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Abstract. We show that the existence of an invariant probability
measure for a countable Borel equivalence relation with no single-
ton classes is equivalent to a first-order property of its full group.

Introduction

Let P(X) denote the family of all subsets of X. A Borel space is a
set X equipped with a σ-algebra B ⊆ P(X). Such a space is standard
if B is the σ-algebra generated by a completely-metrizable separable
topology on X. A set B ⊆ X is Borel if B ∈ B. A function between
Borel spaces is Borel if preimages of Borel sets are Borel. A Borel
automorphism of X is a Borel permutation of X whose inverse is also
Borel. A Borel probability measure on X is a probability measure µ on
B. Let ≡µ denote the equivalence relation on the Borel automorphisms
of X given by S ≡µ T ⇐⇒ {x ∈ X | S(x) 6= T (x)} is µ-null. An
equivalence relation E on X is aperiodic if all of its classes are infinite
and countable if all of its classes are countable. A partial transversal
of E is a set Y ⊆ X that intersects every E-class in at most one point.
The full group of E is the group [E] of all Borel automorphisms of
X whose graphs are contained in E. We say that µ is E-conservative
if it concentrates off of Borel partial transversals of E, E-invariant if
µ = T∗µ for all T ∈ [E], and E-quasi-invariant if µ ∼ T∗µ for all
T ∈ [E]. An element g of a group G is an involution if g2 = 1G.
Let Inv(G) denote the set of all such elements. For all g ∈ G, set
gh = hgh−1 for all h ∈ G and define ClG(g) = {gh | h ∈ G}.

Here we characterize the aperiodic countable Borel equivalence rela-
tions on standard Borel spaces that admit an invariant Borel probabil-
ity measure in terms of a first-order property of their full groups:

Theorem 1. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, and n ≥ 4. Then the
following are equivalent:
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(1) There is an E-invariant Borel probability measure.
(2) There exists I ∈ Inv([E]) with the property that n is the least

natural number for which Inv([E]) ⊆ Cl[E](I)n.

We also establish an analogous result in the measure-theoretic milieu:

Theorem 2. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, µ is an E-conservative E-quasi-
invariant Borel probability measure on X, and n ≥ 3. Then the fol-
lowing are equivalent:

(1) There is an E-invariant Borel probability measure ν � µ.
(2) There exists I ∈ Inv([E]) with the property that n is the least

natural number for which Inv([E]) ⊆ [Cl[E]µ(I)n]≡µ.

Finally, we note the following fact, which can be combined with The-
orem 1 to obtain the characterization promised in the abstract:

Theorem 3. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation with no singleton classes, and n ≥ 2.
Then the following are equivalent:

(1) The equivalence relation E is aperiodic.
(2) There exists I ∈ Inv([E]) for which Inv([E]) ⊆ Cl[E](I)n.

The lower bounds on n are optimal in all three results. The E-
conservativity of µ in Theorem 2 can be weakened to µ-almost-every-
where aperiodicity of E when n ≥ 4. The almost everywhere analog of
Theorem 3 holds for any E-quasi-invariant Borel probability measure,
as do the analogs of all three results where involutions are replaced
with automorphisms whose orbits all have cardinality 1 or k, for k ≥ 3.
These results also generalize to Borel actions of Polish groups.

In §1, we review several basic facts concerning countable Borel equiv-
alence relations. In §2, we characterize the involutions that are prod-
ucts of a given number of conjugates of a given involution in [E]. And
in §3, we establish our primary results.

1. Preliminaries

We will take the most basic facts of descriptive set theory for granted.
These include Souslin’s Theorem and its corollary that a function be-
tween standard Borel spaces is Borel if and only if its graph is Borel (see,
for example, [Kec95, Theorems 14.11 and 14.12]). They also include
the Lusin–Novikov uniformization theorem (see, for example, [Kec95,
Theorem 18.10]). We will not give explicit proofs of straightforward
consequences of these results.
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We say that an equivalence relation E on X is finite if all of its
classes are finite. An fsr of E is a finite subequivalence relation of
the restriction of E to a subset of X. We will also take for granted
the existence of Borel maximal fsrs and the immediate corollary that
aperiodic countable Borel equivalence relations have Borel subequiva-
lence relations whose classes all have a given finite cardinality (see, for
example, [KM04, Lemma 7.3 and Proposition 7.4]).

The support of T : X → X is supp(T ) = {x ∈ X | x 6= T (x)}.

Proposition 4. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, I ∈ Inv([E]), and E �
∼supp(I) is aperiodic. Then there is an extension of I � supp(I) to
a fixed-point-free element of Inv([E]).

Proof. Fix a Borel subequivalence relation F of E � ∼supp(I) whose
classes all have size two, let J be the unique fixed-point-free element of
[F ], and observe that the extension of I � supp(I) by J is as desired. �

The E-saturation of a set Y ⊆ X is [Y ]E = {x ∈ X | ∃y ∈ Y x E y}.
We say that Y is E-complete if X = [Y ]E. Given Borel sets A,B ⊆
X and m,n ≥ 1, we write mA ∼E nB if there is a Borel bijection
φ : m × A → n × B with the property that projA×B(graph(φ)) ⊆ E.
We write mA 4E nB if there is a Borel injection φ : m × A → n × B
for which projA×B(graph(φ)) ⊆ E and mA ÎE nB if there is such an
injection φ with the further property that projB((n× B) \ φ(m× A))
is (E � B)-complete. We also write A and B instead of 1A and 1B.

Proposition 5. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, and A,B ⊆ X are Borel.
Then there is a partition of X into E-invariant Borel sets XÎ, X∼,
and XÏ with the property that A ∩ XÎ ÎE B, A ∩ X∼ ∼E B ∩ X∼,
and B ∩XÏ ÎE A.

Proof. Set A′ = A \B and B′ = B \A, fix a Borel maximal fsr F of E
whose classes are all sets of size two that intersect both A′ and B′, and
let I be the unique fixed-point-free element of [F ]. Then the sets XÎ =
[B′\projX(F )]E, XÏ = [A′\projX(F )]E, and X∼ = ∼(XÎ∪XÏ) are as
desired, as witnessed by the corresponding restrictions of I∪ idA∩B. �

A Borel set B ⊆ X is E-large if X 4E nB for some n ≥ 1.

Proposition 6. Suppose that X is a standard Borel space and E is an
aperiodic countable Borel equivalence relation on X. Then there is an
E-large Borel set B ⊆ X whose complement is also E-large.
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Proof. Fix a Borel subequivalence relation F of E whose classes all
have cardinality two, fix a Borel transversal B of F , and observe that
B ∼F ∼B, thus X ∼F 2B ∼F 2(∼B). �

An E-injection of a set Y ⊆ X into a set Z ⊆ X is an injection of Y
into Z whose graph is contained in E. An E-bijection is a surjective
E-injection. A compression of E is an E-injection φ : X → X for
which ∼φ(X) is E-complete and E is compressible if there is a Borel
compression of E. We say that a Borel set B ⊆ X is E-compressible
if E � B is compressible. Given φ : X → X and Y ⊆ X for which
Y ⊆

⋃
n≥1 φ

−n(Y ), define νφ,Y : Y → N and φY : Y → Y by νφ,Y (y) =
min{n ≥ 1 | φn(y) ∈ Y } and φY (y) = φνφ,Y (y)(y) for all y ∈ Y .

Proposition 7. Suppose that X is a standard Borel space, E is a
compressible countable Borel equivalence relation on X, and B ⊆ X is
an E-complete Borel set. Then the following are equivalent:

(1) B is E-large.
(2) B is E-compressible.
(3) B ∼E X.

Proof. As (3) =⇒ (1) is trivial and (2) =⇒ (3) follows from [DJK94,
Proposition 2.2], we need only show (1) =⇒ (2). Towards this end,
fix a Borel compression φ : X → X of E. As B is E-large, there
exist n ≥ 1, a partition of X into Borel sets B0, . . . , Bn−1, and Bor-
el E-injections φ0 : B0 → B, . . . , φn−1 : Bn−1 → B. Set C = ∼φ(X),
D =

⋃
n∈N φ

n(C), Dm = D ∩
⋂
i∈N

⋃
j≥i φ

−j(Bm) for all m < n, and
D′m = Dm \

⋃
`<m[D`]E for all m < n. Then

⋃
m<n φm ◦ φBm∩D′

m
◦ φ−1m

is a compression of the restriction of E to an E-complete Borel subset
of B, so B is E-compressible. �

Proposition 8. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, and n ≥ 2. Then:

(1) There is a Borel set B ⊆ X for which X ∼E nB.
(2) Suppose that B ⊆ X is a Borel set for which X ∼E nB and

Y ⊆ X is an E-invariant Borel set. Then

Y 4E (n− 1)B ⇐⇒ Y is E-compressible.

Proof. To see (1), fix a Borel subequivalence relation F of E whose
classes all have cardinality n, T ∈ [F ] for which F = EX

T , and a Borel
transversal B ⊆ X of F . Then X =

∐
m<n T

m(B), so X ∼F nB.
To see (2), note that if Y is E-compressible, then Proposition 7

ensures that B∩Y is E-compressible (since Y 4E nB), so Y 4E B 4E
(n−1)B. Conversely, if Y 4E (n−1)B, then Y 4E (n−1)(B∩Y ) ÎE

n(B ∩ Y ) 4E Y , so Y is E-compressible. �
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2. Generating one involution from another

A transversal of E is an E-complete partial transversal of E and E is
smooth if there is a Borel transversal of E. An embedding of a function
S : X → X into a function T : Y → Y is an injection φ : X → Y
with the property that φ ◦ S = T ◦ φ. An isomorphism is a surjective
embedding. Let Sym(X) denote the group of all permutations of X.

The following observation ensures that the obvious “local” require-
ment is the only obstacle to writing an involution in [E] as a composi-
tion of conjugates of involutions in [E] when E is smooth:

Proposition 9. Suppose that X is a standard Borel space, E is a
smooth countable Borel equivalence relation on X, n ≥ 1, I0, . . . , In ∈
Inv([E]), and ∀C ∈ X/E In � C ∈

∏
m<n ClSym(C)(Im � C). Then

In ∈
∏

m<n Cl[E](Im).

Proof. As there are only countably many isomorphism classes of invo-
lutions of countable sets, we can assume that there exist a countable
cardinal k, ι0, . . . , ιn ∈ Inv(Sym(k)), and E-invariant Borel functions
φ0, . . . , φn : X → k such that φm � C is an isomorphism of Im � C
with ιm for all C ∈ X/E and m ≤ n. Fix τ0, . . . , τn−1 ∈ Sym(k)
for which ιn = ◦m<n ιτmm and define T0, . . . , Tn−1 ∈ [E] by setting
Tm(x) = ((φn � [x]E)−1 ◦ τm ◦ φm)(x) for m < n and x ∈ X. Then

In(x)

= ((φn � [x]E)−1 ◦ ιn ◦ φn)(x)

= ((φn � [x]E)−1 ◦ (◦m<n ιτmm ) ◦ φn)(x)

= (◦m<n(φn � [x]E)−1 ◦ ιτmm ◦ φn)(x)

= (◦m<n(φn � [x]E)−1 ◦ τm ◦ ιm ◦ τ−1m ◦ φn)(x)

= (◦m<n(φn � [x]E)−1 ◦ τm ◦ φm ◦ Im ◦ (φm � [x]E)−1 ◦ τ−1m ◦ φn)(x)

= (◦m<n Tm ◦ Im ◦ T−1m )(x)

= (◦m<n ITmm )(x)

for all x ∈ X. �

Let ≡E denote the equivalence relation on the Borel automorphisms
of X given by S ≡E T ⇐⇒ E � {x ∈ X | S(x) 6= T (x)} is smooth.

Proposition 10. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, n ≥ 2, and I0, . . . , In−1 ∈
Inv([E]) have the following properties:

(1) ∀m < n supp(Im) ⊆
⋃
k∈n\{m} supp(Ik).

(2) ∀j, k < n Ij � (supp(Ij)∩supp(Ik)) = Ik � (supp(Ij)∩supp(Ik)).
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Then idX ∈ [
∏

m<n Cl[E](Im)]≡E .

Proof. For all K ⊆ n, set XK =
⋂
k∈K supp(Ik) \

⋃
k∈∼K supp(Ik). By

focusing separately on each of these sets, we need only establish the
special case of the proposition where each Ik is fixed-point free (thus
they are all the same). If n is even, then this special case is trivial. So
it only remains to check the case that n = 3.

Set I = I0 = I1 = I2 and fix a Borel maximal fsr F of E whose
classes are all I-invariant sets of cardinality four. As ∼projX(F ) in-
tersects every E-class in at most one orbit of I, we can assume that
it is empty. But the product of the three fixed-point-free involutions
in Sym(4) is the identity, so id4 ∈ ClSym(4)(ι)

3 for all fixed-point free
ι ∈ Inv(Sym(4)), thus idX ∈ Cl[F ](I)3 by Proposition 9. �

We will use Proposition 10 in conjunction with the following fact,
which is the main technical observation underlying our primary results:

Proposition 11. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, I, J ∈ Inv([E]), n ≥ 2, E �
∼supp(I) and E � ∼supp(J) are aperiodic, and supp(I) 4E nsupp(J).
Then X is the union of E-invariant Borel sets Y and Z for which:

(1) There exists T ∈ [E � Y ] such that T � supp(I � Y ) is an
embedding of I � supp(I � Y ) into J .

(2) There exist T0, . . . , Tn−1 ∈ [E � Z] such that Tm � supp(J � Z)
is an embedding of J � supp(J � Z) into I for all m < n and
supp(I � Z) =

⋃
m<n Tm(supp(J � Z)).

Proof. As supp(I) ⊆ [supp(J)]E, we can assume that supp(J) is E-
complete. By Proposition 4, there are extensions of I � supp(I) and
J � supp(J) to fixed-point-free elements I ′ and J ′ of Inv([E]). Fix
Borel transversals A′ and B′ of EX

I′ and EX
J ′ .

We first consider the case where E is compressible and supp(J) is
E-large. As A′ is E-large and Proposition 5 allows us to assume that
A′ ∩ supp(I) 4E A′ \ supp(I) or A′ \ supp(I) 4E A′ ∩ supp(I), we can
therefore assume that A′ \ supp(I) or A′ ∩ supp(I) is E-large.

If A′ \ supp(I) is E-large, then appeal to Proposition 6 to obtain an
E-large Borel set C ′ ⊆ B′∩supp(J) for which B′\C ′ is E-large, as well
as to Proposition 7 to obtain a Borel E-injection φ : A′∩ supp(I)→ C ′

and a Borel E-bijection ψ : A′ \ supp(I)→ B′ \ φ(A′ ∩ supp(I)). Then
the function T = φ ∪ (J ′ ◦ φ ◦ I ′) ∪ ψ ∪ (J ′ ◦ ψ ◦ I ′) is as desired.

If A′ ∩ supp(I) is E-large, then we can assume that B′ \ supp(J) 4E
A′\supp(I) or A′\supp(I) 4E B′\supp(J) by Proposition 5. If there is
a Borel E-injection φ : B′ \ supp(J)→ A′ \ supp(I), then Proposition 7
yields a Borel E-bijection ψ : B′∩supp(J)→ A′\φ(B′\supp(J)), so the
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inverse of the function T = φ∪(I ′◦φ◦J ′)∪ψ∪(I ′◦ψ◦J ′) is as desired. If
there is a Borel E-injection φ : A′\supp(I)→ B′\supp(J), then appeal
to Proposition 6 to obtain E-large Borel sets A′′ ⊆ A′ ∩ supp(I) and
B′′ ⊆ B′∩supp(J) for which (A′∩supp(I))\A′′ and (B′∩supp(J))\B′′
are E-large, as well as to Proposition 7 to obtain Borel E-bijections
ψ0, ψ1 : A′ ∩ supp(I) → B′ \ φ(A′ \ supp(I)) for which A′′ = ψ−10 (B′′)
and (A′ ∩ supp(I)) \A′′ = ψ−11 (B′′). Then the inverses of the functions
Tm = φ ∪ (J ′ ◦ φ ◦ I ′) ∪ ψm ∪ (J ′ ◦ ψm ◦ I ′), for m < 2, are as desired.

We now consider the general case. By Proposition 5, we can assume
that A′ ∩ supp(I) 4E B′ ∩ supp(J), B′ ∩ supp(J) ÎE A

′ ∩ supp(I) 4E
n(B′ ∩ supp(J)), or n(B′ ∩ supp(J)) ÎE A

′ ∩ supp(I).
Suppose first that n(B′ ∩ supp(J)) ÎE A

′ ∩ supp(I). Then supp(I)
4E nsupp(J) ÎE supp(I) and supp(I) ∪ supp(J) 4E (n + 1)supp(J),
so supp(I)∪ supp(J) is E-compressible and supp(J) is (E � (supp(I)∪
supp(J)))-large, thus Proposition 7 ensures that supp(J) is E-com-
pressible, hence E is compressible and supp(J) is E-large.

Suppose next that there is a Borel E-injection φ′ : A′ ∩ supp(I) →
B′ ∩ supp(J). By Proposition 5, we can assume that A′ \ supp(I) ÎE

B′\φ′(A′∩supp(I)), A′\supp(I) ∼E B′\φ′(A′∩supp(I)), or B′\φ′(A′∩
supp(I)) ÎE A′ \ supp(I). In the middle case, there is an extension
of φ′ to a Borel E-bijection φ : A′ → B′, in which case the function
T = φ∪ (J ′ ◦ φ ◦ I ′) is as desired. In the other cases, there is either an
extension of φ′ to a Borel E-injection φ : A′ → B′ for which B′ \ φ(A′)
is (E � B′)-complete or an extension of (φ′)−1 to a Borel E-injection
ψ : B′ → A′ for which A′ \ ψ(B′) is (E � A′)-complete, in which case
φ∪(J ′◦φ◦I ′) or ψ∪(I ′◦ψ◦J ′) is a compression of E. By Proposition 5,
we can assume that supp(K) 4E ∼supp(K) or ∼supp(K) 4E supp(K)
and therefore that ∼supp(K) or supp(K) is E-large for all K ∈ {I, J}.
But if supp(J) is not E-large, then supp(I) is not E-large, so both
∼supp(I) and ∼supp(J) are E-large, thus so too are A′ \ supp(I) and
B′ \ φ′(A′ ∩ supp(I)). Proposition 7 therefore ensures that φ′ extends
to a Borel E-bijection φ : A′ → B′, so the function T = φ∪ (J ′ ◦ φ ◦ I ′)
is as desired.

Suppose finally that B′∩supp(J) ÎE A
′∩supp(I) but there are Bor-

el sets B′0, . . . , B
′
n−1 ⊆ B′ ∩ supp(J) and Borel E-injections φ′′m : B′m →

A′∩supp(I) for which (φ′′m(B′m))m<n partitions A′∩supp(I). By Propo-
sition 5, we can assume that (A′∩supp(I))\φ′′m(B′m) 4E (B′∩supp(J))\
B′m for some m < n or (B′∩ supp(J))\B′m 4E (A′∩ supp(I))\φ′′m(B′m)
for all m < n. In the former case, it follows that B′ ∩ supp(J) ÎE

A′ ∩ supp(I) 4E B′ ∩ supp(J), so supp(J) is E-compressible, thus
E is compressible and supp(J) is E-large by Proposition 7. In the
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latter case, there are extensions of φ′′0, . . . , φ
′′
n−1 to Borel E-injections

φ′0, . . . , φ
′
n−1 : B′ ∩ supp(J) → A′ ∩ supp(I). By Proposition 5, we

can assume that B′ \ supp(J) ÎE A′ \ φ′m(B′ ∩ supp(J)) for some
m < n, B′ \ supp(J) ∼E A′ \ φ′m(B′ ∩ supp(J)) for all m < n, or
A′ \ φ′m(B′ ∩ supp(J)) ÎE B′ \ supp(J) for some m < n. In the
middle case, there are extensions of φ′0, . . . , φ

′
n−1 to Borel E-bijections

φ0, . . . , φn−1 : B′ → A′, so the functions Tm = φm ∪ (I ′ ◦ φm ◦ J ′),
for m < n, are as desired. In the other cases, there exists m < n
for which there is either an extension of φ′m to a Borel E-injection
φm : B′ → A′ such that A′ \ φm(B′) is (E � A′)-complete or an ex-
tension of (φ′m)−1 to a Borel E-injection ψm : A′ → B′ such that
B′ \ ψm(A′) is (E � B′)-complete, in which case φm ∪ (I ′ ◦ φm ◦ J ′)
or ψm ∪ (J ′ ◦ ψm ◦ I ′) is a compression of E. By Proposition 5, we
can assume that supp(K) 4E ∼supp(K) or ∼supp(K) 4E supp(K)
and therefore that ∼supp(K) or supp(K) is E-large for all K ∈ {I, J}.
But if supp(J) is not E-large, then supp(I) is not E-large, so both
∼supp(I) and ∼supp(J) are E-large, thus so too are B′ \ supp(J) and
A′ \ φ′m(B′ ∩ supp(J)) for all m < n. Proposition 7 therefore ensures
that φ′0, . . . , φ

′
n−1 extend to Borel E-bijections φ0, . . . , φn−1 : B′ → A′,

so the functions Tm = φm∪ (I ′ ◦φm ◦J ′), for m < n, are as desired. �

We now show that the obvious “global” requirement is the only ob-
stacle to writing an involution in [E] as a composition of conjugates of
another involution in [E] off of a Borel set where E is smooth:

Theorem 12. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, I, J ∈ Inv([E]), n ≥ 2, and
supp(I) 4E nsupp(J). Then I ∈ [Cl[E](J)n]≡E .

Proof. By throwing out an E-invariant Borel set on which E is smooth,
we can assume that both E � ∼supp(I) and E � ∼supp(J) are aperi-
odic. By Proposition 11, we can therefore assume that either there
exists T ∈ [E] whose restriction to the support of I is an embedding
of I � supp(I) into J or there exist T0, . . . , Tn−1 ∈ [E], whose restric-
tions to the support of J are embeddings of J � supp(J) into I, with
the property that supp(I) =

⋃
m<n Tm(supp(J)). In the former case,

Proposition 10 ensures that idX ∈ [Cl[E](I
T )Cl[E](J)n]≡E . In the latter,

Proposition 10 implies that idX ∈ [Cl[E](I)
∏

m<n Cl[E](J
Tm)]≡E . �

In particular, it follows that the obvious “global” and “local” re-
quirements are the only obstacles to writing an involution in [E] as a
composition of conjugates of another involution in [E]:

Theorem 13. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, I, J ∈ Inv([E]), n ≥ 2, supp(I)
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4E nsupp(J), and ∀C ∈ X/E I � C ∈ ClSym(C)(J � C)n. Then
I ∈ Cl[E](J)n.

Proof. By Proposition 9 and Theorem 12. �

3. Main results

Along with the natural generalization of [Nad90] to countable Borel
equivalence relations, the following fact yields Theorem 1:

Theorem 14. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, and n ≥ 4. Then
exactly one of the following holds:

(1) The equivalence relation E is compressible.
(2) There exists I ∈ Inv([E]) with the property that n is the least

natural number for which Inv([E]) ⊆ Cl[E](I)n.

Proof. To see (1) =⇒ ¬(2), suppose that I ∈ Inv([E]) and Inv([E]) ⊆
Cl[E](I)n. As there is a fixed-point-free element of Inv([E]), it follows
that X 4E nsupp(I), so Proposition 7 implies that X 4E supp(I).
As Inv(Sym(N)) ⊆ ClSym(N)(ι)

3 for all ι ∈ Inv(Sym(N)) with infinite
support (see [Mor88]), Theorem 13 ensures that Inv([E]) ⊆ Cl[E](I)3.

To see ¬(1) =⇒ (2), apply Proposition 8 to obtain a Borel set
B ⊆ X with the property that n is the least natural number for which
X 4E nB and fix I ∈ Inv([E]) whose support is B. As Sym(N) ⊆
ClSym(N)(ι)

n for all ι ∈ Inv(Sym(N)) with infinite support (see [Mor88]),
Theorem 13 ensures that Inv([E]) ⊆ Cl[E](I)n. But Cl[E](I)<n does not
contain any fixed-point-free element of Inv([E]). �

Along with the natural generalization of [Hop32] to countable Borel
equivalence relations, the following fact yields Theorem 2:

Theorem 15. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, µ is an E-conservative E-quasi-
invariant Borel probability measure on X, and n ≥ 3. Then exactly
one of the following holds:

(1) There is an E-compressible µ-conull Borel set.
(2) There exists I ∈ Inv([E]) with the property that n is the least

natural number for which Inv([E]) ⊆ [Cl[E](I)n]≡µ.

Proof. By throwing out an E-invariant µ-null Borel set, we can assume
that E is aperiodic.

To see (1) =⇒ ¬(2), suppose that I ∈ Inv([E]) and Inv([E]) ⊆
[Cl[E](I)n]≡µ . Fix a fixed-point free K ∈ Inv([E]). By throwing out an
E-invariant µ-null Borel set, we can assume that E is compressible and
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K ∈ Cl[E](I)n. Then X 4E nsupp(I), so X 4E supp(I) by Proposition
7, thus Inv([E]) ⊆ [Cl[E](I)2]≡µ by Theorem 12.

It remains to see ¬(2) =⇒ (1). By Proposition 8, there is a Borel
set B ⊆ X such that X 4E nB but the only E-invariant Borel sets
Y ⊆ X for which Y 4E (n−1)B are E-compressible. Fix I ∈ Inv([E])
whose support is B. Then Inv([E]) ⊆ [Cl[E](I)n]≡µ by Theorem 12. Fix
a fixed-point free J ∈ Inv([E]). Then there is an E-invariant µ-conull
Borel set Y ⊆ X for which J � Y ∈ Cl[E](I � Y )<n, so Y 4E (n− 1)B,
thus Y is E-compressible. �

Finally, we have the following:

Proof of Theorem 3. To see ¬(1) =⇒ ¬(2), fix a finite equivalence
class C of E and observe that parity(In � C) = parity(J � C) for
all I ∈ Inv([E]) and J ∈ Cl[E](I)n. To see (1) =⇒ (2), fix a Bor-
el subequivalence relation F of E whose classes all have cardinality
three and I ∈ Inv([F ]) whose support is F -complete. Then X ÎF

2supp(I). As Inv(Sym(N)) ⊆ ClSym(N)(ι)
n for all ι ∈ Inv(Sym(N)) such

that supp(ι) and ∼supp(ι) are both infinite (see [Mor76, Corollary 2.4]
and [Mor88]), Theorem 13 ensures that Inv([E]) ⊆ Cl[E](I)n. �
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