A CHARACTERIZATION OF THE EXISTENCE OF
INVARIANT MEASURES, I: INVOLUTIONS

B. MILLER

ABSTRACT. We show that the existence of an invariant probability
measure for a countable Borel equivalence relation with no single-
ton classes is equivalent to a first-order property of its full group.

INTRODUCTION

Let P(X) denote the family of all subsets of X. A Borel space is a
set X equipped with a o-algebra 2 C P(X). Such a space is standard
if # is the o-algebra generated by a completely-metrizable separable
topology on X. A set B C X is Borel if B € #. A function between
Borel spaces is Borel if preimages of Borel sets are Borel. A Borel
automorphism of X is a Borel permutation of X whose inverse is also
Borel. A Borel probability measure on X is a probability measure p on
2. Let =, denote the equivalence relation on the Borel automorphisms
of X given by S =, T <= {2z € X | S() # T(x)} is p-null. An
equivalence relation £ on X is aperiodic if all of its classes are infinite
and countable if all of its classes are countable. A partial transversal
of Fis aset Y C X that intersects every E-class in at most one point.
The full group of E is the group [FE] of all Borel automorphisms of
X whose graphs are contained in /. We say that p is E-conservative
if it concentrates off of Borel partial transversals of E, E-invariant if
p = Tip for all T € [E], and E-quasi-invariant if p ~ T,u for all
T € [E]. An element g of a group G is an involution if ¢g*> = 1g.
Let Inv(G) denote the set of all such elements. For all ¢ € G, set
g" = hgh™! for all h € G and define Clg(g) = {¢" | h € G}.

Here we characterize the aperiodic countable Borel equivalence rela-
tions on standard Borel spaces that admit an invariant Borel probabil-
ity measure in terms of a first-order property of their full groups:

Theorem 1. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and n > 4. Then the
following are equivalent:
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(1) There is an E-invariant Borel probability measure.
(2) There ezists I € Inv([E]) with the property that n is the least
natural number for which Inv([E]) C Clig (1)".

We also establish an analogous result in the measure-theoretic milieu:

Theorem 2. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, p is an E-conservative E-quasi-
invariant Borel probability measure on X, and n > 3. Then the fol-
lowing are equivalent:

(1) There is an E-invariant Borel probability measure v < pu.
(2) There exists I € Inv([E]) with the property that n is the least
natural number for which Inv([E]) C [Clig, (I)"]=

.
Finally, we note the following fact, which can be combined with The-
orem (1| to obtain the characterization promised in the abstract:

Theorem 3. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation with no singleton classes, and n > 2.
Then the following are equivalent:

(1) The equivalence relation E is aperiodic.
(2) There exists I € Inv([E]) for which Inv([E]) C Clig ()™

The lower bounds on n are optimal in all three results. The E-
conservativity of y in Theorem [2] can be weakened to p-almost-every-
where aperiodicity of £ when n > 4. The almost everywhere analog of
Theorem [3| holds for any E-quasi-invariant Borel probability measure,
as do the analogs of all three results where involutions are replaced
with automorphisms whose orbits all have cardinality 1 or k, for k£ > 3.
These results also generalize to Borel actions of Polish groups.

In §I] we review several basic facts concerning countable Borel equiv-
alence relations. In §2 we characterize the involutions that are prod-
ucts of a given number of conjugates of a given involution in [E]. And
in §3| we establish our primary results.

1. PRELIMINARIES

We will take the most basic facts of descriptive set theory for granted.
These include Souslin’s Theorem and its corollary that a function be-
tween standard Borel spaces is Borel if and only if its graph is Borel (see,
for example, [Kec95, Theorems 14.11 and 14.12]). They also include
the Lusin—Novikov uniformization theorem (see, for example, [Kec95,
Theorem 18.10]). We will not give explicit proofs of straightforward
consequences of these results.
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We say that an equivalence relation £ on X is finite if all of its
classes are finite. An fsr of E is a finite subequivalence relation of
the restriction of E to a subset of X. We will also take for granted
the existence of Borel maximal fsrs and the immediate corollary that
aperiodic countable Borel equivalence relations have Borel subequiva-
lence relations whose classes all have a given finite cardinality (see, for
example, [KM04, Lemma 7.3 and Proposition 7.4]).

The support of T: X — X issupp(T) ={x € X |z # T(z)}.

Proposition 4. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, I € Inv([E]), and E |
~supp(l) is aperiodic. Then there is an extension of I | supp(I) to
a fized-point-free element of Inv([E]).

Proof. Fix a Borel subequivalence relation F' of E | ~supp(l) whose
classes all have size two, let J be the unique fixed-point-free element of
[F], and observe that the extension of I | supp(/) by J is as desired. [

The E-saturation of aset Y C Xis[Y]g={r € X |ye Y z E y}.
We say that Y is E-complete if X = [Y]g. Given Borel sets A, B C
X and m,n > 1, we write mA ~g nB if there is a Borel bijection
¢: m x A — n x B with the property that proj,, g(graph(¢)) C E.
We write mA <g nB if there is a Borel injection ¢: m x A — n x B
for which proj 4, g(graph(¢)) C E and mA <g nB if there is such an
injection ¢ with the further property that projz((n x B) \ ¢(m x A))
is (E | B)-complete. We also write A and B instead of 14 and 1B.

Proposition 5. Suppose that X is a standard Borel space, FE is a
countable Borel equivalence relation on X, and A,B C X are Borel.
Then there is a partition of X into E-invariant Borel sets X4, X.,
and Xy with the property that AN Xy <g B, ANX._ ~g BN X,
and BN Xy < A.

Proof. Set A’ = A\ B and B’ = B\ A, fix a Borel maximal fsr F' of F
whose classes are all sets of size two that intersect both A’ and B’, and
let I be the unique fixed-point-free element of [F]. Then the sets X =
[B'\ projx (F)| g, X5 — [A"\projy ()], and X.. = ~(X <UX, ) are as
desired, as witnessed by the corresponding restrictions of IUid gnp. [

A Borel set B C X is E-large if X <g nB for some n > 1.

Proposition 6. Suppose that X is a standard Borel space and E is an
aperiodic countable Borel equivalence relation on X. Then there is an
E-large Borel set B C X whose complement is also E-large.
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Proof. Fix a Borel subequivalence relation F' of E whose classes all
have cardinality two, fix a Borel transversal B of F, and observe that
BNF NB, thUSXNF 2B ~p 2("’3) O

An E-injection of aset Y C X into a set Z C X is an injection of Y
into Z whose graph is contained in E. An E-bijection is a surjective
E-injection. A compression of E is an FE-injection ¢: X — X for
which ~¢(X) is E-complete and E is compressible if there is a Borel
compression of F. We say that a Borel set B C X is E-compressible
if £ | B is compressible. Given ¢: X — X and Y C X for which
Y CU,s; ¢ ™(Y), define vy : Y — Nand ¢y: Y = Y by vyy(y) =
min{n > 1| ¢"(y) € Y} and ¢y (y) = ¢"»* W (y) for all y € Y.

Proposition 7. Suppose that X is a standard Borel space, E is a
compressible countable Borel equivalence relation on X, and B C X is
an E-complete Borel set. Then the following are equivalent:

(1) B is E-large.

(2) B is E-compressible.

(3) B~p X.

Proof. As (3) = (1) is trivial and (2) = (3) follows from [DJK94,
Proposition 2.2, we need only show (1) = (2). Towards this end,
fix a Borel compression ¢: X — X of F. As B is F-large, there
exist n > 1, a partition of X into Borel sets By, ..., B,_1, and Bor-
el E-injections ¢g: By — B,...,¢n_1: B,—-1 — B. Set C = ~¢(X),
D =U,en @"(C), D= DN (NienU;»:i 977 (Bp) for all m < n, and
D! = D \ Upe,n[DelE for all m < n. Then J,,_,, &m © ¢B..np;, © O
is a compression of the restriction of £ to an E-complete Borel subset
of B, so B is E-compressible. O

Proposition 8. Suppose that X s a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, andn > 2. Then:

(1) There is a Borel set B C X for which X ~g nB.
(2) Suppose that B C X is a Borel set for which X ~g nB and
Y C X s an E-invariant Borel set. Then

Y xp (n—1)B < Y is E-compressible.

Proof. To see (1), fix a Borel subequivalence relation F' of E whose
classes all have cardinality n, T € [F] for which F' = E:¥, and a Borel
transversal B C X of F. Then X =[], _, T™(B), so X ~p nB.

To see (2), note that if Y is E-compressible, then Proposition
ensures that BNY is E-compressible (since Y <g nB),s0Y < B <
(n—1)B. Conversely, if Y <z (n—1)B, then Y <z (n—1)(BNY) <z
n(BNY)<gY,soY is E-compressible. U
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2. GENERATING ONE INVOLUTION FROM ANOTHER

A transversal of E is an E-complete partial transversal of E' and F is
smooth if there is a Borel transversal of F. An embedding of a function
S: X — X into a function T:Y — Y is an injection ¢: X — Y
with the property that ¢ o S = T o ¢. An isomorphism is a surjective
embedding. Let Sym(X) denote the group of all permutations of X.

The following observation ensures that the obvious “local” require-
ment is the only obstacle to writing an involution in [E] as a composi-
tion of conjugates of involutions in [E] when E is smooth:

Proposition 9. Suppose that X is a standard Borel space, E is a
smooth countable Borel equivalence relation on X, n> 1, Iy,..., I, €
Inv([E]), and VC € X/E I, | C € [l,,<, Clsym)(Im | C). Then
I, € Hm<n Cl[E}(]m).

Proof. As there are only countably many isomorphism classes of invo-
lutions of countable sets, we can assume that there exist a countable
cardinal k, tg,...,t, € Inv(Sym(k)), and E-invariant Borel functions
b0, -, 0n: X — k such that ¢,, | C is an isomorphism of [,, | C
with ¢, for all C € X/E and m < n. Fix 79,...,7-1 € Sym(k)
for which ¢, = o<, e and define Ty, ..., T,_1 € [E] by setting

m

To(x) = ((¢n | [2]E) " © Ty © ) () for m < n and z € X. Then
In(x)

)
]p) ™ 0 T 0 L 0 Tt 0 ¢ ) ()
)

= Om<n(¢n f [z]E 1o Tm © ¢m o Im o (¢m r [l‘]E)il © Tn;1 © ¢n)($)

forall z € X. O

Let =g denote the equivalence relation on the Borel automorphisms
of X givenby S=g T <= E [{re€ X |S(z)#T(x)} is smooth.

Proposition 10. Suppose that X s a standard Borel space, E is a
countable Borel equivalence relation on X, n > 2, and Iy, ..., I, 1 €
Inv([E]) have the following properties:

(1) ¥m < n supp(Im) € Uren fmy SUPP(L1)-
(2) V4, k <n I; | (supp(L;)Nsupp(lx)) = I | (supp(I;)Nsupp(l)).
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Then idx € [Hm<n Cl[E](Ln)]EE

Proof. For all K C n, set Xg = (\cx SUPP(Lk) \ Ujpe~r supp(y). By
focusing separately on each of these sets, we need only establish the
special case of the proposition where each I is fixed-point free (thus
they are all the same). If n is even, then this special case is trivial. So
it only remains to check the case that n = 3.

Set I = Iy = I; = I, and fix a Borel maximal fsr F' of I whose
classes are all [-invariant sets of cardinality four. As ~projy(F) in-
tersects every FE-class in at most one orbit of I, we can assume that
it is empty. But the product of the three fixed-point-free involutions
in Sym(4) is the identity, so ids € Clgym((¢)® for all fixed-point free
v € Inv(Sym(4)), thus idx € Clizy(I)* by Proposition |§| O

We will use Proposition in conjunction with the following fact,
which is the main technical observation underlying our primary results:

Proposition 11. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, I,J € Inv([E]), n >2, E'|
~supp(l) and E | ~supp(J) are aperiodic, and supp(I) =g nsupp(J).
Then X is the union of E-invariant Borel sets Y and Z for which:
(1) There exists T € [E | Y] such that T | supp(I | Y) is an
embedding of I | supp(I [Y) into J.
(2) There exist Ty, ..., T,—1 € [E | Z] such that T, | supp(J | Z)
is an embedding of J | supp(J | Z) into I for all m < n and
supp(I | Z) = U, <, T (supp(J | Z)).

Proof. As supp(I) C [supp(J)]g, we can assume that supp(J) is E-
complete. By Proposition , there are extensions of I | supp(/) and
J | supp(J) to fixed-point-free elements I’ and J' of Inv([E]). Fix
Borel transversals A’ and B’ of Ejf and E5.

We first consider the case where E is compressible and supp(J) is
E-large. As A’ is E-large and Proposition |5 allows us to assume that
A'Nsupp(l) g A"\ supp(!) or A"\ supp(/) <g A’ Nsupp(!), we can
therefore assume that A’ \ supp(I) or A’ Nsupp(I) is E-large.

If A"\ supp(I) is E-large, then appeal to Proposition [6] to obtain an
E-large Borel set C" C B'Nsupp(J) for which B\ C" is E-large, as well
as to Proposition [7| to obtain a Borel E-injection ¢: A’ Nsupp(/) — C’
and a Borel E-bijection ¢: A"\ supp(/) — B"\ ¢(A’ Nsupp(!)). Then
the function T'=¢ U (J ogpoI')Up U (J o1po ') is as desired.

If A’Nsupp(I) is E-large, then we can assume that B’ \ supp(J) <&
A"\supp(I) or A'\supp(I) <g B"\supp(J) by Proposition [ If there is
a Borel E-injection ¢: B’ \ supp(J) — A"\ supp([), then Proposition
yields a Borel E-bijection ¢: B'Nsupp(J) — A"\ ¢(B'\supp(J)), so the
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inverse of the function T' = ¢U(I'ogo J" )UpU(I'01ho ") is as desired. If
there is a Borel E-injection ¢: A"\ supp(I) — B’\supp(.J), then appeal
to Proposition [f] to obtain E-large Borel sets A” C A’ N supp(/) and
B" C B'Nsupp(J) for which (A’Nsupp(/))\ A” and (B'Nsupp(J))\ B”
are F-large, as well as to Proposition 7| to obtain Borel E-bijections
Yo, Y1 A'Nsupp(l) — B'\ ¢(A’\ supp(I)) for which A” = ;' (B")
and (A’ Nsupp(1)) \ A” = ;7 *(B"). Then the inverses of the functions
Tm=0¢U(J opol')Uth, U(J othy,ol), for m < 2, are as desired.

We now consider the general case. By Proposition |5 we can assume
that A’ Nsupp(I) <z B’ Nsupp(J), B’ Nsupp(J) <g A’ Nsupp() xg
n(B’' Nsupp(J)), or n(B' Nsupp(J)) <g A" Nsupp(I).

Suppose first that n(B’ Nsupp(J)) <g A’ Nsupp(!). Then supp(])
< nsupp(J) <g supp(/) and supp(/) Usupp(J) <& (n + L)supp(J),
so supp (/) Usupp(J) is E-compressible and supp(J) is (E | (supp({)U
supp(J)))-large, thus Proposition 7| ensures that supp(J) is E-com-
pressible, hence F is compressible and supp(J) is E-large.

Suppose next that there is a Borel E-injection ¢': A’ N supp(/) —
B’ nsupp(J). By Proposition |5} we can assume that A"\ supp(/) <g
B'\¢'(A'Nsupp(!)), A"\supp(I) ~g B'\¢'(A'Nsupp(I)), or B'\¢'(A'N
supp(I)) <g A"\ supp(I). In the middle case, there is an extension
of ¢’ to a Borel E-bijection ¢: A — B’, in which case the function
T=¢U(J opol)is as desired. In the other cases, there is either an
extension of ¢’ to a Borel E-injection ¢: A" — B’ for which B"\ ¢(A’)
is (E | B')-complete or an extension of (¢')~! to a Borel E-injection
¢: B" — A’ for which A"\ ¢(B’) is (E | A’)-complete, in which case
opU(J opol’) or pU(I'0rhoJ’) is a compression of E. By Proposition ,
we can assume that supp(K) <p ~supp(K') or ~supp(K) <g supp(K)
and therefore that ~supp(K) or supp(K) is E-large for all K € {I, J}.
But if supp(J) is not E-large, then supp([) is not E-large, so both
~supp(/) and ~supp(J) are E-large, thus so too are A"\ supp(/) and
B'\ ¢'(A"Nsupp(])). Proposition [7| therefore ensures that ¢' extends
to a Borel E-bijection ¢: A" — B’ so the function T'= ¢ U (J oo I')
is as desired.

Suppose finally that B’Nsupp(J) <g A’Nsupp(/) but there are Bor-
el sets By, ..., Bl _; C B'Nsupp(J) and Borel E-injections ¢!, : Bl —
A'nsupp(]) for which (¢! (B.,))m<n partitions A’Nsupp(/). By Propo-
sition 5], we can assume that (A'Nsupp(1))\ @1, (BL,) <& (B'Nsupp(J))\
B! for some m < n or (B'Nsupp(J))\ B, <r (A'Nsupp())\ ¢ (B,)
for all m < n. In the former case, it follows that B’ N supp(J) <g
A" Nsupp(I) g B’ N supp(J), so supp(J) is E-compressible, thus
E is compressible and supp(J) is E-large by Proposition In the
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latter case, there are extensions of ¢f,...,¢" ; to Borel E-injections
&y -y @y B ' Nisupp(J) — A’ Nsupp(l). By Proposition , we
can assume that B’ \ supp(J) <g A"\ ¢ (B’ N supp(J)) for some
m < n, B\ supp(J) ~g A"\ ¢ (B Nsupp(J)) for all m < n, or
A"\ ¢ (B'Nsupp(J)) <g B’ \ supp(J) for some m < n. In the
middle case, there are extensions of ¢y, ..., ¢! _; to Borel E-bijections
G0y -y Pn1: B — A’, so the functions T,, = ¢, U (I’ 0 ¢, 0o J'),
for m < n, are as desired. In the other cases, there exists m < n
for which there is either an extension of ¢/ to a Borel E-injection
¢Om: B — A’ such that A"\ ¢,,(B’) is (E | A’)-complete or an ex-
tension of (¢/,)~' to a Borel E-injection t,,: A’ — B’ such that
B'\ Ym(A') is (E | B')-complete, in which case ¢, U (I' 0 ¢y, 0 J')
or ¥, U (J" o1y, o) is a compression of E. By Proposition , we
can assume that supp(K) <p ~supp(K) or ~supp(K) <pg supp(K)
and therefore that ~supp(K) or supp(K) is E-large for all K € {I, J}.
But if supp(J) is not E-large, then supp(/) is not E-large, so both
~supp(/) and ~supp(J) are E-large, thus so too are B’ \ supp(J) and
A"\ ¢ (B'Nsupp(J)) for all m < n. Proposition [7| therefore ensures
that ¢f,...,¢),_, extend to Borel E-bijections ¢y, ..., ¢p,_1: B — A,
so the functions T, = ¢, U(I' 0 ¢, 0 J'), for m < n, are as desired. [

We now show that the obvious “global” requirement is the only ob-
stacle to writing an involution in [E] as a composition of conjugates of
another involution in [E] off of a Borel set where E is smooth:

Theorem 12. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, I,J € Inv([E]), n > 2, and
supp(/) <g nsupp(J). Then I € [Clig(J)"]=,.

Proof. By throwing out an E-invariant Borel set on which FE is smooth,
we can assume that both E | ~supp(/) and E | ~supp(J) are aperi-
odic. By Proposition we can therefore assume that either there
exists T' € [E] whose restriction to the support of I is an embedding
of I | supp(/) into J or there exist Ty, ..., T, 1 € [F], whose restric-
tions to the support of J are embeddings of J | supp(J) into I, with
the property that supp(/) = ,,.,, Tm(supp(J)). In the former case,
Proposition [I0]ensures that idy € [Cliz)(I7)Clig)(J)"]=,. In the latter,
Proposition [I0] implies that idy € [Clig(I)]1,,-,, Clig(J7)]=,. O

In particular, it follows that the obvious “global” and “local” re-
quirements are the only obstacles to writing an involution in [E] as a
composition of conjugates of another involution in [E]:

m<n

Theorem 13. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, I,J € Inv([E]), n > 2, supp(])
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<g nsupp(J), and VC € X/E I | C € Clgymy(J | C)*. Then
I e CI[E](J)n.

Proof. By Proposition [9] and Theorem O

3. MAIN RESULTS

Along with the natural generalization of [Nad90] to countable Borel
equivalence relations, the following fact yields Theorem [T}

Theorem 14. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, and n > 4. Then
ezxactly one of the following holds:

(1) The equivalence relation E is compressible.
(2) There exists I € Inv([E]) with the property that n is the least
natural number for which Inv([E]) C Clig /()™

Proof. To see (1) = —(2), suppose that I € Inv([E]) and Inv([E]) C
Clig(I)". As there is a fixed-point-free element of Inv([E]), it follows
that X <g nsupp(/), so Proposition [7| implies that X < supp(I).
As Inv(Sym(N)) C Clgymay(¢)? for all ¢ € Inv(Sym(N)) with infinite
support (see [Mor88]), Theorem |13| ensures that Inv([E]) C Clig(1)>.
To see =(1) = (2), apply Proposition |8 to obtain a Borel set
B C X with the property that n is the least natural number for which
X <g nB and fix I € Inv([E]) whose support is B. As Sym(N) C
Clgym)(¢)" for all ¢ € Inv(Sym(N)) with infinite support (see [Mor8§]),
Theorem [13]ensures that Inv([E]) € Clig(I)". But Clig)(1)<" does not
contain any fixed-point-free element of Inv([E]). O

Along with the natural generalization of [Hop32| to countable Borel
equivalence relations, the following fact yields Theorem [2}

Theorem 15. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, pu is an E-conservative E-quasi-
wnvariant Borel probability measure on X, and n > 3. Then ezactly
one of the following holds:

(1) There is an E-compressible p-conull Borel set.
(2) There ezists I € Inv([E]) with the property that n is the least
natural number for which Inv([E]) C [Clig(I)"]=, .

Proof. By throwing out an E-invariant p-null Borel set, we can assume
that F is aperiodic.

To see (1) = —(2), suppose that I € Inv([E]) and Inv([E]) C
[Clig(I)"]=, . Fix a fixed-point free K € Inv([£]). By throwing out an
E-invariant p-null Borel set, we can assume that E is compressible and
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K € Clig)(1)". Then X <g nsupp(I), so X <g supp(/) by Proposition
[7} thus Inv([E]) € [Clig(1)?]=, by Theorem

It remains to see =(2) = (1). By Proposition |8 there is a Borel
set B C X such that X <g nB but the only E-invariant Borel sets
Y C X for which Y g (n—1)B are E-compressible. Fix I € Inv([E])
whose support is B. Then Inv([E]) C [Clig(1)"]=, by Theorem . Fix
a fixed-point free J € Inv([F]). Then there is an E-invariant p-conull
Borel set Y C X for which J [ Y € Clig/({ [ Y)<",s0Y < (n—1)B,
thus Y is E-compressible. O

Finally, we have the following:

Proof of Theorem[3. To see (1) = —(2), fix a finite equivalence
class C' of E and observe that parity(/™ | C) = parity(J [ C) for
all I € Inv([E]) and J € Clig(I)*. To see (1) = (2), fix a Bor-
el subequivalence relation F' of E whose classes all have cardinality
three and I € Inv([F]) whose support is F-complete. Then X <pg
2supp(!). As Inv(Sym(N)) C Clgym)(¢)™ for all ¢ € Inv(Sym(N)) such
that supp(¢) and ~supp(¢) are both infinite (see [Mor76, Corollary 2.4]
and [Mor88]), Theorem (13| ensures that Inv([E]) € Clig(I)". O
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