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Abstract. We introduce essential values of Borel cocycles from
analytic equivalence relations to countable discrete groups, estab-
lish a Glimm–Effros-style characterization of the circumstances un-
der which such cocycles have a given non-trivial essential value, and
obtain a Dougherty–Jackson–Kechris-style embedding theorem for
such cocyles with hyperfinite domains. We then use these results
to classify suitably Borel finite equivalence relations and free ac-
tions of finite groups on R/Q. Assuming that (Z ∗ Z)-orderable
Borel equivalence relations are hyperfinite, we also show that ev-
ery suitably Borel automorphism of R/Q is both a product of three
involutions and a commutator, and that the group of all such au-
tomorphisms has exactly four proper normal subgroups and the
12-Bergman property.

Introduction

Endow N with the discrete topology and NN with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN. A subset of a topological space is Borel
if it is in the smallest σ-algebra containing the open sets and co-analytic
if its complement is analytic. Souslin’s theorem ensures that a subset
of an analytic Hausdorff space is Borel if and only if it is analytic and
co-analytic (see, for example, the proof of [Kec95, 14.11]). A function
between topological spaces is Borel if preimages of open sets are Borel.

The diagonal on X is given by ∆(X) = {(x, y) ∈ X×X | x = y} and
the restriction of a binary relation R on X to a set Y ⊆ X is given by
R � Y = R ∩ (Y × Y ). A partial transversal of an equivalence relation
E on a set X is a set Y ⊆ X for which E � Y = ∆(Y ). Following
the usual abuse of language, we say that E is countable if all of its
equivalence classes are countable, and finite if all of its equivalence
classes are finite.
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A homomorphism from a binary relation R on a set X to a binary
relation S on a set Y is a function φ : X → Y such that (φ×φ)(R) ⊆ S.
A reduction of R to S is a homomorphism from R to S that is also a
homomorphism from ∼R to ∼S, and an embedding of R into S is an
injective reduction of R to S.

We say that a countable analytic equivalence relation E on a Haus-
dorff space X is smooth if X is a countable union of Borel partial
transversals of E. Well-known examples of non-smooth equivalence
relations include the equivalence relation on 2N given by c E0 d ⇐⇒
∃n ∈ N∀m ≥ n c(m) = d(m) and the orbit equivalence relation EV
induced by the action of Q on R by addition. One form of the Glimm–
Effros dichotomy ensures that a countable analytic equivalence relation
E on a Hausdorff space is smooth if and only if there is no continuous
embedding of E0 into E (see, for example, [Mil12, Theorem 14]).

Given an equivalence relation E on a set X and a group Γ, we say
that a function ρ : E → Γ is a cocycle if ρ(x, z) = ρ(x, y)ρ(y, z) for
all x E y E z. Given an equivalence relation F on a set Y , a ho-
momorphism from a cocycle ρ : E → Γ to a cocycle σ : F → Γ is a
homomorphism φ : X → Y from E to F for which ρ = σ ◦ (φ× φ). An
embedding of ρ into σ is a homomorphism from ρ to σ that is also an
embedding of E into F .

When X is a Hausdorff space, E is analytic, and ρ is Borel, we
say that a set Λ ⊆ Γ is an essential value of ρ if Λ 6= ∅ and X is
not a countable union of Borel sets B ⊆ X with the property that
Λ * ρ((E � B) \ ∆(B)). It is easy to see that if E is countable,
Λ = {1Γ}, and ρ is constant, then Λ is an essential value of ρ if and
only if E is not smooth.

We say that a sequence λ ∈ ΛN is a redundant enumeration of Λ if
Λ ⊆ λ(N \ n) for all n ∈ N. Let a denote concatenation of sequences
and define λs =

∏
i<|s| λ(i)s(i) for all s ∈ 2<N and �λ : E0 → Γ by

�λ(s a c, t a c) = λs(λt)−1 for all c ∈ 2N and (s, t) ∈
⋃
n∈N 2n × 2n.

If E is countable, Λ = {1Γ}, and ρ is constant, then the Glimm–Effros
dichotomy ensures that Λ is an essential value of ρ if and only if there
is a continuous embedding of �λ into ρ.

In §1, we extend this result to non-trivial values of Λ:

Theorem 1. Suppose that Λ ≤ Γ are countable discrete non-trivial
groups, λ ∈ ΛN is a redundant enumeration of Λ, X is a Hausdorff
space, E is an analytic equivalence relation on X, and ρ : E → Γ is a
Borel cocycle. Then the following are equivalent:

(1) The set Λ is an essential value of ρ.
(2) There is a continuous embedding π : 2N → X of �λ into ρ.
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A Polish space is a second-countable topological space that admits
a compatible complete metric. Every such space is analytic (see, for
example, [Kec95, Theorem 7.9]). A Borel space is a set equipped with
a distinguished σ-algebra. Such a space is standard if the latter is the
smallest σ-algebra containing a Polish topology on the former.

A Borel equivalence relation on a standard Borel space is hyperfinite
if it is the union of an increasing sequence (Fn)n∈N of finite Borel sube-
quivalence relations. Examples of such equivalence relations include E0

and EV . By the Dougherty–Jackson–Kechris embedding theorem (see
[DJK94, Theorem 7.1]), every such equivalence relation admits a Bor-
el embedding into E0. When Λ = {1Γ}, it follows that the constant
cocycle on every such equivalence relation is Borel embeddable into �λ.

In §2, we generalize this result to non-trivial values of Λ:

Theorem 2. Suppose that Γ is a countable discrete group, γ ∈ ΓN is
a redundant enumeration of Γ, X is a standard Borel space, E is a
hyperfinite Borel equivalence relation on X, and ρ : E → Γ is a Borel
cocycle. Then there is a Borel embedding π : X → 2N of ρ into �γ.

Given an equivalence relation E on a topological space X, we say
that a set B ⊆ X/E is Borel if

⋃
B is Borel. More generally, given

a countable set I and equivalence relations Ei on topological spaces
Xi for all i ∈ I, we say that a set R ⊆

∏
i∈I Xi/Ei is weakly Borel if

the lifting R̃ = {(xi)i∈I ∈
∏

i∈I Xi | ([xi]Ei)i∈I ∈ R} is Borel. Given an
equivalence relation F on a topological space Y , we say that a function
φ : X/E → Y/F is strongly Borel if its graph is weakly Borel.

The Glimm–Effros dichotomy and the Lusin–Novikov uniformization
theorem (see, for example, [Kec95, Theorem 18.10]) easily imply that
the quotient of a standard Borel space by a countable Borel equivalence
relation is standard if and only if the latter is smooth. A hyperfinite
quotient is the quotient of a standard Borel space by a hyperfinite
Borel equivalence relation. The Glimm–Effros dichotomy, the Dough-
erty–Jackson–Kechris embedding theorem, and the proof of the Schrö-
der–Bernstein theorem ensure that there is only one non-standard such
quotient up to strong Borel isomorphism. The isomorphism theorem
for standard Borel spaces (see, for example, [Kec95, Theorem 15.6])
therefore implies that 0, 1, 2, . . ., N, R, and R/Q are the only hyper-
finite quotients up to strong Borel isomorphism. We refer to this fact
as the isomorphism theorem for hyperfinite quotients.

Given a group action Γ y X, we say that a set Y ⊆ X is Γ-complete
if it intersects every Γ-orbit. When X is a Borel space, we say that an
action Γ y X by Borel automorphisms is orbit ergodic if there is no
Γ-complete Borel set B ⊆ X whose complement is also Γ-complete.
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An embedding of an action Γ y X into an action Γ y Y is an
injection π : X → Y such that π(γ · x) = γ · π(x) for all γ ∈ Γ and
x ∈ X. An isomorphism is a surjective embedding.

For each cocycle ρ : E → Γ, define Eρ = ρ−1({1Γ}). For each redun-
dant enumeration γ ∈ ΓN of Γ, set Xγ = {c ∈ 2N | �γ({c}× [c]E0) = Γ}
and Eγ = E�γ � Xγ and define Γ y Xγ/Eγ by [c]Eγ = γ · [d]Eγ ⇐⇒
�γ(c, d) = γ for all (c, d) ∈ E0 � Xγ and γ ∈ Γ.

In §3, we use Theorems 1 and 2 to show that these are both minimal
orbit-ergodic actions and essentially the only orbit-ergodic free actions
for which the lifting EX

Γ of the corresponding orbit equivalence relation
E
X/E
Γ is hyperfinite:

Theorem 3. Suppose that Γ is a non-trivial countable discrete group,
γ ∈ ΓN is a redundant enumeration of Γ, X is an analytic Hausdorff
space, E is a Borel equivalence relation on X, and Γ y X/E is a
free action by strongly Borel automorphisms. Then the following are
equivalent:

(1) The action Γ y X/E is orbit ergodic.
(2) There is a strongly Borel embedding of Γ y Xγ/Eγ into Γ y

X/E.

Moreover, if X is standard Borel and EX
Γ is hyperfinite, then these

conditions are equivalent to:

(3) There is a strongly Borel isomorphism of Γ y Xγ/Eγ with
Γ y X/E.

The orbit cocycle associated with a free action Γ y X/E is the
cocycle ρXΓ : EX

Γ → Γ given by ρXΓ (x, y) = γ ⇐⇒ [x]E = γ · [y]E.
For all k ∈ Z+, let Sk denote the symmetric group of all permutations
of k. Given a Polish space X, a Borel equivalence relation F on X,
and a weakly Borel equivalence relation E on X/F whose classes all
have cardinality k, we say that a cocycle ρ : Ẽ → Sk is an index cocycle
for E if there are Borel functions φi : X → X with the property that
φ0 = id, [x]Ẽ =

⋃
i<k[φi(x)]F for all x ∈ X, and ρ(x, y) = σ ⇐⇒

∀i < k φσ(i)(x) F φi(y) for all σ ∈ Sk and x Ẽ y. If F is the orbit
equivalence relation induced by a Borel action of a Polish group, then
[dRM, Theorem 2.12] ensures the existence of such cocycles.

In §4, we use Theorem 3 to show that, on the non-standard hyper-
finite quotient, there are essentially only finitely-many free actions of
any finite group by strongly Borel automorphisms and weakly Borel
equivalence relations whose classes have any given finite cardinality:

Theorem 4. Suppose that Γ is a finite group. Then the set of essen-
tial values of the corresponding orbit cocycle is a complete invariant
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for strong Borel isomorphism of free actions of Γ by strongly Borel
automorphisms of the non-standard hyperfinite quotient.

Theorem 5. Suppose that k ∈ Z+. Then the set of essential values
of any corresponding index cocycle is a complete invariant for strongly
Borel isomorphism of weakly Borel equivalence relations whose classes
have cardinality k on the non-standard hyperfinite quotient.

A function between Borel spaces is Borel if preimages of Borel sets
are Borel. A Borel automorphism of a Borel spaceX is a Borel bijection
T : X → X whose inverse is also Borel.

Given a binary relation R on X, we say that a family of subsets of
X separates R-related points if any two distinct R-related points in X
are separated by a set in the family. We say that R is separable if there
is a countable family of Borel subsets of X that separates R-related
points. We say that a Borel automorphism T : X → X is separable if
the graphs of its powers are separable.

An isomorphism of bijections S : X → X and T : Y → Y is a bijec-
tion π : X → Y such that π ◦S = T ◦π. Given a positive integer h, the
tower of constant height h over a bijection T : X → X is the bijection
T ∗ h : X × {1, . . . , h} → X × {1, . . . , h} given by

(T ∗ h)(x, i) =

{
(x, i+ 1) if i < h and

(T (x), 1) otherwise.

Theorem 3 ensures that if 2 ≤ k ≤ ℵ0, then there is essentially a unique
strongly Borel automorphism Tk of a hyperfinite quotient for which
every orbit has cardinality k, the corresponding free action of Z/kZ
is orbit ergodic, and the lifting of the corresponding orbit equivalence
relation is hyperfinite.

We say that a strongly Borel automorphism T : X/E → X/E is
decomposable if there is a T -invariant Borel set B ⊆ X/E such that
T � B is separable and T � ∼B is strongly Borel isomorphic to a disjoint
union of countably-many automorphisms of the form Tk ∗ h.

In §5, we use Theorem 3 to show that if the lifting of the orbit
equivalence relation induced by every strongly Borel automorphism of
a hyperfinite quotient is hyperfinite—an assumption easily seen to be
equivalent to the long-standing conjecture that every (Z ∗Z)-orderable
Borel equivalence relation is hyperfinite—then every strongly Borel au-
tomorphism of a hyperfinite quotient is decomposable:

Theorem 6. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, T : X/E → X/E is a strongly
Borel automorphism, and EX

T is hyperfinite. Then T is decomposable.
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Remark 7. We say that a bijection is periodic if all of its orbits are fi-
nite. If X is a standard Borel space, E is a hyperfinite Borel equivalence
relation on X, and T : X/E → X/E is a periodic strongly Borel auto-
morphism, then EX

T is hyperfinite by [JKL02, Proposition 1.3 (vii)], so
Theorem 6 ensures that T is decomposable.

Remark 8. If X is a standard Borel space, E is a hyperfinite Bor-
el equivalence relation on X, T : X/E → X/E is a strongly Borel
automorphism, and µ is a Borel probability measure on X, then there
is an EX

T -invariant µ-conull Borel set C ⊆ X on which EX
T is hyperfinite

by [JKL02, Proposition 2.15 (ix)] and the main result of [CFW81], so
Theorem 6 ensures that T � C is decomposable.

Remark 9. If X is a Polish space, E is a countable Borel equivalence
relation on X, and T : X/E → X/E is a strongly Borel automorphism,
then there is an EX

T -invariant comeager Borel set C ⊆ X on which
EX
T is hyperfinite by [HK96, Theorem 6.2], so Theorem 6 ensures that

T � C is decomposable.

An element γ of a group Γ is an involution if γ2 = 1Γ. The commu-
tator of group elements γ and δ is given by [γ, δ] = γδγ−1δ−1.

In §6, we show that decomposable strongly Borel automorphisms of
hyperfinite quotients are both products of involutions and special kinds
of commutators:

Theorem 10. Suppose that X is a standard Borel space, E is a count-
able Borel equivalence relation on X, and T : X/E → X/E is a decom-
posable strongly Borel automorphism. Then there are strongly Borel
involutions I, J,K : X/E → X/E for which T = I ◦ J ◦K.

Theorem 11. Suppose that n ≥ 3, X is a standard Borel space, E
is a hyperfinite Borel equivalence relation on X with infinitely-many
classes, and T : X/E → X/E is a decomposable strongly Borel auto-
morphism. Then there are strongly Borel automorphisms R, S : X/E →
X/E, whose orbits have cardinality 1, 2, or n, such that R−1 and S
are strongly Borel isomorphic and T = S ◦R.

Recall that the support of an automorphism T : X → X is given by
supp(T ) = {x ∈ X | x 6= T (x)}.

In §7, we prove the following fact, which—when combined with the
analogous fact for uncountable standard Borel spaces (see [Mil, The-
orem 6]) and the assumption that every strongly Borel automorphism
of a hyperfinite quotient is decomposable—implies that the group of
strongly Borel automorphisms of the non-standard hyperfinite quotient
has exactly four proper normal subgroups:
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Theorem 12. Suppose that X is a standard Borel space, E is a non-
smooth hyperfinite Borel equivalence relation on X, S : X/E → X/E
is a decomposable strongly Borel automorphism, and T : X/E → X/E
is a strongly Borel automorphism whose support is not standard. Then
S is a product of four conjugates of T±1.

For each k ∈ N, we say that a group Γ has the k-Bergman property
if, for every exhaustive increasing sequence (Γn)n∈N of subsets of Γ,
there exists n ∈ N such that Γ = (Γn)k. Let AutsB(X/E) denote the
group of all strongly Borel automorphisms of X/E.

In §8, we establish the following fact, whose proof also yields the anal-
ogous facts for the symmetric group of all permutations of N and the
group of all Borel automorphisms of R, slightly strengthening [Ber06,
Theorem 6] and [DG05, Theorem 3.4]:

Theorem 13. Suppose that X is a standard Borel space, E is a non-
smooth hyperfinite Borel equivalence relation on X, and every strongly
Borel automorphism of X/E is decomposable. Then AutsB(X/E) has
the 12-Bergman property.

1. Minimality

A digraph on a set X is an irreflexive set G ⊆ X ×X. We say that
a set Y ⊆ X is G-independent if G � Y = ∅. It is well-known that if
X is Hausdorff and G is analytic, then every G-independent analytic
set A ⊆ X is contained in a G-independent Borel set B ⊆ X (see, for
example, [dRM, Proposition 1.2]).

The following observation ensures that if a Borel cocycle ρ : E → Γ
from an analytic equivalence relation on a Hausdorff space to a count-
able discrete group has any essential values at all, then {1Γ} is an
essential value:

Proposition 1.1. Suppose that Γ is a countable discrete group, X is
a Hausdorff space, E is an analytic equivalence relation on X, and
ρ : E → Γ is a Borel cocycle for which Eρ = ∆(X). Then ρ has no
essential values.

Proof. It is sufficient to show that there is no γ ∈ Γ for which {γ} is an
essential value of ρ. As 1Γ /∈ ρ(E \∆(X)), we can assume that γ 6= 1Γ.
As the analyticity of E yields that of X and every analytic Hausdorff
space admits a countable separating family of Borel sets, there is a
sequence (Dn)n∈N of Borel sets separating E-related points.

Lemma 1.2. The set An = {x ∈ Dn | ∃y ∈ ∼Dn γ = ρ(x, y)} is
ρ−1({γ})-independent for all n ∈ N.
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Proof. Suppose, towards a contradiction, that there exist x, y ∈ An
for which γ = ρ(x, y). Fix z ∈ ∼Dn such that γ = ρ(x, z). Then
ρ(y, z) = ρ(y, x)ρ(x, z) = γ−1γ = 1Γ, so y = z, contradicting the fact
that y ∈ An ⊆ Dn and z /∈ Dn.

It follows that there is a ρ−1({γ})-independent Borel set Bn ⊆ X
containing An for all n ∈ N, so we need only show that ∼

⋃
n∈NBn is

ρ−1({γ})-independent. Towards this end, simply note that if x ∈ X,
y ∈ ∼

⋃
n∈NBn, and γ = ρ(x, y), then there exists n ∈ N such that

x ∈ Dn and y /∈ Dn, so x ∈ An ⊆ Bn ⊆
⋃
n∈NBn.

In order to show that the group 〈Λ〉 generated by an essential value
Λ is also an essential value, we will need:

Proposition 1.3. Suppose that Γ is a countable discrete group, X is a
Hausdorff space, E is an analytic equivalence relation on X, ρ : E → Γ
is a Borel cocycle, Λ is an essential value of ρ, λ ∈ Λ, and

A = {x ∈ X | ∃y ∈ [x]E λ = ρ(x, y)}.

Then Λ is an essential value of ρ � (E � A).

Proof. We can assume that λ 6= 1Γ, since otherwise A = X. Suppose,
towards a contradiction, that there is a cover (An)n∈N of A by Bor-
el subsets of A such that Λ * ρ((E � An) \ ∆(An)) for all n ∈ N.
Proposition 1.1 ensures that, by subdividing each An into countably
many Borel subsets of A, we can assume that there exists λn ∈ Λ\{1Γ}
such that An is ρ−1({λn})-independent for all n ∈ N. Fix a ρ−1({λn})-
independent Borel set Bn ⊆ X containing An for all n ∈ N. Then
∼
⋃
n∈NBn is disjoint from A and therefore ρ−1({λ})-independent, so Λ

is not an essential value of ρ, a contradiction.

As promised, we now obtain:

Proposition 1.4. Suppose that Γ is a countable discrete group, X is a
Hausdorff space, E is an analytic equivalence relation on X, ρ : E → Γ
is a Borel cocycle, and Λ is an essential value of ρ. Then so too is 〈Λ〉.

Proof. By replacing Λ with Λ±1, we can assume that Λ is symmetric.
By Proposition 1.1, we can assume that 1Γ ∈ Λ. As 〈{1Γ}〉 = {1Γ}, we
can also assume that Λ 6= {1Γ}. By another application of Proposition
1.1, it is sufficient to show that 〈Λ〉 \ {1Γ} is an essential value of ρ.
As any cover of X by countably many Borel sets includes a Borel set
B ⊆ X for which Λ is an essential value of ρ � (E � B), it is sufficient
to show that 〈Λ〉 \ {1Γ} ⊆ ρ(E).
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Given λ ∈ 〈Λ〉 \ {1Γ}, fix n ∈ Z+ and (λi)i<n ∈ Λn with the property
that λ =

∏
i<n λi. Set A0 = X and recursively define

Ai+1 = {x ∈ Ai | ∃y ∈ Ai ρ(x, y) = λn−1−i}
for all i < n. By Proposition 1.3, there exists xn ∈ An. By reverse
recursion, there exists xi ∈ Ai such that ρ(xi+1, xi) = λn−1−i for all
i < n. Then ρ(xn, x0) = ρ(xn, xn−1) · · · ρ(x1, x0) = λ0 · · ·λn−1 = λ.

We next turn our attention to cocycles of the form �λ:

Proposition 1.5. Suppose that B ⊆ 2N is a non-meager set with the
Baire property, Γ is a group, Λ ⊆ Γ is conjugation invariant, and λ ∈
ΛN is a redundant enumeration of Λ. Then Λ ⊆ �λ((E0 � B) \∆(B)).

Proof. Suppose that λ ∈ Λ and fix s ∈ 2<N for which B is comeager
in Ns (see, for example, [Kec95, Proposition 8.26]). Then there exists
n ≥ |s| for which λ(n) = (λs)−1λλs. Let ι be the isometry of 2N that
flips the nth coordinate of its input. As B is comeager in Nsa(0)n−|s|a(i)

for all i < 2, there exists c ∈ B ∩ Nsa(0)n−|s|a(0) ∩ ι(B ∩ Nsa(0)n−|s|a(1))
(see, for example, [Kec95, Exercise 8.45]), in which case c, ι(c) ∈ B and
�λ(ι(c), c) = λsλ(n)(λs)−1 = λ.

For all s ∈ 2<N, let Gs denote the digraph on 2N consisting of all
pairs of the form (s a (1) a c, s a (0) a c) where c ∈ 2N.

Proposition 1.6. Suppose that Γ is a group, γ ∈ ΓN, X is a set, E is
an equivalence relation on X, ρ : E → Γ is a cocycle, and φ : 2N → X
is a homomorphism from E0 to E such that ρ has constant value γ(n)
on G(0)n for all n ∈ N. Then φ is a homomorphism from �γ to ρ.

Proof. We will show that if n ∈ N, then γs = ρ(φ(s a c), φ((0)n a c))
for all c ∈ 2N and s ∈ 2n, as this implies that if t ∈ 2n, then

ρ(φ(s a c), φ(t a c))

= ρ(φ(s a c), φ((0)n a c))ρ(φ((0)n a c), φ(t a c))

= ρ(φ(s a c), φ((0)n a c))ρ(φ(t a c), φ((0)n a c))−1

= γs(γt)−1

= �γ(s a c, t a c).

Granting the desired result at n, note that if c ∈ 2N and s ∈ 2n, then

ρ(φ(s a (1) a c), φ((0)n a (0) a c))

= ρ(φ(s a (1) a c), φ((0)n a (1) a c))

ρ(φ((0)n a (1) a c), φ((0)n a (0) a c))

= γsγ(n) = γsa(1),
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so the desired result holds at n+ 1.

For all sets R ⊆ X × Y , define R−1 = {(y, x) ∈ Y × X | x R y}.
A homomorphism from a sequence (Ri)i∈I of binary relations on a set
X to a sequence (Si)i∈I of binary relations on a set Y is a function
φ : X → Y that is a homomorphism from Ri to Si for all i ∈ I.

Proposition 1.7. Suppose that Γ is a group, γ ∈ ΓN is a redundant
enumeration of Γ, R is a nowhere dense binary relation on 2N, and S
is a meager binary relation on 2N. Then there is a continuous homo-
morphism φ : 2N → 2N from (∼∆(2N),∼E0, �γ) to (∼R,∼S, �γ).

Proof. Fix dense open sets Un ⊆ 2N × 2N for which S ∩
⋂
n∈N Un = ∅.

By replacing each Un with Un \ R, we can assume that R is disjoint
from each Un. By replacing each Un with

⋂
m≤n Um, we can assume

that (Un)n∈N is decreasing. By replacing each Un with Un ∩ U−1
n , we

can assume that each Un is symmetric.

Lemma 1.8. Suppose that n ∈ N and φ : 2n → 2<N. Then there is a
pair (t0, t1) ∈

⋃
k∈Z+ 2k × 2k such that:

(1) ∀s0, s1 ∈ 2n
∏

i<2Nφ(si)ati ⊆ Un.

(2) γ(n) = γφ((0)n)at1(γφ((0)n)at0)−1.

Proof. Fix an enumeration (s0,m, s1,m)m<4n of 2n × 2n, define t0,0 =
t1,0 = ∅, and recursively find ti,m+1 w ti,m with the property that∏

i<2Nφ(si,m)ati,m+1
⊆ Un for all m < 4n. By extending t0,4n or t1,4n

if necessary, we can assume that they have the same length. Define
` = |φ((0)n) a t0,4n| = |φ((0)n) a t1,4n|, fix m ≥ ` for which γ(m) =
(γφ((0)n)at1,4n )−1γ(n)γφ((0)n)at0,4n , and set ti = ti,4n a (0)m−` a (i) for
all i < 2. It only remains to observe that γφ((0)n)at1(γφ((0)n)at0)−1 =
γφ((0)n)at1,4nγ(m)(γφ((0)n)at0,4n )−1 = γ(n).

Fix the unique function φ0 : 20 → 20 and recursively appeal to Lemma
1.8 to find pairs (t0,n, t1,n) ∈

⋃
k∈Z+ 2k × 2k such that

(1) ∀s0, s1 ∈ 2n
∏

i<2Nφn(si)ati,n ⊆ Un and

(2) γ(n) = γφn((0)n)at1,n(γφn((0)n)at0,n)−1,

where φn : 2n → 2<N is given by φn(s) =
⊕

m<n ts(m),m (and
⊕

m<n tm
denotes the concatenation of t0, t1, . . . , tn−1). Define φ : 2N → 2N by
φ(c) =

⋃
n∈N φn(c � n) for all c ∈ 2N.

To see that φ is a homomorphism from (∼∆(2N),∼E0) to (∼R,∼S),
it is sufficient to observe that if c, d ∈ 2N, n ∈ N, and c(n) 6= d(n), then
(φ(c), φ(d)) ∈ Nφn+1(c�(n+1)) ×Nφn+1(d�(n+1)) ⊆ Un.
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To see that φ is a homomorphism from E0 to E0, note that if c E0 d,
then there exists n ∈ N such that ∀m ≥ n c(m) = d(m), in which case
∀m ≥

∑
k<n |t0,k| φ(c)(m) = φ(d)(m).

To see that φ is a homomorphism from �γ to �γ , observe that if
c ∈ 2N and n ∈ N, then �γ(φ((0)n a (1) a c), φ((0)n a (0) a c)) =
γφn((0)n)at1,n(γφn((0)n)at0,n)−1 = γ(n), and appeal to Proposition 1.6.

An N-coloring of an I-indexed sequence G of digraphs on a set X
is a function c : X → N with the property that

∀n ∈ N∃i ∈ I c−1({n}) is G(i)-independent.

We can now give the following:

Proof of Theorem 1. As any sequence of sets witnessing that Λ is not
an essential value of ρ can be pulled back through any Borel homomor-
phism from �λ to ρ to obtain a sequence of sets witnessing that Λ is
not an essential value of �λ, Proposition 1.5 ensures that if there is a
Borel homomorphism from �λ to ρ, then Λ is an essential value of ρ.

Conversely, suppose that Λ is an essential value of ρ and define
G(n) = ρ−1({λ(n)}) \ ∆(X) for all n ∈ N. Then there is no Borel
N-coloring of G, so the straightforward generalization of the G0 di-
chotomy to N-indexed sequences of digraphs (see [Mil12, Theorem 21])
yields a continuous homomorphism φ : 2N → X from (G(0)n)n∈N to G.
Proposition 1.6 ensures that φ is a homomorphism from �λ to ρ. Let
(D′, E ′, ρ′) be the pullback of (∆(X), E, ρ) through φ.

Lemma 1.9. The equivalence relation Eρ′ is meager.

Proof. Suppose, towards a contradiction, that Eρ′ is not meager. By
the Kuratowski–Ulam theorem (see, for example, [Kec95, Theorem
8.41]), there exists c ∈ 2N for which [c]Eρ′ is not meager. Fix λ ∈
Λ\{1Γ}. Then Proposition 1.5 yields a pair (a, b) ∈ E0 � [c]Eρ′ for which

�λ(a, b) = λ, so ρ′(a, b) = λ, contradicting the fact that a Eρ′ b.

Lemma 1.10. The equivalence relation E ′ is meager.

Proof. By the Kuratowski–Ulam theorem, every Eρ′-class is meager.
But every E ′-class is a countable union of Eρ′-classes, so every E ′-class
is meager, thus another application of the Kuratowski–Ulam theorem
ensures that E ′ is meager.

Proposition 1.7 now yields a continuous homomorphism ψ : 2N →
2N from (∼∆(2N),∼E0, �λ) to (∼D′,∼E ′, �λ), in which case φ ◦ ψ is a
continuous embedding of �λ into ρ.
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2. Maximality

We associate with each sequence (fn)n∈N of partial functions on a
set X the partial functions f 0 = id � X and fn = fn−1 ◦ · · · ◦ f0 for
all n ∈ Z+. Given a Borel cocycle ρ : E → Γ from a countable Bor-
el equivalence relation on a standard Borel space X to a countable
discrete group and γ ∈ ΓN, a (γ, ρ)-cascade is an N-sequence of (≤2)-
to-1 Borel retractions fn : Bn → Bn+1, where (Bn)n∈N is a decreasing
sequence of Borel subsets of X, such that:

(1) B0 = X.
(2) ∀n ∈ N∀x ∈ Bn \Bn+1 γ(n) = ρ(fn(x), x).
(3) ∀x E y∃n ∈ N fn(x) = fn(y).

Proposition 2.1. Suppose that Γ is a countable discrete group, X is a
standard Borel space, E is a hyperfinite Borel equivalence relation on
X, ρ : E → Γ is a Borel cocycle, and γ ∈ ΓN is a redundant enumera-
tion of Γ. Then there is a (γ, ρ)-cascade.

Proof. Fix an exhaustive increasing sequence (Fn)n∈N of finite Borel
subequivalence relations of E for which F0 = ∆(X). Set B0 = X.

Lemma 2.2. There is a Borel linear ordering ≤E of E.

Proof. Fix a sequence (Rn)n∈N of Borel subsets of E that separates
points. Define π : E → 2N by π(e)(n) = 1 ⇐⇒ e ∈ Rn for all n ∈ N.
Then π is injective, so the pullback ≤E of the lexicographical ordering
of 2N through π is a linear order. As each of the sets Rn is Borel, it
follows that π is Borel, so ≤E is Borel.

Suppose now that n ∈ N and Bn ⊆ X is Borel. For all k ∈ Z+,
let Ck,n be the family of (Fk � Bn)-classes C of cardinality at least
two that are partial transversals of Fk−1, and let Rk,n be the set of
pairs (x, y) ∈ ∼∆(X) for which there exists C ∈ Ck,n with the property
that (x, y) is the ≤E-minimal pair of distinct elements of C such that
γ(n) = ρ(y, x). Set Rn =

⋃
k∈Z+ Rk,n and Bn+1 = Bn \ proj0(Rn). As

the sets in the family Cn =
⋃
k∈Z+ Ck,n are pairwise disjoint, we obtain

a retraction fn : Bn → Bn+1 by setting fn(x) = y ⇐⇒ x Rn y for
all x ∈ Bn \ Bn+1. The Lusin–Novikov uniformization theorem easily
implies that Bn+1 and fn are Borel.

It only remains to show that (fn)n∈N is the desired (γ, ρ)-cascade.
Suppose, towards a contradiction, that there exist x E y such that
fn(x) 6= fn(y) for all n ∈ N. Then there is a least k ∈ Z+ for which
there is an Fk-class C containing points x′ and y′ with the property
that fn(x′) 6= fn(y′) for all n ∈ N.

Lemma 2.3. Suppose that n ∈ N. Then fn(C) ⊆ C.
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Proof. If n ∈ N has the property that fn(C) ⊆ C, then fn(x′) and
fn(y′) are distinct elements of Bn ∩ C, so Bn ∩ C is not a partial
transversal of Fk, thus fn+1(C) ⊆ fn(fn(C)) ⊆ fn(Bn ∩ C) ⊆ C. The
obvious induction therefore yields the desired result.

Fix n ∈ N sufficiently large that ∀m ≥ n Bm ∩ C = Bn ∩ C. Let
(x′′, y′′) be the ≤E-minimal pair of distinct points in Bn ∩ C. By in-
creasing n if necessary, we can assume that γ(n) = ρ(y′′, x′′), in which
case x′′ /∈ Bn+1, the desired contradiction.

For all groups Γ, γ ∈ ΓN, and n ∈ N, define IPn(γ) = {γs | s ∈ 2n}.
We can now give the following:

Proof of Theorem 2. By trivially extending X, E, and ρ, we can as-
sume that X is uncountable, so the isomorphism theorem for standard
Borel spaces allows us to assume that X = 2N. Appeal to Proposi-
tion 2.1 to obtain a (γ, ρ)-cascade (fn)n∈N and define β : X → 2N by
β(x)(n) = 0 ⇐⇒ fn(x) = fn+1(x) for all n ∈ N and x ∈ X. As
fn is (≤2)-to-1 for all n ∈ N, a straightforward induction ensures that
if n ∈ N and x, y ∈ X have the property that fn(x) = fn(y) and
β(x) � n = β(y) � n, then x = y. We can therefore define functions
us : X → 2n, for all n ∈ N and s ∈ 2n, by setting

us(x) =

{
y � n if fn(x) = fn(y) and s = β(y) � n, and

(0)n if no such y exists.

Fix an enumeration (sk,n)k<2n of 2n and define un : X → 2n·2
n

by setting
un(x) =

⊕
k<2n usk,n(x).

We will now recursively define kn ∈ N and πn : X → 2kn . We begin
by setting k0 = 0 and π0(x) = ∅ for all x ∈ X. Suppose now that n ∈ N
and we have defined kn and πn. Set `n = kn + n · 2n + 1 and kn+1 =
min{k ∈ N | IP`n(γ)−1γ(n)−1IP`n(γ) ⊆ γ(k\`n)}. Define π′n : X → 2`n

by π′n(x) = πn(x) a un(x) a (β(x)(n)), mn : X → kn+1 \ `n by

mn(x) = min{m ≥ `n | γ(m) = (γπ
′
n(fn(x)))−1γ(n)−1γπ

′
n(fn+1(x))},

vn : X → 2kn+1−`n by

vn(x) =

{
(0)kn+1−`n if β(x)(n) = 0 and

(0)mn(x)−`n a (1) a (0)kn+1−mn(x)−1 otherwise,

and πn+1 : X → 2kn+1 by πn+1(x) = π′n(x) a vn(x). We will show that
the function π(x) =

⋃
n∈N πn(x) is as desired.

The Lusin–Novikov uniformization theorem easily implies that all of
the functions mentioned thus far are Borel.
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To see that π is injective, note that if π(x) = π(y), then x � n =
uβ(x)�n(x) = uβ(y)�n(y) = y � n for all n ∈ N, so x = y.

To see that π is a homomorphism from E to E0, note that if x E y,
then there exists n ∈ N for which fn(x) = fn(y), so β(x)(k) = β(y)(k),
uk(x) = uk(y), and mk(x) = mk(y) for all k ≥ n, thus π′k(x) = π′k(y)
and vk(x) = vk(y) for all k ≥ n, hence π(x)(k) = π(y)(k) for all k ≥ kn.

To see that π is a homomorphism from ∼E to ∼E0, suppose that
π(x) E0 π(y), in which case there exists n ∈ N with the property that
um(x) a (β(x)(m)) a vm(x) = um(y) a (β(y)(m)) a vm(y) for all
m ≥ n. But β(fn(x)) � n = β(fn(y)) � n = (0)n and if m ≥ n, then
β(fn(x))(m) = β(x)(m) = β(y)(m) = β(fn(y))(m). It follows that
fn(x) � m = uβ(fn(x))�m(x) = uβ(fn(y))�m(y) = fn(y) � m for all m ∈ N,
so x E fn(x) = fn(y) E y.

Finally, to see that π is a homomorphism from ρ to �γ , suppose
that x E y, so there exists n ∈ N for which fn+1(x) = fn+1(y),
thus ρ(x, y) is the product of ρ(f 0(x), f 1(x)) · · · ρ(fn(x), fn+1(x)) and
ρ(fn+1(y), fn(y)) · · · ρ(f 1(y), f 0(y)). It remains to show that if m ≤ n
and w ∈ {x, y}, then ρ(fm+1(w), fm(w)) = �γ(π(fm+1(w)), π(fm(w))).
If β(w)(m) = 0, then fm+1(w) = fm(w), so π(fm+1(w)) = π(fm(w)),
in which case ρ(fm+1(w), fm(w)) = 1Γ = �γ(π(fm+1(w)), π(fm(w))).
So it only remains to note that if β(w)(m) = 1, then

�γ(π(fm+1(w)), π(fm(w)))

= γπm+1(fm+1(w))(γπm+1(fm(w)))−1

= γπ
′
m(fm+1(w))(γ(0)`mavm(fm(w)))−1(γπ

′
m(fm(w)))−1

= γπ
′
m(fm+1(w))((γπ

′
m(fm(w)))−1γ(m)−1γπ

′
m(fm+1(w)))−1(γπ

′
m(fm(w)))−1

= γπ
′
m(fm+1(w))(γπ

′
m(fm+1(w)))−1γ(m)γπ

′
m(fm(w))(γπ

′
m(fm(w)))−1

= γ(m)

= ρ(fm+1(w), fm(w)),

since (fn)n∈N is a (γ, ρ)-cascade.

Combining Theorems 1 and 2, we obtain:

Theorem 2.4. Suppose that Λ ≤ Γ are non-trivial countable discrete
groups, X is a standard Borel space, Y is a Hausdorff space, E is a hy-
perfinite Borel equivalence relation on X, F is an analytic equivalence
relation on Y , ρ : E → Λ and σ : F → Γ are Borel cocycles, and Λ is
an essential value of σ. Then there is a Borel embedding π : X → Y of
ρ into σ.
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Proof. Fix a redundant enumeration λ ∈ ΛN of Λ. Then Theorem 1
yields a a continuous embedding φ : 2N → Y of �λ into σ, and Theorem
2 yields a Borel embedding ψ : X → 2N of ρ into �λ, so the function
π = φ ◦ ψ is as desired.

3. Orbit ergodicity

We begin this section by noting several basic properties of weakly
Borel sets.

Proposition 3.1. Suppose that X and Y are Hausdorff spaces, E and
F are analytic equivalence relations on X and Y , and R ⊆ X/E×Y/F
is weakly Borel. Then R−1 is weakly Borel.

Proof. Define I : X × Y → Y × X by I(x, y) = (y, x). Then I is a
homeomorphism, so I(R̃) is Borel. But I(R̃) is the lifting of R−1, thus
R−1 is weakly Borel.

Proposition 3.2. Suppose that X, Y , and Z are Hausdorff spaces,
D, E, and F are analytic equivalence relations on X, Y , and Z, and
S : Y/E → Z/F and T : X/D → Y/E are strongly Borel. Then S ◦ T
is strongly Borel.

Proof. Observe that if x ∈ X and z ∈ Z, then

(S ◦ T )([x]D) = [z]F ⇐⇒ ∃y ∈ Y (T ([x]D) = [y]E and S([y]E) = [z]F )

and

(S◦T )([x]D) 6= [z]F ⇐⇒ ∃y ∈ Y (T ([x]D) = [y]E and S([y]E) 6= [z]F ).

It follows that the lifting of graph(S ◦ T ) is both analytic and co-
analytic, and therefore Borel, so graph(S ◦ T ) is weakly Borel, thus
S ◦ T is strongly Borel.

Proposition 3.3. Suppose that X is an analytic Hausdorff space and
E is a Borel equivalence relation on X. Then AutsB(X/E) is a group.

Proof. Note that the identity function on X/E is strongly Borel, since
the lifting of its graph is E. But Propositions 3.1 and 3.2 ensure that
AutsB(X/E) is closed under inversion and composition.

Proposition 3.4. Suppose that X and Y are Hausdorff spaces, E and
F are analytic equivalence relations on X and Y , and T : X/E → Y/F
is strongly Borel. Then T is Borel.

Proof. Set G = graph(T ). Given a Borel set B ⊆ Y/F , note that⋃
T−1(B) = projX(G̃ ∩ (X ×

⋃
B)) and the latter set is analytic, so

∼
⋃
T−1(B) =

⋃
T−1(∼B) is analytic, thus

⋃
T−1(B) is Borel, hence

T−1(B) is Borel.
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The product of equivalence relations E and F on sets X and Y is
the equivalence relation E × F on X × Y given by

(x, y) (E × F ) (x′, y′) ⇐⇒ (x E x′ and y F y′).

If X is a Hausdorff space, E is analytic, G is an (E × E)-invariant
analytic graph on X, and B ⊆ X is a G-independent Borel set, then
there is an E-invariant G-independent Borel set C ⊆ X containing B
(see, for example, [dRM, Proposition 2.1]).

Proposition 3.5. Suppose that Γ is a non-trivial countable discrete
group, X is a Hausdorff space, E is a Borel equivalence relation on X,
and Γ y X/E is a free action by strongly Borel automorphisms. Then
Γ is an essential value of ρXΓ ⇐⇒ Γ y X/E is orbit ergodic.

Proof. Suppose first that Γ is not an essential value of ρXΓ . Then Propo-
sition 1.1 ensures that Γ \ {1Γ} is not an essential value of ρXΓ , so there
is a cover (Bn)n∈N of X by Borel sets with the property that there is
a non-identity element γn ∈ ∼ρXΓ (EX

Γ � Bn) for all n ∈ N. Fix E-
invariant (ρXΓ )−1({γn})-independent Borel sets Cn ⊆ X containing Bn.
Then the sets Dn = Cn/E do not contain E

X/E
Γ -classes and cover X/E,

and Proposition 3.4 ensures that the sets D′n = Dn \
⋃
m<n ΓDm are

Borel. As
⋃
n∈ND

′
n is Γ- and co-Γ-complete, it follows that Γ y X/E

is not orbit ergodic.
Conversely, suppose that Γ y X/E is not orbit ergodic. Then there

is a Γ- and co-Γ-complete Borel set B ⊆ X/E. Note that the sets of
the form Bγ = B \ γ−1B and B′γ = γB \ B, where γ ∈ Γ \ {1Γ}, cover
X/E. Proposition 3.4 ensures that these sets are Borel. As

⋃
Bγ and⋃

B′γ are (ρXΓ )−1({γ})-independent for all γ ∈ Γ, it follows that Γ is
not an essential value of ρXΓ .

We can now give the following:

Proof of Theorem 3. If Γ y X/E is orbit ergodic, then Proposition 3.5
ensures that Γ is an essential value of ρXΓ , so Theorem 1 yields a con-
tinuous embedding π : 2N → X of �γ into ρXΓ , and any such embedding
factors to a strongly Borel embedding of Γ y Xγ/Eγ into Γ y X/E.
To see the converse, appeal to Proposition 3.4 to see that the failure
of orbit ergodicity is closed downward under strong Borel embeddabil-
ity, so if Γ y X/E is not orbit ergodic, then Propositions 1.5 and 3.5
ensure that there is no strongly Borel embedding of Γ y Xγ/Eγ into
Γ y X/E.

To see that these actions are strongly Borel isomorphic when X is
standard Borel, E is Borel, EX

Γ is hyperfinite, and Γ y X/E is orbit
ergodic, note that Γ is an essential value of �γ � (E0 � Xγ) and ρXΓ
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by Propositions 1.5 and 3.5, so Theorem 2.4 yields Borel embeddings
φ : Xγ → X of �γ � (E0 � Xγ) into ρXΓ and ψ : X → Xγ of ρXΓ into
�γ � (E0 � Xγ). Let φ′ and ψ′ be the corresponding strongly Borel
embeddings of Xγ/E0 into X/EX

Γ and X/EX
Γ into Xγ/E0, and appeal

to the proof of the Schröder–Bernstein theorem (see, for example, [Mil,
Proposition 5.10]) to obtain a Borel set B ⊆ Xγ/E0 with the property
that (φ′ � ∼B)∪ ((ψ′)−1 � B) is a strongly Borel isomorphism of Xγ/E0

with X/EX
Γ . Then (φ � ∼

⋃
B) ∪ (ψ−1 �

⋃
B) induces a strongly Borel

isomorphism of Γ y Xγ/Eγ with Γ y X/E.

4. Finite equivalence relations and group actions

A transversal of an equivalence relation E on a set X is a partial
transversal Y ⊆ X of E for which X = [Y ]E.

Proposition 4.1. Suppose that Γ is a discrete finite group, n ∈ Z+,
X is a Hausdorff space, E is an analytic equivalence relation on X,
ρ : E → Γ is a Borel cocycle, the E-saturation of every Eρ-invariant
Borel set is Borel, and (Λi)i<n is an injective enumeration of a transver-
sal of the conjugacy equivalence relation on the set of maximal essential
values of ρ. Then there is a partition (Bi)i<n of X into E-invariant
Borel sets for which there are (E � Bi)-complete Borel sets Ai ⊆ Bi

such that ρ(E � Ai) ⊆ Λi and Λi is an essential value of ρ � (E � Ai)
for all i < n.

Proof. Let D be the family of non-empty subsets of Γ that are not
essential values of ρ. For each ∆ ∈ D, fix a partition B∆ of X into
countably-many Eρ-invariant Borel sets with the property that ∆ *
ρ((E � B) \∆(B)) for all B ∈ B∆. Fix an enumeration (A′k)k∈N of the
set of atoms of the Boolean algebra generated by

⋃
∆∈D B∆. For all

k ∈ N, fix γk ∈ Γ and ik < n such that ρ(E � A′k) ⊆ γ−1
k ∆ikγk and

set A′′k = γkA
′
k \

⋃
j<k[A

′
j]E. Then the sets Ai =

⋃
{A′′k | i = ik} and

Bi = [Ai]E are as desired.

The complete equivalence relation on X is given by I(X) = X ×X.
For all equivalence relations E on X, groups Γ, and cocycles ρ : E → Γ,
set XΓ = Γ × X and EΓ = I(Γ) × E, and define ρΓ : EΓ → Γ by
ρΓ((γ, x), (δ, y)) = γρ(x, y)δ−1 for all γ, δ ∈ Γ and x E y, as well as
Γ y XΓ/EρΓ

by [(γ, x)]EρΓ = λ · [(δ, y)]EρΓ ⇐⇒ ρΓ((γ, x), (δ, y)) = λ.

Theorem 4.2. Suppose that Λ ≤ Γ are countable discrete groups, λ ∈
ΛN is a redundant enumeration of Λ, X is a standard Borel space, E
is a Borel equivalence relation on X, Γ y X/E is a free action by
strongly Borel automorphisms for which EX

Γ is hyperfinite, and there
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is an EX
Γ -complete Borel set B ⊆ X for which ρXΓ (EX

Γ � B) ⊆ Λ and
Λ is an essential value of ρXΓ � (EX

Γ � B). Then Γ y (2N)Γ/E(�λ)Γ
and

Γ y X/E are strongly Borel isomorphic.

Proof. By the Glimm–Effros dichotomy when Λ is trivial and Theorem
1 otherwise, there is a continuous embedding φ : 2N → B of �λ into
ρXΓ � (EX

Γ � B). By Theorem 2, there is a Borel embedding ψ : B → 2N

of ρXΓ � (EX
Γ � B) into �λ. Let φ′ and ψ′ be the corresponding strongly

Borel embeddings of 2N/E0 into X/EX
Γ and X/EX

Γ into 2N/E0. Then
the proof of the Schröder–Bernstein theorem yields a Borel set C ⊆
2N/E0 for which (φ′ � ∼C)∪((ψ′)−1 � C) is a strongly Borel isomorphism
of 2N/E0 with X/EX

Γ , in which case (φ � ∼
⋃
C)∪ (ψ−1 �

⋃
C) induces

a strongly Borel isomorphism of Γ y (2N)Γ/E(�λ)Γ
with Γ y X/E.

We can now give the following:

Proof of Theorem 4. Let E be the family of maximal essential values
of ρXΓ . By Proposition 1.4, every element of E is a subgroup of Γ.
Fix an injective enumeration (Λi)i<n of a transversal of the conjugacy
equivalence relation on E , as well as redundant enumerations λi ∈ ΛN

i

of Λi for all i < n. It is sufficient to show that Γ y X/E is strongly
Borel isomorphic to the disjoint union of Γ y (Xλi)Γ/E(�λi )Γ

for i < n.

As Proposition 4.1 yields a partition (Bi)i<n of X into EX
Γ -invariant

Borel sets with the property that there is an (EX
Γ � Bi)-complete Borel

set Ai ⊆ Bi such that ρXΓ (EX
Γ � Ai) ⊆ Λi and Λi is an essential value of

ρXΓ � (EX
Γ � Ai) for all i < n, Theorem 4.2 yields the desired result.

For all equivalence relations E on a set X, k ∈ Z+, and cocycles
ρ : E → Sk, let Ek,ρ be the subequivalence relation of Ek = I(k) × E
given by (i, x) Ek,ρ (j, y) ⇐⇒ i = ρ(x, y)(j).

Theorem 4.3. Suppose that k ∈ Z+, Λ ≤ Sk, λ ∈ ΛN is a redundant
enumeration of Λ, X is a standard Borel space, E is a hyperfinite Borel
equivalence relation on X, F is an index k Borel subequivalence relation
of E, ρ : E → Sk is an index cocycle, and there is an E-complete Bor-
el set B ⊆ X for which ρ(E � B) ⊆ Λ and Λ is an essential value
of ρ � (E � B). Then (E0)k/(E0)k,�λ and E/F are strongly Borel
isomorphic.

Proof. By the Glimm–Effros dichotomy when Λ is trivial and Theorem
1 when Λ is not trivial, there is a continuous embedding φ : 2N → B
of �λ into ρXΓ � (EX

Γ � B). By Theorem 2, there is a Borel embedding
ψ : B → 2N of ρXΓ � (EX

Γ � B) into �λ. Let φ′ and ψ′ be the correspond-
ing strongly Borel embeddings of 2N/E0 into X/E and X/E into 2N/E0.
Then the proof of the Schröder–Bernstein theorem yields a Borel set
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C ⊆ 2N/E0 for which (φ′ � ∼C) ∪ ((ψ′)−1 � C) is a strongly Borel iso-
morphism of 2N/E0 with X/E, in which case (φ � ∼

⋃
C)∪ (ψ−1 �

⋃
C)

induces a strongly Borel isomorphism of (E0)k/(E0)k,�λ with E/F .

We can now give the following:

Proof of Theorem 5. Fix an index cocycle ρ and let E be the family
of maximal essential values of ρ. By Proposition 1.4, every element
of E is a subgroup of Γ. Fix an injective enumeration (Λi)i<n of a
transversal of the conjugacy equivalence relation on E , as well as re-
dundant enumerations λi ∈ ΛN

i of Λi for all i < n. It is sufficient
to show that E is strongly Borel isomorphic to the disjoint union of
(E0)k/(E0)k,�λi for i < n. As Proposition 4.1 yields a partition (Bi)i<n
of X into Ẽ-invariant Borel sets with the property that there is an
(Ẽ � Bi)-complete Borel set Ai ⊆ Bi such that ρ(Ẽ � Ai) ⊆ Λi and Λi

is an essential value of ρ � (Ẽ � Ai) for all i < n, Theorem 4.3 yields
the desired result.

5. Decomposability

We say that a Borel automorphism T : X → X of a Borel space is
orbit ergodic if the corresponding Z-action is orbit ergodic. We use
[Y ]T to denote the EX

T -saturation of a set Y ⊆ X, and we say that a
set Y ⊆ X is T -complete if X = [Y ]T .

Proposition 5.1. Suppose that X is a Borel space and T : X → X is a
fixed-point-free Borel automorphism. Then exactly one of the following
holds:

(1) The graph of T is separable.
(2) The automorphism T is orbit ergodic.

Proof. Suppose first that T is not orbit ergodic. Then there is a T -
complete co-T -complete Borel set B ⊆ X, in which case the family
{T n(B) | n ∈ Z} ∪ {∼T n(B) | n ∈ Z} separates graph(T )-related
points, so graph(T ) is separable.

Conversely, suppose that graph(T ) is separable. Then there is a
sequence (Bn)n∈N of Borel subsets of X separating graph(T )-related
points. Note that the sets of the form Cn = Bn\T−1(Bn) are graph(T )-
independent and coverX, and the sets of the form C ′n = Cn\

⋃
m<n[Cm]T

are Borel. As
⋃
n∈NC

′
n is T -complete and co-T -complete, it follows that

T is not orbit ergodic.

Given k ∈ Z+, we say that a set Y ⊆ X is T<k-independent if
Y ∩

⋃
0<i<k T

−i(Y ) = ∅.
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Proposition 5.2. Suppose that k ∈ Z+, X is a Borel space, T : X →
X is a Borel automorphism whose orbits all have cardinality at least
k, and graph(T j) is separable for all j < k. Then there is a T<k-
independent T k-invariant Borel set B ⊆ X with the property that
graph(T k � ∼[B]T ) is separable.

Proof. As the digraph G =
⋃

0<j<k graph(T j) is separable and has finite

horizontal and vertical sections, [Mil, Propositions 1.12 and 1.13] yield a
Borel maximal T<k-independent set C ⊆ X. Set D = C 4 T k(C) and
observe that {T n(C) | n ∈ Z}∪{∼T n(C) | n ∈ Z} separates graph(T k �
[D]T )-related points, the set B = C \ [D]T is T k-invariant, and ∼[B]T =
[D]T (as the maximality of C ensures that it is T -complete).

We say that a cardinal κ divides a cardinal λ, or κ | λ, if there is a
cardinal µ for which λ = κ×µ, where× denotes cardinal multiplication.

Proposition 5.3. Suppose that 2 ≤ k ≤ ℵ0, X is a Borel space, and
T : X → X is a Borel automorphism whose orbits all have cardinality
k. Then there are T<j-independent T j-invariant Borel sets Bj ⊆ X,
with pairwise disjoint T -saturations, such that:

(1) ∀0 < j < k (Bj 6= ∅ =⇒ T j � Bj is orbit ergodic).
(2) T � ∼

⋃
{[Bj]T | 0 < j < k and j | k} is separable.

Proof. Set X1 = X. Suppose that 0 < j < k and Xj ⊆ X is a T -
invariant Borel set with the property that graph(T i � Xj) is separable
for all i < j. If graph(T j � Xj) is separable, then set Bj = ∅. Other-
wise, Proposition 5.2 yields a T<j-independent T j-invariant Borel set
Bj ⊆ Xj with the property that graph(T j � (Xj \ [Bj]T )) is separable.
Define Xj+1 = Xj \ [Bj]T .

To see (2), note that if 0 < j < k andBj 6= ∅, then the facts that Bj is
T<j-independent and T j-invariant and every orbit of T has cardinality
k ensure that j | k. To see (1), observe that if T j � Bj is not orbit
ergodic, then Proposition 5.1 yields a sequence (An)n∈N of Borel subsets
of Bj separating graph(T j � Bj)-related points, so (T i(An))(i,n)∈j×N
separates graph(T j � [Bj]T )-related points, contradicting the fact that
graph(T j � Xj) is not separable.

Proposition 5.4. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, and T : X/E → X/E is a
strongly Borel automorphism. Then supp(T ) is Borel.

Proof. Define G = graph(T ). Then the vertical sections of G̃ are count-
able and

⋃
supp(T ) = proj0(G̃ \ E), so the Lusin–Novikov uniformiza-

tion theorem yields that
⋃

supp(T ) is Borel, thus so too is supp(T ).
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For all k ∈ Z+, the period k part of an automorphism T : X → X is
given by Perk(T ) = (

⋂
0<i<k supp(T i))\ supp(T k). The periodic part of

T is given by Per(T ) =
⋃
k∈Z+ Perk(T ). The aperiodic part of T is given

by Aper(T ) = Perℵ0(T ) = ∼Per(T ). Propositions 3.2 and 5.4 ensure
that if X is a standard Borel space, E is a countable Borel equivalence
relation on X, and T : X/E → X/E is a strongly Borel automorphism,
then all of these sets are Borel.

We can now give the following:

Proof of Theorem 6. By Proposition 5.3, it is enough to show that if
h | k and there is a T<h-independent T h-invariant T -complete Borel
set B ⊆ X/E for which T h � B is orbit ergodic, then there is a strongly
Borel isomorphism of T with Tk/h ∗h. But Theorem 3 yields a strongly
Borel isomorphism π : B → X/E of T h � B with Tk/h, in which case
the function T i([x]E) 7→ (π([x]E), i), where 1 ≤ i ≤ h and x ∈

⋃
B, is

as desired.

Remark 5.5. The hyperfiniteness of EX
T in the statement of Theo-

rem 6 can be replaced with the hypothesis that E
X/E
T is hyperfinite

in the sense that it is the union of an increasing sequence (Fn)n∈N of
finite weakly Borel subequivalence relations. To establish this, appeal
first to the fact that the class of hyperfinite Borel equivalence relations
on standard Borel spaces is closed under passage to finite-index Borel
superequivalence relations (see [JKL02, Proposition 1.5]) to see that
E

⋃
Per(T )

T is hyperfinite, so Theorem 6 implies that T � Per(T ) is de-
composable. But the fact that E

X/E
T is hyperfinite easily implies that

T � Aper(T ) is separable, thus T is decomposable.

6. Products of periodic automorphisms

We begin this section by noting the following fact, which ensures that
writing an automorphism as a product of two involutions is essentially
the same as finding an anti-commuting involution:

Proposition 6.1. Suppose that X is a set, T : X → X is a bijection,
and I : X → X is an involution. Then I ◦ T = T−1 ◦ I if and only if
I ◦ T is an involution.

Proof. If I ◦ T = T−1 ◦ I, then (I ◦ T )2 = (I ◦ T ) ◦ (T−1 ◦ I) = I2 = id.
Conversely, if (I ◦ T )2 = id, then I ◦ T = (I ◦ T )−1 = T−1 ◦ I.

By combining Proposition 6.1 with the following observation, one
can show that if an automorphism is a composition of two involutions,
then so too is any constant height tower over it:
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Proposition 6.2. Suppose that h ≥ 2, X is a set, T : X → X is a
bijection, I : X → X is an involution for which I ◦ T = T−1 ◦ I, and
J : X × {1, . . . , h} → X × {1, . . . , h} is given by

J(x, i) =

{
(I(x), 1) if i = 1 and

((I ◦ T )(x), h− i+ 2) otherwise.

Then J is an involution and J ◦ (T ∗ h) = (T ∗ h)−1 ◦ J .

Proof. To see that J is an involution, note that J � (X×{1}) is a copy
of I and J2(x, i) = J((I◦T )(x), h−i+2) = (x, h−(h−i+2)+2) = (x, i)
for all 2 ≤ i ≤ h and x ∈ X by Proposition 6.1.

To see that J ◦ (T ∗ h) = (T ∗ h)−1 ◦ J , note that if x ∈ X, then

(J ◦ (T ∗ h))(x, 1) = J(x, 2)

= ((I ◦ T )(x), h)

= ((T−1 ◦ I)(x), h)

= (T ∗ h)−1(I(x), 1)

= ((T ∗ h)−1 ◦ J)(x, 1),

(J ◦ (T ∗ h))(x, h) = J(T (x), 1)

= ((I ◦ T )(x), 1)

= (T ∗ h)−1((I ◦ T )(x), 2)

= ((T ∗ h)−1 ◦ J)(x, h),

and

(J ◦ (T ∗ h))(x, i) = J(x, i+ 1)

= ((I ◦ T )(x), h− i+ 1)

= (T ∗ h)−1((I ◦ T )(x), h− i+ 2)

= ((T ∗ h)−1 ◦ J)(x, i)

for all 1 < i < h.

We now give an explicit description of Tk for all 2 ≤ k ≤ ℵ0. We
use ∀∞n ∈ N φ(n) as shorthand for ∃N ∈ N∀n ≥ N φ(n). We say that
natural numbers m and n are congruent modulo k, or m ≡ n (mod k),
if k | |m − n|. Let Fk denote the subequivalence relation of E0 given
by c Fk d ⇐⇒ ∀∞n ∈ N

∑
m<n c(m) ≡

∑
m<n d(m) (mod k). Let

Tk denote the strongly Borel automorphism of the quotient of the set
of non-eventually-constant sequences in 2N by Fk given by Tk([c]Fk) =
[d]Fk ⇐⇒ ∀∞n ∈ N 1 +

∑
m<n c(m) ≡

∑
m<n d(m) (mod k).

Proposition 6.3. Suppose that 2 ≤ k ≤ ℵ0. Then Tk is orbit ergodic.
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Proof. Set g = (1Z/kZ)∞. Then the orbit cocycle associated with the
action generated by Tk agrees with �g on the restriction of G(0)n to
the non-eventually constant sequences for all n ∈ N, and therefore
with the restriction of E0 to the non-eventually constant sequences by
Proposition 1.6, so Proposition 1.5 ensures that {1Z/kZ} is an essential
value of the corresponding orbit cocycle, thus Proposition 1.4 implies
that so too is Z/kZ, hence Tk is orbit ergodic by Proposition 3.5.

For all c ∈ 2N, let c be the element of 2N given by c(n) = 1− c(n) for
all n ∈ N. For all 2 ≤ k ≤ ℵ0, let Ik be the involution of the quotient
of the set of non-eventually-constant sequences in 2N by Fk given by
Ik([c]Fk) = [c]Fk for all non-eventually constant sequences c ∈ 2N.

Proposition 6.4. Suppose that 2 ≤ k ≤ ℵ0. Then Ik ◦ Tk = T−1
k ◦ Ik.

Proof. Note that if c ∈ 2N is not eventually constant and n ∈ N, then

(Ik ◦ Tk)([(1)n a (0) a c]Fk) = Ik([(1)n+1 a c]Fk)

= [(0)n+1 a c]Fk

= T−1
k ([(0)n a (1) a c]Fk)

= (T−1
k ◦ Ik)([(1)n a (0) a c]Fk).

But if d ∈ 2N is not eventually constant, then there exist a non-
eventually-constant c ∈ 2N and n ∈ N for which d = (1)n a (0) a c.

A (partial) transversal of a bijection T : X → X is a (partial) transver-
sal of EX

T .
We can now give the following:

Proof of Theorem 10. By [Mil, Theorem 1], it is sufficient to handle the
case that T is of the form Tk ∗ h. But this follows from Propositions
6.1, 6.2, and 6.4.

Proof of Theorem 11. As the automorphisms of the form Tk ∐ T−1
k are

orbit ergodic, it is sufficient to handle the case that T is separable or
of the form (Tk ∐ T−1

k ) ∗ h by Theorem 3. For the latter, appeal to
Propositions 6.1, 6.2, and 6.4 to obtain strongly Borel involutions I
and J for which Tk ∗ h = I ◦ J , and note that (Tk ∐ T−1

k ) ∗ h and
(I

∐
J) ◦ (J

∐
I) are strongly Borel isomorphic. For the former, we need

only show that T is contained in an aperiodic countable group Γ of
separable strongly Borel automorphisms of X/E by [Mil, Theorem 5].

If the periodic part of T is finite, then fix x ∈ X whose E-class is in
the aperiodic part of T , and a transversal B ⊆ X/E of the restriction
of T to its periodic part. Then the group Γ generated by T and the
transpositions of the form ([x]E [y]E), where [y]E ∈ B, is as desired.
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We can therefore assume that T is periodic. By [Mil, Proposition
1.15], there is a Borel transversal B ⊆ X/E of T . It is sufficient to
show that there is an aperiodic separable strongly Borel automorphism
S : B → B, since the E

X/E
T -saturations of sets in separating families for

the powers of such an S together with separating families for the powers
of T yield a separating family for the equivalence relation generated by
S and T , so the group generated by S ∪ (id � ∼B) and T is as desired.
If B is countable, then the existence of such an S follows from the fact
that B is strongly Borel isomorphic to Z (where the latter is endowed
with the power set Borel structure). If B is uncountable but standard,
then the existence of such an S follows from the fact that B is strongly
Borel isomorphic to R× Z (by the isomorphism theorem for standard
Borel spaces). And if B is not standard, then the existence of such an S
follows from the fact that B is strongly Borel isomorphic to (R/Q)×Z
(by the isomorphism theorem for hyperfinite quotients).

7. Normalizers

Let [x]T denote the orbit of a point x ∈ X under a bijection T : X →
X. We say that a strongly Borel automorphism is smooth if it admits
a Borel transversal.

Proposition 7.1. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , and
S : X/E → X/E and T : Y/F → Y/F are smooth strongly Borel au-
tomorphisms with the property that there is a strongly Borel automor-
phism φk :

⋃
Perk(S)/EX

S →
⋃

Perk(T )/EY
T for all 1 ≤ k ≤ ℵ0. Then

S and T are strongly Borel isomorphic.

Proof. Fix Borel transversals A ⊆ X/E and B ⊆ Y/F of S and T . For
all 1 ≤ k ≤ ℵ0, define ψk : A ∩ Perk(S)→ B ∩ Perk(T ) by

ψk([x]E) = [y]F ⇐⇒ (x ∈
⋃
A, y ∈

⋃
B, and φk([x]S) = [y]T )

and set πk =
⋃
n∈Z T

n ◦ψk ◦ S−n. Then the function π =
⋃

1≤k≤ℵ0
πk is

the desired isomorphism.

Proposition 7.2. Suppose that {1} ⊆ K ⊆ Z+, X is a standard
Borel space, E is a countable Borel equivalence relation on X, and
T : X/E → X/E is a strongly Borel automorphism whose support is
not standard. Then there is a strongly Borel automorphism S : X/E →
X/E for which the cardinalities of the orbits of [S, T ] are in K and each
possibility occurs on a non-standard Borel set.

Proof. As the fact that supp(T ) is not standard ensures that E �⋃
supp(T ) is not smooth, [Mil11, Theorem 4] yields a Borel partial
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transversal B ⊆ supp(T ) of T that is a non-standard hyperfinite quo-
tient. As the isomorphism theorem for hyperfinite quotients ensures
that B is strongly Borel isomorphic to (R/Q) × K, there is a par-
tition (Bk)k∈K of B into non-standard Borel sets. For all k ∈ K,
the isomorphism theorem for hyperfinite quotients also implies that
Bk is strongly Borel isomorphic to (R/Q) × k, so there is a Borel au-
tomorphism Sk : Bk → Bk whose orbits have cardinality k. Define
S = (

⋃
k∈K Sk) ∪ (id � ∼B). Note that if k ∈ K, then

(S ◦ T ◦ S−1 ◦ T−1) � Bk = S ◦ T ◦ (S−1 � T−1(Bk)) ◦ T−1

= S ◦ T ◦ (id � T−1(Bk)) ◦ T−1

= (S ◦ T ◦ id ◦ T−1) � Bk

= S � Bk

= Sk

and

(S ◦ T ◦ S−1 ◦ T−1) � T (Bk) = S ◦ T ◦ (S−1 � Bk) ◦ T−1

= (S � T (Bk)) ◦ T ◦ S−1
k ◦ T−1

= (id � T (Bk)) ◦ T ◦ S−1
k ◦ T−1

= T ◦ S−1
k ◦ T−1,

so |[x][S,T ]| = k for all x ∈ Bk ∪ T (Bk). But

(S ◦ T ◦ S−1 ◦ T−1) � ∼(B ∪ T (B))

= S ◦ T ◦ (S−1 � ∼(T−1(B) ∪B)) ◦ T−1

= S ◦ T ◦ (id � ∼(T−1(B) ∪B)) ◦ T−1

= (S ◦ T ◦ id ◦ T−1) � ∼(B ∪ T (B))

= S � ∼(B ∪ T (B))

= id � ∼(B ∪ T (B)),

thus |[x][S,T ]| = 1 for all x ∈ ∼(B ∪ T (B)).

Given a Borel equivalence relation E on a standard Borel space X,
the full group of a strongly Borel automorphism T : X/E → X/E is the
group [T ] of strongly Borel automorphisms of the form

⋃
n∈Z T

n � Bn,
where (Bn)n∈Z is a sequence of Borel subsets of X/E. In what follows,
we often implicitly use the simple observation that the class of standard
Borel spaces is closed under countable unions.

Proposition 7.3. Suppose that X is a standard Borel space, E is a
non-smooth countable Borel equivalence relation on X, and T : X/E →
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X/E is a smooth strongly Borel automorphism. Then T is a com-
position of two strongly Borel involutions with non-standard co-non-
standard supports.

Proof. We first handle the special case that T = id. By the Glimm–
Effros dichotomy, there is a non-standard Borel set A ⊆ X/E that
is a hyperfinite quotient. As the isomorphism theorem for hyperfinite
quotients ensures that A is strongly Borel isomorphic to (R/Q) × 3,
there is a partition of A into strongly Borel isomorphic Borel sets B,
C, and D. Fix a strongly Borel isomorphism π : B → C and observe
that the involutions I = J = π±1 ∪ (id � ((∼A) ∪D)) are as desired.

We next handle the special case that T has no fixed points. Fix a
Borel transversal A ⊆ X/E of T . By the Glimm–Effros dichotomy,
there is a non-standard Borel set B ⊆ A that is a hyperfinite quotient.
As the isomorphism theorem for hyperfinite quotients ensures that B
is strongly Borel isomorphic to (R/Q)×2, by thinning it down, we can
assume that neither B nor A \ B are standard. Set C = [B]T . Then
[Mil, Remark 1.4] yields Borel involutions I ′, J ′ ∈ [T � C], for which I ′

has a fixed point on every orbit of T � C, such that T � C = I ′ ◦ J ′. It
also yields Borel involutions I ′′, J ′′ ∈ [T � ∼C], for which J ′′ has a fixed
point on every orbit of T � ∼C, such that T � ∼C = I ′′ ◦ J ′′. Then the
involutions I = I ′ ∪ I ′′ and J = J ′ ∪ J ′′ are as desired.

For the general case, fix 1 ≤ k ≤ ℵ0 for which Perk(T ) is not stan-
dard, as well as Borel involutions I ′, J ′ : Perk(T )→ Perk(T ), with non-
standard co-non-standard supports, for which T � Perk(T ) = I ′◦J ′. By
[Mil, Proposition 1.1], there are Borel involutions I ′′, J ′′ : ∼Perk(T ) →
∼Perk(T ) with the property that T � ∼Perk(T ) = I ′′ ◦ J ′′. Then the
involutions I = I ′ ∪ I ′′ and J = J ′ ∪ J ′′ are as desired.

Proposition 7.4. Suppose that h ∈ Z+ and k ≥ 2. Then Tk ∗ h
is a composition of two strongly Borel involutions with non-standard
co-non-standard supports.

Proof. By [Mil11, Theorem 4], there is a Tk-invariant non-standard
Borel set B ⊆ {c ∈ 2N | c is not eventually constant}/Fk on which Tk
is smooth, so C = B × {1, . . . , h} is a (Tk ∗ h)-invariant non-standard
Borel set on which Tk ∗ h is smooth. Proposition 7.3 then ensures
that (Tk ∗ h) � C is the composition of two strongly Borel involutions
I ′ and J ′ with non-standard co-non-standard supports. Proposition
1.5 implies that B is meager, so Propositions 1.5 and 3.5 ensure that
Tk � ∼B is orbit ergodic, thus Theorem 3 implies that it is strongly Bor-
el isomorphic to Tk, hence (Tk ∗h) � ∼C is strongly Borel isomorphic to
Tk ∗h. Propositions 6.1, 6.2, and 6.4 therefore imply that (Tk ∗h) � ∼C
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is the composition of two strongly Borel involutions I ′′ and J ′′, in which
case the involutions I = I ′ ∪ I ′′ and J = J ′ ∪ J ′′ are as desired.

Proposition 7.5. Suppose that {1, 2} ( K ⊆ Z+, X is a standard
Borel space, E is a countable Borel equivalence relation on X, and
T : X/E → X/E is a separable strongly Borel automorphism whose
aperiodic part is not standard. Then there exist R, S ∈ [T ], whose
orbits all have cardinality in K and for which each possibility occurs
on a non-standard Borel set, such that T = R ◦ S.

Proof. As [Mil, Proposition 1.15] ensures that T � Per(T ) is smooth,
[Mil, Proposition 1.1] yields Borel involutions I ′, J ′ ∈ [T � Per(T )]
for which T � Per(T ) = I ′ ◦ J ′. By [Mil11, Theorem 4], there is a
T -invariant non-standard Borel set B ⊆ Aper(T ) for which T � B is
smooth. By [Mil, Proposition 3.16], there exist R′′, S ′′ ∈ [T � B], whose
orbits all have cardinality in K and for which each cardinality occurs
on every orbit of T � B, such that T � B = R′′ ◦S ′′. Fix k ∈ K \ {1, 2}
and appeal to [Mil, Theorem 3] to obtain R′′′, S ′′′ ∈ [T � (Aper(T )\B)],
whose orbits all have cardinality 1 or k, such that T � (Aper(T ) \B) =
R′′′◦S ′′′. Then the automorphismsR = I ′∪R′′∪R′′′ and S = J ′∪S ′′∪S ′′′
are as desired.

We can now give the following:

Proof of Theorem 12. Note first that if I : X/E → X/E is a strongly
Borel automorphism for which there is a strongly Borel automorphism
R : X/E → X/E such that I is strongly Borel isomorphic to [R, T ] as
witnessed by P : X/E → X/E, then

I = P−1 ◦ [R, T ] ◦ P
= P−1 ◦R ◦ T ◦R−1 ◦ T−1 ◦ P
= (P−1 ◦R ◦ T ◦R−1 ◦ P ) ◦ (P−1 ◦ T−1 ◦ P ),

so I is a composition of two conjugates of T±1. In particular, it is
sufficient to show that S is a composition of two such automorphisms.

As S is decomposable, there is an S-invariant Borel set A ⊆ X/E, on
which S is separable, such that S � ∼A is strongly Borel isomorphic to
a disjoint union of countably-many automorphisms of the form Tk ∗ h.
Note that S � (A ∩ Per(S)) is smooth by [Mil, Proposition 1.15].

We first consider the special case that S � (A ∩Aper(S)) is smooth,
or equivalently, that S � A is smooth. If A = X/E, then Propo-
sition 7.3 yields strongly Borel involutions I, J : X/E → X/E, with
non-standard co-non-standard supports, for which S = I ◦ J . Other-
wise, [Mil, Proposition 1.1] and Proposition 7.4 give rise to such invo-
lutions. By Proposition 7.2, there is a strongly Borel automorphism
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R : X/E → X/E with the property that [R, T ] is an involution with
non-standard co-non-standard support. The fact that the class of non-
smooth hyperfinite Borel equivalence relations on standard Borel spaces
is closed under passage to finite-index Borel superequivalence relations,
the isomorphism theorem for hyperfinite quotients, and Proposition 7.1
therefore ensure that I, J , and [R, T ] are strongly Borel isomorphic.

We next consider the special case that S � (A ∩ Aper(S)) is not
smooth but A ∩ Aper(S) is standard Borel. By [Mil, Proposition 1.1],
there are strongly Borel involutions I ′, J ′ : A ∩ Per(S) → A ∩ Per(S)
whose composition is S � (A ∩ Per(S)); moreover, if A ∩ Per(S) is
not standard, then Proposition 7.3 allows us to assume that these
involutions have non-standard co-non-standard supports. By [Mil,
Proposition 4.4], there are strongly Borel automorphisms I ′′, J ′′ : A ∩
Aper(S) → A ∩ Aper(S), whose orbits all have cardinality 1, 2, or
3 and for which each possibility occurs on an uncountable Borel set,
whose composition is S � (A∩Aper(S)). By Propositions 6.1, 6.2, and
6.4, there are Borel involutions I ′′′, J ′′′ : ∼A → ∼A whose composition
is S � ∼A; moreover, if ∼A is not standard, then Proposition 7.4 allows
us to assume that these involutions have non-standard co-non-standard
supports. Then the orbits of the automorphisms I = I ′ ∪ I ′′ ∪ I ′′′ and
J = J ′ ∪ J ′′ ∪ J ′′′ have cardinality 1, 2, or 3, the first two possibilities
occur on a non-standard Borel set, the last possibility occurs on an
uncountable standard Borel set, and S = I ◦ J . By Silver’s perfect set
theorem (see [Sil80], although the special case needed here is far sim-
pler to establish), there is a T -invariant uncountable standard Borel
set B ⊆ supp(T ). By [Mil, Proposition 4.2], there is a Borel automor-
phism R′ : B → B with the property that the orbits of [R′, T � B] have
cardinality 1, 2, or 3 and each possibility occurs on an uncountable
standard Borel set. By Proposition 7.2, there is a Borel automorphism
R′′ : ∼B → ∼B with the property that [R′′, T � ∼B] is an involution
with non-standard co-non-standard support. Setting R = R′ ∪ R′′, it
follows that the orbits of [R, T ] have cardinality 1, 2, or 3, the first
two possibilities occur on a non-standard Borel set, and the last possi-
bility occurs on an uncountable standard Borel set. The fact that the
class of non-smooth hyperfinite Borel equivalence relations on standard
Borel spaces is closed under passage to finite-index Borel superequiva-
lence relations, the isomorphism theorem for hyperfinite quotients, and
Proposition 7.1 therefore ensure that I, J , and [R, T ] are strongly Borel
isomorphic.

Finally, we consider the special case that S � (A ∩ Aper(S)) is not
smooth and A ∩ Aper(S) is not standard Borel (although we will not
need the former assumption). By applying [Mil, Proposition 1.1] to
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S � (A ∩ Per(S)), Proposition 7.5 to S � (A ∩ Aper(S)), and Propo-
sitions 6.1, 6.2, and 6.4 to S � ∼A, we obtain Borel automorphisms
I, J : X/E → X/E, whose orbits all have cardinality 1, 2, or 3 and
for which each possibility occurs on a non-standard Borel set, such
that S = I ◦ J . By Proposition 7.2, there is a Borel automorphism
R : X/E → X/E for which the orbits of [R, T ] have cardinality 1, 2,
or 3 and each possibility occurs on a non-standard Borel set. The fact
that the class of non-smooth hyperfinite Borel equivalence relations
on standard Borel spaces is closed under passage to finite-index Bor-
el superequivalence relations, the isomorphism theorem for hyperfinite
quotients, and Proposition 7.1 therefore ensure that I, J , and [R, T ]
are strongly Borel isomorphic.

8. The Bergman property

Given a group Γ of permutations of a set X, ∆ ⊆ Γ, and a set Y ⊆ X,
define ∆{Y } = {δ ∈ ∆ | Y = δY } and ∆ � Y = {δ � Y | δ ∈ ∆}.

Proposition 8.1. Suppose that X is a standard Borel space, E is a
non-smooth countable Borel equivalence relation on X, and (Γn)n∈N
is an exhaustive increasing sequence of subsets of AutsB(X/E). Then
there exist a non-standard Borel set B ⊆ X/E and n ∈ N with the
property that AutsB(X/E){B} � B ⊆ Γn � B.

Proof. By the Glimm–Effros dichotomy, there is a non-standard Bor-
el set A ⊆ X/E that is a hyperfinite quotient. As the isomorphism
theorem for hyperfinite quotients ensures that A is strongly Borel iso-
morphic to (R/Q)× N, there is a partition (Bn)n∈N of X/E into non-
standard Borel sets. If there is no n ∈ N for which Bn and n are as
desired, then there exists γn ∈ (AutsB(X/E){Bn} � Bn) \ (Γn � Bn)
for all n ∈ N, in which case γ =

⋃
n∈N γn is a strongly Borel au-

tomorphism of X/E, so there exists n ∈ N for which γ ∈ Γn, thus
γn = γ � Bn ∈ Γn � Bn, a contradiction.

Define ∆Y =
⋂
y∈Y ∆{y} = {δ ∈ ∆ | ∀y ∈ Y y = δ · y}.

Proposition 8.2. Suppose that X is a standard Borel space, E is a
non-smooth hyperfinite Borel equivalence relation on X, every strongly
Borel automorphism of X/E is decomposable, and (Γn)n∈N is an ex-
haustive increasing sequence of subsets of AutsB(X/E). Then there
exist a non-standard Borel set B ⊆ X/E and n ∈ N with the property
that AutsB(X/E){B} � B ⊆ Γn � B and AutsB(X/E)∼B ⊆ (Γn)4.

Proof. By replacing Γn with Γn ∩ Γ−1
n , we can assume that each Γn is

symmetric. By Proposition 8.1, there exist a non-standard Borel set
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X ′ ⊆ X/E and n′ ∈ N such that AutsB(X/E){X′} � X ′ ⊆ Γn′ � X ′,
so AutsB(X/E){B} � B ⊆ Γn′ � B for all Borel sets B ⊆ X ′. Set
Γ′ = AutsB(X/E)∼X′ and Γ′n = (Γn)∼X′ for all n ∈ N, and appeal to
Proposition 8.1 to obtain a non-standard Borel set B ⊆ X ′ and n ≥ n′

with the property that (Γ′ � X ′){B} � B ⊆ (Γ′n � X
′) � B, in which case

Γ′{B} � B = (Γ′ � X ′){B} � B ⊆ (Γ′n � X
′) � B = Γ′n � B.

It remains to show that if γ ∈ AutsB(X/E)∼B, then γ ∈ (Γn)4.
By Theorem 11, there are strongly Borel automorphisms δ, λ : B → B
with the property that γ � B = [δ, λ]. As δ ∪ (id � ∼B) ∈ AutsB(X/E)
and λ ∪ (id � ∼B) ∈ Γ′, there are extensions δ′ ∈ Γm and λ′ ∈ Γ′n of
δ ∪ (id � (X ′ \B)) and λ. Then

[δ′, λ′] � B = δ′λ′(δ′)−1(λ′)−1 � B

= δλδ−1λ−1

= [δ, λ]

= γ � B,

[δ′, λ′] � (X ′ \B) = δ′λ′(δ′)−1(λ′)−1 � (X ′ \B)

= δ′λ′((δ′)−1 � (X ′ \B))(λ′)−1

= δ′(λ′ � (X ′ \B))(λ′)−1

= δ′ � (X ′ \B)

= id � (X ′ \B),

and

[δ′, λ′] � ∼X ′ = δ′λ′(δ′)−1(λ′)−1 � ∼X ′

= δ′λ′(δ′)−1 � ∼X ′

= δ′(λ′ � ∼X ′)(δ′)−1

= (δ′ � ∼X ′)(δ′)−1

= id � ∼X ′,

so γ = [δ′, λ′] ∈ (Γn)4.

We can now give the following:

Proof of Theorem 13. By Proposition 8.2, there exist n ∈ N and a
non-standard Borel set B ⊆ X/E for which Γ{B} � B ⊆ Γn � B and
Γ∼B ⊆ (Γn)4. The Glimm–Effros dichotomy ensures that—by thinning
down B if necessary—we can assume that the set A = ∼B is not
standard. One more application of the Glimm–Effros dichotomy yields
a partition of B into non-standard Borel sets C,D ⊆ X/E.



THE BOREL STRUCTURE OF R/Q 31

Lemma 8.3. There is a strongly Borel involution ι : X/E → X/E for
which ιB = A ∪ C.

Proof. By the isomorphism theorem for hyperfinite quotients, there is
a strongly Borel isomorphism π : D → A, in which case the involution
ι = π±1 ∪ (id � C) is as desired.

By the isomorphism theorem for hyperfinite quotients, there is a
strongly Borel involution ι′ : X/E → X/E for which ι′A = B. By
increasing n if necessary, we can assume that 1Γ, ι, ι

′ ∈ Γn. Then
Γ{A∪C} � (A∪C) ⊆ (Γn)3 � (A∪C) by the proof of [Mil, Lemma 5.17].
It remains to show that if γ ∈ Γ, then γ ∈ (Γn)12.

Lemma 8.4. There exists T ∈ Γn with the property that B \ T−1(γA)
is not standard.

Proof. The fact that B is not standard ensures that γB is not standard.
As γB = ∼γA = (A \ γA)∪ (B \ γA), it follows that A \ γA or B \ γA
is not standard. In the latter case, the automorphism T = 1Γ is as
desired. In the former, the automorphism T = ι′ is as desired, since
ι′(A \ γA) = B \ ι′γA.

Lemma 8.5. There exists S ∈ Γn for which (S−1 ◦ T−1)(γA) ⊆ A∪C
and (A ∪ C) \ (S−1 ◦ T−1)(γA) is not standard.

Proof. By the Glimm–Effros dichotomy, there is a partition of B \
T−1(γA) into non-standard Borel sets C ′, D′ ⊆ X. By the isomor-
phism theorem for hyperfinite quotients, there are strongly Borel iso-
morphisms φ : C → (B ∩ T−1(γA)) ∪ C ′ and ψ : D → D′. Then
(id � A)∪φ∪ψ is a strongly Borel automorphism of X/E, so there ex-
ists S ∈ Γn for which S � B = φ∪ψ. Then (S−1 ◦T−1)(γA) = S−1(A∩
T−1(γA)) ∪ S−1(B ∩ T−1(γA)) ⊆ A ∪ C and C ′ ⊆ S(C) \ T−1(γA), so
S(A∪C) \ T−1(γA) is not standard, thus (A∪C) \ (S−1 ◦ T−1)(γA) is
not standard.

Lemma 8.6. There exists R ∈ (Γn)3 with (R−1 ◦S−1 ◦T−1)(γA) = A.

Proof. By the isomorphism theorem for hyperfinite quotients, there
are strongly Borel isomorphisms φ : A→ (S−1 ◦T−1)(γA) and ψ : C →
(A ∪ C) \ (S−1 ◦ T−1)(γA). Then φ ∪ ψ ∪ (id � D) is a strongly Borel
automorphism of X/E, so there exists R ∈ (Γn)3 with the property
that R � (A ∪ C) = φ ∪ ψ, in which case (R−1 ◦ S−1 ◦ T−1)(γA) =
(φ−1 ◦ S−1 ◦ T−1)(γA) = A.

As in the remark following the proof of [Mil, Lemma 5.17], there
exists Q ∈ (Γn)3 for which Q � A = (R−1 ◦ S−1 ◦ T−1 ◦ γ) � A. Then
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supp(Q−1◦R−1◦S−1◦T−1◦γ) ⊆ B, so Q−1◦R−1◦S−1◦T−1◦γ ∈ (Γn)4,
thus γ ∈ TSRQ(Γn)4 ⊆ ΓnΓn(Γn)3(Γn)3(Γn)4 = (Γn)12.

Acknowledgements. I would like to thank Alexander Kechris for en-
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