A CHARACTERIZATION OF THE EXISTENCE OF INVARIANT MEASURES, I: INVOLUTIONS

B. MILLER

ABSTRACT. We show that the existence of an invariant probability measure for a countable Borel equivalence relation with no singleton classes is equivalent to a first-order property of its full group.

INTRODUCTION

Let $\mathcal{P}(X)$ denote the family of all subsets of X. A *Borel space* is a set X equipped with a σ -algebra $\mathscr{B} \subseteq \mathcal{P}(X)$. Such a space is standard if $\mathscr B$ is the σ -algebra generated by a completely-metrizable separable topology on X. A set $B \subseteq X$ is *Borel* if $B \in \mathcal{B}$. A function between Borel spaces is Borel if preimages of Borel sets are Borel. A Borel *automorphism* of X is a Borel permutation of X whose inverse is also Borel. A *Borel probability measure* on X is a probability measure μ on \mathscr{B} . Let \equiv_u denote the equivalence relation on the Borel automorphisms of X given by $S \equiv_{\mu} T \iff \{x \in X \mid S(x) \neq T(x)\}\$ is μ -null. An equivalence relation E on X is *aperiodic* if all of its classes are infinite and countable if all of its classes are countable. A partial transversal of E is a set $Y \subseteq X$ that intersects every E-class in at most one point. The full group of E is the group $[E]$ of all Borel automorphisms of X whose graphs are contained in E. We say that μ is E-conservative if it concentrates of f of Borel partial transversals of E , E -invariant if $\mu = T_*\mu$ for all $T \in [E]$, and E-quasi-invariant if $\mu \sim T_*\mu$ for all $T \in [E]$. An element g of a group G is an *involution* if $g^2 = 1_G$. Let Inv(G) denote the set of all such elements. For all $q \in G$, set $g^h = hgh^{-1}$ for all $h \in G$ and define $\text{Cl}_G(g) = \{g^h \mid h \in G\}.$

Here we characterize the aperiodic countable Borel equivalence relations on standard Borel spaces that admit an invariant Borel probability measure in terms of a first-order property of their full groups:

Theorem 1. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, and $n \geq 4$. Then the following are equivalent:

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 28A05, 37B05.

Key words and phrases. Existence, first order, full group, invariant measure.

2 B. MILLER

- (1) There is an E-invariant Borel probability measure.
- (2) There exists $I \in Inv([E])$ with the property that n is the least natural number for which $\text{Inv}([E]) \subseteq \text{Cl}_{[E]}(I)^n$.

We also establish an analogous result in the measure-theoretic milieu:

Theorem 2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X , μ is an E-conservative E-quasiinvariant Borel probability measure on X, and $n \geq 3$. Then the following are equivalent:

- (1) There is an E-invariant Borel probability measure $\nu \ll \mu$.
- (2) There exists $I \in Inv([E])$ with the property that n is the least natural number for which $\text{Inv}([E]) \subseteq [\text{Cl}_{[E]_\mu}(I)^n]_{\equiv_\mu}$.

Finally, we note the following fact, which can be combined with Theorem [1](#page-0-0) to obtain the characterization promised in the abstract:

Theorem 3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation with no singleton classes, and $n \geq 2$. Then the following are equivalent:

- (1) The equivalence relation E is aperiodic.
- (2) There exists $I \in Inv([E])$ for which $Inv([E]) \subseteq \mathrm{Cl}_{[E]}(I)^n$.

The lower bounds on n are optimal in all three results. The E conservativity of μ in Theorem [2](#page-1-0) can be weakened to μ -almost-everywhere aperiodicity of E when $n \geq 4$. The almost everywhere analog of Theorem [3](#page-1-1) holds for any E-quasi-invariant Borel probability measure, as do the analogs of all three results where involutions are replaced with automorphisms whose orbits all have cardinality 1 or k, for $k \geq 3$. These results also generalize to Borel actions of Polish groups.

In §[1,](#page-1-2) we review several basic facts concerning countable Borel equivalence relations. In §[2,](#page-4-0) we characterize the involutions that are products of a given number of conjugates of a given involution in $[E]$. And in §[3,](#page-8-0) we establish our primary results.

1. Preliminaries

We will take the most basic facts of descriptive set theory for granted. These include Souslin's Theorem and its corollary that a function between standard Borel spaces is Borel if and only if its graph is Borel (see, for example, [\[Kec95,](#page-9-0) Theorems 14.11 and 14.12]). They also include the Lusin–Novikov uniformization theorem (see, for example, [\[Kec95,](#page-9-0) Theorem 18.10]). We will not give explicit proofs of straightforward consequences of these results.

We say that an equivalence relation E on X is *finite* if all of its classes are finite. An fsr of E is a finite subequivalence relation of the restriction of E to a subset of X . We will also take for granted the existence of Borel maximal fsrs and the immediate corollary that aperiodic countable Borel equivalence relations have Borel subequivalence relations whose classes all have a given finite cardinality (see, for example, [\[KM04,](#page-9-1) Lemma 7.3 and Proposition 7.4]).

The support of $T: X \to X$ is $supp(T) = \{x \in X \mid x \neq T(x)\}.$

Proposition 4. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $I \in \text{Inv}([E])$, and E \sim supp(I) is aperiodic. Then there is an extension of I \mid supp(I) to a fixed-point-free element of $\text{Inv}([E])$.

Proof. Fix a Borel subequivalence relation F of E $\restriction \sim$ supp(I) whose classes all have size two, let J be the unique fixed-point-free element of $[F]$, and observe that the extension of $I \restriction \text{supp}(I)$ by J is as desired. \Box

The E-saturation of a set $Y \subseteq X$ is $[Y]_E = \{x \in X \mid \exists y \in Y \ x \ E \ y\}.$ We say that Y is E-complete if $X = [Y]_E$. Given Borel sets $A, B \subseteq$ X and $m, n \geq 1$, we write $mA \sim_E nB$ if there is a Borel bijection $\phi: m \times A \to n \times B$ with the property that $\text{proj}_{A \times B}(\text{graph}(\phi)) \subseteq E$. We write $mA \preccurlyeq_E nB$ if there is a Borel injection $\phi: m \times A \to n \times B$ for which $\text{proj}_{A\times B}(\text{graph}(\phi)) \subseteq E$ and $mA \ll_E nB$ if there is such an injection ϕ with the further property that $\text{proj}_B((n \times B) \setminus \phi(m \times A))$ is $(E \restriction B)$ -complete. We also write A and B instead of 1A and 1B.

Proposition 5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $A, B \subseteq X$ are Borel. Then there is a partition of X into E-invariant Borel sets $X_{\nless}\ X_{\nsim}$, and X_{\geqslant} with the property that $A \cap X_{\preccurlyeq} \preccurlyeq_E B$, $A \cap X_{\sim} \sim_E B \cap X_{\sim}$, and $B \cap X_{\geq \mathbb{R}} \ll_{E} A$.

Proof. Set $A' = A \setminus B$ and $B' = B \setminus A$, fix a Borel maximal fsr F of E whose classes are all sets of size two that intersect both A' and B' , and let I be the unique fixed-point-free element of $[F]$. Then the sets X_{\preccurlyeq} = $[B' \perp \text{proj}_X(F)]_E, X_{\rightharpoonup} = [A' \perp \text{proj}_X(F)]_E$, and $X_{\rightharpoonup} = \rightharpoonup (X_{\rightharpoonup} \cup X_{\rightharpoonup})$ are as desired, as witnessed by the corresponding restrictions of $I\cup id_{A\cap B}$. \Box

A Borel set $B \subseteq X$ is E-large if $X \preccurlyeq_E nB$ for some $n \geq 1$.

Proposition 6. Suppose that X is a standard Borel space and E is an aperiodic countable Borel equivalence relation on X. Then there is an E-large Borel set $B \subseteq X$ whose complement is also E-large.

Proof. Fix a Borel subequivalence relation F of E whose classes all have cardinality two, fix a Borel transversal B of F , and observe that $B \sim_F \sim B$, thus $X \sim_F 2B \sim_F 2(\sim B)$.

An E-injection of a set $Y \subseteq X$ into a set $Z \subseteq X$ is an injection of Y into Z whose graph is contained in E . An E -bijection is a surjective E-injection. A compression of E is an E-injection $\phi \colon X \to X$ for which $\sim \phi(X)$ is E-complete and E is *compressible* if there is a Borel compression of E. We say that a Borel set $B \subseteq X$ is E-compressible if $E \restriction B$ is compressible. Given $\phi \colon X \to X$ and $Y \subseteq X$ for which $Y \subseteq \bigcup_{n \geq 1} \phi^{-n}(Y)$, define $\nu_{\phi,Y} \colon Y \to \mathbb{N}$ and $\phi_Y \colon Y \to \overline{Y}$ by $\nu_{\phi,Y}(y) =$ $\min\{n \geq 1 \mid \phi^n(y) \in Y\}$ and $\phi_Y(y) = \phi^{\nu_{\phi,Y}(y)}(y)$ for all $y \in Y$.

Proposition 7. Suppose that X is a standard Borel space, E is a compressible countable Borel equivalence relation on X, and $B \subseteq X$ is an E-complete Borel set. Then the following are equivalent:

- (1) B is E-large.
- (2) B is E-compressible.
- (3) $B \sim_E X$.

Proof. As (3) \implies (1) is trivial and (2) \implies (3) follows from [\[DJK94,](#page-9-2) Proposition 2.2, we need only show $(1) \implies (2)$. Towards this end, fix a Borel compression $\phi: X \to X$ of E. As B is E-large, there exist $n \geq 1$, a partition of X into Borel sets B_0, \ldots, B_{n-1} , and Borel E-injections $\phi_0: B_0 \to B, \ldots, \phi_{n-1}: B_{n-1} \to B$. Set $C = \phi(X)$, $D=\bigcup_{n\in\mathbb{N}}\phi^n(C),\ D_m=D\cap\bigcap_{i\in\mathbb{N}}\bigcup_{j\geq i}\phi^{-j}(B_m)\ \text{for all}\ m\ <\ n, \text{ and}$ $D'_m = \widetilde{D_m} \setminus \bigcup_{\ell \leq m} [D_\ell]_E$ for all $m < n$. Then $\bigcup_{m \leq n} \phi_m \circ \phi_{B_m \cap D'_m} \circ \phi_m^{-1}$ is a compression of the restriction of E to an E -complete Borel subset of B , so B is E -compressible.

Proposition 8. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, and $n > 2$. Then:

- (1) There is a Borel set $B \subseteq X$ for which $X \sim_E nB$.
- (2) Suppose that $B \subseteq X$ is a Borel set for which $X \sim_E nB$ and $Y \subseteq X$ is an E-invariant Borel set. Then

$$
Y \preccurlyeq_E (n-1)B \iff Y
$$
 is *E*-compressible.

Proof. To see (1), fix a Borel subequivalence relation F of E whose classes all have cardinality $n, T \in [F]$ for which $F = E_T^X$, and a Borel transversal $B \subseteq X$ of F. Then $X = \coprod_{m \leq n} T^m(B)$, so $X \sim_F nB$.

To see (2) , note that if Y is E-compressible, then Proposition [7](#page-3-0) ensures that $B \cap Y$ is E-compressible (since $Y \preccurlyeq_E nB$), so $Y \preccurlyeq_E B \preccurlyeq_E B$ $(n-1)B$. Conversely, if $Y \preccurlyeq_E (n-1)B$, then $Y \preccurlyeq_E (n-1)(B \cap Y) \preccurlyeq_E$ $n(B \cap Y) \preccurlyeq_E Y$, so Y is E-compressible.

2. Generating one involution from another

A transversal of E is an E-complete partial transversal of E and E is smooth if there is a Borel transversal of E . An embedding of a function $S: X \to X$ into a function $T: Y \to Y$ is an injection $\phi: X \to Y$ with the property that $\phi \circ S = T \circ \phi$. An *isomorphism* is a surjective embedding. Let $Sym(X)$ denote the group of all permutations of X.

The following observation ensures that the obvious "local" requirement is the only obstacle to writing an involution in $|E|$ as a composition of conjugates of involutions in $[E]$ when E is smooth:

Proposition 9. Suppose that X is a standard Borel space, E is a smooth countable Borel equivalence relation on X, $n \geq 1$, $I_0, \ldots, I_n \in$ Inv($[E]$), and $\forall C \in X/E$ $I_n \upharpoonright C \in \prod_{m \leq n} \text{Cl}_{\text{Sym}(C)}(I_m \upharpoonright C)$. Then $I_n \in \prod_{m < n} \mathrm{Cl}_{[E]}(I_m).$

Proof. As there are only countably many isomorphism classes of involutions of countable sets, we can assume that there exist a countable cardinal k, $\iota_0, \ldots, \iota_n \in \text{Inv}(\text{Sym}(k))$, and E-invariant Borel functions $\phi_0, \ldots, \phi_n \colon X \to k$ such that $\phi_m \upharpoonright C$ is an isomorphism of $I_m \upharpoonright C$ with ι_m for all $C \in X/E$ and $m \leq n$. Fix $\tau_0, \ldots, \tau_{n-1} \in Sym(k)$ for which $\iota_n = \circ_{m \leq n} \iota_m^{\tau_m}$ and define $T_0, \ldots, T_{n-1} \in [E]$ by setting $T_m(x) = ((\phi_n \upharpoonright [x]_E)^{-1} \circ \tau_m \circ \phi_m)(x)$ for $m < n$ and $x \in X$. Then \mathbf{r} (x)

$$
I_n(x)
$$

$$
= ((\phi_n \upharpoonright [x]_E)^{-1} \circ \iota_n \circ \phi_n)(x)
$$

\n= ((\phi_n \upharpoonright [x]_E)^{-1} \circ (\circ_{m < n} \iota_m^{r_m}) \circ \phi_n)(x)
\n= (\circ_{m < n} (\phi_n \upharpoonright [x]_E)^{-1} \circ \iota_m^{r_m} \circ \phi_n)(x)
\n= (\circ_{m < n} (\phi_n \upharpoonright [x]_E)^{-1} \circ \tau_m \circ \iota_m \circ \tau_m^{-1} \circ \phi_n)(x)
\n= (\circ_{m < n} (\phi_n \upharpoonright [x]_E)^{-1} \circ \tau_m \circ \phi_m \circ I_m \circ (\phi_m \upharpoonright [x]_E)^{-1} \circ \tau_m^{-1} \circ \phi_n)(x)
\n= (\circ_{m < n} T_m \circ I_m \circ T_m^{-1})(x)
\n= (\circ_{m < n} I_m^{T_m})(x)
\nfor all $x \in X$. □

Let \equiv_E denote the equivalence relation on the Borel automorphisms of X given by $S \equiv_E T \iff E \restriction \{x \in X \mid S(x) \neq T(x)\}\)$ is smooth.

Proposition 10. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $n \geq 2$, and $I_0, \ldots, I_{n-1} \in$ $Inv([E])$ have the following properties:

- (1) $\forall m < n \text{ supp}(I_m) \subseteq \bigcup_{k \in n \setminus \{m\}} \text{supp}(I_k).$
- (2) $\forall j, k < n$ $I_j \upharpoonright (\text{supp}(I_j) \cap \text{supp}(I_k)) = I_k \upharpoonright (\text{supp}(I_j) \cap \text{supp}(I_k)).$

Then $\mathrm{id}_X \in [\prod_{m \leq n} \mathrm{Cl}_{[E]}(I_m)]_{\equiv_E}$.

Proof. For all $K \subseteq n$, set $X_K = \bigcap_{k \in K} \text{supp}(I_k) \setminus \bigcup_{k \in \sim K} \text{supp}(I_k)$. By focusing separately on each of these sets, we need only establish the special case of the proposition where each I_k is fixed-point free (thus they are all the same). If n is even, then this special case is trivial. So it only remains to check the case that $n = 3$.

Set $I = I_0 = I_1 = I_2$ and fix a Borel maximal fsr F of E whose classes are all I-invariant sets of cardinality four. As $\sim \text{proj}_X(F)$ intersects every E -class in at most one orbit of I , we can assume that it is empty. But the product of the three fixed-point-free involutions in Sym(4) is the identity, so $\mathrm{id}_4 \in \mathrm{Cl}_{\mathrm{Sym}(4)}(\iota)^3$ for all fixed-point free $\iota \in \text{Inv}(\text{Sym}(4))$, thus $\text{id}_X \in \text{Cl}_{[F]}(I)^3$ by Proposition [9.](#page-4-1)

We will use Proposition [10](#page-4-2) in conjunction with the following fact, which is the main technical observation underlying our primary results:

Proposition 11. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $I, J \in Inv([E]), n \geq 2, E \upharpoonright$ \sim supp(I) and E $\restriction \sim$ supp(J) are aperiodic, and supp(I) \preccurlyeq_E nsupp(J). Then X is the union of E -invariant Borel sets Y and Z for which:

- (1) There exists $T \in [E \restriction Y]$ such that $T \restriction \text{supp}(I \restriction Y)$ is an embedding of $I \restriction supp(I \restriction Y)$ into J.
- (2) There exist $T_0, \ldots, T_{n-1} \in [E \restriction Z]$ such that $T_m \restriction \text{supp}(J \restriction Z)$ is an embedding of $J \restriction \text{supp}(J \restriction Z)$ into I for all $m < n$ and $\mathrm{supp}(I \upharpoonright Z) = \bigcup_{m < n} T_m(\mathrm{supp}(J \upharpoonright Z)).$

Proof. As supp $(I) \subseteq [\text{supp}(J)]_E$, we can assume that supp (J) is E-complete. By Proposition [4,](#page-2-0) there are extensions of $I \restriction supp(I)$ and $J \restriction \text{supp}(J)$ to fixed-point-free elements I' and J' of $\text{Inv}([E])$. Fix Borel transversals A' and B' of $E_{I'}^X$ and $E_{J'}^X$.

We first consider the case where E is compressible and $\text{supp}(J)$ is E -large. As A' is E -large and Proposition [5](#page-2-1) allows us to assume that $A' \cap \text{supp}(I) \preccurlyeq_E A' \setminus \text{supp}(I)$ or $A' \setminus \text{supp}(I) \preccurlyeq_E A' \cap \text{supp}(I)$, we can therefore assume that $A' \ \supp(I)$ or $A' \cap \supp(I)$ is E-large.

If $A' \setminus \text{supp}(I)$ is E-large, then appeal to Proposition [6](#page-2-2) to obtain an E-large Borel set $C' \subseteq B' \cap \text{supp}(J)$ for which $B' \setminus C'$ is E-large, as well as to Proposition [7](#page-3-0) to obtain a Borel E-injection $\phi: A' \cap \text{supp}(I) \to C'$ and a Borel E-bijection $\psi: A' \setminus supp(I) \to B' \setminus \phi(A' \cap supp(I)).$ Then the function $T = \phi \cup (J' \circ \phi \circ I') \cup \psi \cup (J' \circ \psi \circ I')$ is as desired.

If $A' \cap \text{supp}(I)$ is E-large, then we can assume that $B' \ \text{supp}(J) \preccurlyeq_E$ $A'\supp(I)$ or $A'\supp(I) \preccurlyeq_E B'\supp(J)$ by Proposition [5.](#page-2-1) If there is a Borel E-injection $\phi: B' \supp(J) \to A' \supp(I)$, then Proposition [7](#page-3-0) yields a Borel E-bijection $\psi: B' \cap \text{supp}(J) \to A' \setminus \phi(B' \setminus \text{supp}(J))$, so the

inverse of the function $T = \phi \cup (I' \circ \phi \circ J') \cup \psi \cup (I' \circ \psi \circ J')$ is as desired. If there is a Borel E-injection $\phi: A'\ \supp(I) \to B'\ \supp(J)$, then appeal to Proposition [6](#page-2-2) to obtain E-large Borel sets $A'' \subseteq A' \cap \text{supp}(I)$ and $B'' \subseteq B' \cap \text{supp}(J)$ for which $(A' \cap \text{supp}(I))\backslash A''$ and $(B' \cap \text{supp}(J))\backslash B''$ are E-large, as well as to Proposition [7](#page-3-0) to obtain Borel E-bijections $\psi_0, \psi_1: A' \cap \text{supp}(I) \to B' \setminus \phi(A' \setminus \text{supp}(I))$ for which $A'' = \psi_0^{-1}(B'')$ and $(A' \cap \text{supp}(I)) \setminus A'' = \psi_1^{-1}(B'')$. Then the inverses of the functions $T_m = \phi \cup (J' \circ \phi \circ I') \cup \psi_m \cup (J' \circ \psi_m \circ I')$, for $m < 2$, are as desired.

We now consider the general case. By Proposition [5,](#page-2-1) we can assume that $A' \cap \text{supp}(I) \preccurlyeq_E B' \cap \text{supp}(J)$, $B' \cap \text{supp}(J) \preccurlyeq_E A' \cap \text{supp}(I) \preccurlyeq_E A$ $n(B' \cap \text{supp}(J))$, or $n(B' \cap \text{supp}(J)) \ll_E A' \cap \text{supp}(I)$.

Suppose first that $n(B' \cap \text{supp}(J)) \ll_E A' \cap \text{supp}(I)$. Then $\text{supp}(I)$ $\preccurlyeq_E n \text{supp}(J) \preccurlyeq_E \text{supp}(I)$ and $\text{supp}(I) \cup \text{supp}(J) \preccurlyeq_E (n+1) \text{supp}(J)$, so supp(I)∪supp(J) is E-compressible and supp(J) is $(E \restriction ({\rm supp}(I) \cup$ $\text{supp}(J)$))-large, thus Proposition [7](#page-3-0) ensures that $\text{supp}(J)$ is E-compressible, hence E is compressible and $\text{supp}(J)$ is E-large.

Suppose next that there is a Borel E-injection $\phi' : A' \cap \text{supp}(I) \to$ B' \cap supp(J). By Proposition [5,](#page-2-1) we can assume that $A' \setminus \text{supp}(I) \ll_E$ $B'\setminus \phi'(A'\cap \text{supp}(I)), A'\setminus \text{supp}(I) \sim_E B'\setminus \phi'(A'\cap \text{supp}(I)), \text{ or } B'\setminus \phi'(A'\cap$ $\text{supp}(I) \ll_{E} A' \setminus \text{supp}(I)$. In the middle case, there is an extension of ϕ' to a Borel E-bijection $\phi: A' \to B'$, in which case the function $T = \phi \cup (J' \circ \phi \circ I')$ is as desired. In the other cases, there is either an extension of ϕ' to a Borel E-injection $\phi: A' \to B'$ for which $B' \setminus \phi(A')$ is $(E \restriction B')$ -complete or an extension of $(\phi')^{-1}$ to a Borel E-injection $\psi: B' \to A'$ for which $A' \setminus \psi(B')$ is $(E \restriction A')$ -complete, in which case $\phi \cup (J' \circ \phi \circ I')$ or $\psi \cup (I' \circ \psi \circ J')$ is a compression of E. By Proposition [5,](#page-2-1) we can assume that $\text{supp}(K) \preccurlyeq_E \text{supp}(K)$ or $\sim \text{supp}(K) \preccurlyeq_E \text{supp}(K)$ and therefore that $\sim \text{supp}(K)$ or $\text{supp}(K)$ is E-large for all $K \in \{I, J\}$. But if supp(J) is not E-large, then supp(I) is not E-large, so both \sim supp(I) and \sim supp(J) are E-large, thus so too are $A' \setminus \text{supp}(I)$ and $B' \setminus \phi'(A' \cap \text{supp}(I))$. Proposition [7](#page-3-0) therefore ensures that ϕ' extends to a Borel E-bijection $\phi: A' \to B'$, so the function $T = \phi \cup (J' \circ \phi \circ I')$ is as desired.

Suppose finally that $B' \cap \text{supp}(J) \ll_E A' \cap \text{supp}(I)$ but there are Borel sets $B'_0, \ldots, B'_{n-1} \subseteq B' \cap \text{supp}(J)$ and Borel E-injections $\phi''_m : B'_m \to$ $A' \cap \text{supp}(I)$ for which $(\phi_m''(B_m'))_{m < n}$ partitions $A' \cap \text{supp}(I)$. By Propo-sition [5,](#page-2-1) we can assume that $(A' \cap \text{supp}(I)) \setminus \phi''_m(B'_m) \preccurlyeq_E (B' \cap \text{supp}(J)) \setminus$ B'_m for some $m < n$ or $(B' \cap \text{supp}(J)) \setminus B'_m \preccurlyeq_E (A' \cap \text{supp}(I)) \setminus \phi''_m(B'_m)$ for all $m < n$. In the former case, it follows that $B' \cap \text{supp}(J) \ll_E$ $A' \cap \text{supp}(I) \preccurlyeq_E B' \cap \text{supp}(J)$, so $\text{supp}(J)$ is E-compressible, thus E is compressible and supp(J) is E-large by Proposition [7.](#page-3-0) In the 8 B. MILLER

latter case, there are extensions of $\phi_0'', \ldots, \phi_{n-1}''$ to Borel E-injections $\phi'_0, \ldots, \phi'_{n-1}$: $B' \cap \text{supp}(J) \rightarrow A' \cap \text{supp}(I)$. By Proposition [5,](#page-2-1) we can assume that $B' \setminus \text{supp}(J) \ll_E A' \setminus \phi'_m(B' \cap \text{supp}(J))$ for some $m \leq n, B' \setminus \text{supp}(J) \sim_E A' \setminus \phi'_m(B' \cap \text{supp}(J))$ for all $m \leq n$, or $A' \setminus \phi'_m(B' \cap \text{supp}(J)) \ll_E B' \setminus \text{supp}(J)$ for some $m < n$. In the middle case, there are extensions of $\phi'_0, \ldots, \phi'_{n-1}$ to Borel E-bijections $\phi_0, \ldots, \phi_{n-1} : B' \to A'$, so the functions $T_m = \phi_m \cup (I' \circ \phi_m \circ J')$, for $m < n$, are as desired. In the other cases, there exists $m < n$ for which there is either an extension of ϕ'_m to a Borel E-injection $\phi_m: B' \to A'$ such that $A' \setminus \phi_m(B')$ is $(E \upharpoonright A')$ -complete or an extension of $(\phi'_m)^{-1}$ to a Borel E-injection $\psi_m: A' \to B'$ such that $B' \setminus \psi_m(A')$ is $(E \restriction B')$ -complete, in which case $\phi_m \cup (I' \circ \phi_m \circ J')$ or $\psi_m \cup (J' \circ \psi_m \circ I')$ is a compression of E. By Proposition [5,](#page-2-1) we can assume that supp(K) $\preccurlyeq_E \sim \text{supp}(K)$ or $\sim \text{supp}(K) \preccurlyeq_E \text{supp}(K)$ and therefore that \sim supp (K) or supp (K) is E-large for all $K \in \{I, J\}$. But if supp(J) is not E-large, then supp(I) is not E-large, so both \sim supp(I) and \sim supp(J) are E-large, thus so too are $B' \setminus \text{supp}(J)$ and $A' \setminus \phi'_m(B' \cap \text{supp}(J))$ for all $m < n$. Proposition [7](#page-3-0) therefore ensures that $\phi'_0, \ldots, \phi'_{n-1}$ extend to Borel E-bijections $\phi_0, \ldots, \phi_{n-1} : B' \to A'$, so the functions $T_m = \phi_m \cup (I' \circ \phi_m \circ J')$, for $m < n$, are as desired. \Box

We now show that the obvious "global" requirement is the only obstacle to writing an involution in $|E|$ as a composition of conjugates of another involution in $[E]$ off of a Borel set where E is smooth:

Theorem 12. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, I, $J \in \text{Inv}([E])$, $n > 2$, and $\text{supp}(I) \preccurlyeq_E n \text{supp}(J)$. Then $I \in [\text{Cl}_{[E]}(J)^n]_{\equiv_E}$.

Proof. By throwing out an E -invariant Borel set on which E is smooth, we can assume that both $E \restriction \text{~supp}(I)$ and $E \restriction \text{~supp}(J)$ are aperiodic. By Proposition [11,](#page-5-0) we can therefore assume that either there exists $T \in [E]$ whose restriction to the support of I is an embedding of I \restriction supp(I) into J or there exist $T_0, \ldots, T_{n-1} \in [E]$, whose restrictions to the support of J are embeddings of $J \restriction supp(J)$ into I, with the property that $\text{supp}(I) = \bigcup_{m \leq n} T_m(\text{supp}(J))$. In the former case, Proposition [10](#page-4-2) ensures that $\operatorname{id}_X \in [Cl_{[E]}(I^T)Cl_{[E]}(J)^n]_{\equiv_E}$. In the latter, Proposition [10](#page-4-2) implies that $\mathrm{id}_X \in [Cl_{[E]}(I) \prod_{m < n} Cl_{[E]}(J^{T_m})]_{\equiv_E}$.

In particular, it follows that the obvious "global" and "local" requirements are the only obstacles to writing an involution in $|E|$ as a composition of conjugates of another involution in $[E]$:

Theorem 13. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $I, J \in \text{Inv}([E])$, $n > 2$, supp(I) $\preccurlyeq_E \text{rsupp}(J)$, and $\forall C \in X/E \mid C \in \text{Cl}_{\text{Sym}(C)}(J \restriction C)^n$. Then $I \in \mathrm{Cl}_{|E|}(J)^n$.

Proof. By Proposition [9](#page-4-1) and Theorem [12.](#page-7-0) □

3. Main results

Along with the natural generalization of [\[Nad90\]](#page-9-3) to countable Borel equivalence relations, the following fact yields Theorem [1:](#page-0-0)

Theorem 14. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, and $n \geq 4$. Then exactly one of the following holds:

- (1) The equivalence relation E is compressible.
- (2) There exists $I \in Inv([E])$ with the property that n is the least natural number for which $\text{Inv}([E]) \subseteq \text{Cl}_{[E]}(I)^n$.

Proof. To see (1) $\implies \neg(2)$, suppose that $I \in Inv([E])$ and $Inv([E]) \subseteq$ $\text{Cl}_{[E]}(I)^n$. As there is a fixed-point-free element of Inv([E]), it follows that $X \preccurlyeq_E n \text{supp}(I)$, so Proposition [7](#page-3-0) implies that $X \preccurlyeq_E \text{supp}(I)$. As Inv $(\text{Sym}(\mathbb{N})) \subseteq \text{Cl}_{\text{Sym}(\mathbb{N})}(\iota)^3$ for all $\iota \in \text{Inv}(\text{Sym}(\mathbb{N}))$ with infinite support (see [\[Mor88\]](#page-9-4)), Theorem [13](#page-7-1) ensures that $\text{Inv}([E]) \subseteq \text{Cl}_{[E]}(I)^3$.

To see $\neg(1) \implies (2)$, apply Proposition [8](#page-3-1) to obtain a Borel set $B \subseteq X$ with the property that n is the least natural number for which $X \preccurlyeq_E nB$ and fix $I \in \text{Inv}([E])$ whose support is B. As Sym(N) \subseteq $\text{Cl}_{\text{Sym}(\mathbb{N})}(\iota)^n$ for all $\iota \in \text{Inv}(\text{Sym}(\mathbb{N}))$ with infinite support (see [\[Mor88\]](#page-9-4)), Theorem [13](#page-7-1) ensures that $\text{Inv}([E]) \subseteq \text{Cl}_{[E]}(I)^n$. But $\text{Cl}_{[E]}(I)^{ does not$ contain any fixed-point-free element of $Inv([E])$.

Along with the natural generalization of [\[Hop32\]](#page-9-5) to countable Borel equivalence relations, the following fact yields Theorem [2:](#page-1-0)

Theorem 15. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, μ is an E-conservative E-quasiinvariant Borel probability measure on X, and $n \geq 3$. Then exactly one of the following holds:

- (1) There is an E-compressible μ -conull Borel set.
- (2) There exists $I \in Inv([E])$ with the property that n is the least natural number for which $\text{Inv}([E]) \subseteq [\text{Cl}_{[E]}(I)^n]_{\equiv_\mu}$.

Proof. By throwing out an E-invariant μ -null Borel set, we can assume that E is aperiodic.

To see (1) $\implies \neg(2)$, suppose that $I \in \text{Inv}([E])$ and $\text{Inv}([E]) \subseteq$ $[\text{Cl}_{[E]}(I)^n]_{\equiv_\mu}$. Fix a fixed-point free $K \in \text{Inv}([E])$. By throwing out an E-invariant μ -null Borel set, we can assume that E is compressible and

10 B. MILLER

 $K \in \mathrm{Cl}_{[E]}(I)^n$. Then $X \preccurlyeq_E n \mathrm{supp}(I)$, so $X \preccurlyeq_E \mathrm{supp}(I)$ by Proposition [7,](#page-3-0) thus $\text{Inv}([E]) \subseteq [\text{Cl}_{[E]}(I)^2]_{\equiv_{\mu}}$ by Theorem [12.](#page-7-0)

It remains to see $\neg(2) \implies (1)$. By Proposition [8,](#page-3-1) there is a Borel set $B \subseteq X$ such that $X \preccurlyeq_E nB$ but the only E-invariant Borel sets $Y \subseteq X$ for which $Y \preccurlyeq_E (n-1)B$ are E-compressible. Fix $I \in Inv([E])$ whose support is B. Then $\text{Inv}([E]) \subseteq [\text{Cl}_{[E]}(I)^n]_{\equiv_\mu}$ by Theorem [12.](#page-7-0) Fix a fixed-point free $J \in Inv([E])$. Then there is an E-invariant μ -conull Borel set $Y \subseteq X$ for which $J \restriction Y \in \mathrm{Cl}_{|E|}(I \restriction Y)^{, so $Y \preccurlyeq_E (n-1)B$,$ thus Y is E-compressible.

Finally, we have the following:

Proof of Theorem [3.](#page-1-1) To see $\neg(1) \implies \neg(2)$, fix a finite equivalence class C of E and observe that parity $(I^n \restriction C)$ = parity $(J \restriction C)$ for all $I \in Inv([E])$ and $J \in \mathrm{Cl}_{|E|}(I)^n$. To see $(1) \implies (2)$, fix a Borel subequivalence relation F of E whose classes all have cardinality three and $I \in Inv([F])$ whose support is F-complete. Then $X \ll_F I$ $2\text{supp}(I)$. As $\text{Inv}(\text{Sym}(\mathbb{N})) \subseteq \text{Cl}_{\text{Sym}(\mathbb{N})}(\iota)^n$ for all $\iota \in \text{Inv}(\text{Sym}(\mathbb{N}))$ such that supp(ι) and ∼supp(ι) are both infinite (see [\[Mor76,](#page-9-6) Corollary 2.4] and [\[Mor88\]](#page-9-4)), Theorem [13](#page-7-1) ensures that $Inv([E]) \subseteq \mathrm{Cl}_{[E]}(I)^n$ \Box

REFERENCES

- [DJK94] R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121
- [Hop32] E. Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), no. 2, 373–393. MR 1501643
- [Kec95] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer–Verlag, New York, 1995. MR 1321597 (96e:03057)
- [KM04] A. S. Kechris and B. Miller, Topics in orbit equivalence, Lecture Notes in Mathematics, vol. 1852, Springer–Verlag, Berlin, 2004. MR 2095154
- [Mor76] G. Moran, The product of two reflection classes of the symmetric group, Discrete Math. 15 (1976), no. 1, 63–77. MR 412297
- [Mor88] $______$ Products of involution classes in infinite symmetric groups, Trans. Amer. Math. Soc. 307 (1988), no. 2, 745–762. MR 940225
- [Nad90] M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3, 203–220. MR 1081705

B. Miller, 1008 Balsawood Drive, Durham, NC 27705 Email address: glimmeffros@gmail.com URL: <https://glimmeffros.github.io>