢ -preimage of a singleton has cardinality 1 or k. Moreover, every
possibility occurs with the sole exception that there is no singleton
whose ¢, -preimage has cardinality 1 when & = 2. Fix an enumeration
(kn)nen of K\ {1} in which every element of K \ {1} appears infinitely
often, set 79 = 1, and let oy be the trivial permutation of [1,1]. Given
n € N, 4, > 0, and a permutation o, of [1 — n,i,], define i,,; =
i, + 2k, — 3 and appeal to Proposition to see that the extension
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of o, to [—n,iny1], given by 0,41 = (Succ™" o 73, o Succ”) *1_,, 0y, is
covering and non-crossing. It follows that the function o = (J, . 0w is
Succ-covering and Succ-non-crossing. As it is also periodic, Proposition
2.3ensures that it is Succ-oriented. A straightforward induction reveals
that the cardinality of every o-orbit and non-empty c,-preimage of a
singleton is in K. To see that every possibility in K \ {1} occurs
infinitely often, note that o, and ¢,,,, have one more such orbit and
preimage than o, and c,, whenever k, = k. To see that 1 also occurs
infinitely often, note that o, and ¢, ., have one more such orbit and
preimage than o, and c,, whenever k, > 3 (hence the requirement
that {1} C K and K ¢ {1,2}). Propositiothherefore implies that
o and p = 07! o Succ are as desired. X

Remark 3.14. In the special case that K is finite, the proof of The-
orem [3] can be modified to show that smoothness can be weakened to
separability in the statement of Proposition [3.13

A partial transversal of an equivalence relation E on a set X is a set
Y C X that intersects each E-class in at most one point.

Proposition 3.15. Suppose that X is a Borel space and I is a count-
able group of Borel automorphisms of X . Then there is a Borel transver-
sal B C X of EX if and only if there is a cover (B, )nen of X by Borel
partial transversals of EX.

Proof. If B C X is a Borel transversal of E{X, then (yB),er is a cover
of X by Borel transversals of EX. Conversely, if there is a cover of
X by countably-many Borel partial transversals of EX, then EX is
separable and the graph G = E¥ \ A(X) has a Borel N-coloring. As

G = U'yeF graph(y | supp(y)), Proposition ensures that it is I'-
decomposable, so Proposition Myields a Borel transversal of BY. ®

A countable group I' of Borel automorphisms of a Borel space X is
smooth if Ef admits a Borel transversal.

Proposition 3.16. Suppose that k < Ny, X is a Borel space, I" is a
smooth countable group of Borel automorphisms of X, and B C X is a
Borel set whose intersection with each I'-orbit has cardinality k. Then
there is a partition of B into k Borel transversals of EX | B.

Proof. We first handle the case that k is finite. By the pigeonhole
principle, it is sufficient to recursively construct a sequence (By,)n<x of
pairwise disjoint Borel transversals of EX | B. Suppose that n < k
and we have already found (B,,)m<n. Then Proposition ensures
that the graph G, = (EX \ A(X))N((B\ U, e, Bm) X (B\U, <, Bm)
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has a Borel N-coloring. As

Gn - UWEF graph(7 f Supp(v)) N ((B \ Um<n Bm) X (B \ Um<n Bm))?

Proposition [1.§ implies that it is I'-decomposable. Proposition [1.15
therefore yields a Borel maximal G,,-independent set B!, C X, so the
set B, = B, N (B\ U,,~,, Bn) is a Borel transversal of EX | B, which
completes the recursive construction.

In order to handle the case that k is infinite, extra care must be taken
to ensure that the resulting transversals cover X, since the pigeonhole
principle no longer suffices to yield this conclusion. We nevertheless
proceed in essentially the same fashion, but first appeal to Proposition
to obtain a cover (A,)n,en of B by Borel partial transversals of
EZX | B, and require that A, C B!, when applying Proposition in
the recursive construction, which ensures that |J, .. A, C U,,<, Bm-
In particular, it follows that |J,.yA4n € U,y Bns so the fact that
B = J,,en An implies that B = (J, .y Bn- =

Proposition 3.17. Suppose that X is a Borel space, I' is a smooth
countable group of Borel automorphisms of X, A,B C X are Borel,
and |ANTx| = |BNTz| for allz € X. Then there is a I'-decomposable
bijection m: A — B.

Proof. Proposition [1.9| ensures that, by partitioning X into countably-
many [-invariant Borel sets, we can assume that there exists £ < Ny
such that [ANTz| = |[BNTz| =k for all z € X. Proposition
then yields partitions (A,)n<x and (By),<x of A and B into Borel
transversals of £, so the function 7 = v [ (Upep An Ny 7' By) is
as desired. X

For each k < Wy, the period k part of a bijection T': X — X is given
by Pery(T) = {zx € X | |[z]r| = k}.

Proposition 3.18. Suppose that X is a Borel space, I' is a smooth
countable group of Borel automorphisms of X, and S, T € [I'| have
the property that |(Pery(S) NTx)/EY| = |(Pery(T) N Tx)/EX| for all
1<k<Nyandx € X. Then S is conjugate to T in [[7.

Proof. By Proposition [3.15] there are Borel transversals A C X and
B C X of EY and Ef. For all 1 < k < Ny, define Ay = A N Pery(9)
and By = B N Pery(T), appeal to Proposition to obtain a I'-
decomposable bijection m: Ap — By, and set ¢p = UnEZ Trom,oS™™.
Then the function ¢ = (J, <<y, ¢k is as desired. X

For each equivalence relation F on a set X and n € N, let [X]%
denote the family of all sets S € [X]" such that S x S C E, and define
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(XN = |, en[X]" and [X]5° = U, cn[X]%- Given a countable group
I' of permutations of a set X and a set Y C X, let [Y]# and [Y]5
denote [Y]" By and [Y]Eiﬁ(’ry. When X is a Borel space and I' is a
countable group of Borel automorphisms of X, we say that a family
S C [X]5N is T-decomposable if there is a sequence (Ba) aeqrj<ro of Bor-

el subsets of X with the property that S = (Ja¢rj<xo {Az | © € Ba}.

Proposition 3.19. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X, B C X s Borel, and F is a finite
subequivalence relation of EX | B for which B/F is T'-decomposable.
Then F' is I'-decomposable.

Proof. Fix Borel sets B € X with B/F = xcrj<xo{A% | € Ba}.
Then F = Upery<ro U, 5ea graph(vo~ L1 0BA). X

Proposition 3.20. Suppose that X is a Borel space, I' is a countable
group of separable Borel automorphisms of X, and § C [X ]<N° s I'-
decomposable. Then there is a I'-decomposable mazimal family R C S
of pairwise disjoint sets.

Proof. Fix Borel sets By C X for which S = Uagirj<xo {A7 | ¥ € Ba}.
For all A € [[]< let Ga be the graph on X Wlth respect to which x
and y are neighbors if and only if x # y, x,y € Ba, and Ax N Ay # 0.
Then Ga = U, scagraph(0~'y [ (Ba Ny~ 10Ba Nsupp(0~'y))), so
Proposition ensures that G is I'-decomposable. As Ga has finite
vertical sections, Proposition yields a Borel N-coloring of Ga. Fix
an enumeration (A, )en of [[]<M.

We will recursively find Borel sets B,, C Ba, for which the sets in
the family R,, = U,,.,{Amx | © € B,,} are pairwise disjoint. Given
n € N for which we have already found (B,,)m<n, define

Cn={x € Ba, | ApzNnUR, =0}
= BAn \ Um<n UémeAm UéneAn 61:16mBm

Then the graph G,, = Ga, N (C, x C},) is I'-decomposable, so Proposi-
tion yields a Borel maximal G,,-independent set D,, C X. Define
B, = C,, N D, and observe that the sets in the corresponding family
R..+1 are pairwise disjoint, which completes the recursive construction.

Note that the sets in the family R, = |, .y Ry are pairwise disjoint.
To see that it is a maximal family of pairwise disjoint sets in S, suppose
that S € S, fix n € N and © € Ba, for which S = A,z, and observe
that if SNJR, = 0, then x € C,, so there exists y € C,, N D,, for
which A,z N ALy # 0, thus SN YRy # 0. X



44 B.D. MILLER

Proposition 3.21. Suppose that X is a Borel space, ' is a countable
group of Borel automorphisms of X whose supports are Borel, R is a
['-decomposable binary relation on X, and v,6 € I'. Then the corre-
sponding set B={x € X |v-x R -z} is Borel.

Proof. Fix Borel sets By C X for which R = (J, - graph(\ | By) and
observe that B = y.pfz € X | v-2 € Byand \y -2 = 0 -2} =

U)\ep ’Y_IB)\ \ Supp((s_l)\’y). X

Proposition 3.22. Suppose that k € Z*, X is a Borel space, T' is a
countable group of Borel automorphisms of X whose supports are Bor-
el, B C X is Borel, and G is a I'-decomposable graph on X. Then the
set S = {S € [BJk | S is G-independent} is T'-decomposable.

Proof. For all A € [I']*, define
Br={zeX|V¥oe€eAJ -z Band
Vo e AVy e A\{0} (v-2#d0-xzand vy-2 G- x)}
= Nsea 0 BN Nsea Myeaysp{z € supp(6~19) | =y -2 G § -z}

Then S = Upgrr{Az | € Ba}, so Proposition ensures that it
is I'-decomposable. X

Proposition 3.23. Suppose that k € Z*, X is a Borel space, T' is a
countable group of separable Borel automorphisms of X, B C X is a
Borel set whose intersection with each I'-orbit is infinite, and G is a
I'-decomposable graph on X whose vertical sections are finite. Then
there 1s a I'-decomposable equivalence relation F' on B whose classes
are G-independent and have cardinality k.

Proof. We first establish the special case where I' is smooth. Fix enu-
merations (7, )nen of I' and (A, )nen of [T]*. For all s € NN, Proposi-
tions [1.§ and ensure that the set A, of z € X such that

(1) Vi < |S|V5 c As(i) 0-x € B,

(2) Vi < |s|V6 € Ay Vy € Ay \ {0} (v-x # 6.2 and ~y-2 G §-x),

(3) Vi<|s| (yi-x€B = 35 <|s| vi-x € Ayjr), and

(4) Vi < j <|s| Asiyz N Agyz =10
is Borel. Fix a Borel transversal By C X of E and recursively define
Bo ) = (Asa) \ Upen As~m)) N B, for all n € N and s € N<V,
Then the family S = U,y Usenn+1 {Qsm)® | © € By} partitions X and
Proposition |3.19| ensures that the equivalence relation ' on X, given
by X/F =8, is as desired.

To establish the general case, appeal to Propositions and [3.22]to

obtain a I'-decomposable maximal family S C [X]F of pairwise disjoint
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G-independent subsets of B of cardinality k. Then the Borel set B =
~|J S intersects every I'-orbit in a finite set, so Proposition ensures
that EX | T'B is smooth. By the previous paragraph, we can therefore
assume that X = J &, in which case Proposition implies that the
equivalence relation F' on X, given by X/F = S, is as desired. X

Proposition 3.24. Suppose that X is a Borel space and T: X — X is
a separable Borel automorphism of a Borel space whose orbits all have
finite odd cardinality. Then there are involutions Iy, Iy € [T, conjugate
in [T, such that T = Iy 0 I.

Proof. As Proposition [I.16 ensures that 7" is smooth, Remark [I.6]yields
involutions Iy, I, € [T], each having exactly one fixed point on every
T-orbit, such that T" = I, o I;. But Proposition |3.17| implies that I
and I, are conjugate in [7T7]. X

For each set K of countable cardinals, the period K part of a bijection
T: X — X is given by Perg(T) = U Pere(T). We can now give
the following;:

Proof of Theorem[J. We first handle the special case of the proposition
where 'z N Peryn(7)) is finite but non-empty for all x € X, in which
case Proposition [1.16| ensures that I" is smooth. We will consider three
subcases; the desired special case will then follow from Proposition [1.9]
since it ensures that X can be partitioned into three I'-invariant Borel
sets, each falling into at least one of these cases.

Suppose first that T'z \ supp(7) is infinite for all x € X, appeal to
Proposition to obtain a partition (B,,),en of ~supp(T) into Borel
transversals of Ef | ~supp(T), fix an involution ¢+ of N whose support
is infinite and co-infinite, and define I = J,cp Upen v [ (BuNy ™' Biwy)-
As Proposition ensures that 7' [ supp(7’) is smooth, Proposition
1.1} yields involutions I, I, € [T' | supp(T')] with the property that
T | supp(T') = I3 o I, in which case Proposition implies that the
involutions Sy = I' U I, for 1 < k < 2, are as desired.

Suppose next that I'z N Pergy,3(7) is infinite for all x € X. As
Proposition [3.15| ensures that 7' is smooth, Remark yields involu-
tions Iy, Iy € [T | Perani3(7)], each having exactly one fixed point on
every (T | Pergnys(T))-orbit, for which 7' | Perony3(7T") = I3 0 I1, and
Proposition [1.1] yields involutions Jy, Jo € [T | ~Peranys(T")] for which
T | ~Perony3(T) = Jy 0 Jq, in which case Proposition implies that
the involutions Sy, = I, U J;, for 1 < k < 2, are as desired.

Suppose finally that the aperiodic part of T, given by Aper(T) =
~Per(T), is [-complete. As Proposition ensures that T | Aper(T)
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is smooth, it follows from Proposition that there are automor-
phisms Ry, Ry € [T | Aper(T')], whose orbits are all of cardinality 1, 2,
or n and for which each possibility occurs infinitely often on every orbit
of T' | Aper(T), with the property that T' [ Aper(T) = Ry o Ry. As
Proposition also ensures that T | Per(7T) is smooth, Proposition
1.1 yields involutions Iy, Iy € [T | Per(T)] for which T' | Per(T) =
I5 0 I, in which case Proposition [3.18 implies that the automorphisms
S =1, URy, for 1 < k <2, are as desired.

We now consider the general case. As Proposition [1.9 ensures that
{z € X | Tz N Peryy(T) is finite but non-empty} is Borel, by throwing
out this set, we can assume that I'z N Peroy(7T") is empty or infinite
for all z € X. As Theorem (4] yields the case that T is aperiodic and
Proposition yields the case that every T-orbit has finite odd car-
dinality even without the assumption that I' is aperiodic, Proposition
allows us to assume that X = Peroy(T).

Appeal to Proposition to obtain a Borel transversal B C X of
T. By Proposition [3.23] there is a I'-decomposable equivalence rela-
tion ' on B whose classes are all of cardinality 2. As the involution
H generating F' is I'-decomposable and therefore Borel, another appli-
cation of Proposition yields a Borel transversal A C B of F. By
Remark [1.6 there are involutions I;, I, € [T | [A]y] with the prop-
erty that I, has exactly two fixed points on every orbit of T' | [A]r,
I has no fixed points, and T' | [A]r = Iy o I, as well as involutions
Ji,Jo € [T ] [B\ A]r| such that J has no fixed points, J; has exactly
two fixed points on every orbit of T | [B\ A7, and T | [B\ A]r = JyoJ;.
As the group A generated by H and T is smooth, Proposition [3.18]im-
plies that the involutions S, = [, UJy, for 1 < k < 2, are as desired. X

4. NORMAL CLOSURES

We begin this section with a variant of Proposition [3.18}

Proposition 4.1. Suppose that X and Y are standard Borel spaces
and S: X = X and T:Y — 'Y are smooth Borel automorphisms with
the property that |Pery(S)/E%| = |Pery(T)/EY| for all 1 < k < N,.
Then S and T are Borel isomorphic.

Proof. Fix Borel transversals A C X and B C Y of S and T. For all
1 < k < Ny, appeal to Proposition [1.9] and the isomorphism theorem
for Borel subsets of standard Borel spaces (see, for example, [Kec95,
Corollary 13.4 and Theorem 15.6]) to obtain a Borel isomorphism
mi: AN Pery(S) — BN Pery(T), and define ¢y, = U, T7 0 m 0 S7.
Then the function ¢ = (J, <<y, @& is as desired. X



COMPOSITIONS OF PERIODIC AUTOMORPHISMS 47
The commutator of g and h is given by [g,h] = ghg*h™!.

Proposition 4.2. Suppose that X is a standard Borel space, {1} C
K CZ", and T: X — X is a Borel automorphism whose support is
uncountable. Then there is a Borel automorphism S: X — X for which
the cardinalities of the orbits of [S,T] are in K and each possibility
occurs uncountably often.

Proof. By Proposition [1.15] there is a T-independent Borel set B C X
that intersects every non-trivial T-orbit. As B is uncountable, the
isomorphism theorem for Borel subsets of standard Borel spaces ensures
that it is Borel isomorphic to R x K, so there is a partition (By)gex of
B into uncountable Borel sets. As the isomorphism theorem for Borel
subsets of standard Borel spaces (or the fact that R is Borel isomorphic
to R x k) also implies that each By is Borel isomorphic to R x k, there
is a Borel automorphism S;: By — By, whose orbits have cardinality &
for all k € K. Define S = ({Jyex Sk) U (id~p). If k € K, then
(SoT oS toT )| By=SoTo (S | T HBy))oT™!

= SoT o (idp-1(p,)) o T!

=(SoToidoT™ ') | By

=S | By

— S,

and
(SoT oS toT™ ) T(By)=SoTo(S™ | By)oT!
=(S|T(B)oToS, oT™!
= (idpp,)) o To S o T
=ToS, 'oT,
so |[#]is| =k for all x € B, UT(By). But

(SoT oS toT™ ) | ~(BUT(B))

—SoTo(S ' [ ~(T Y (B)UB))oT "

= SoT o (idvr-1pup)) o T7!

=(SoToidoT™) | ~(BUT(B))

=S ~(BUT(B))

= id~(BuT(B)):s

so |[z]ism| =1 for all z € ~(BUT(B)). X
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Proposition 4.3. Suppose that X is an uncountable standard Borel
space and T: X — X 1is a smooth Borel automorphism. Then there
are Borel involutions I, J: X — X, with uncountable co-uncountable
supports, for which T =10 J.

Proof. We first handle the special case that T" = id. As the isomorphism
theorem for standard Borel spaces ensures that X is Borel isomorphic
to R x 2, there is an uncountable co-uncountable Borel set A C X. As
the isomorphism theorem for Borel subsets of standard Borel spaces
(or the fact that R is Borel isomorphic to R x 2) also implies that A
is Borel isomorphic to R x 2, there is an uncountable Borel set B C A
for which there is a Borel isomorphism 7: B — A\ B, in which case
the functions I = J = %! Uid~y4 are as desired.

We next handle the special case that T" has no fixed points. Fix a
Borel transversal A C X of T. As A is uncountable, the isomorphism
theorem for Borel subsets of standard Borel spaces ensures that A is
Borel isomorphic to R x 2, so there is an uncountable Borel set B C A
with the property that A\ B is also uncountable. Set C' = [B]r and
appeal to Remark to obtain Borel involutions I’, J" € [T' [ C] for
which I’ has a fixed point on every orbit of T [ C and T [ C =1"0o J',
as well as Borel involutions I”, J” € [T | ~C] for which J” has a fixed
point on every orbit of 7' | ~C' and T [ ~C = I"”" o J”. Then the
functions I = I' UI” and J = J' U J” are as desired.

We now handle the general case. Fix 1 < k < 8, for which Pery(7)
is uncountable. As Proposition [1.9| ensures that this set is Borel, and
therefore standard Borel by [Kec95l, Corollary 13.4], the special cases
yield Borel involutions I’, J": Pery(T") — Pery(T), with uncountable co-
uncountable supports, for which T' | Pery(T") = I’ o J'. By Proposition
there are Borel involutions ", J": ~Pery(T") — ~Per,(T) with the
property that T' [ ~Pery(T) = I”oJ”. But then the functions I = I'Ul”
and J = J U J" are as desired. X

Proposition 4.4. Suppose that X is a standard Borel space, {1,2} C
KCZ', and T: X — X is a non-smooth Borel automorphism. Then
there exist R, S € [T], whose orbits all have cardinality in K and for
which each possibility occurs uncountably often, such that T = Ro S.

Proof. As Proposition [1.9ensures that Per(T") is Borel and Proposition
1.16| implies that 7' [ Per(T") is smooth, Proposition yields Borel
involutions I’,.J" € [T | Per(T)] for which T' | Per(T) = I' o J'. By
Silver’s perfect set theorem (see, for example, [Sil80], although the
special case we need is far simpler to prove), there is an uncountable
T-invariant Borel set B C Aper(T) for which T' [ B is smooth. By
Proposition [3.13] there exist R”,S” € [T' | BJ, whose orbits all have
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cardinality in K and for which each possibility occurs on every orbit
of T'| B,such that T | B=R"0S". Fix k € K\ {1,2}, and appeal
to Theorem [3[to obtain R”,S" € [T | (Aper(T) \ B)], whose orbits all
have cardinality 1 or k, such that T' [ (Aper(T") \ B) = R” 0 S"”. Then
the functions R =I"'UR"UR" and S = J'US"US" are as desired. X

Remark 4.5. In the special case that K is finite, the need for Silver’s
theorem can be eliminated by replacing the use of Proposition [3.13
with that of Remark B.14]

We can now give the following;:

Proof of Theorem [0 Note first that if 7: X — X is a Borel automor-
phism for which there is a Borel automorphism R: X — X such that
I is Borel isomorphic to [R,T] as witnessed by P: X — X, then

I=P'o[R,T)oP
=P loRoToR‘'oTtoP
=(P'oRoToR 'oP)o(PtoT ' 0oP),

so I is a composition of two conjugates of TF!. In particular, it is
sufficient to show that S is a composition of two such automorphisms.

We first handle the case that S is smooth. By Proposition [4.2] there
is a Borel automorphism R: X — X for which [R,T] is an involution
with uncountable co-uncountable support. By Proposition (.3} there
are Borel involutions I, J: X — X, with uncountable co-uncountable
supports, for which S = I o J. But Proposition ensures that I, J,
and [R, T are Borel isomorphic.

We now consider the case that S is not smooth. By Proposition
there is a Borel automorphism R: X — X for which every orbit
of [R,T] has cardinality 1, 2, or 3, and each possibility occurs un-
countably often. By Proposition [£.4] there are Borel automorphisms
I,J: X — X, whose orbits all have cardinality 1, 2, or 3 and for which
each possibility occurs uncountably often, such that S = I o J. But
Proposition ensures that I, J, and [R, T| are Borel isomorphic. ®

5. BERGMAN’S PROPERTY

The saturation of aset Y C X with respect to an equivalence relation
Eon X isgivenby [Ylg={re X |JyeY z Ey}.

Proposition 5.1. Suppose that X is a Borel space, T: X — X is a
Borel automorphism whose orbits all have the same cardinality, and
E is a T-decomposable equivalence relation on X. Then there exists

S € [T] for which E = E¥.
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Proof. Fix Borel sets B,, € X such that E =, ., graph(T" | B,,).

Suppose first that every T-orbit has cardinality k¥ € Z*. For all
1 <j <k, define A; = Uiej+kz B;. Then the function S: X — X,
given by S = U, 77 T (45 \ Uy<c; Ai), is as desired. So we can
assume that 7' is aperiodic.

For all N € [N]<®_ fix a transitive permutation oy of N and define
By = (Myen Bn) \ (Unez v Br)- Then the map Sy: [By|p — [Bnle,
given by Sy = U,.cn ToNM=n | T"(By), generates E | [By]g, so the
function Scoo = Uyepy<no Sn generates E | Uy p<xo [Bn]e-

Fix a transitive permutation o of Z*. For all N € [N]<¥ define

By = (ﬂnEN By \ UneN\N B,) N (ﬂneN UmZn B_n)
and

BXI = (ﬂneN B_,\ UneN\N B_,)nN (ﬂneN UmZn By,).

For all k € Z* and * € {—,+}, set By = Uycpyr By and define
Si: By = Bigy by Si = Uner T" 1 (B N T"(By,)). Then the
function S* = (J,cp+ Sk generates E [ |J, o+ By, for all x € {—, +}.
Set Bz = (Nnen Umsn B-m) N (MNyen Um>n B,,) and note that the
map Sz: Bz — Bz, given by Sz, = U,,cz+ T | (BzN(Bp\U1<per, Bm)),
generates F | Bz, sothe map S = S.,,US USTUSy is as desired. X

In the special case where T' is separable, the hypothesis on the car-
dinalities of the T-orbits is unnecessary:

Proposition 5.2. Suppose that X is a Borel space, T: X — X is a
Borel automorphism of X whose powers have Borel supports, and E is
a T'-decomposable equivalence relation on X. Then there ezists S € [T
for which E = E¥.

Proof. By Propositions [1 and 5.1] there exists Sy € [T | Perg(T)]
such that E | Per,(T) = Eser’“ M for all 1 < k < Ry. Then the function
S = U <pen, Sk 1s as desired. X

To extend this result further, we need one more basic observation:

Proposition 5.3. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X whose supports are Borel, A is a
countable subgroup of I', and R is a I'-decomposable binary relation on
X. Then EX N R is A-decomposable.

Proof. By Proposition [3.21 the set Bs = {x € X | x R J -z} is Borel
for all 6 € A. But Ex N R = Jsca graph(0 | Bs). X

Finally, we have the following:
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Proposition 5.4. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X whose supports are Borel, and E is
a I'-decomposable equivalence relation on X. Then there exists A < [[]
for which E = EX.

Proof. Forally € T, Propositionensures that £ ﬁEf is y-decompo-
sable, so Propositionyields T, € [y] for which ENEX = Ez . Then
the group A generated by {7, | v € I'} is as desired. X

Proposition 5.5. Suppose that X is a Borel space, I' is a countable
group of separable Borel automorphisms of X, Y C X is I'-invariant,
and T € [I' [ Y]. Then there exists S € [I'] such that S Y =T.

Proof. Fix Borel sets B, C X such that T = {J v [ (B, NY). We
can clearly assume that the sets B, are pairwise disjoint. Then the
[-invariant set

B={re X |(B,NI'2)yer and (yB, NI'z),er both partition 'z}
—{reX|VyelVi<23 €Ay -2 €6Bs\ User sy X' Br}
= ﬂ’yef‘ Nica User v 1(6"Bs \ U,\er\{a} N'By)

is Borel and the function S = id~p U, v [ (BN B,) is the desired
extension of T" to an element of [I']. =

Given a countable group I' of Borel automorphisms of a Borel space
X, we say that a set Y C X is I'-large if there is a finite set A C [[]
for which X = AY.

Proposition 5.6. Suppose that X is a Borel space and I" is an ape-
riodic countable group of separable Borel automorphisms of X. Then
there is a sequence (By)nen of pairwise disjoint I'-large Borel subsets

of X.

Proof. 1t is sufficient to show that every I'-large Borel set A C X can be
partitioned into two I'-large Borel subsets. Towards this end, note that
|ANTz| = Ny for all z € X, so Proposition [3.23)yields a I'-decomposable
equivalence relation F' on A whose classes have cardinality 2. As the in-
volution I generating F' is ['-decomposable and therefore Borel, Propo-
sition yields a Borel transversal B C A of F'. Set C = A\ B. As
T'Uid~y4 € [T, the fact that A= BUC = BUI(B) = CUI(C) implies
that B and C' are I'-large. X

For all sets A C T and Y C X, define Apyy = {6 € A |Y =Y}
and ATY ={5[Y |deA}
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Proposition 5.7. Suppose that X is a Borel space, I" is a group of
separable Borel automorphisms of X that is closed under countable
decomposition, A is an aperiodic countable subgroup of I', and (I',)nen
is an exhaustive increasing sequence of subsets of I'. Then there exist
a A-large Borel set B C X and n € N for which I'ipy | B C T, | B
and [Alsy | B C (T, N[A]) | B.

Proof. Appeal to Proposition to obtain a sequence (B, ),en of pair-
wise disjoint A-large Borel subsets of X. It is sufficient to show that if
A is a subgroup of I' containing A that is closed under countable de-
composition, then Ay | B, € (I, NA) [ B, for all but finitely many
n € N. Suppose, towards a contradiction, that there is an infinite set
N C N such that there exists A\, € (A¢p,y | Bn) \ (F'nNA) | By,) for
all n € N. As A is closed under countable decomposition, it contains
the automorphism X\ = ({J,.cy An) U (id [ ~U,.cy Bn)- As the latter is
in I';, for all but finitely many n € N, and therefore for some n € N,
this contradicts the fact that A, = A [ B, isnotin (I'y NA) [ B,. X

Define Ay ={6 € A|VyeY y=9-y}.

Proposition 5.8. Suppose that X is a Borel space, I" is a group of
separable Borel automorphisms of X that is closed under countable
decomposition, A is an aperiodic countable subgroup of I', and (I',)nen
is an exhaustive increasing sequence of subsets of I'. Then there exist
a A-large Borel set B C X and n € N for which I'(gy | B CI', | B,
Algpy | BC (TN [A]) | B, and T~p C (T',)*.

Proof. By replacing each T',, with ', N T',!, we can assume that each
', is symmetric. By Proposition [5.7] there exist a A-large Borel set
X’ € X and n' € N with the property that I'\xn | X' C I'y | X'
and [Alixy | X' C T N[A]) [ X', so'ypy [ B C Ty | B and
[Alipy | B C (T'y N[A]) | B for all Borel sets B C X'. As the diagonal
on X is the graph of the identity function on X and EX | X' =
U,cr graph(y | (supp(y) N X' N ~y~1X")), it follows from Proposition
that the union of these two equivalence relations is I'-decomposable,
so Proposition [5.4] yields a countable subgroup A’ of [A] for which EY,
is the aforementioned union. Set IV = I'nxs and I}, = (I',)~x for all
n € N. As A is aperiodic and X’ is A-large, it follows that A’ [ X’ is
aperiodic, so Proposition yields a (A’ | X')-large Borel set B C X’
and n > n' for which (I [ X');py [ B C (I, | X') | B. Then
Dy | B=(' [ X | BC (@, | X) | B="T, | Band Bis
A-large. As the diagonal on X is the graph of the identity function
on X and EX | B =, graph(y | (supp(y) N BN~y 'B)), it follows

from Proposition that the union of these two equivalence relations
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is I'-decomposable, so Proposition yields a countable subgroup A”
of [A] for which EY,, is the aforementioned union.

It remains to show that if v € ['~p, then v € (I',)*. By Theorem ,
there exist 6, A € [({y [ B} U (A" | B))] for which v | B = [§, A]. Then
d0Uid~p € I' and AUid~p € I", so there are extensions ¢’ € I, and
N c F;L of 6 U idxl\B and AU idNX/. Then

[5/’)\/] TB _ 5/)\/(§/>—1()\/)—1 rB
= 0NN
=[5, 7]
=71 B,

[0 N T (XN B) = &N (") 7 (AN) T X'\ B)
= dN((0) T X\ B)(N)™
= (XN [ (X"\ B))(X)~!
=0 [ (X"\ B)
= idxn B,

and
5. X] T ~X = SN () V) X

=N ~X
= IV [ X))
— (¢ 1 ~X7) (8
= id~x,
soy=1[0,N] e (,)"~ b
We can now give the following:

Proof of Theorem[7. By Proposition [5.8] there exist n € N and a A-
large Borel set A C X for which I'~4 C (I',)*. As in the proof of
Proposition there exist a Borel set B C A and an involution ¢4 €
[A] such that t4B = A\ B. Fix k € N and 0, € [A] with the property
that X = (J,., &;8. Without loss of generality, we can assume that
(Sozld and 51:LA. Set BJ:(SJB\U (SZB for all]<k

1<J
Lemma 5.9. Suppose that i < j < k. Then there is an involution
Li; € [A] for which v; j(B; U B;) C A.

Proof. We can assume that j > 2, since otherwise the identity func-
tion is. as desirgd. Ifi=0, Ell1en (L,ﬁ}l '[ B;)*! UidN('BjULA(rlB‘j) is
as desired. If i = 1, then (§;" | B;) UldN(BjU(S;lBj) is' as desired.
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If i = j, then either of the last two functions is as desired. And
(0,1 1 Bi)* U (1ad; ' | By U id(g,up, U5 Biuao~ ;) 19 as desired oth-
erwise. 53

By increasing n, we can assume that ¢ ; € I', for all ¢« < j < k.
We will show that I' C (I,)%¢+1. By Theorem [I} it is sufficient to
show that every involution « € I' is in (T,,)3**+1. Towards this end,
set BZ'J‘ = (Bl N LBj) U (LBl N B]) and L;J = LZ'J‘(L [ Bi,j)[/Lj U idNLi,jBi,j
for all i < j < k. Then ¢ = [[;c, oy tijtijtij € (DD y Ty ) FEHD/2 C
(Fn)6k(k+1)/2 _ (Fn)Sk(k+1). %4

In order to establish a similar result concerning the k-Bergman prop-
erty, we again need several preliminaries.

Proposition 5.10. Suppose that X is a Borel space, ' is a count-
able group of Borel automorphisms of X, and A,B C X are Borel.
Then there is a I'-invariant Borel set Y C X for which there are I'-
decomposable injections ¢: ANY — BNY andp: B\Y — A\Y.

Proof. Fix an enumeration (7,)neny of I' and recursively define sets
Ap = (A\U,pen Am) N H(B\ Uppen YmAm)- Set Ase = U,,en An and
By = U,en 7nAn, and observe that the function 7 = (J, .y vn [ An is
a bijection of A, with B..

Lemma 5.11. Ifz € X, then ANTx C A, or BNT'z C B.

Proof. Suppose that there exists y € (ANT'z)\ Ay. Given z € BNz,
fix n € N for which =, - y = z, and observe that the facts that y ¢ A,
and y € A\ U,,-,, Am ensure that y ¢ v, (B \ U,,<, YmAm), in which
case z & B\ U,,<,, YmAm, 50 2 € By, thus BNT'z C B. b

It follows that the set Y ={z € X | AnNTz C A} =~I'(A\ Ax)
and the maps ¢ =7 [ (ANY) and ¢ = 7! | (B\Y) are as desired. X

A Borel embedding of a Borel space X into a Borel space Y is a Borel
injection ¢: X — Y sending Borel sets to Borel sets.

Proposition 5.12 (Schroder—Bernstein). Suppose that X and Y are
Borel spaces and ¢: X — Y and ¢:' Y — X are Borel embeddings.

Then there is a Borel set B C (Y') for which (¢ | ~B)U (¢! | B) is
a Borel isomorphism of X with'Y .

Proof. Endow the set Z = X 1Y with the smallest Borel structure
containing the Borel subsets of X and Y. Then the function T: Z — Z,
given by T'= ¢ U1, is a Borel embedding. Define C' =, . T"(Z2).
If z € C, then the orbit of z under T is finite or of type Z, so both
¢ and ¥~ induce bijections of [z]r N X with [z]lr NY. If z € ~C,
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then there is a unique point w € [z]r \ T(Z), in which case ¢ induces a
bijection of [z]pNX with [2]rNY if w € X, and ¢! induces a bijection
of [z]r N X with [z]r NY if w € Y. In particular, it follows that the
set B=1[Y \ ¢(X)]r N X is as desired. X

Given a countable group I' of Borel automorphisms of a Borel space
X, al'-compression of a Borel set B C X is a ['-decomposable injection
¢: B — B for which B C T'(B\ ¢(B)). A set B C X is I'-compressible
if there is a I'-compression of B.

Proposition 5.13. Suppose that X is a Borel space, ' is a countable
group of Borel automorphisms of X, and B C X 1is a I'-compressible
Borel set. Then there is a I'-decomposable bijection w: I'B — B.

Proof. By Proposition|5.12] it is sufficient to produce a I'-decomposable
injection 7: I'B — B. Towards this end, fix an enumeration (7, )nen of
I, as well as a I'-compression ¢: B — B of B, and set A = B\¢(B). For

all n € N, define A,, = v, "A\U, .o, T A and © = |, (0" 070) | A,
As the sets of the form ¢"(A), for n € N, are pairwise disjoint and
contained in B, it follows that 7 is as desired. X

Proposition 5.14. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X, and B C X is a I'-compressible
Borel set. Then there is an involution I € [I'] for whichI'B = BUI(B).

Proof. Fix a I'-compression ¢: B — B of B and set A = B\¢(B). Then
the sets C' = (I'B\ B) UU,,cy #*"(A) and D = {J,,cy 9> (A) are I
compressible and I'B = I'C = I'D, so two applications of Proposition
yield a I'-decomposable bijection 7: C — D, in which case the
function I = 7' Uid~cup) is an involution and the fact that 'B\ B C
C =nY(D) =I1(D) C I(B) ensures that T'B = BUI(B). X

Proposition 5.15. Suppose that X is a Borel space, I' is a countable
group of Borel automorphisms of X, A C X is a Borel set, T € [I],
and AUT(A) is I'-compressible. Then A is I'-compressible.

Proof. Note that if D C X is a Borel set and ¢: D — D is a I'-
compression of D, then the definition of the induced transformation ¢
from the proof of Proposition makes sense for any Borel set C' C D
(even though ¢ is not surjective). Setting C" = CNY, oy ¢"(C\o(C))N
MNnen Umsn @ "(C), it follows that ¢¢ is a I'-compression of C".
Define B = T(A), fix a [-compression ¢ of the set D = AU B,
and observe that the functions ¢ = ¢ Uidanranay and o' = (épr |
(B'\T'A")) Uidpnrp(urar)) are I'-compressions of ANT' A" and BN
(TB'\TA"), so T"'oy/oT is a I'-compression of AN (I'B'\T'A’), thus
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YU(T Loty oT) is a I'-compression of AN(TA’'UT'B’). To see that A is
['-compressible, it therefore only remains to show that A CT'A'UT'B’.

Suppose that x € A. Then there exists y € (D \ ¢(D)) NT'z. Fix
C € {A, B} for which y € ), cxUps, @ ™(C), let n be the least
natural number such that the point z = ¢"(y) is in C, and observe
that z € C'\ ¢(C),s0 z € ', thusx € 'z CTA UTB'. X

A countable group I' of Borel automorphisms of a Borel space X is
compressible if X is ['-compressible.

Proposition 5.16. Suppose that X is a Borel space, I is a compress-
ible countable group of Borel automorphisms of X, and A C X is a
['-complete Borel set. Then the following are equivalent:

(1) The set A is I'-compressible.
(2) There is an involution I € [I'] for which X = AUI(A).
(3) The set A is I'-large.

Proof. As (1) = (2) follows from Proposition and (2) = (3)
is trivial, it is sufficient to show that (3) = (1). By the obvious
induction, we need only show that if n € Z* and (7;);<, is a sequence
of elements of [I'] for which A UJ;., Ti(A) is I'-compressible, then
AU, Ti(A) is I'-compressible. But if B = AU J,_, Ti(A), then
Aul,.,T.(A) € BUT,(B), so BUT,(B) is I'-compressible, thus
Proposition [5.15] ensures that B is I'-compressible. X

We can now give the following:

Proof of Theorem[§ By Proposition [5.8 there exist a A-large Borel
set B € X and n € N with the property that I'ypy [ B € I';, | B,
Alggy | B C (I,n[A]) | B, and I'~g C (I',)*. As Proposition
ensures that B can be partitioned into two A-large Borel sets, by
replacing B with one of these sets we can assume that the set A = ~B is
also A-large. Another application of Proposition yields a partition
of this set B into A-large Borel sets C, D C X.

Lemma 5.17. There is an involution ¢ € [A] for which 1B = AU C.

Proof. By Propositions and [5.16] there is a A-decomposable bi-
jection m: D — A. Then the function ¢ = 7' Uid¢ is as desired. &

By increasing n, we can assume that ¢ € I',,.

Lemma 5.18. The sets 'iauey [ (AUC) and [Aljauey [ (AUC) are
contained in (I',)* | (AUC) and (T, N[A])? | (AUC).
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Proof. If v € I'taucy, then 1yt € T'ypy, so there exists § € I',, for which
1yt | B=19 | B, thus

YT (AUC) =wuyu [ (AUC)

=1(tyt [ B)t

=1(0 | Bt

=0 [ (AUC),
hence v | (AUC) € (T,)? | (AU C). Moreover, if v € [A], then there
issuch a d in [A],soy [ (AUC) € (T, N[A])? | (AUCO). )

As F{A} f A g F{AUC} [ A and [A]{A} [ A g [A]{AUC} [ A, Lemma
5.18 implies the analogous fact in which A U C' is replaced with A.
It remains to show that if y € T, then v € (T',)**.

Lemma 5.19. There is a Borel automorphism T € (T, N [A])? for
which B\ T71(vA) is (AU {y})-large.

Proof. By Proposition [5.10} there is a partition of X into (A U {v})-
invariant Borel sets Y, Z C X for which there are (A U {~})-decompo-
sable injections ¢: (A\vA)NY — (B\vA)NY and ¢: (B\vA)NZ —
(A\vA)N Z. Then the extension of ¢** to X supported by the union
of (A\ vA) NY and its image under ¢ is in [(A U {v})], as is the
extension of ¢¥*! to X supported by the union of (B \ vA) N Z and
its image under ¥. As B is A-large, it follows that vB = ~yA =
(A\TA)U(B\YA) is (AU{7)) Jarge, thus (B\7A)Y is ((AU{7}) | ).
large and (A\vA) N Z is ((AU{~}) | Z)-large. As A and C are
A-large, Propositions and yield a A-decomposable bijection
T ANZ — CNZ. Then 7' Uidpuy) 6 [A], SO Lemma“ylelds
T € (I, N[A])? for which T' | (AUC) = 7 Uidauc)ny- The fact that
((B\yA)NY) =T (BNY)\T™(y4)

= (YATHANY)\ T (v4)

=Y\ (ANY)\ T (vA)

= (BNY)\T7(v4)

= (B\T™'(yA))nY

and
HANYANZ) =T HANZ)\ T (vA)
NZ)\ T~ (vA)
NZ)\T7'(vA)
'(yA)NZ

Ccnz
c(BnZ
— (B\T~
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ensures both that (B \ T7'(yA)) NY is ((AU{v}) | Y)-large and
(B\T'(vA) N Zis (AU {y}) | Z)large, thus B\ T-!(yA) is
(AU {v})-large. %

Lemma 5.20. There is a Borel automorphism S € T',, for which (S~'o
T-H(vA) C AUC and (AUC)\ (S~ toT 1) (vA) is (AU{y, S})-large.

Proof. By Proposition [5.6] there is a partition of B \ T7!(vA) into
(AU {~})-large Borel sets C’, D' C X. By Propositions and [5.16)
there are (AU{~})-decomposable bijections ¢: C' — (BNT~*(vA))UC’
and ¢: D — D’. Then idy U U € [(AU{y})] < T, so there exists
S eTl, for which S | B = ¢ U, in which case

(STToT H(yA) =S HANT HyA)U S HBNT H(yA) CAUC

and C" C S(C)\ T 1(~vA), so S(AUC)\ T H~vA) is (AU {7})-large,
thus (AUC)\ (S7toT71)(vA) is (AU {~, S})-large. 5

Lemma 5.21. There exists R € (T',,)® with (R"'o S~ oT 1) (vA) = A.

Proof. By Propositions and [5.16], there are (AU{~, S})-decompo-
sable bijections ¢: A — (S71o T (yA) and ¥: C — (AUC)\ (S7'o
T=1)(yA). Then ¢UyUidp € [(AU{v,S})] < T, so Lemmal5.18]yields
R € (T',)? for which R | A = ¢, and clearly any such automorphism is
as desired. 53

By the comment immediately following the proof of Lemma [5.18§]
there exists Q € (T',)? for which Q | A = (R"'oS™1oTtoy) | A. Then
supp(Q 1o R-108 10T 107) C B, 50 Q'o R-1oS 10T oy € (T,)1,
thus y € (ToSoRoQ)(T,)* C (T,)°T,(T,)*(T,)*(T,)* = (T,)".

Given a set X, a partial function d: X x X — R, € > 0, and a set
Y C X, define By(Y,e) = {x € X | Jy € YV d(x,y) < €}. Given a
binary relation R on X, define R™' = {(y,z) € X x X | # R y} and
R*! = RUR™!. Given a Borel measure y on a Borel space X and Borel
automorphisms S, T: X — X for which supp(S~'T) is Borel, define

du(8,T) = p(supp(S™'T)) = p({z € X | S(z) # T()}).

Proposition 5.22. Suppose that X is a Borel space, I" is an aperiodic
countable group of separable Borel automorphisms of X, there is a I'-
invariant Borel probability measure p on X, e <1, and k € Z*. Then
there is an ezhaustive increasing sequence (I'y)nen of subsets of [I'] with

the property that Vn € N [['] # By, (Tn)*, €).

Proof. As T' is countable, there is an exhaustive increasing sequence
(A )nen of finite subsets of I'. For all n € N, define

Fn={yelllln{reX |y z¢Auw}) <(1-¢/k}.
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The fact that (A,,)nen is increasing ensures that so too is (I',),en. The
fact that pu(X) < oo implies that [['] =, T

neN - n:

Lemma 5.23. If v € ([,)*, then u({zx € X | v-z ¢ (A,)kx}) <1—e.

Proof. Fix ; € T, with the property that v = [],_, 7. For all j <k,
set B = {z € X | (ILic;n) -« ¢ An(Ilic;%) - ¥} and note that
w(Bj) = ul(Ilic; i) Bj) = p{z € X | ;-2 ¢ Apa}) < (1—€)/k since
pu is D-invariant. As {z € X [ y-z ¢ (A,)*z} C U, By, it follows
that ({e € X 70 ¢ (A)e}) < X, nBy) < 1.

Let G be the digraph on X with respect to which distinct points
r and y are related if and only if y € (A,)*z. Then the vertical

sections of G*! are finite, so Propositions [1.8] [3.22] and yield

a ['-decomposable equivalence relation F' on X whose classes are G-
independent sets of cardinality two. Let ¢ be the involution whose
graph is F'\ A(X), and appeal to Lemma [5.23)to see that if v € (T',,)*,
then d,(v,¢) > p({z € X | v -z € (A,)F}) > e <

Finally, we can give the following:

Proof of Theorem[9. By Proposition , we need only show —(1) =
(2). As Becker—Kechris’s generalization of Nadkarni’s theorem (see
[Nad90] and [BK96, Theorem 4.3.1]) ensures that I' is compressible,
this follows from Theorem [l X

Proof of Theorem[10. Again by Proposition [5.22, we need only show
—(1) = (2). As the generalization of Hopf’s theorem analogous to
Becker—Kechris’s generalization of Nadkarni’s theorem (see [Hop32]
and [Nad98, §10]) yields a I'-invariant p-conull Borel set B C X for
which the corresponding group I' [ B compressible, Theorem |8 ensures
that [I" | B] has the k-Bergman property, thus so too does [I']/pu. X

6. BOOLEAN ALGEBRAS

For each Boolean algebra B, set B = B\ {0}, let Eq(B) denote the
equivalence relation on Dec(BY) = {z € BY | Vn € Nz(n+1) < z(n)}
given by z E¢(*B) y <= dIn € NVm > n x(m) = y(m), and define
Xy = Dec(BY)/Eo(B). Note that if b € 9B, then the set

Ny = {z € Dec(BY) | 3n € N z(n) < b}
= {z € Dec(BY) | In € NVm > n x(m) < b}

is Eo(B)-invariant. Define N, = M/EO(%) for all b € 8.
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Proposition 6.1. Suppose that B is a Boolean algebra and b € ‘8.
Thenb=0 <= N, = 0.

Proof. Clearly No = 0. But if b # 0, then the Ey(B)-class of the
N-sequence with constant value b is in N, so N # 0. X

Proposition 6.2. Suppose that B is a Boolean algebra and a,b € 8.
Then Ny = N, NN,

Proof. 1f [z]g,(s) € Nas, then there exists n € N for which z(n) < a-b,
so z(n) < a and z(n) < b, thus [z]g,@) € N, NN, Conversely, if
]y () € No NN, then there exist m,n € N for which z(m) < a and
z(n) < b, so x(max{m,n}) < a-b, thus [z]|g,s) € Nas. X

Proposition [6.2] ensures that the sets of the form N, are closed under
finite intersections. Endow Xg with the topology they generate.

Proposition 6.3. Suppose that B is a Boolean algebra and B C *B.
Then B = 1 if and only if U,cz Nb is dense.

Proof. Note first that if a,b € 8, then Propositions and ensure
that b < —a <= a-b=0 < Nopy=0 <— N, NN, = 0. But
B # 1 if and only if there is a non-zero element a of B such that
Vb € B b < —a, whereas Propositions and imply that J,cz No

is not dense if and only if there is a non-zero element a of 8 such that

Vb e BN, NN, = 0. X

We say that a topological space is a Baire space if countable inter-
sections of dense open sets are dense.

Proposition 6.4. Suppose that B is a Boolean algebra. Then X s
a Baire space.

Proof. By Propositions [6.1 and [6.2] it is sufficient to show that if b is a
non-zero element of B and (U, ),y is a sequence of dense open subsets
of Xg, then My N (,cn Un # 0. Towards this end, set by = b. Given
n € N and a non-zero element b, < b of B for which Ny, € ,,-,, Un,
note that A, N U, is a non-empty open set by Proposition [6.1, so
Propositions [6.1] and yield a non-zero element b,,.1 of B such that
Niyoow € N, NU,, in which case Ny, .y, € N, ., \ N, = 0, thus
Proposition ensures that b,.1 — b, = 0, hence b,,; < b,. It only
remains to observe that [(b,)nen]o ) € Npen Now € NoNNpen Un- B

So as to avoid confusion with the Borel structure generated by the
underlying topology, we use the term o-Borel to refer to the Borel
structure on each set X C Xy generated by the sets of the form NV;NX.
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Proposition 6.5. Suppose that B is a o-complete Boolean algebra and
B C Xy 1s 0-Borel. Then there exists b € B with the property that
B A N, is meager.

Proof. By induction on the construction of B. If there exists b € B
for which B = N, then B A N, = (). If there exists a € B for which
(~B) A N, is meager, then set b = —a and note that N, C ~N, so

B ANy = (~B) & (~Nb)
C ((~*B) ANa) U N2 & (~NG))
= ((+B) A No) U((~Np) \ Na)
= ((~B) & Na) U ((#Np) 01 (~NG))
= ((~B) & Na) U~(Ny UNG),

which is meager by Proposition [6.3] If there exist o-Borel sets B, C X
and b, € B such that B = J, oy B, and B, A N, is meager for all
n € N, then set b= 3", b, and note that | J,.y Ny, €Ny € ~N_y, s0

BAN, € (BA (UpenNo)) U (Upen No,) & N)
(Unen Bn) & (Unen No)) U N \ U,y Ve, )
(Unen Ba &N, ) U (N0 (2 U e M)
(Unen Bn & Np, ) U ((~N=) 0 (2 Uen Mo, )
= (Unen Bn A N,,)) U~(Nop UU, e M)
which is meager by Proposition |6.3] X

(
(
(
(

N 1N

Recall that a subset of a topological space is Gy if it is a countable
intersection of open sets.

Proposition 6.6. Suppose that X is a Baire space, I' is a countable
group of homeomorphisms of X, and 'Y C X is comeager. Then there
15 a I'-invariant dense G5 set Z C Y.

Proof. Fix dense open sets U, € X for which ("),.y U, €Y. Then the
fact that v is a homeomorphism ensures that vU,, is dense and open
for all v € I' and n € N, so the I-invariant set Z = [\, cp [,y YUn s
G5 and the fact that X is a Baire space implies that Z is dense. X

For each order homomorphism ¢: 2l — 95 between Boolean algebras,
define ¢: Xo — X by ¢([]g,@)) = [¢ © 2], (). Given a set ® of such
homomorphisms, define ® = {¢ | ¢ € ®}.

Proposition 6.7. Suppose that A is a Boolean algebra. Thenidy = idxy -
Proof. If x € Dec(2Y), then m([l’h{go(g{)) = [idg 0 @]gy) = [2]mo(2). ®
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Proposition 6.8. Suppose that A, B, and € are Boolean algebras
and ¢: A — B and ¢Y: B — & are order homomorphisms. Then

Yod=1o0g.

Proof. If x € Dec(2Y), then ¢ o ¢([z]gy@)) = [¥) © ¢ 0 2]g,(e) Whereas
(¥ 0 @) ([x]zoe) = (¢ © 2]po(m)) = [ © @ 0 a]k(e)- =

Proposition 6.9. Suppose that 2 and B _are Boolean algebras and
m: A — B is an isomorphism. Then 7=t = =1 and T(N,) = Ny for
all a € A, so 7 is both a homeomorphism and a o-Borel isomorphism.

Proof. Note first that ﬁ_liF, sincerlof=nlorm =Iidy = idx,
and Tor~! =7mor! =idyg =idyx, by Propositions and [6.8 It
follows that if @ € 2 and y € Dec(BY), then

W]row) € TNL) = 7 H[Yleo(m) € Na
— (7o ylgy@) €N
< dneN(rloy)n)<a
<= dn e Ny(n) <n(a)
= [Yleocw) € Nrta),

50 T(N,) = Ny(q) for all @ € A. This easily implies that 7 sends open
sets to open sets. As 7 is bijective, it also ensures that 7 sends o-Borel
sets to o-Borel sets. But the analogous fact holds of 7—! and therefore
of 771, so 7 is a homeomorphism and a o-Borel isomorphism. X

Given a countable group I' of automorphisms of a o-complete Bool-
ean algebra B, we say that a function ¢: B — *B is ['-decomposable if
there is a partition (b, ),er of 1 such that Vb € B ¢(b) = > v(b-b,).
Clearly every such function is an order homomorphism. As Proposi-
tions [6.716.9] ensure that I' is a countable group of o-Borel automor-
phisms of X, we can also consider our earlier notion of I'-decomposa-
bility for o-Borel partial functions on Xy.

Proposition 6.10. Suppose that B is a o-complete Boolean algebra,
I’ is a countable group of automorphisms of B, and ¢: B — B is ['-
decomposable. Then there is a dense open set U C X with the property
that ¢ | U is T'-decomposable.

Proof. Fix a partition (b,)er of 1 with the property that Vb € B ¢(b) =
> erV(b-b,). By Propositio, the open set U = |, Vs, is dense.
Tosee that ¢ [ U = U, 7 [ My, , note that if y € T and [2]g,s) € N,
then (¢ox)(n) = (yox)(n) for alln € N sufficiently large that z(n) < b,
so ¢ ox Eo(B) v o, thus ¢([z]r,(m) =7 - [2]ro()- <
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For all b € B, endow the set B, = {a € B | a < b} with the Boolean
algebra structure it inherits from 8.

Proposition 6.11. Suppose that B is a o-complete Boolean algebra,
I is a countable group of automorphisms of B, (by) er is a partition
of 1, and ¢: B — B is given by ¢(b) = > v(b-b,) for all b € B.
Then the following are equivalent:

(1) The function ¢ is an isomorphism of B with Bya).

(2) The function ¢ is injective.

(3) The sequence (yb,)er is a partition of ¢(1).

Proof. Clearly (1) = (2). To see =(3) = —(2), note that
¢(1) = > cr Vby, 0if (7b)4er is not a partition of ¢(1), then there are
distinct v, 6 € I" for which the element of 8 given by b = H/\G{WS} Aby
is not zero, and since A™'h < by, for all A € {v,d}, it follows that v~ 'b
and 0~1b are distinct non-zero elements of B but ¢(A~10) = A\"1o =10
for all A € {v,0}, so ¢ is not injective. To see (3) = (1), note that
¢ | By, = [ By, is an isomorphism of By, with B, for all v € T,
s0 if (by)yer and (vby),er are partitions of 1 and ¢(1), then ¢ is an
isomorphism of B with B 41). X

The following two observations ensure that if I' is a countable group
of automorphisms of a og-complete Boolean algebra 8, then the set of
['-decomposable automorphisms of 8 is also a group.

Proposition 6.12. Suppose that B is a o-complete Boolean algebra, T’
1s a countable group of automorphisms of B, and 7 is a I'-decomposable
automorphism of B. Then ' is I'-decomposable.

Proof. Fix a partition (a ) er of 1 with the property that Vb € B 7(b) =
> er V(b - a,) and define b, = y~'a 1 for all y € I'. Proposition
ensures that (b,),er is a partition of 1. Moreover, if b < b,, then
b < a,-1, so w(yb) = v 'yb = b, thus 7~ (b) = ~b, hence if b € B,
then 7~1(b) = Zwer b b,) = Zverv(b - by). X

Proposition 6.13. Suppose that B is a o-complete Boolean algebra,
[’ is a countable group of automorphisms of B, and ¢,y : B — B are
['-decomposable. Then ¢ o 1) is I'-decomposable.

Proof. Fix partitions (c¢y),er and (ds)ser of 1 with the property that
Vo eB gb) =3 rv(b-cy)and Vb € B Y(b) = > 51 6(b - ds) and de-
fine b, s = (07 'c,)-ds forally,6 € Tand by = > by -1y forall A € T
As (¢)qer is a partition of 1, so too is (6 '¢,),er for all § € T', thus
(by5)ver is a partition of ds for all § € I'. As (ds)ser is a partition of 1,
80 t00 18 (by5)y.ser- As ({(7,7 ') | ¥ € I'})ser is a partition of I' x T,
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it follows that (by)xer is a partition of 1. Moreover, if b < b, 5, then
db < ¢, and b < ds, hence (¢o1))(b) = ¢(6b) = ~db, thus if b < by, then

(poth)(b) = Z’yEF(gb o) (b- b’y,’yfl)\)

=2 e YV A by 1)
= A(b- by),

soif b € B, then (po ) (b) =\ cp(@o¥)(b-br) = \cp Ab-by). ®

The full group of a countable group I' of automorphisms of a o-
complete Boolean algebra B is the group [['] of I'-decomposable auto-
morphisms of 2B. In the special case that there is a single automorphism
7w of B that generates I', we define the full group of m to be the full
group of I'. We also use [r] to denote [I'].

Proposition 6.14. Suppose that B is a o-complete Boolean algebra, I’
is a countable group of automorphisms of B, and 7 € [I']. Then there

is a I'-invariant dense G5 set X C Xg for which m | X € [I' | X].

Proof. By Proposition[6.10] there is a dense open set U C X for which
7 | U is [-decomposable. As Proposition [6.9] ensures that each element
of I' is a homeomorphism, Proposition yields a [-invariant dense
Gs set X C U. As X is m-invariant and Proposition also implies

that 7 is a o-Borel automorphism, it follows that 7 | X € [I' [ X]. ®
In order to generalize the converse of Proposition [6.14] we will need:

Proposition 6.15. Suppose that B is a Boolean algebra, a and b are
elements of B, A and B are subsets of Xg for which A N N, and
B A N, are meager, and ¢ and 1) are automorphisms of 8.

(1) If ¢(a) - ¥(b) =0, then p(Na) NP(Np) = 0.
(2) If p(A) Np(B) = 0, then ¢(a) - (b) = 0.

Proof. To establish (1), appeal to Propositions , and to see
that ¢(Na) N Y(Ny) = Noa) N Nyw) = No(ay-up) = No = 0.
To establish (2), first apply Propositions and to see that

No@yw) = No@ N Nyw)
= o(Na) NY(NG)
C (P(A) A G(NL)) U (9(B) A (Ny))
— S(A AN UB(B A N).

As Propositionensures that ¢ and ) are homeomorphisms, it follows
that the last set is meager, so Proposition implies that the first is
empty, thus Proposition [6.1| ensures that ¢(a) - (b) = 0. X
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Given a property P of elements of a topological space X, we write
V*x € X P(z) to indicate that {x € X | P(x)} is comeager.

Proposition 6.16. Suppose that B is a o-complete Boolean algebra, T’
is a countable group of automorphisms of B, X C Xy is a I'-invariant
comeager set, and T € [[' | X]. Then there exists = € [I'] such that
Ve € Xg 7(z) = T(2).

Proof. Fix a partition (B,),er of X into o-Borel subsets of X for which
T =U,er7 | By For each v € T', Proposition yields b, € B such
that B, A N, is meager. As Proposition ensures that idg = idx,,,
Proposition implies that (b,),er and (vb,),er are sequences of
pairwise disjoint elements of B. As X =) B, =, 7B, and
Proposition ensures that each element of I' is a homeomorphism,
it follows that (J,cp My, and U, cp 7NV, are comeager, thus so too is
U, er N, by another application of Proposition [6.9 Proposition [6.4
therefore implies that J .y N, and U, cp Nop, are dense, so Propo-
sition ensures that (b,)yer and (vb,),er are partitions of 1, thus
Proposition implies that we obtain an element of [I'] by setting
m(b) = > crv(b-by) for all b € B. But the set Y =J, o B, NN},
is comeager and if [y|g, ) € Y, then there exists v € I' for which
[Y]Eyw) € By NN, and if n € N is sufficiently large that y(n) < b,
then (moy)(n) = (yoy)(n), so moy Ey(B) v oy, in which case
ﬁ([y]Eo(%)) =7 [y]Eo(%) = T([?/]Eo(%))’ thus f Y=T r Y. X

We next turn to a basic observation concerning Boolean algebras:

Proposition 6.17. Suppose that B is a Boolean algebra, b € B, and
¢ and Y are automorphisms of B for which ¢(b) # (b). Then there is
a non-zero element a < b of B with the property that ¢(a) - ¥ (a) = 0.

Proof. As at least one of ¢(b) — ¢(b) and 1 (b) — ¢(b) is not zero, the
same holds of the elements of B given by

c=¢" (d(0) —¥(b) =b— (¢~ o ¥)(D)

and

d =y (Y(b) — ¢(b)) =b— (¥~ 0 9)(b),
so it only remains to note that ¢(c) - ¥(c) < (4(b) — (b)) - (b)) =0

and ¢(d) - (d) < ¢(b) - (¥(b) — ¢(b)) = 0, thus c or d is as desired. X

The following corollary ensures that the automorphism satisfying the
conclusion of Proposition [6.16] is uniquely determined:

Proposition 6.18. Suppose that B is a Boolean algebra and ¢ and i
are automorphisms of B with the property that V*'x € Xo ¢(x) = ¥ (z).
Then ¢ = 1.
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Proof. 1f there exists b € B for which ¢(b) # (b), then Proposition
yields a non-zero element a < b of B with the property that
é(a) - ¥(a) = 0, so Proposition ensures that ¢(N,) NY(N,) =0,
thus ¢(z) # ¢ (z) for all x € N,, contradicting Proposition [6.4] X

Given an automorphism 7 of 28, we say that an element b of B is
m-independent if b- m(b) = 0. We say that an automorphism 7 of
a o-complete Boolean algebra ‘B is separable if there are countable
sets By, C B of 7*-independent elements of 8 with the property that
Vk € Z*Va < =X By, a = 7*(a).

Proposition 6.19. Suppose that B is a o-complete Boolean algebra
and 7 1s a separable automorphism of 8. Then there is a T-invariant
dense Gs set X C Xy for which ™ | X is a separable o-Borel automor-
phism.

Proof. Proposition ensures that 7 is a o-Borel automorphism, thus
so too is its restriction to any 7-invariant set. For all k € Z*, fix
a countable set B, C B of m*-independent elements of B with the
property that a = 7%(a) for all a < —XBy. As Proposition implies
that idg = id Xy, Proposition [0.15] ensures that each set in the family
By = {N, | b € By} is *-independent. As Proposition [6.3) implies that
the open set U, = N_xp, UJ By is dense, it follows that (,cz+ Uk
is comeager. As Proposition ensures that 7 is a homeomorphism,
Proposition yields a 7-invariant dense G5 set X C [, cz+ Ur. But
if k € Z* and [x]g,w) € X \ U By, then [z]g,w) € N_sp,, and if n € N
is sufficiently large that x(n) < —XBy, then z(n) = (7% o z)(n), so
z Eo(B) 7" o z, thus [z]g ) = T ([2]r,(m))- =

Proposition 6.20. Suppose that B is a o-complete Boolean algebra,
™ is an automorphism of B, and there is a T-invariant comeager set
X C Xy for which 7 | X is a separable o-Borel automorphism. Then
T 1s separable.

Proof. For all k € Z*, Proposition ensures that the support of
7% | X is a o-Borel subset of X, so Proposition implies that it
is the union of a countable set Bj, of #*-independent o-Borel subsets
of X. By Proposition [6.5] there is a function ¢x: By — 9B with the
property that B A N, (B is meager for all B € By. As Proposition
ensures that idg = idx,,, Proposition [6.15| implies that the elements of
the set By = ¢p(By) are m*-independent. Suppose, towards a contra-
diction, that there is a non-zero element ¢ < —X B, of B for which
¢ # 7" (c). Proposition then yields a non-zero 7*-independent el-
ement d < ¢ of B. As idy = idy,, Proposition [6.15] ensures that Ny
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is 7*-independent and therefore contained in the support of 7%. As
Proposition [6.4] implies that N is not meager, there exists B € By, for
which BNAN; is not meager. Setting b = ¢x(B), it follows that N, NNy
is not meager, so Proposition [6.2] ensures that N4 is not meager, thus
Proposition |6.1] implies that b- d is not zero, contradicting the fact that
d < —YB, < —b. X

Given a non-zero element b of B8 and a property P of elements of 8,
we write VPa < b P(a) to indicate that VO < ¢’ <530 < a < da’ P(a).

Proposition 6.21. Suppose that B is a Boolean algebra, b is a non-
zero element of B, k € Zt, and (m;)i<k s a sequence of automorphisms
of B such that Vi < j < k¥®a < b m;(a) # m;(a). Then there is a non-
zero element a < b of B such that Vi < j < k m;(a) - m;(a) = 0.

Proof. Fix an enumeration (i, jn)n<kk—1)/2 of {(i,5) € k x k| i < j},
set ay = b, and given n < k(k — 1)/2 and a non-zero element a), < b of
B, fix a non-zero element a,, < a;, of B for which 7, (a,) # 7;, (a,) and
appeal to Proposition to obtain a non-zero element a,,,; < a, of
B such that m;, (a;,41) - 75, (a7,1) = 0. Then ay, ) » is as desired. ®

We say that a countable group I' of automorphisms of B is aperiodic
on a non-zero element b of B if

Vk € ZYVPc < b3(i)ick € TMVi < j < kVPd < ¢ vid # ;d.

When b = 1, we also say that I' is aperiodic. For all k£ € N, the period
> k part of a countable group I' of permutations of a set X is given by

Persi(T') ={z € X | [T'z| > k}.

Proposition 6.22. Suppose that B is a Boolean algebra, b is a non-
zero element of B, and I is a countable group of automorphisms of B
that is aperiodic on b. Then the aperiodic part of I is comeager in N.

Proof. Tt is sufficient to show that if & € Z", then the period > k part
of I’ contains a dense open subset of N}. But if ¢ < b is a non-zero
element of B, then the aperiodicity of I" on b yields a non-zero element
c < of B and (7;)i<x € T'¥ such that Vi < j < kV®d < ¢ yid # v,d,
so Proposition [6.21] gives rise to a non-zero element d < ¢ of B such
that Vi < j < k (yid) - (v;d) = 0, and if [2]g,) € Ny and n € N
is sufficiently large that x(n) < d, then (v, o z)(n) - (y;ox)(n) =0
for all i < j < k, so 7y, 02 Eo(B) yjox for all i < j < k, thus

i - [17]]5;0(%) 75 ’)/_] [tho(%) for all 7 < j < /{Z, hence Nd - Perzk(F). X

We say that an automorphism 7w of B is aperiodic on a non-zero
element b of B if Vk € ZT™V®a < b a # 7%(a). When b= 1, we also say

that 7 is aperiodic.
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Proposition 6.23. Suppose that B is a Boolean algebra, b is a non-
zero element of B, and m is an automorphism of B. Then 7 is aperiodic
on b if and only if (m) is aperiodic on b.

Proof. Suppose first that 7 is aperiodic on b. To see that (7) is ape-
riodic on b, suppose that & € Z* and ¢ < b is a non-zero element of
B. Then the aperiodicity of m on b ensures that V¥c < ¢ ¢ # 7i(c)
for all 0 < i < k, so VPc < ¢ 7i(e) # ni(c) for all i < j < k,
thus Proposition [6.21] yields a non-zero element ¢ < ¢’ of 28 such that
Vi < j <k w'(c) 7 (c) =0. Setting v; = 7" for all i < k, it follows
that ~;d # 7;d for all non-zero elements d < c of B and i < j < k.
Suppose now that (r) is aperiodic on b. To see that 7 is aperiodic on
b, suppose that k € Z* and @’ < b is a non-zero element of 98, appeal to
the aperiodicity of (r) on b to obtain a non-zero element a” < o’ of B
and (n;)icki1 € Z¥ 1 such that Vi < j < k+1V®a < a” 7" (a) # 7" (a),
and fix ¢ < j < k4 1 for which n; — n; is divisible by n, as well as
an element a < a” of B with the property that 7™ (a) # 7" (a). Then
a# " (a), so a # 7"(a). X

Given a non-zero element b of B and a property P of elements of 283,
we write 3%a < b P(a) to indicate that 30 < o’ < V0 < a < @’ P(a).
We say that 7 is periodic if Vb > 03k € Z*3%a < b a = 7"(a), or
equivalently, if 7 is not aperiodic on any non-zero element of ‘B.

Proposition 6.24. Suppose that B is a Boolean algebra and 7 is a
periodic automorphism of 8. Then the periodic part of ™ contains a
dense open set.

Proof. 1t is sufficient to note that if b is a non-zero element of 28, then
the periodicity of 7 yields k& € Z* and a non-zero element ¢’ < b
of B such that a = 7%(a) for all a < @/, and if [2]g,w) € Ny and
n € N is sufficiently large that x(n) < @/, then z(n) = (7% o 2)(n), so
x Eo(B) 7" oz, thus [z]g, ) = T ([2]g,(w)), hence Ny C Per(7). ®

Suppose now that K C Z". We say that 7 has strict period K if
Vo> 03k € K3®Pa<bk=min{i € Z* | a = 7'(a)}.

Proposition 6.25. Suppose that B is a Boolean algebra, K C Z* is
finite, and w is an automorphism of B that has strict period K. Then
chm(K) = ldB

Proof. If there exists b € B for which b # 7'°™5)(b), then Proposition
yields a non-zero m'*™¥)_independent element ¢ < b of B, but
the fact that 7m has strict period K yields a non-zero element d < ¢
of B for which d = ©'“(5)(d), contradicting the fact that d is also
mlem(K)_independent. X
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Proposition 6.26. Suppose that B is a Boolean algebra and 7 is a
periodic automorphism of 8. Then © has strict period Z+.

Proof. If b is a non-zero element of B, then the periodicity of 7 yields
k € Z* for which there is a non-zero element @’ < b of B such that
a = 7¥(a) for all @ < a’. Let k be the least such positive integer
and fix such an a’. Then V®a < @ a # 7'(a) for all 0 < i < k, so
VPa < a 7'(a) # 7(a) for all i < j < k, thus Proposition [6.21] yields a
non-zero element a” < a’ of B such that Vi < j < k n'(a”) -7 (a") = 0,
in which case &k = min{i € Z* | a = 7'(a)} for all non-zero elements
a < a” of B. X

Proposition 6.27. Suppose that B is a Boolean algebra, K C Z*,
and 7 is an automorphism of B for which the period K part of 7 is
comeager. Then m has strict period K.

Proof. Note first that m cannot be aperiodic on any non-zero element
b of B, since otherwise Propositions [6.22] and [6.23] ensure that the
aperiodic part of 7 is comeager in N, contradicting Proposition [6.4]
Proposition therefore implies that 7 has strict period Z*, so we
need only show that if ¢’ is a non-zero element of B and k € Z* has the
property that VO < a < a' k = min{i € Z* | a = 7*(a)}, then k € K.
But if [z]g, @) € Ny and n € N is sufficiently large that z(n) < o/,
then k = min{i € Z* | z(n) = (7" o x)(n)}, so
k=min{i € ZT | 2 Eo(B) 7’ o z'}
=min{i € Z" | [z]g,(w) = 7' ([2]eo()) },

thus NV, C Pery(7), hence Proposition [6.4] ensures that k € K. b

Given a countable group I' of automorphisms of a o-complete Bool-
ean algebra B, we say that an element b of B is I'-complete if 1 =
Z'yel" vb. A T'-compression is a I'-decomposable injection ¢: B — B

for which —¢(1) is I'-complete. We say that I' is compressible if there
is such a I'-compression.

Proposition 6.28. Suppose that B is a o-complete Boolean algebra, T’
is a countable group of automorphisms of B, and ¢ is a I'-compression.
Then there is a I'-invariant dense Gs set X C X for which ¢ [ X is

a I'-compression of X.

Proof. By Proposition [6.10}, there is a dense open set U C Xy for which
¢ | U is T'-decomposable. As ¢(Xp) C Nya)y € ~N_y1), Proposition
6.9 ensures that U, cp My(—p)) = Uyer TN-6(1) € U, er 7(~0(Xp)). As
Proposition implies that the first of these sets is dense, the last

is comeager. As Proposition ensures that each element of T is
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a homeomorphism, Proposition yields a T-invariant dense G5 set
X CUNU,er ¥(~¢(Xs)). As Proposition [6.11] implies that ¢ is an
isomorphism of B with B4, Proposition ensures that ¢ is injec-
tive, so to see that ¢ [ X is a ['-compression of X, it only remains to

note that X € U, er 7(~0(Xn)) € U, er Y(~0(X)). @
An involution of 9B is an automorphism 7 of B for which 72 = idg.

Theorem 6.29. Suppose that B is a o-complete Boolean algebra and
15 a separable automorphism of B. Then there are involutions iy, Lo, L3 €
(7] for which m = 13013 0;.

Proof. By Proposition[6.19] there is a 7-invariant dense G5 set X C X
for which 7 | X is a separable o-Borel automorphism. By Theorem
, there are involutions I, I, I3 € [7 [ X] with the property that
7 | X = 3010 [;. By Propositions [6.6] [6.9, and there exist
L1, 2,3 € [r] and a 7-invariant dense G set Y C X with the property
that V1 < i <37 | Y = I, [ Y. Then 7;?(y) = I?(y) = y and
T(y) = (Iz3olyol1)(y) = (zotzofy)(y) forall 1 <i<3andy € Y, so
t; is an involution for all 1 < i < 3 and 7 = 13 0 15 0 11 by Propositions

[6.8 and [6.18] =

Theorem 6.30. Suppose that k > 2, B is a o-complete Boolean al-
gebra, w is an aperiodic automorphism of B, and there are periodic
automorphisms ¢y, . .., ¢y € [w] with the property that m = ¢ro---0 ;.
Then 7 1s separable.

Proof. By Propositions[6.6} [6.9] [6.14] [6.22] [6.23] and [6.24], there is a 7-

invariant dense G5 set X C Xy such that 7 | X is an aperiodic o-Borel
automorphism and V1 <i < k ¢; | X is a periodic element of [r | X].
As Proposition ensures that @ = ¢y 0 --- o ¢y, Theorem [ implies
that m | X is separable, thus so too is m by Proposition [6.20 X

Theorem 6.31. Suppose that ky > 2, ko > 3, B is a o-complete Bool-
ean algebra, and m 1s an aperiodic separable automorphism of 8. Then
there exist ¢1, ¢o € [rt] such that ¢y has strict period {ki}, ¢o has strict
period {1,ks}, and m = ¢y 0 ¢;.

Proof. By Propositions [6.6], [6.9} [6.19} [6.22] and there is a 7-

invariant dense G set X C Xg such that 7 [ X is an aperiodic separa-
ble o-Borel automorphism. By Theorem [3] there exist S;, 55 € [7 | X]
for which every orbit of S; has cardinality ki, every orbit of S; has
cardinality 1 or ko, and @ | X = Sy 0 S;. By Propositions 6.9]
and [6.16] there exist ¢1,¢2 € [7] and a 7T-invariant dense G set Y C
X such that V1<i<2¢; [ Y =S;Y. Then [yl = yls,| = Fu,
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[y]55] = |W]s,| € {1, k2}, and 7(y) = (S2 0 S1)(y) = (¢2 0 ¢1)(y) for all
y € Y, so ¢ and ¢y have strict periods {k; } and {1, k2} by Proposition

and ™ = ¢ o ¢; by Propositions [6.8 and [6.18] =

Theorem 6.32. Suppose that k > 3, B is a o-complete Boolean alge-
bra, and 7 is an aperiodic separable automorphism of 6. Then there
exist g1, ¢y € [7] such that ¢7 and ¢ are conjugate in [], ¢1 and ¢o
have strict period {1,k}, and m = ¢ 0 ¢1.

Proof. By Propositions [6.6], [6.9 [6.19] [6.22] and there is a -

invariant dense Gs set X C Xy with the property that 7 | X is
an aperiodic separable o-Borel automorphism. By Theorem [4], there
exist ;51,5 € [7 | X]| with the property that every orbit of S
and S has cardinality 1 or k, S;' = S0 Sy 0S5, and 7@ | X =
S5 0 S1. By Propositions , , and , there exist ¢, ¢1,po € [7]
and a 7-invariant dense G5 set Y C X such that ¢ [Y =S | Y and
VI<i<26; [Y =S [Y. Then |[yl5] = |[ys,
i<2,¢1 (y) =57 (y) =(S0805)(y) = (po csz(/ﬁ Y)(y), and
T(y) = (S2051)(y) = (¢ 0 ¢1)(y) for all y € Y, so ¢; has strict period
{1,k} forall 1 <i <2 by Proposition and ¢7' = pogpy0¢! and
T = ¢ 0 ¢1 by Propositions [6.8 and [6.18] =

Theorem 6.33. Suppose that k > 3, B is a o-complete Boolean alge-
bra, I' is an aperiodic countable group of separable automorphisms of
B, and 7 € [[']. Then there exist ¢1, ¢y € 1] such that ¢7" and ¢ are
conjugate in [I'], 1 and ¢o have strict period {1,2,k}, and m = ¢90 ¢y .

Proof. By Propositions[6.6} [6.9} [6.14} [6.19, and [6.22] there is a [-invari-

ant dense G5 set X C Xy such that I' | X is an aperiodic group of sep-
arable o-Borel automorphisms and 7 [ X € [[' | X]. Theorem [ yields
S e[l ] X]and Sy,S; € [# | X] for which every orbit of S; and S, has
cardinality 1, 2, or k, S;' = So0Sy058 ,and 7 | X = S,085;. B
Propositions [6.6] [6.9] and [6.16] there exist ¢ € [, ¢1, ¢2 € [n], and a
[-invariant dense G5 set Y C X with the property that ¢ [ Y =S | Y
andVl<2<2¢bZ 'Y =5; Y. Then |y ]?\—][ yls,| € {1,2 k:}forall
1<i<2 ¢ ():Sl_() (S0850S57 ) (y) = (popr0ht)(y), and
7(y) = (Sg 051)(y) = (20 é1)(y) for all y € Y, s0 ¢ has strict period
{1,2,k} for all 1 <4 < 2 by Proposition [6.27] 7 and o7 = podyop!
and ™ = ¢, o ¢ by Propositions [6.8 and [6.18] X
We say that a group I' of automorphisms of a o-complete Boolean

algebra is closed under countable decomposition if [A] C T for every
countable subgroup A of I'.
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Theorem 6.34. Suppose that B is a o-complete Boolean algebra and
[' is a group of separable automorphisms of B that is closed under
countable decomposition and has an aperiodic countable subgroup A.
Then I' has the Bergman property.

Proof. We first reduce the theorem to the special case where I' = [A].
Suppose, towards a contradiction, that I' does not have the Bergman
property. Then there is an exhaustive increasing sequence (I',,)nen of
subsets of I with the property that there exists v, € I'\ (I',)" for all
n € N. Let A’ be the group generated by {~, | n € N} UA and define
I"=[Aland I/, =T"NT, for all n € N. Then ~, € I\ (I'})" for all
n € N, so IV does not have the Bergman property, contradicting the
aforementioned special case of the theorem.

To establish the special case, suppose that (I';,),en is an exhaustive
increasing sequence of subsets of I' and appeal to Propositions 6.9
[6.19, and [6.22) to obtain a A-invariant dense G set X C Xy for which
A | X is an aperiodic group of separable o-Borel automorphisms. For
all n € N, let I/ be the set of o-Borel automorphisms of X that agree
with an element of T, on a comeager set. Proposition [6.16] ensures

that (I, )nen is an exhaustive increasing sequence of subsets of [A [ X,
so Theorem [7] yields k € N for which [A | X] = (I'})k. To see that
' = (%)%, suppose that v € T, apply Proposition to obtain
T € [A ] X] with the property that V*z € Xy 7 -2 = T(x), and fix
Ti,..., T, € I}, for which T'=Tyo0--- 0T, as well as yy,..., v € I'y
with the property that V*z € Xo 7; - © = T;(z) for all 1 <i < k. By
Propositions [6.6) and there is a A-invariant dense G5 set Y C X
suichthat ¥ [Y =T [ YandV1<:< k[ Y =T, Y, soy Y =
TIY=(Tho-oT) Y= 7)Y, thusy = € (Ty)F
by Propositions and [6.18] =

Theorem 6.35. Suppose that B is a o-complete Boolean algebra and
[’ is a group of separable automorphisms of B that is closed under
countable decomposition and has a compressible countable subgroup A.
Then I' has the 14-Bergman property.

Proof. We first reduce the theorem to the special case where I' = [A].
Suppose, towards a contradiction, that I' does not have the 14-Berg-
man property. Then there is an exhaustive increasing sequence (I',,)nen
of subsets of T with the property that there exists 7, € T'\ (T',)** for all
n € N. Let A’ be the group generated by {7, | n € N} UA and define
I"=[Aland T}, =T'NT, for all n € N. Then v, € I\ (I,))** for
all n € N, so I'" does not have the 14-Bergman property, contradicting
the aforementioned special case of the theorem.
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To establish the special case, suppose that (I',),en is an exhaustive
increasing sequence of subsets of I" and appeal to Propositions 6.6} [6.9]
[6.19, and [6.28 to obtain a A-invariant dense G5 set X C Xg for which
A | X is an aperiodic group of separable o-Borel automorphisms. For
all n € N, let I} be the set of o-Borel automorphisms of X that agree
with an element of T, on a comeager set. Proposition [6.16] ensures
that (I ),en is an exhaustive increasing sequence of subsets of [A | X],
so Theorem [§ yields n € N for which [A | X] = (I",)*. To see that
I' = (I',)', suppose that v € TI', apply Proposition to obtain
T € [A ]| X] with the property that V*z € Xy 7 -2 = T(x), and fix
Ty,..., Ty €I for which T'=Tjy0---0Ty, as well as vy, ...,74 € '),
with the property that V*z € Xo 7; - 2 = T;(2z) for all 1 <i < 14. By
Propositions and there is a A-invariant dense Gs set Y C X
such that ¥ [ Y =T [ Yand Vl < i < 47 Y =T, 1Y,
soy Y =T1Y = (Tyo---0oTh) [ Y = (Fua---71) 'Y, thus

¥ =47 € (['y)"* by Propositions and [6.18] X

We close this section with the observation from [Fre04, §382M] that
all automorphisms of complete Boolean algebras are separable in the
presence of full choice, thereby eliminating the need for separability
in the hypotheses of the special cases of Theorems [6.29] and [6.31}H6.35]
for complete Boolean algebras under AC. The first of these simplified
special cases was originally established in [Ryz93].

Proposition 6.36 (AC). Suppose that B is a complete Boolean algebra.
Then every automorphism of B is separable.

Proof. We will establish the ostensibly stronger fact that if 7 is an
automorphism of B, then there is a m-independent element b of 8 with
the property that a = m(a) for all elements a < — (7~ 1(b) + b + (b))
of 8. Towards this end, note that if (by)a<, is a strictly increasing
sequence of m-independent elements of 98, then the element of B given
by b= 3", b is itself r-independent, for if b- 7(b) # O, then there
exist a < 7 such that b, - 7(b) # 0 and 8 < 7 such that b, - 7(bs) # O,
contradicting the fact that byax{a,s is m-independent. It follows that
there is a maximal such sequence, in which case the corresponding
ordinal v is a successor, so the corresponding element b of B is b,_;. But
if there is an element ¢ < —(771(b) + b+ (b)) of B for which ¢ # 7(c),
then Proposition yields a non-zero m-independent element d < ¢
of B, and since b-m(d) = w(7~1(b)-d), it follows that (b+d)-7(b+d) =
(b-m(b))+ (b-m(d))+ (d-7(b))+ (d-7(d)) = 0, so b+d is m-independent,

contradicting the maximality of (ba)a<~- X
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