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Abstract. We show that an aperiodic countable equivalence re-
lation fails to admit an invariant probability measure exactly when
every conjugacy class generating its full group does so in boundedly
many steps.

Introduction

This paper is a continuation of [Milb], to which we refer the reader
for basic definitions and notation. Our primary goal is to show:

Theorem 1. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and n ≥ 18. Then
exactly one of the following holds:

(1) There is an E-invariant Borel probability measure.
(2) ∀T ∈ [E] ([E] = 〈Cl[E](T )〉 =⇒ [E] = Cl[E](T )n).

Theorem 2. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, µ is an E-conservative E-quasi-
invariant Borel probability measure on X, and n ≥ 12. Then exactly
one of the following holds:

(1) There is an E-invariant Borel probability measure ν � µ.
(2) ∀T ∈ [E] ([E] = [〈Cl[E](T )〉]≡µ =⇒ [E] = [Cl[E](T )n]≡µ).

We obtain Theorems 1 and 2 from known results and:

Theorem 3. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and the support of
T ∈ [E] is E-large. Then there is an involution I ∈ Cl[E](T )2 whose
support is E-large.

In §1, we prove a pair of representation results for periodic automor-
phisms. In §2, we establish Theorems 1–3.
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1. Periodic automorphisms as products

We begin this section by providing a proof of the following well-
known fact for the reader’s convenience:

Proposition 1. Suppose that n > 0. Then there are involutions
ι1, ι2 : Z/nZ → Z/nZ with the property that ι2(0) ≡ 0 (mod n) and
(ι1 ◦ ι2)(k) ≡ 1 + k (mod n) for all k ∈ Z/nZ.

Proof. For all k ∈ Z/nZ, define

ι1(k) ≡ 1− k (mod n) and ι2(k) ≡ −k (mod n).

Clearly ι2(0) ≡ −0 (mod n) ≡ 0 (mod n). To see that ι1 and ι2 are
involutions, note that ι21(k) ≡ ι1(1−k) (mod n) ≡ 1−(1−k) (mod n) ≡
k (mod n) and ι22(k) ≡ ι2(−k) (mod n) ≡ −(−k) (mod n) ≡ k (mod n).
So it only remains to observe that (ι1 ◦ ι2)(k) ≡ ι1(−k) (mod n) ≡
1− (−k) (mod n) ≡ 1 + k (mod n). �

In particular, this yields the following corollary:

Proposition 2. Suppose that n > m > 0. Then there are involutions
ι1 : n→ n and ι2 : n−m→ n−m with the property that (0 · · · n−1) =
ι1 ◦ (ι2 ∪ (n−m · · · n− 1)).

Proof. By Proposition 1, there are involutions ι′1, ι
′
2 : {0, . . . , n−m} →

{0, . . . , n−m} such that ι′2(n−m) = n−m and ι′1 ◦ ι′2 = (0 · · · n−m).
Set ι1 = ι′1 ∪ id{n−m+1,...,n−1}, ι2 = ι′2 � (n − m), and σ = ι2 ∪ (n −
m · · · n− 1). Then k < n−m =⇒ (ι1 ◦ σ)(k) = (ι′1 ◦ ι′2)(k) = k + 1,
n−m ≤ k < n− 1 =⇒ (ι1 ◦ σ)(k) = id{n−m+1,...,n−1}(k + 1) = k + 1,
and (ι1 ◦ σ)(n− 1) = ι1(n−m) = (ι′1 ◦ ι′2)(n−m) = 0. �

We now turn towards Borel automorphisms:

Proposition 3. Suppose that n > m > 0, X is a standard Borel space,
and T : X → X is a Borel automorphism whose orbits all have cardi-
nality n. Then there exist I, S ∈ [T ] such that I is an involution, the
restriction of S to each orbit of T is the disjoint union of an involution
and an m-cycle, and T = I ◦ S.

Proof. By Proposition 2, there are permutations ι, σ : n→ n such that ι
is an involution, σ is the disjoint union of an involution and an m-cycle,
and (0 · · · n− 1) = ι ◦ σ.

Lemma 4. There is a Borel function φ : X → n such that φ � [x]T is
a conjugacy of T � [x]T with (0 · · · n− 1) for all x ∈ X.

Proof. Fix a Borel transversal B ⊆ X of T and define φ(T i(x)) = i for
all i < n and x ∈ X. �
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Define R(x) = ((φ � [x]T )−1 ◦ ρ ◦ φ)(x) for all (R, ρ) ∈ {(I, ι), (S, σ)}
and x ∈ X. Then φ � [x]T is a conjugacy of I � [x]T , S � [x]T , and
T � [x]T with ι, σ, and (0 · · · n − 1), so I � [x]T is an involution,
S � [x]T is the disjoint union of an involution and an m-cycle, and
T � [x]T = (I ◦ S) � [x]T . �

By passing to an aperiodic equivalence relation, we obtain greater
control over the cardinalities of the orbits of the composants:

Proposition 5. Suppose that X is standard Borel space, E is an aperi-
odic countable Borel equivalence relation on X, ki ≥ 2 for all i < 3, and
every orbit of T0 ∈ [E] has cardinality k0. Then there exist T1, T2 ∈ [E]
such that every orbit of Ti has cardinality ki for all i ∈ {1, 2} and
T0 = T1 ◦ T2.

Proof. By [Mil00], there are a finite group G and g0, g1, g2 ∈ G such
that gi has order ki for all i < 3 and g0 = g1g2. Define Ui : G → G by
Ui(g) = gig for all g ∈ G and i < 3. By [KM04, Proposition 7.4], there
is a finite Borel subequivalence relation F of E whose classes are all
T0-invariant and have cardinality |G|.

Lemma 6. There is a Borel function φ : X → G such that φ � [x]F is
a conjugacy of T0 � [x]F with U0 for all x ∈ X.

Proof. Fix Borel transversals A ⊆ G of U0 and B ⊆ X of F . Then
there is a Borel function ψ : A × B → X such that x F ψ(g, x) for all
g ∈ A and x ∈ B and ψ(A×B) is a transversal of T0. Define φ : X → G
by (φ ◦ T k

0 ◦ ψ)(g, x) = Uk
0 (g) for all g ∈ A, x ∈ B, and k < k0. �

For all i ∈ {1, 2} and x ∈ X, define Ti(x) = ((φ � [x]F )−1 ◦Ui ◦φ)(x).
Then φ � [x]F is a conjugacy of Ti � [x]F with Ui, so every orbit of
Ti � [x]F has cardinality ki and T0 � [x]F = (T1 ◦ T2) � [x]F . �

2. Main results

The aperiodic part of an equivalence relation E on X is given by

Aper(E) = {x ∈ X | [x]E is infinite}.

We say that a set Y ⊆ X is E-aperiodic if Y = Aper(E � Y ).

Theorem 7. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and the support of
T ∈ [E] is E-aperiodic. Then there is an involution I ∈ [E] for which
(I ◦ T )2 is an involution and supp(T ) 4E 2supp((I ◦ T )2).
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Proof. For all n ≥ 2, define Bn = {x ∈ X | |[x]T | = n} and An =
Aper(E � Bn). By Proposition 5, there is an involution In ∈ [E � An]
such that every orbit of In ◦ (T � An) has cardinality four.

Define A∞ = Aper(EX
T ). By [Mila, Theorem 3], there is an involution

I∞ ∈ [E � A∞] such that every orbit of I∞ ◦ (T � A∞) has cardinality
one or four. As the support of I∞ ◦ (T � A∞) intersects every I∞-orbit,
it follows that supp(T � A∞) 4E 2supp(I∞ ◦ (T � A∞)).

We now handle the case that E is smooth, for which it is sufficient
to find an involution I ∈ [E] such that (I ◦ T )2 is an involution whose
support is E-aperiodic and has the same E-saturation as the support
of T . For all n ≥ 5, Proposition 3 yields an involution I ′n ∈ [E � Bn]
such that the restriction of I ′n ◦ (T � Bn) to each orbit of T � Bn is a
disjoint union of an involution and a four-cycle. Set B = ∼(

⋃
2≤n≤4An∪⋃

n≥5Bn∪A∞). Then [Mila, Proposition 1.1] gives rise to an involution
I ′ ∈ [E � B] for which I ′ ◦ (T � B) is an involution, in which case the
involution I =

⋃
2≤n≤4 In ∪

⋃
n≥5 I

′
n ∪ I∞ ∪ I ′ is as desired.

For the general case, note that the above special case allows us to
assume that An = Bn for all n ≥ 2. Then the trivial extension I of⋃

n≥2 In ∪ I∞ to X is as desired. �

Remark 8. For all k ≥ 3, the same idea can be used to produce an
involution I ∈ [E] for which every orbit of (I ◦ T )2 has cardinality 1 or
k and supp(T ) 4E 2supp((I ◦ T )2).

Remark 9. For all J ∈ [E] whose orbits all have cardinality 1 or k
and for which 2supp(J) 4E supp(T ), a technical modification of the
proof that every aperiodic Borel automorphism is the composition of
an involution and an automorphism whose orbits all have cardinality
1 or 2k (see [Mila, Theorem 3]) can be used to ensure that (I ◦ T )2 is
conjugate to J off of an E-invariant Borel set on which E is smooth.

Remark 10. One can simplify the above proof and obtain the gener-
alization where supp(J) 4E supp(T ) by employing the (unpublished)
fact that if T is aperiodic, then there exist I, S ∈ [T ] such that I is an
involution, every orbit of S has cardinality 2k, and T = I ◦ S.

The following fact and [Milb, Theorem 1] easily yield Theorem 1:

Theorem 11. Suppose that X is a standard Borel space, E is a com-
pressible countable Borel equivalence relation on X, and the support of
T ∈ [E] is E-large. Then [E] ⊆ Cl[E](T )18.

Proof. By Theorem 7, there is an involution I ∈ [E] for which (I◦T )2 is
an involution whose support is E-large. As the proof of [Mila, Theorem
14] ensures that Inv([E]) ⊆ Cl[E]((I ◦ T )2)3 ⊆ Cl[E](T )6, the fact that
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every Borel automorphism is the composition of three involutions in its
full group (see, for example, [Mila, Theorem 1]) allows us to conclude
that [E] ⊆ Inv([E])3 ⊆ Cl[E](T )18. �

The following fact and [Milb, Theorem 2] easily yield Theorem 2:

Theorem 12. Suppose that n ≥ 1, X is a standard Borel space, E
is an aperiodic countable Borel equivalence relation on X, S, T ∈ [E],
supp(S) 4E nsupp(T ), and the support of T is E-aperiodic. Then
S ∈ [Cl[E](T )12n]≡E .

Proof. By Theorem 7, there is an involution I ∈ [E] with the prop-
erty that (I ◦ T )2 is an involution and supp(T ) 4E 2supp((I ◦ T )2), so
supp(S) 4E 2nsupp((I ◦ T )2). By [Mila, Theorem 1], there are involu-
tions I1, I2, I3 ∈ [T ] for which S = I1 ◦ I2 ◦ I3. As supp(Im) ⊆ supp(S)
for all m ∈ {1, 2, 3}, it follows from [Milb, Theorem 12] that I1, I2, I3 ∈
[Cl[E]((I ◦ T )2)2n]≡E ⊆ [Cl[E](T )4n]≡E , thus S ∈ [Cl[E](T )12n]≡E . �

Remark 13. One can show that Cl[E](T )4 = [Cl[E](T )4]≡E by combin-
ing the fact that every permutation of N is a product of four conjugates
of any permutation with infinite support (see [Ber73]) with the (unpub-
lished) generalization of [Milb, Proposition 9] to automorphisms. This
allows us to conclude that S ∈ Cl[E](T )12n in Theorem 12, which yields
the generalization of Theorem 1 where n ≥ 12.

Remark 14. By employing Remark 8 and using the fact that ev-
ery aperiodic Borel automorphism is the composition of two automor-
phisms in its full group whose orbits all have cardinality 1 or k in place
of the fact that every Borel automorphism is the composition of three
involutions in its full group and the generalization of [Milb, Theorem
12] to automorphisms whose orbits all have cardinality 1 or k, one can
further strengthen the conclusion of Theorem 12 to S ∈ Cl[E](T )8n,
which yields the generalizations of Theorems 1 and 2 where n ≥ 8.

Remark 15. By employing Remark 9, one can further strengthen the
conclusion of Theorem 12 to S ∈ Cl[E](T )4n, which yields the further
generalizations of Theorems 1 and 2 where n ≥ 4.

Remark 16. By employing Remark 10, one can further strengthen the
conclusion of Theorem 12 to S ∈ Cl[E](T )2n when n ≥ 2.
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