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ABSTRACT. We show that an aperiodic countable equivalence re-
lation fails to admit an invariant probability measure exactly when
every conjugacy class generating its full group does so in boundedly
many steps.

INTRODUCTION

This paper is a continuation of [Milb], to which we refer the reader
for basic definitions and notation. Our primary goal is to show:

Theorem 1. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and n > 18. Then
exactly one of the following holds:

(1) There is an E-invariant Borel probability measure.

(2) VT € [E] ([E] = (Clg(T)) = [E] = Clg(T)").

Theorem 2. Suppose that X s a standard Borel space, E is a count-
able Borel equivalence relation on X, p is an E-conservative E-quasi-
invariant Borel probability measure on X, and n > 12. Then ezactly
one of the following holds:

(1) There is an E-invariant Borel probability measure v < p.
(2) VT € [E] ([E] = (Clig(T))]=, = [E] = [Clg(T)"]=,).

We obtain Theorems [1l and 2] from known results and:

Theorem 3. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and the support of
T € [E] is E-large. Then there is an involution I € Clig)(T)* whose
support is E-large.

In §I], we prove a pair of representation results for periodic automor-
phisms. In §2] we establish Theorems [TH3]
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1. PERIODIC AUTOMORPHISMS AS PRODUCTS

We begin this section by providing a proof of the following well-
known fact for the reader’s convenience:

Proposition 1. Suppose that n > 0. Then there are involutions
t1,ta: Z/nZ — Z/nZ with the property that 12(0) = 0 (mod n) and
(t1012)(k) =14k (mod n) for all k € Z/nZ.

Proof. For all k € Z/nZ, define
t1(k) =1—k (mod n) and (k) = —k (mod n).

Clearly 12(0) = —0 (mod n) = 0 (mod n). To see that ¢; and ¢ are
involutions, note that t3(k) = ¢;(1—k) (modn) = 1—(1—k) (mod n) =
k (mod n) and i2(k) = 15(—k) (mod n) = —(—k) (mod n) = k (mod n).
So it only remains to observe that (11 0 t2)(k) = t1(—k) (mod n) =
1—(=k) (mod n) =1+ k (mod n). O

In particular, this yields the following corollary:

Proposition 2. Suppose that n > m > 0. Then there are involutions
t:n—nand ty: n—m — n—m with the property that (0 -+ n—1) =
tpo(eeU(n—m -+ n—1)).

Proof. By Proposition [I], there are involutions ¢{, t5: {0,...,n—m} —
{0,...,n—m} such that t,(n—m) =n—mand tjoiy = (0 --- n—m).
Set 1 = 1] Uidgn—mit,.m-1}, t2 = ty [ (n—m), and 0 = 1, U (n —

-----

-----

and (1yo0)(n—1) =u(n—m)= (], owy)(n—m)=0. O
We now turn towards Borel automorphisms:

Proposition 3. Suppose thatn > m > 0, X is a standard Borel space,
and T: X — X is a Borel automorphism whose orbits all have cardi-
nality n. Then there exist 1,S € [T such that I is an involution, the
restriction of S to each orbit of T' is the disjoint union of an involution
and an m-cycle, and T =10 S.

Proof. By Proposition[2] there are permutations ¢, c: n — n such that ¢
is an involution, o is the disjoint union of an involution and an m-cycle,
and (0 --- n—1)=100.

Lemma 4. There is a Borel function ¢: X — n such that ¢ | [x]r is
a conjugacy of T | [x|r with (0 --- n—1) for all z € X.

Proof. Fix a Borel transversal B C X of T and define ¢(T"%(x)) = i for
all i <nand z € X. U
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Define R(z) = (6 | [z]r) ™ 0 po ¢)(x) for all (R, p) € {(1,1), (S,0)}
and x € X. Then ¢ | [z]|r is a conjugacy of I [ [z]r, S | [z]r, and

T | [z]p with ¢, 0, and (0 --- n — 1), so I [ [z]r is an involution,
S | [z]r is the disjoint union of an involution and an m-cycle, and
T [zlr =081 [alr O

By passing to an aperiodic equivalence relation, we obtain greater
control over the cardinalities of the orbits of the composants:

Proposition 5. Suppose that X is standard Borel space, E is an aperi-
odic countable Borel equivalence relation on X, k; > 2 for alli < 3, and
every orbit of Ty € [E] has cardinality ko. Then there exist Ty, Ty € [E]
such that every orbit of T; has cardinality k; for all i € {1,2} and
TO = T1 O TQ.

Proof. By [Mil00], there are a finite group G and g, g1,92 € G such
that g; has order k; for all i < 3 and gy = ¢g192. Define U;: G — G by
Ui(g) = gig for all g € G and i < 3. By [KMO04l, Proposition 7.4], there
is a finite Borel subequivalence relation F' of F whose classes are all
To-invariant and have cardinality |G|.

Lemma 6. There is a Borel function ¢: X — G such that ¢ | [z|p is
a conjugacy of Ty | [x]p with Uy for all x € X.

Proof. Fix Borel transversals A C G of Uy and B C X of F. Then
there is a Borel function ¢: A x B — X such that « F' ¢ (g, z) for all
g € Aand z € B and ¢(A X B) is a transversal of Ty. Define ¢: X — G
by (poTFow)(g,z) = Uk(g) for all g € A, x € B, and k < k. O

For all i € {1,2} and = € X, define T}(z) = ((¢ | [z]r) o U;0d)(x).
Then ¢ | [z]F is a conjugacy of T; | [x]r with U;, so every orbit of
T; | [z]F has cardinality k; and Tp | [z]p = (T1 0 T) | [2]F. O

2. MAIN RESULTS
The aperiodic part of an equivalence relation F on X is given by
Aper(E) = {z € X | [z]g is infinite}.
We say that a set Y C X is E-aperiodic if Y = Aper(E [ Y).

Theorem 7. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and the support of
T € [E] is E-aperiodic. Then there is an involution I € [E] for which
(I oT)? is an involution and supp(T) <g 2supp(({ o T)?).
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Proof. For all n > 2, define B, = {x € X | |[z]r| = n} and A, =
Aper(E | B,). By Proposition [f there is an involution [,, € [E | A,)]
such that every orbit of I, o (T' [ A,) has cardinality four.

Define A, = Aper(E7'). By [Mila, Theorem 3], there is an involution
I € [F | Ay such that every orbit of I, o (T | As) has cardinality
one or four. As the support of I, o (T | As) intersects every I.-orbit,
it follows that supp(7T | As) <E 2supp(lse o (T | Ax)).

We now handle the case that F is smooth, for which it is sufficient
to find an involution I € [E] such that (I o T')? is an involution whose
support is E-aperiodic and has the same FE-saturation as the support
of T. For all n > 5, Proposition [3| yields an involution I} € [E [ B,)]
such that the restriction of I! o (T' | B,,) to each orbit of T' | B, is a
disjoint union of an involution and a four-cycle. Set B = ~({J,.,,«, 4AnU
U,,»5 BnUAw). Then [Milal, Proposition 1.1] gives rise to an involution
I' € [E | B] for which I’ o (T | B) is an involution, in which case the
involution I = Uy, oy In U U, 55 I}, U Ic U 1" is as desired.

For the general case, note that the above special case allows us to
assume that A, = B, for all n > 2. Then the trivial extension I of
U, 50 In U Ic to X is as desired. O

Remark 8. For all £ > 3, the same idea can be used to produce an
involution I € [E] for which every orbit of (I o T')* has cardinality 1 or
k and supp(T) <g 2supp((I o T)?).

Remark 9. For all J € [E] whose orbits all have cardinality 1 or k
and for which 2supp(J) <g supp(T'), a technical modification of the
proof that every aperiodic Borel automorphism is the composition of
an involution and an automorphism whose orbits all have cardinality
1 or 2k (see [Mila, Theorem 3]) can be used to ensure that (I oT)? is
conjugate to J off of an E-invariant Borel set on which E is smooth.

Remark 10. One can simplify the above proof and obtain the gener-
alization where supp(J) <g supp(7’) by employing the (unpublished)
fact that if T is aperiodic, then there exist I,.S € [T] such that [ is an
involution, every orbit of S has cardinality 2k, and T'= 10 S.

The following fact and [Milb, Theorem 1] easily yield Theorem :

Theorem 11. Suppose that X is a standard Borel space, E is a com-
pressible countable Borel equivalence relation on X, and the support of
T € [E] is E-large. Then [E] C Clig(T)".

Proof. By Theorem|T7] there is an involution I € [E] for which (oT)? is
an involution whose support is E-large. As the proof of [Mila, Theorem
14] ensures that Inv([E]) C Clig(({ 0 T)?)* C Clig(T)°, the fact that
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every Borel automorphism is the composition of three involutions in its
full group (see, for example, [Milal, Theorem 1]) allows us to conclude
that [E] C Inv([E])* C Clig/(T). O

The following fact and [Milb, Theorem 2] easily yield Theorem [2}

Theorem 12. Suppose that n > 1, X 1is a standard Borel space, E
is an aperiodic countable Borel equivalence relation on X, S,T € [F],
supp(S) xg nsupp(7T), and the support of T is E-aperiodic. Then
S e [CI[E](T)12"]EE.
Proof. By Theorem [7] there is an involution I € [E] with the prop-
erty that (I o T)? is an involution and supp(7T') =g 2supp((Z o T)?), so
supp(S) =g 2nsupp((I o T)?). By [Mila, Theorem 1], there are involu-
tions Iy, I, I3 € [T] for which S = I} o I o I3. As supp([,,) C supp(S)
for all m € {1,2,3}, it follows from [Milbl, Theorem 12] that Iy, I5, I3 €
[CI[E}((] OT)2)2n]EE g [CI[E](T)4n]EE, thUS S € [CI[E](T)lzn]EE. D

Remark 13. One can show that Clig(T)* = [Clyg(T)*]=, by combin-
ing the fact that every permutation of N is a product of four conjugates
of any permutation with infinite support (see [Ber73|) with the (unpub-
lished) generalization of [Milb, Proposition 9] to automorphisms. This
allows us to conclude that S € Clig(T)"*" in Theorem [12] which yields
the generalization of Theorem (1| where n > 12.

Remark 14. By employing Remark [§] and using the fact that ev-
ery aperiodic Borel automorphism is the composition of two automor-
phisms in its full group whose orbits all have cardinality 1 or & in place
of the fact that every Borel automorphism is the composition of three
involutions in its full group and the generalization of [Milb, Theorem
12] to automorphisms whose orbits all have cardinality 1 or k, one can
further strengthen the conclusion of Theorem (12| to S € Clig(T)*",
which yields the generalizations of Theorems [I] and [2] where n > 8.

Remark 15. By employing Remark [9] one can further strengthen the
conclusion of Theorem [12{to S € Clg(T)*", which yields the further
generalizations of Theorems [1] and 2] where n > 4.

Remark 16. By employing Remark[10] one can further strengthen the
conclusion of Theorem [12]to S € Clig)(T)** when n > 2.
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