A FIRST-ORDER CHARACTERIZATION OF THE EXISTENCE OF INVARIANT MEASURES

B. MILLER

ABSTRACT. We give first-order properties of the full group of an aperiodic countable Borel equivalence relation that characterize the existence of an invariant probability measure.

A Polish space is a second-countable topological space that admits a compatible complete metric. A Borel space is a set X equipped with a σ -algebra of subsets of X, referred to as the Borel (sub)sets of X. Such a space is standard if its Borel sets are generated by a Polish topology on X. A function $f: X \to Y$ between Borel spaces is Borel if preimages of Borel sets are Borel. A Borel automorphism of X is a Borel bijection $T: X \to X$ for which T^{-1} is also Borel. A Borel probability measure on X is a probability measure μ on the Borel subsets of X. Define an equivalence relation \sim_{μ} on the group of Borel automorphisms of X by $S \sim T \iff \mu(\{x \in X \mid S(x) \neq T(x)\}) = 0.$

Following the usual abuse of language, we say that an equivalence relation E on X is *countable* if all of its classes are countable. Such an equivalence relation is *aperiodic* if all of its classes are infinite. The Esaturation of a set $Y \subseteq X$ is given by $[Y]_E = \{x \in X \mid \exists y \in Y \ x \ E \ y\}$. We say that Y is E-complete if $X = [Y]_E$. A transversal of E is a set $Y \subseteq X$ that intersects every E-class in exactly one point. We say that E is smooth if it admits a Borel transversal. Given Borel sets $A, B \subseteq X$ and $m, n \in \mathbb{Z}^+$, we write $mA \preceq_E nB$ if there is a Borel injection $\phi \colon m \times A \to n \times B$ for which $\operatorname{proj}_{A \times B}(\operatorname{graph}(\phi)) \subseteq E$. We write $mA \prec_E nB$ if there is such a map ϕ with the further property that $\operatorname{proj}_B((n \times B) \setminus \phi(m \times A))$ is $(E \upharpoonright [A]_E)$ -complete. We also write Aand B instead of 1A and 1B and say that E is compressible if $X \prec_E X$.

The full group of E is the group [E] of Borel automorphisms $T: X \to X$ whose graphs are contained in E. The measure-theoretic analog is given by $[E]_{\mu} = [E]/\sim_{\mu}$. By [MR07], two aperiodic countable Borel equivalence relations on standard Borel spaces are Borel isomorphic if and only if their full groups are isomorphic; Dye's reconstruction

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 28A05, 37B05.

Key words and phrases. First order, full group, invariant measure.

B. MILLER

theorem (see, for example, [Kec10, Theorem 4.1]) yields the analogous result in the measure-theoretic context. Still, one can ask whether a given natural property of countable Borel equivalence relations corresponds to a natural property of full groups.

We say that μ is *E-invariant* if $\mu = T_*\mu$ for all $T \in [E]$ and *E-quasiinvariant* if $\mu \sim T_*\mu$ for all $T \in [E]$. Understanding the circumstances under which there is an *E*-invariant Borel probability measure is a basic problem going back to the roots of ergodic theory. The generalization of the first result in this direction (see [Hop32]) from Borel automorphisms to countable Borel equivalence relations ensures that there is an *E*invariant Borel probability measure that is absolutely continuous with respect to a given *E*-quasi-invariant Borel probability measure μ if and only if there is no μ -conull Borel set $C \subseteq X$ for which $E \upharpoonright C$ is compressible. This eventually led to the stronger result that there is an *E*-invariant Borel probability measure if and only if *E* is not compressible (see [Nad90]).

Given a group G and $g \in G$, we use $\operatorname{Cl}(g)$ to denote the conjugacy class of g, we say that g is an *involution* if $g^2 = 1_G$, and we use $\operatorname{Inv}(G)$ to denote the set of all such involutions. A characterization of the class of countable Borel equivalence relations on standard Borel spaces that admit an invariant Borel probability measure in terms of a second-order property of full groups (a strong version of the Bergman property) appeared in [Mil21, Theorems 9 and 10]. Here we note several first-order properties that serve the same purpose:

Theorem 1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, μ is an E-quasi-invariant Borel probability measure on X that concentrates off of Borel sets on which E is smooth, $m \ge 3$, and $n \ge 5$. Then the following are equivalent:

- (0) There is an E-invariant Borel probability measure $\nu \ll \mu$.
- (1) There exists $I \in \text{Inv}([E]_{\mu})$ with the property that m is the least natural number for which $\text{Inv}([E]_{\mu}) \subseteq \text{Cl}(I)^m$.
- (2) There exists $I \in \text{Inv}([E]_{\mu})$ with the property that n is the least natural number for which $[E]_{\mu} = \text{Cl}(I)^n$.
- (3) There exists $T \in [E]_{\mu}$ with the property that n is the least natural number for which $[E]_{\mu} = \operatorname{Cl}(T)^n$.

Theorem 2. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $m \ge 4$, and $n \ge 5$. Then the following are equivalent:

- (0) There is an E-invariant Borel probability measure on X.
- (1) There exists $I \in \text{Inv}([E])$ with the property that m is the least natural number for which $\text{Inv}([E]) \subseteq \text{Cl}(I)^m$.

- (2) There exists $I \in \text{Inv}([E])$ with the property that n is the least natural number for which $[E] = \text{Cl}(I)^n$.
- (3) There exists $T \in [E]$ with the property that n is the least natural number for which $[E] = \operatorname{Cl}(T)^n$.

The equivalence of conditions (0) and (1) in Theorem 1 is a consequence of the following two facts:

Proposition 3. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, and $n \in \mathbb{Z}^+$. Then E is compressible if and only if $X \preceq_E (n+1)B \implies X \preceq_E nB$ for all Borel sets $B \subseteq X$.

Proposition 4. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $I \in Inv([E])$, and $n \geq 2$. Then the following are equivalent:

- (a) $X \preceq_E n(\operatorname{supp}(I)).$
- (b) For all $J \in \text{Inv}([E])$, there is an *E*-invariant Borel set $B \subseteq X$ such that $E \upharpoonright \sim B$ is smooth and $J \upharpoonright B \in \text{Cl}(I \upharpoonright B)^n$.

Propositions 3 and 4 follow from fairly straightforward arguments utilizing known results on compressibility and uniformization.

The equivalence of conditions (0) and (1) in Theorem 2 is a consequence of Propositions 3 and 4 and the fact that $\text{Inv}(S_{\infty}) \subseteq \text{Cl}(\iota)^3$ for all $\iota \in \text{Inv}(S_{\infty})$ with infinite support (see [Mor88]).

Proposition 3 and the following fact yield the equivalence of condition (0) and the strengthening of condition (1) where $\operatorname{Cl}(I)^m$ contains every element of $[E]_{\mu}$ of finite order in Theorem 1:

Proposition 5. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $I \in \text{Inv}([E])$, and $n \geq 2$. Then the following are equivalent:

- (a') $2X \preceq_E n(\operatorname{supp}(I)).$
- (b') For all $T \in [E]$ of finite order, there is an *E*-invariant Borel set $B \subseteq X$ such that $E \upharpoonright \sim B$ is smooth and $T \upharpoonright B \in \operatorname{Cl}(I \upharpoonright B)^n$.

The fact that $(b') \Longrightarrow (a')$ follows from Levitt's formula for the cost of hyperfinite equivalence relations (see, for example, [KM04, Theorem 20.1]). The special case of $(a') \Longrightarrow (b')$ in which n is an even number other than two follows from Propositions 3 and 4 and the following special case of [Mil21, Proposition 1.1]:

Proposition 6. Suppose that X is a standard Borel space and $T: X \to X$ is a Borel automorphism. Then there there are involutions $I, J \in [E_T^X]$ for which $T = I \circ J$ if and only if E_T^X is smooth.

B. MILLER

The proof of the special case where n is odd can be established using the idea behind the proof of Proposition 4. The special case where n = 2 can be established by also considering multiple ways of writing permutations as compositions of two involutions.

The equivalence of conditions (0) and (2) in Theorem 1 is a consequence of Propositions 3 and 5 and:

Proposition 7. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $I \in \text{Inv}([E])$, $n \ge 3$, $2X \prec_E n(\text{supp}(I))$, and $T \in [E]$. Then there is an E-invariant Borel set $B \subseteq X$ such that $E \upharpoonright \sim B$ is smooth and $T \upharpoonright B \in \text{Cl}(I \upharpoonright B)^n$.

We say that a set $Y \subseteq X$ is $T^{\pm 1}$ -complete if $X = \bigcup_{n \in \mathbb{N}} T^n(Y) = \bigcup_{n \in \mathbb{N}} T^{-n}(Y)$. One can establish Proposition 7 using the proof of Proposition 5 and the following special case of [Mil21, Proposition 1.18]:

Proposition 8. Suppose that X is a standard Borel space, $T: X \to X$ is Borel, and $B \subseteq X$ is a $T^{\pm 1}$ -complete Borel set. Then there exists $I \in \text{Inv}([E_T^X])$ for which $\text{supp}(I) \subseteq B$ and $I \circ T$ is periodic.

The equivalence of conditions (0) and (2) in Theorem 2 is a consequence of Propositions 3, 5, and 7 and the fact that $S_{\infty} = \operatorname{Cl}(\tau)^4$ for all $\tau \in S_{\infty}$ with infinite support (see [Ber73]).

The equivalence of conditions (0) and (2) and the following generalization of [Ber73] yield the equivalence of conditions (0) and (3) in Theorems 1 and 2:

Proposition 9. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $T \in [E]$, and $2X \prec_E 3(\operatorname{supp}(T))$. Then there exists $S \in \operatorname{Cl}(T)^2$ with the property that $[E] = \operatorname{Cl}(S)^2$.

In addition to relying upon the main result of [Mor89], the proof of Proposition 9 breaks naturally into two pieces. The first is the following consequence of Proposition 8:

Proposition 10. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation, $T \in [E]$, and $2X \prec_E 3(\operatorname{supp}(T))$. Then there exists $S \in \operatorname{Cl}(T)^2$ of finite order such that every orbit of S has cardinality at least three and

 $\forall x \in X \exists n \in \mathbb{N} \forall m \in \{n, 2n\} |\{y \in [x]_E \mid |[y]_S| = m\}| = \aleph_0.$

The second is a special case of a generalization of [Mil21, Theorem 3]) whose proof is quite involved and has not been written up:

4

Theorem 11. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $R, S, T \in [E]$, R and S have finite order, and R and S² are fixed-point free. Then there is an E-invariant Borel set $B \subseteq X$ such that $E \upharpoonright \sim B$ is smooth and $T \upharpoonright B \in Cl(R \upharpoonright B)Cl(S \upharpoonright B)$.

I do not know whether Theorem 1 goes through when n = 4, but the following consequence of Propositions 4, 6, and 7 and Theorem 11 ensures that the bounds in Theorem 1 are otherwise optimal:

Theorem 12. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, μ is an E-quasi-invariant Borel probability measure on X that concentrates off of Borel sets on which E is smooth, $m \leq 2$, and $n \leq 3$. Then:

- (1) There exists $I \in \text{Inv}([E]_{\mu})$ for which m is the least natural number such that $\text{Inv}([E]_{\mu}) \subseteq \text{Cl}(I)^m$ if and only if m = 2.
- (2) There exists $I \in \text{Inv}([E]_{\mu})$ for which n is the least natural number such that $\text{Inv}([E]_{\mu}) \subseteq \text{Cl}(I)^n$ if and only if n = 3.
- (3) There exists $T \in [E]_{\mu}$ for which n is the least natural number such that $\text{Inv}([E]_{\mu}) \subseteq \text{Cl}(T)^n$ if and only if $n \geq 2$.

Similarly, the following consequence of Propositions 4, 6, and 7, Theorem 11, [Mor88], and [Mor89] ensures that the bounds in Theorem 2 are optimal:

Theorem 13. Suppose that X is a standard Borel space, E is an aperiodic countable Borel equivalence relation on X, $m \leq 3$, and $n \leq 4$. Then:

- (1) There exists $I \in \text{Inv}([E])$ for which m is the least natural number such that $\text{Inv}([E]) \subseteq \text{Cl}(I)^m$ if and only if $m \ge 2$.
- (2) There exists $I \in \text{Inv}([E])$ for which n is the least natural number such that $\text{Inv}([E]) \subseteq \text{Cl}(I)^n$ if and only if $n \ge 3$.
- (3) There exists $T \in [E]$ for which n is the least natural number such that $Inv([E]) \subseteq Cl(T)^n$ if and only if $n \ge 2$.

Acknowledgements. I would like to thank Alexander Kechris for encouraging me to write this note and his comments on an initial draft.

References

- [Ber73] Edward A. Bertram, On a theorem of Schreier and Ulam for countable permutations, J. Algebra 24 (1973), 316–322. MR 308276
- [Hop32] E. Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), no. 2, 373–393. MR 1501643

B. MILLER

- [Kec10] Alexander S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. MR 2583950
- [KM04] Alexander S. Kechris and Benjamin D. Miller, Topics in orbit equivalence, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR 2095154
- [Mil21] B. D. Miller, Compositions of periodic automorphisms, Draft, 2021.
- [Mor88] Gadi Moran, Products of involution classes in infinite symmetric groups, Trans. Amer. Math. Soc. 307 (1988), no. 2, 745–762. MR 940225
- [Mor89] _____, Conjugacy classes whose square is an infinite symmetric group, Trans. Amer. Math. Soc. **316** (1989), no. 2, 493–522. MR 1020501
- [MR07] Benjamin D. Miller and Christian Rosendal, Isomorphism of Borel full groups, Proc. Amer. Math. Soc. 135 (2007), no. 2, 517–522. MR 2255298
- [Nad90] M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3, 203–220. MR 1081705

B. MILLER, 10520 BOARDWALK LOOP #702, LAKEWOOD RANCH, FL 34202 Email address: glimmeffros@gmail.com URL: https://glimmeffros.github.io

6