A FIRST-ORDER CHARACTERIZATION OF THE
EXISTENCE OF INVARIANT MEASURES

B. MILLER

ABSTRACT. We give first-order properties of the full group of an
aperiodic countable Borel equivalence relation that characterize
the existence of an invariant probability measure.

A Polish space is a second-countable topological space that admits a
compatible complete metric. A Borel space is a set X equipped with a
o-algebra of subsets of X, referred to as the Borel (sub)sets of X. Such
a space is standard if its Borel sets are generated by a Polish topology
on X. A function f: X — Y between Borel spaces is Borel if preimages
of Borel sets are Borel. A Borel automorphism of X is a Borel bijection
T: X — X for which T7! is also Borel. A Borel probability measure
on X is a probability measure u on the Borel subsets of X. Define an
equivalence relation ~,, on the group of Borel automorphisms of X by
S~T <= pu{xe X | S(x)#T(x)}) =0.

Following the usual abuse of language, we say that an equivalence
relation E on X is countable if all of its classes are countable. Such an
equivalence relation is aperiodic if all of its classes are infinite. The E-
saturation of aset Y C X isgiven by [Y|p={r € X |y e Y z E y}.
We say that Y is E-complete if X = [Y]g. A transversal of E is a
set Y C X that intersects every FE-class in exactly one point. We say
that F is smooth if it admits a Borel transversal. Given Borel sets
A,B C X and m,n € Z*, we write mA <g nB if there is a Borel
injection ¢: m x A — n x B for which proj,, g(graph(¢)) C E. We
write mA <g nB if there is such a map ¢ with the further property
that projgz((nx B)\¢(mx A)) is (E | [A]g)-complete. We also write A
and B instead of 14 and 1B and say that F is compressible if X <g X.

The full group of E is the group [E] of Borel automorphisms 7': X —
X whose graphs are contained in E. The measure-theoretic analog is
given by [E], = [E]/~,. By [MRO0T], two aperiodic countable Borel
equivalence relations on standard Borel spaces are Borel isomorphic
if and only if their full groups are isomorphic; Dye’s reconstruction
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theorem (see, for example, [Kecl0, Theorem 4.1]) yields the analogous
result in the measure-theoretic context. Still, one can ask whether a
given natural property of countable Borel equivalence relations corre-
sponds to a natural property of full groups.

We say that p is E-invariant if = T,p for all T' € [E] and E-quasi-
invariant if p ~ T,y for all T € [E]. Understanding the circumstances
under which there is an E-invariant Borel probability measure is a basic
problem going back to the roots of ergodic theory. The generalization of
the first result in this direction (see [Hop32]) from Borel automorphisms
to countable Borel equivalence relations ensures that there is an FE-
invariant Borel probability measure that is absolutely continuous with
respect to a given FE-quasi-invariant Borel probability measure g if
and only if there is no p-conull Borel set C' C X for which £ | C
is compressible. This eventually led to the stronger result that there
is an F-invariant Borel probability measure if and only if E is not
compressible (see [Nad90]).

Given a group G and g € GG, we use Cl(g) to denote the conjugacy
class of g, we say that g is an involution if ¢> = 1o, and we use
Inv(G) to denote the set of all such involutions. A characterization
of the class of countable Borel equivalence relations on standard Borel
spaces that admit an invariant Borel probability measure in terms of
a second-order property of full groups (a strong version of the Berg-
man property) appeared in [Mil21, Theorems 9 and 10]. Here we note
several first-order properties that serve the same purpose:

Theorem 1. Suppose that X s a standard Borel space, E is a count-
able Borel equivalence relation on X, u is an E-quasi-invariant Borel
probability measure on X that concentrates off of Borel sets on which
E is smooth, m > 3, and n > 5. Then the following are equivalent:

(0) There is an E-invariant Borel probability measure v < pu.

(1) There exists I € Inv([E],) with the property that m is the least
natural number for which Inv([E],) C CI(I)™.

(2) There exists I € Inv([E],) with the property that n is the least
natural number for which [E], = CI(I)".

(3) There exists T' € [E],, with the property that n is the least nat-
ural number for which [E], = CI(T)".

Theorem 2. Suppose that X is a standard Borel space, E is an ape-
riodic countable Borel equivalence relation on X, m > 4, and n > 5.
Then the following are equivalent:
(0) There is an E-invariant Borel probability measure on X .
(1) There exists I € Inv([E]) with the property that m is the least
natural number for which Inv([E]) C CI(I)™.
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(2) There ezists I € Inv([E]) with the property that n is the least
natural number for which [E] = CI(I)".

(3) There exists T € [E] with the property that n is the least natural
number for which [E] = CI(T)".

The equivalence of conditions (0) and (1) in Theorem [1]is a conse-
quence of the following two facts:

Proposition 3. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, andn € Z*. Then
E is compressible if and only if X <g (n+1)B = X <gnB for all
Borel sets B C X.

Proposition 4. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, I € Inv([E]), and
n > 2. Then the following are equivalent:
(a) X < n(supp(])).
(b) For all J € Inv([E]), there is an E-invariant Borel set B C X
such that E | ~B is smooth and J | B € CI(I | B)".

Propositions [3] and [] follow from fairly straightforward arguments uti-
lizing known results on compressibility and uniformization.

The equivalence of conditions (0) and (1) in Theorem 2] is a conse-
quence of Propositions 3] and |4] and the fact that Inv(S,,) C Cl(¢)? for
all ¢ € Inv(S,) with infinite support (see [Mor88|).

Proposition [3land the following fact yield the equivalence of condition
(0) and the strengthening of condition (1) where CI(I)™ contains every
element of [E], of finite order in Theorem

Proposition 5. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, I € Inv([E]), and
n > 2. Then the following are equivalent:
(') 2X <g n(supp(])).
(b') For allT € [E] of finite order, there is an E-invariant Borel set
B C X such that E | ~B is smooth and T | B € CI(I | B)™.

The fact that (b') = (a’) follows from Levitt’s formula for the cost
of hyperfinite equivalence relations (see, for example, [KMO04, Theorem
20.1]). The special case of (a’) == (b’) in which n is an even number
other than two follows from Propositions 3] and [4] and the following
special case of [Mil21}, Proposition 1.1]:

Proposition 6. Suppose that X is a standard Borel space andT: X —
X is a Borel automorphism. Then there there are involutions I,J €
[EZX] for which T =1 o J if and only if E:X is smooth.
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The proof of the special case where n is odd can be established using
the idea behind the proof of Proposition [ The special case where
n = 2 can be established by also considering multiple ways of writing
permutations as compositions of two involutions.

The equivalence of conditions (0) and (2) in Theorem [1]is a conse-
quence of Propositions [3] and [5] and:

Proposition 7. Suppose that X s a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, I € Inv([E]), n >
3, 2X <g n(supp(!)), and T € [E]|. Then there is an E-invariant
Borel set B C X such that E | ~B is smooth and T | B € CI(I | B)™.

We say that a set Y C X is T -complete if X = J,.yT"(Y) =
UnenT7(Y). One can establish Proposition |7| using the proof of
Proposition[f]and the following special case of [Mil21} Proposition 1.18]:

Proposition 8. Suppose that X is a standard Borel space, T: X — X
is Borel, and B C X is a T*'-complete Borel set. Then there exists
I € Inv([EZ]) for which supp(I) C B and I o T is periodic.

The equivalence of conditions (0) and (2) in Theorem [2 is a conse-
quence of Propositions [3] 5] and [7] and the fact that S, = CI(7)* for
all 7 € S, with infinite support (see [Ber73]).

The equivalence of conditions (0) and (2) and the following gener-
alization of [Ber73| yield the equivalence of conditions (0) and (3) in
Theorems 1 and [2}

Proposition 9. Suppose that X s a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, T € [E], and
2X <p 3(supp(T)). Then there exists S € CI(T)* with the property
that [E] = C1(S)2.

In addition to relying upon the main result of [Mor89], the proof of
Proposition[J] breaks naturally into two pieces. The first is the following
consequence of Proposition [8}

Proposition 10. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation, T € [E], and 2X <g

3(supp(T)). Then there exists S € CYT)? of finite order such that
every orbit of S has cardinality at least three and

Ve e Xdn € NVm € {n,2n} {y € [z]g | |ly]s| = m}| = No.

The second is a special case of a generalization of [Mil21l, Theorem
3]) whose proof is quite involved and has not been written up:
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Theorem 11. Suppose that X is a standard Borel space, E is an
aperiodic countable Borel equivalence relation on X, R, S,T € [E], R
and S have finite order, and R and S? are fized-point free. Then there
1s an E-invariant Borel set B C X such that E | ~B is smooth and
T | BeClR| B)CIS| B).

I do not know whether Theorem [l| goes through when n = 4, but
the following consequence of Propositions [4] 6] and [7] and Theorem
ensures that the bounds in Theorem [l] are otherwise optimal:

Theorem 12. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, p is an E-quasi-invariant Borel
probability measure on X that concentrates off of Borel sets on which
E is smooth, m < 2, and n < 3. Then:

(1) There exists I € Inv([E],) for which m is the least natural
number such that Inv([E],) C CI(I)™ if and only if m = 2.

(2) There exists I € Inv([E],) for which n is the least natural num-
ber such that Inv([E],) C CI(I)" if and only if n = 3.

(3) There exists T € [E], for which n is the least natural number
such that Inv([E],) C CI(T)" if and only if n > 2.

Similarly, the following consequence of Propositions [, [0, and [7], The-
orem [Mor88], and [Mor89] ensures that the bounds in Theorem
are optimal:

Theorem 13. Suppose that X is a standard Borel space, E is an

aperiodic countable Borel equivalence relation on X, m < 3, andn < 4.
Then:

(1) There exists I € Inv([E]) for which m is the least natural num-
ber such that Inv([E]) C CI(I)™ if and only if m > 2.

(2) There exists I € Inv([E]) for which n is the least natural number
such that Inv([E]) C CI(I)" if and only if n > 3.

(3) There exists T € [E] for which n is the least natural number
such that Inv([E]) C CI(T)" if and only if n > 2.
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