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Essentially hyperfinite
Hypersmooth

0. Introduction

Basic notions. A Polish space is a separable topological space admitting a compatible 
complete metric. A subset of such a space is Kσ if it is a countable union of compact 
sets, Fσ if it is a countable union of closed sets, Gδ if it is a countable intersection of 
open sets, and Borel if it is in the σ-algebra generated by the underlying topology. A 
function between such spaces is Borel if pre-images of open sets are Borel. Every subset 
of a Polish space inherits the Borel structure consisting of its intersection with each Borel 
subset of the underlying space.

We endow N with the discrete topology. A subset of a Polish space is analytic if it is 
a continuous image of a closed subset of NN. It is not hard to see that every non-empty 
analytic set is a continuous image of NN itself. A set is co-analytic if its complement is 
analytic. Following standard practice, we use Σ1

1 and Π1
1 to denote the classes of analytic 

and co-analytic subsets of Polish spaces.
Suppose that X and Y are Polish spaces and R and S are relations on X and Y . 

A homomorphism from R to S is a function φ: X → Y sending R-related sequences to 
S-related sequences, a cohomomorphism from R to S is a function φ: X → Y sending 
R-unrelated sequences to S-unrelated sequences, a reduction of R to S is a function 
satisfying both requirements, and an embedding of R into S is an injective reduction. 
Given sequences (Ri)i∈I and (Si)i∈I of relations on X and Y , we use the analogous 
terminology to describe functions φ: X → Y which have the desired property for all i ∈ I.

When E and F are equivalence relations on X and Y , the existence of a reduction 
of E to F is trivially equivalent to the existence of an injection of X/E into Y/F . 
By requiring that the former is Borel, we obtain a definable refinement of cardinality 
capable of distinguishing quotients whose classical cardinality is that of R. Over the last 
few decades, this notion has been used to great effect in shedding new light on obstacles of 
definability inherent in classification problems throughout mathematics, particularly in 
the theories of countable groups and fields, probability measure-preserving group actions, 
separable C∗ and von Neumann algebras, and separable Banach spaces. In order to better 
understand such results, it is essential to obtain the best possible understanding of the 
Borel reducibility hierarchy. The present paper is a contribution towards this goal.

An initial segment. It is easy to see that for each countable cardinal n, there is a Borel 
reduction of the equality relation on the n-point discrete space to any Borel equivalence 
relation with at least n classes. The first non-trivial theorem in the area appears in 
[9], implying that there is a Borel reduction of the equality relation on R to any Borel 
equivalence relation with uncountably many classes. That is, the continuum hypothesis 
holds in the definable context. Building on this, [2, Theorem 1] yields the analog of the 
continuum hypothesis at the next level, namely, that there is a Borel reduction of the 
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Vitalı equivalence relation on R, i.e., the orbit equivalence relation induced by the action 
of Q on R under addition, into any Borel equivalence relation which is not Borel reducible 
to the equality relation on R.

Going one step further, [5, Theorem 1] implies that under Borel reducibility, there is 
no Borel equivalence relation lying strictly between the Vitalı equivalence relation and 
the orbit equivalence relation induced by the action of R<N on RN under addition. It 
is well-known, however, that the full analog of [2, Theorem 1] cannot hold. This can 
be seen, for example, by noting that under Borel reducibility, the latter equivalence 
relation is incomparable with the orbit equivalence relation induced by the action of QN

on RN. Nevertheless, in this paper we establish a generalization of [5, Theorem 1] of a 
substantially less local nature.

One should note that to facilitate both the proofs of these results as well as topological 
strengthenings in which Borel reducibility is replaced with continuous embeddability, one 
typically focuses on different equivalence relations. In [9], one uses the equality relation 
on 2N. In [2], one uses the relation E0 on 2N given by x E0 y ⇐⇒ ∃n ∈ N ∀m ≥ n

x(m) = y(m). And in [5], one uses the relation E1 on (2N)N given by x E1 y ⇐⇒ ∃n ∈ N

∀m ≥ n x(m) = y(m).

Treeable equivalence relations. We identify graphs with their (ordered) edge sets, so that 
a graph on X is an irreflexive, symmetric binary relation G on X. A cycle through such a 
graph is a sequence (xi)i≤n such that n ≥ 3, (xi)i<n is injective, xi G xi+1 for all i < n, 
and x0 = xn. We say that G is acyclic if it admits no such cycles. A treeing of an equiv-
alence relation is an acyclic Borel graph whose connected components coincide with the 
classes of the relation. A Borel equivalence relation is treeable if it admits a Borel treeing. 
Examples include orbit equivalence relations associated with free Borel actions of count-
able discrete free groups. Such relations play a particularly significant role in the measure-
theoretic context, due primarily to their susceptability to cocycle reduction techniques.

Beyond such applications, treeable equivalence relations play another important role 
as a proving ground for natural conjectures, where simpler arguments can often be used 
to obtain stronger results. One example appears in [3], in which a strengthening of 
[2, Theorem 1] is established for treeable Borel equivalence relations. Although the proof 
given there takes [2, Theorem 1] for granted, more direct arguments have since appeared 
(see, for example, [8, Theorem 22]). Moreover, in the presence of strong determinacy 
assumptions, the ideas behind this argument can be used to establish the natural gen-
eralizations of both [9] and [2, Theorem 1] to treeable equivalence relations of higher 
complexity.

Following the standard abuse of language, we say that an equivalence relation is finite
if all of its classes are finite, and countable if all of its classes are countable. A Borel 
equivalence relation is essentially E if it is Borel reducible to a Borel equivalence relation 
in E . In addition to the results just mentioned, [3] concludes with a question at the heart 
of our concerns here: is E1 the minimum treeable Borel equivalence relation which is not 
essentially countable?



4 J.D. Clemens et al. / Advances in Mathematics 265 (2014) 1–31
Essential countability. In order to present our characterization of essential countability, 
we must first introduce some terminology. A path through a binary relation R on X is a 
sequence of the form (xi)i≤n, where n ∈ N and xi R xi+1 for all i < n. The nth iterate of 
R is the binary relation R(n) consisting of all pairs (y, z) for which there is such a path 
with x0 = y and xn = z. We use R(≤n) to denote 

⋃
m≤n R

(m).
For all n ∈ N, let Fn denote the equivalence relation on (2N)N given by x Fn y ⇐⇒

∀m ≥ n x(m) = y(m).

Theorem A. Suppose that X is a Polish space, E is a treeable Borel equivalence relation 
on X, and G is a Borel treeing of E. Then exactly one of the following holds:

(1) The equivalence relation E is essentially countable.
(2) There exists a function f : N → N for which there is a continuous homomorphism 

φ: (2N)N → X from (Fn+1 \ Fn)n∈N to (G(≤f(n+1)) \G(≤f(n)))n∈N.

Although this stops somewhat short of yielding an answer to [3, Question 13], it does 
imply one of the main corollaries of a positive answer: among essentially treeable Borel 
equivalence relations, essential countability is robust, in the sense that it is equivalent to 
the existence of a universally measurable (or ℵ0-universally Baire measurable) reduction 
of E to a countable equivalence relation.

Moreover, under appropriate topological assumptions, we do obtain a positive answer 
to the original question. We say that a Borel equivalence relation is subtreeable-with-Fσ-
iterates if it has a Borel treeing contained in an acyclic graph with Fσ iterates.

Theorem B. Suppose that X is a Polish space and E is a Borel equivalence relation on X
which is essentially subtreeable-with-Fσ-iterates. Then exactly one of the following holds:

(1) The equivalence relation E is essentially countable.
(2) There is a continuous embedding π: (2N)N → X of E1 into E.

Although the restriction that E is subtreeable-with-Fσ-iterates might appear rather 
Machiavellian, it turns out that the family of such relations has unbounded potential 
complexity. While this fact is beyond the scope of the present paper, one should note 
that it has surprising consequences for the global structure of the Borel reducibility hi-
erarchy. We say that a class E of Borel equivalence relations is dichotomous if there is 
a Borel equivalence relation EE such that for every Borel equivalence relation E, either 
E ∈ E or there is a Borel reduction of EE to E. Using the unbounded potential complex-
ity of the family of Borel equivalence relations which are subtreeable-with-Fσ iterates, 
one can show that if a Borel equivalence relation is not Borel reducible to E0, then 
it is incomparable with Borel equivalence relations of unbounded potential complexity, 
strengthening [5, Theorem 2]. It follows that if E is a dichotomous class of equivalence 
relations of bounded potential complexity, then E consists solely of smooth equivalence 
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relations. Consequently, the only non-trivial such families are those associated with the 
main results of [9] and [2], the classes of potentially open and potentially closed equiva-
lence relations. These developments will be explored in a future paper.

Essentially countable-to-one functions. In the case of treeings induced by Borel func-
tions, we obtain even stronger results. To describe these, we must again introduce some 
terminology. A Kakutani embedding of a function T : X → X into a function U : Y → Y

is a Borel injection π: X → Y with the property that (π ◦ T )(x) = (Un ◦ π)(x), where 
n > 0 is least with (Un ◦ π)(x) ∈ π(X), for all x ∈ X.

We say that a set Y ⊆ X is T -complete if X =
⋃

n∈N
T−n(Y ), we say that a set 

Y ⊆ X is T -stable if T (Y ) ⊆ Y , and we say that a Borel function T : X → X is 
essentially countable-to-one if there is a T -complete, T -stable Borel set B ⊆ X on which 
T is countable-to-one.

The product of functions f : X → X and g: Y → Y is the function f×g: X×Y → X×Y

given by (f×g)(x, y) = (f(x), g(y)). The successor function on N is given by S(n) = n +1. 
The unilateral shift on (2N)N is given by s((xn)n∈N) = (xn+1)n∈N.

Theorem C. Suppose that X is a Polish space and T : X → X is a Borel function. Then 
exactly one of the following holds:

(1) The function T is essentially countable-to-one.
(2) There is a continuous Kakutani embedding π: N × (2N)N → X of S × s into T .

Organization. In Section 1, we review the basic descriptive set theory utilized through-
out. In Section 2, we establish several Baire category results. In Section 3, we prove a 
parametrized version of an unpublished generalization of the main theorem of [9], due 
originally to Conley–Lecomte–Miller. In Section 4, we establish our main technical the-
orems, from which the results stated thus far are relatively straightforward corollaries. 
These technical results are essentially generalizations of Theorems A and B to Borel 
equivalence relations equipped with suitably definable assignments of quasi-metrics to 
their classes, although we state them in a somewhat different form so as to facilitate 
the exposition. In Section 5, we give the promised classical proof of [5, Theorem 1]. In 
Section 6, we establish Theorems A and B. In Section 7, we establish Theorem C.

1. Preliminaries

In this section, we review the basic descriptive set theory utilized throughout the 
paper.

Suppose that X and Y are topological spaces. The compact-open topology on the set of 
all continuous functions f : X → Y is that generated by the sets {f : X → Y | f(K) ⊆ U}, 
where K ⊆ X is compact and U ⊆ Y is open. We use C(X, Y ) to denote the 
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corresponding topological space. The following observations will aid complexity calcula-
tions involving this space.

Proposition 1.1. Suppose that X is a compact Polish space and Y is a Polish space. Then 
the function e: C(X, Y ) ×X → Y given by e(f, x) = f(x) is continuous.

Proof. See, for example, [7, §IV.44.II]. �
Proposition 1.2. Suppose that X is a locally compact Polish space and Y is a Polish 
space. Then C(X, Y ) is a Polish space.

Proof. See, for example, [7, §IV.44.VII]. �
Although Borel functions constitute a much broader class than continuous ones, the 

following fact often allows one to treat Borel functions as if they are continuous.

Proposition 1.3. Suppose that X and Y are Polish spaces and F is a countable family 
of Borel functions T : X → Y . Then there are finer Polish topologies on X and Y , whose 
Borel sets are the same as those of the original topologies, with respect to which every 
T ∈ F is continuous. Moreover, if X = Y then the topologies on X and Y can be taken 
to be the same.

Proof. See, for example, [4, §13]. �
When proving facts about Polish spaces, it is often notationally convenient (and per-

haps conceptually clearer) to first focus on the special case of NN. The desired general 
result is then typically obtained from a representation theorem such as the following.

Proposition 1.4. Every Polish space is analytic.

Proof. See, for example, [4, Theorem 7.9]. �
A Baire space is a topological space in which every countable intersection of dense open 

sets is dense. The following fact ensures that Baire category techniques are applicable in 
arbitrary Polish spaces.

Theorem 1.5 (Baire). Every complete metric space is a Baire space.

Proof. See, for example, [4, Theorem 8.4]. �
A set is nowhere dense if its closure does not contain a non-empty open set, a set is 

meager if it is contained in a countable union of nowhere dense sets, a set is comeager
if its complement is meager, and a set has the Baire property if its symmetric difference 
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with some open set is meager. One can view the latter three notions as topological 
analogs of μ-null sets, μ-conull sets, and μ-measurable sets, although the topological and 
measure-theoretic notions behave quite differently.

The following fact, known in some circles as localization, can be viewed as the Baire 
category analog of the Lebesgue density theorem.

Proposition 1.6. Suppose that X is a Polish space and B ⊆ X has the Baire property. 
Then B is non-meager if and only if there is a non-empty open set U ⊆ X such that B
is comeager in U .

Proof. This easily follows from the definitions of a Baire space and the Baire property 
(see, for example, [4, Proposition 8.26]). �

A function φ: X → Y is Baire measurable if for all open sets V ⊆ Y , the set φ−1(V ) has 
the Baire property. Again, this can be viewed as a topological analog of μ-measurability. 
The following observation is a very strong analog of the measure-theoretic fact that 
μ-measurable functions can be approximated by continuous ones on sets of arbitrarily 
large μ-measure.

Proposition 1.7. Suppose that X and Y are Polish spaces and φ: X → Y is Baire mea-
surable. Then there is a dense Gδ set C ⊆ X such that φ � C is continuous.

Proof. See, for example, [4, Proposition 8.38]. �
Although our primary focus is on Borel sets, we will often consider analytic sets, in 

which case the following fact ensures that Baire category arguments remain applicable.

Proposition 1.8 (Lusin–Sierpiński). Suppose that X is a Polish space and A ⊆ X is 
analytic. Then A has the Baire property.

Proof. See, for example, [4, Theorem 21.6]. �
A topological space X is T0 if for all distinct x, y ∈ X, there is an open set U ⊆

X containing exactly one of x and y. A set Y ⊆ X is invariant with respect to an 
equivalence relation E on X if it is a union of E-classes. An equivalence relation E on X
is generically ergodic if every invariant set B ⊆ X with the Baire property is meager or 
comeager. The following consequence of generic ergodicity is often useful when dealing 
with parametrized dichotomy theorems.

Proposition 1.9. Suppose that X is a Baire space, Y is a second countable T0 space, E
is a generically ergodic equivalence relation on X, and φ: X → Y is a Baire measurable 
homomorphism from E to the equality relation on Y . Then there exists y ∈ Y for which 
φ−1(y) is comeager.
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Proof. Fix a basis {Vn | n ∈ N} for the topology of Y , let N denote the set of n ∈ N for 
which φ−1(Vn) is comeager, and let y be the unique element of 

⋂
n∈N Vn\

⋃
n∈∼N Vn. �

The xth vertical section and yth horizontal section of a set R ⊆ X×Y are the sets Rx

and Ry given by Rx = {y ∈ Y | x R y} and Ry = {x ∈ X | x R y}. Given a property P , 
we write ∀∗x P (x) to indicate that the set {x ∈ X | P (x)} is comeager. The following 
fact can be viewed as the Baire category analog of Fubini’s theorem.

Theorem 1.10 (Kuratowski–Ulam). Suppose that X and Y are Baire spaces, Y is second 
countable, and R ⊆ X × Y has the Baire property.

(1) ∀∗x ∈ X Rx has the Baire property.
(2) R is comeager ⇐⇒ ∀∗x ∈ X Rx is comeager.

Proof. See, for example, [4, Theorem 8.41]. �
The following fact can often be used to reduce problems of finding perfect sets with 

desirable properties to questions of Baire category.

Theorem 1.11 (Mycielski). Suppose that X is a non-empty Polish space and R ⊆ X ×X

is meager. Then there is a continuous cohomomorphism φ: 2N → X from the equality 
relation on 2N to R.

Proof. See, for example, [4, Theorem 19.1]. �
We use σ(Σ1

1) to denote the class of subsets of Polish spaces which lie in the small-
est σ-algebra containing the analytic sets, and we say that a function f : X → Y is 
σ(Σ1

1)-measurable if for all open sets U ⊆ Y , the set f−1(U) is in σ(Σ1
1). We use projX

to denote the projection function given by projX(x, y) = x. A uniformization of a set 
R ⊆ X × Y is a function f : projX(R) → Y whose graph is contained in R.

Theorem 1.12 (Jankov–von Neumann). Suppose that X and Y are Polish spaces and 
R ⊆ X × Y is an analytic set. Then there is a σ(Σ1

1)-measurable uniformization of R.

Proof. See, for example, [4, Theorem 18.1]. �
Theorem 1.13 (Lusin–Novikov). Suppose that X and Y are Polish spaces and R ⊆ X×Y

is a Borel set all of whose vertical sections are countable. Then there are countably many 
Borel uniformizations of R whose graphs cover R.

Proof. See, for example, [4, Theorem 18.10]. �
The following facts will be useful in ensuring that various constructions yield Borel 

sets.
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Theorem 1.14 (Lusin). Suppose that X and Y are Polish spaces and R ⊆ X×Y is Borel. 
Then {x ∈ X | ∃!y ∈ Y x R y} is co-analytic.

Proof. See, for example, [4, Theorem 18.11]. �
Theorem 1.15 (Lusin). Suppose that X and Y are Polish spaces and f : X → Y is a 
countable-to-one Borel function. Then f(X) is Borel.

Proof. See, for example, [4, Lemma 18.12]. �
Although the class of analytic sets is clearly closed under projections, one must often 

consider analogs of projections in which the non-emptiness of the sections is replaced 
with stronger conditions. The following two facts ensure that the class of analytic sets is 
also closed under certain generalized projections of this form.

Theorem 1.16 (Mazurkiewicz–Sierpiński). Suppose that X and Y are Polish spaces and 
R ⊆ X × Y is analytic. Then so too is {x ∈ X | Rx is uncountable}.

Proof. See, for example, [4, Theorem 29.20]. �
Theorem 1.17 (Novikov). Suppose that X and Y are Polish spaces and R ⊆ X × Y is 
analytic. Then so too is {x ∈ X | Rx is comeager}.

Proof. See, for example, [4, Theorem 29.22]. �
Suppose that Γ and Γ ′ are classes of subsets of Polish spaces. A property P is Γ -on-Γ ′

if {x ∈ X | P (Rx)} ∈ Γ whenever X and Y are Polish spaces and R ⊆ X × Y in Γ ′. 
The following reflection theorem will help us to ensure that our constructions yield Borel 
sets.

Theorem 1.18 (Harrington–Kechris–Moschovakis). Suppose that P is a Π1
1 -on-Σ1

1 prop-
erty. Then every analytic subset of a Polish space satisfying P is contained in a Borel 
set satisfying P .

Proof. See, for example, [4, Theorem 35.10]. �
Rather than apply reflection directly, we will often use the following separation theo-

rem.

Theorem 1.19 (Lusin). Suppose that X is a Polish space and A, A′ ⊆ X are disjoint 
analytic sets. Then there is a Borel set B ⊆ X such that A ⊆ B and A′ ∩B = ∅.

Proof. This easily follows from Theorem 1.18 (a direct proof can be found, for example, 
in [4, Theorem 14.7]). �
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This yields the following connection between analytic and Borel sets.

Theorem 1.20 (Souslin). A subset of a Polish space is Borel if and only if it is both 
analytic and co-analytic.

Proof. The fact that sets which are both analytic and co-analytic are Borel is a di-
rect consequence of Theorem 1.19, and the converse follows from Proposition 1.4 and a 
straightforward induction (see, for example, [4, Theorem 14.11], although the latter part 
is proven there in a somewhat different fashion). �

We will also use the following generalized separation theorem.

Theorem 1.21 (Novikov). Suppose that X is a Polish space and An ⊆ X are analytic 
sets for which 

⋂
n∈N

An = ∅. Then there are Borel sets Bn ⊆ X containing An for which ⋂
n∈N

Bn = ∅.

Proof. This also follows easily from Theorem 1.18 (a direct proof can be found, for 
example, in [4, Theorem 28.5]). �

Given m, n ∈ N ∪{N}, we say that a sequence s ∈ 2m is extended by a sequence t ∈ 2n, 
or s � t, if s(i) = t(i) for all i < m. We use s � t to denote the concatenation of s and t.

Fix sequences sn ∈ 2n for which the set {sn | n ∈ N} is dense, in the sense that 
∀s ∈ 2<N ∃n ∈ N s � sn. Let G0 denote the graph on 2N consisting of all pairs of the 
form (sn � (i) � x, sn � (1 − i) � x), where i < 2, n ∈ N, and x ∈ 2N.

The restriction of a graph G on X to a set Y ⊆ X is the graph G � Y on Y given by 
G � Y = G ∩ (Y ×Y ). Given a graph G on X, we say that a set Y ⊆ X is G-independent
if G � Y = ∅.

Proposition 1.22 (Kechris–Solecki–Todorcevic). Suppose that B ⊆ 2N is a G0-independent 
set with the Baire property. Then B is meager.

Proof. This is a direct consequence of the definition of G0 and Proposition 1.6 (see, for 
example, [6, Proposition 6.2]). �

An I-coloring of G is a function c: X → I such that c−1({i}) is G-independent for all 
i ∈ I. We say that G has countable Borel chromatic number if there is a Borel N-coloring 
of G.

Theorem 1.23 (Kechris–Solecki–Todorcevic). Suppose that X is a Polish space and G is 
an analytic graph on X. Then exactly one of the following holds:

(1) The graph G has countable Borel chromatic number.
(2) There is a continuous homomorphism from G0 to G.
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Proof. See, for example, [6, Theorem 6.4]. �
We say that a Borel equivalence relation is smooth if it is Borel reducible to the 

equality relation on a Polish space.

Theorem 1.24 (Harrington–Kechris–Louveau). Suppose that X is a Polish space and E
is a Borel equivalence relation on X. Then exactly one of the following holds:

(1) The equivalence relation E is smooth.
(2) There is a continuous embedding π: 2N → X of E0 into E.

Proof. See, for example, [2, Theorem 1.1]. �
We say that an equivalence relation is hyper E if it is the union of an increasing 

sequence (En)n∈N of relations in E .

Theorem 1.25 (Dougherty–Jackson–Kechris). Suppose that X is a Polish space and E is 
a countable Borel equivalence relation on X. If E is hypersmooth, then E is hyperfinite.

Proof. See, for example, [1, Theorem 5.1]. �
We say that a set B ⊆ X is E-complete if it intersects every E-class. While not strictly 

necessary for our purposes here, the following fact is also useful in establishing closure 
properties of essential countability.

Theorem 1.26 (Hjorth). Suppose that X is a Polish space and E is a treeable Borel 
equivalence relation on X. Then the following are equivalent:

(1) There is an E-complete Borel set on which E is countable.
(2) The equivalence relation E is essentially countable.

Proof. See, for example, [3, Theorem 6]. �
Finally, we note that while the original proofs of Theorems 1.23, 1.24, and 1.26 utilized 

the effective theory, classical proofs have since appeared (see [8]). In particular, our 
reliance on these results does not prevent our arguments from being classical in nature.

2. Baire category results

In this section, we establish several Baire category results which will be useful through-
out the paper.

A function is meager-to-one if pre-images of singletons are meager.
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Proposition 2.1. Suppose that X is a Polish space, A ⊆ X, G is a graph on X, and there 
is a meager-to-one Baire measurable function φ: 2N → X for which the set A′ = φ−1(A)
is comeager and the set G′ = (φ ×φ)−1(G) is meager. Then there is a continuous injection 
π: 2N → A of 2N into a G-independent set.

Proof. By Proposition 1.7, there is a dense Gδ set B′ ⊆ A′ on which φ is continuous. Let 
E′ denote the pullback of the equality relation on X through φ. The fact that φ is Baire 
measurable ensures that E′ has the Baire property, and the fact that φ is meager-to-one 
implies that every vertical section of E′ is meager, so E′ is meager by Theorem 1.10. 
In particular, it follows that (B′ × B′) \ (E′ ∪ G′) is a comeager subset of 2N × 2N, so 
Theorem 1.11 yields a continuous injection ψ: 2N → B′ of 2N into a G′-independent set 
which is also a partial transversal of E′, meaning that it intersects every equivalence 
class in at most one point. It follows that the function π = φ ◦ ψ is as desired. �

Throughout the paper, we will work with spaces of the form (2m)n, where m, n ∈
N ∪ {N}. We use � to denote horizontal concatenation, and ⊕ to denote vertical con-
catenation. We will abuse language by saying that a sequence s ∈ (2m)n is extended by 
a sequence s′ ∈ (2m′)n′ , or s � s′, if ∀i < m ∀j < n s(i)(j) = s′(i)(j).

Proposition 2.2. Suppose that k ∈ N and B ⊆ (2N)N is a set with the Baire property on 
which Fk+1 has countable index over Fk. Then B is meager.

Proof. Suppose, towards a contradiction, that B is non-meager. Then Theorem 1.10
yields a non-meager set of (x, z) ∈ (2N)k × (2N)N such that {y ∈ 2N | x � (y) � z ∈ B}
is non-meager, and therefore uncountable. As (x � (y) � z, x � (y′) � z) ∈ Fk+1 \ Fk

for distinct y, y′ ∈ 2N, this contradicts the fact that Fk+1 has countable index over Fk

on B. �
Remark 2.3. Suppose that μ is a Borel probability measure on (2N)N for which μ-almost 
every measure in the disintegration of μ with respect to the function deleting the kth

column is continuous (this holds, for example, if μ(U) = 1/2n for every basic open set 
U ⊆ (2N)N specifying values on n coordinates). Then an essentially identical argument 
(using this assumption in place of Theorem 1.10) yields the analogous result in which B
is μ-measurable instead of Baire measurable.

Proposition 2.4. Suppose that A ⊆ (2N)N is an analytic set on which E1 has countable 
index over Fk, for some k ∈ N. Then [A]E1 is meager.

Proof. Note that F�+1 has countable index over F� on [A]F�
, for all 	 ≥ k. As each [A]F�

is analytic, Proposition 1.8 ensures that it has the Baire property, so Proposition 2.2
implies that it is meager, thus so too is the set [A]E1 =

⋃
�≥k[A]F�

. �
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Suppose that X is a Polish space and E is a Borel equivalence relation on X. Theo-
rem 1.13 immediately implies that if B ⊆ X is an E-complete Borel set on which E is 
countable, then there is a Borel reduction of E to E � B, thus E is essentially countable. 
Together with Proposition 2.4, the following weak converse yields a simple proof of [5, 
Proposition 1.4], ruling out the existence of a Baire measurable reduction of E1 to a 
countable equivalence relation on a Polish space.

Proposition 2.5. Suppose that X and Y are Polish spaces, E is an analytic equivalence 
relation on X, F is a countable equivalence relation on Y , and there is a Baire measurable 
reduction φ: X → Y of E to F . Then there is a Borel set B ⊆ X such that E � B is 
countable and [B]E is comeager.

Proof. By Proposition 1.7, there is a dense Gδ set C ⊆ X on which φ is continuous. 
By Theorem 1.12, there is a σ(Σ1

1)-measurable function φ′: φ(C) → C such that φ ◦ φ′

is the identity function. As pre-images of analytic sets under continuous functions are 
analytic, it follows that φ′ ◦ φ is also σ(Σ1

1)-measurable, so one more application of 
Proposition 1.7 yields a dense Gδ set D ⊆ C on which it is continuous. Then the set 
A = (φ′ ◦ φ)(D) is analytic. As E is countable on A and Theorem 1.16 ensures that this 
property is Π1

1 -on-Σ1
1 , Theorem 1.18 yields a Borel set B ⊇ A on which E is countable. 

As D ⊆ [B]E , it follows that the latter set is comeager. �
For each k ∈ N, let Fk((2m)n) denote the equivalence relation on (2m)n given by 

x Fk((2m)n) y ⇐⇒ ∀i ≥ k x(i) = y(i). We say that φ: (2m)n → (2m′)n′ is extended 
by ψ: (2m′′)n′′ → (2m′′′)n′′′ , or φ � ψ, if s � t =⇒ φ(s) � ψ(t) for all s ∈ (2m)n and 
t ∈ (2m′′)n′′ .

Proposition 2.6. Suppose that m, m′, n ∈ N, φ: (2m)n → (2m′)n is an embedding of 
(Fk((2m)n))k<n into (Fk((2m

′)n))k<n, and U is a family of open subsets of (2N)n whose 
union is dense. Then there exists m′′ ∈ N for which there is an embedding ψ: (2m)n →
(2m′′)n of (Fk((2m)n))k<n into (Fk((2m

′′)n))k<n extending φ with ∀s ∈ (2m)n ∃U ∈ U
Nψ(s) ⊆ U .

Proof. Fix an injective enumeration (si)i<I of (2m)n. Set m0 = m′ and φ0 = φ, and 
recursively find mi+1 ∈ N and φi+1: (2m)n → (2mi+1)n of the form φi+1(s) = φi(s) ⊕ t, 
where t ∈ (2mi+1−mi)n has the property that Nφi(si)⊕t is a subset of some U ∈ U . Set 
m′′ = mI and ψ = φI . �
Proposition 2.7. Suppose that m, n ∈ N and π: (2N)n → N is Baire measurable. Then there 
exist i: (2m)n → N, m′ ∈ N, and an embedding φ: (2m)n → (2m′)n of (Fk((2m)n))k<n

into (Fk((2m
′)n))k<n, extending the identity function on (2m)n, with the property that 

∀s ∈ (2m)n ∀∗x ∈ (2N)n i(s) = π(φ(s) ⊕ x).
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Proof. Proposition 1.6 ensures that the family U of open sets U ⊆ (2N)n with the 
property that ∃i ∈ N ∀∗x ∈ U i = π(x) has dense union. The desired result therefore 
follows from an application of Proposition 2.6 to the identity function on (2m)n. �

Note that Fk+1((2N)n) \Fk((2N)n) is homeomorphic to the product of ((2k)n×(2k)n) ×
(2N)n−(k+1) with the complement of the equality relation on 2N. In particular, it is a 
locally compact Polish space, so Theorem 1.5 ensures that it is a Baire space.

Proposition 2.8. Suppose that 	, m, m′, n ∈ N, φ: (2m)n → (2m′)n is an embedding of 
(Fk((2m)n))k<n into (Fk((2m

′)n))k<n, and U is a family of open subsets of F�+1((2N)n)
whose union is dense. Then there exists m′′ ∈ N for which there is an embedding 
ψ: (2m)n → (2m′′)n of (Fk((2m)n))k<n into (Fk((2m

′′)n))k<n extending φ with the prop-
erty that ∀(s, t) ∈ F�+1((2m)n) \ F�((2m)n) ∃U ∈ U Nψ(s) ×Nψ(t) ⊆ U .

Proof. Fix an injective enumeration (si, ti)i<I of F�+1((2m)n) \ F�((2m)n). Define m0 =
m′ and φ0 = φ, and recursively find mi+1 ∈ N and φi+1: (2m)n → (2mi+1)n of the form 
φi+1(s) = φi(s) ⊕ σ(s), where σ: (2m)n → (2mi+1−mi)n is itself of the form

σ(s) =
{
t if s F�((2m)n) si and
u otherwise,

and F�+1((2N)n) ∩ (Nφi(si)⊕t × Nφi(ti)⊕u) is a non-empty subset of some U ∈ U . Set 
m′′ = mI and ψ = φI . �
Proposition 2.9. Suppose that 	, m, n ∈ N and π: F�+1((2N)n) \ F�((2N)n) → N is Baire 
measurable. Then there exist i: F�+1((2m)n) \ F�((2m)n) → N, m′ ∈ N, and an embed-
ding φ: (2m)n → (2m′)n of (Fk((2m)n))k<n into (Fk((2m

′)n))k<n, extending the identity 
function on (2m)n, with the property that ∀(s, t) ∈ F�+1((2m)n) \ F�((2m)n) ∀∗(x, y) ∈
F�+1((2N)n) i(s, t) = π(φ(s) ⊕ x, φ(t) ⊕ y).

Proof. By Proposition 1.6, the family U of open sets U ⊆ F�+1((2N)n) with the property 
that ∃i ∈ N ∀∗(x, y) ∈ U i = π(x, y) has dense union. The desired result therefore follows 
from an application of Proposition 2.8 to the identity function on (2m)n. �

We next establish an analog of Theorem 1.11 for (2N)n.

Proposition 2.10. Suppose that m, m′, n ∈ N, φ: (2m)n → (2m′)n, C ⊆ (2N)n is comeager, 
and (Rk)k<n is a sequence of subsets of (2N)n × (2N)n with the property that Rk is 
comeager in Fk+1((2N)n), for all k < n. Then φ extends to a continuous homomorphism 
ψ: (2N)n → C from (Fk((2N)n), Fk+1((2N)n) \ Fk((2N)n))k<n to (Fk((2N)n), Rk)k<n.

Proof. Fix a sequence (Ui)i∈N of dense open subsets of (2N)n whose intersection is con-
tained in C. For all k < n, fix a decreasing sequence (Ui,k)i∈N of dense open subsets of 
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Fk+1((2N)n) whose intersection is contained in Rk. We will recursively construct a strictly 
increasing sequence of natural numbers 	i ∈ N and embeddings φi: (2i)n → (2�i)n of 
(Fk((2i)n))k<n into (Fk((2�i)n))k<n with the following properties:

(1) ∀s ∈ (2i)n ∀t ∈ (2i+1)n (s � t =⇒ φi(s) � φi+1(t)).
(2) ∀s ∈ (2i+1)n Nφi+1(s) ⊆ Ui.
(3) ∀k < n ∀(s, t) ∈ Fk+1((2i+1)n) \ Fk((2i+1)n) Fk+1((2N)n) ∩ (Nφi+1(s) × Nφi+1(t)) ⊆

Ui,k.

We begin by setting 	m = m′ and φm = φ. Given φi: (2i)n → (2mi)n, define φ′
i: (2i+1)n →

(2mi+1)n by φ′
i(s ⊕ t) = φi(s) ⊕ t. We then obtain mi+1 ∈ N and φi+1: (2i+1)n →

(2mi+1)n by one application of Proposition 2.6 and n applications of Proposition 2.8. This 
completes the recursive construction, and the corresponding function ψ: (2N)n → (2N)n, 
given by ψ(x) =

⋃
i≥m φi ◦ proj(2i)n(x), is as desired. �

We next consider analogous results with (2N)N in place of (2N)n.

Proposition 2.11. Suppose that m, m′, n, n′ ∈ N, φ: (2m)n → (2m′)n′ is an embedding 
of (Fk((2m)n))k≤n into (Fk((2m

′)n′))k≤n, and U is a family of open subsets of (2N)N
whose union is dense. Then there exist m′′, n′′ ∈ N for which there is an embedding 
ψ: (2m)n → (2m′′)n′′ of (Fk((2m)n))k≤n into (Fk((2m

′′)n′′))k≤n extending φ with the 
property that ∀s ∈ (2m)n ∃U ∈ U Nψ(s) ⊆ U .

Proof. Fix an injective enumeration (si)i<I of (2m)n. Set m0 = m′, n0 = n′, and φ0 = φ, 
and recursively find mi+1, ni+1 ∈ N and φi+1: (2m)n → (2mi+1)ni+1 of the form φi+1(s) =
(φi(s) � u) ⊕ v, where u ∈ (2mi)ni+1−ni and v ∈ (2mi+1−mi)ni+1 have the property that 
N(φi(si)�u)⊕v is a subset of some U ∈ U . Set m′′ = mI , n′′ = nI , and ψ = φI . �

We say that an open set U ⊆ (2N)N × (2N)N is k-dense if for all m, n ∈ N and 
(s, t) ∈ ∼Fk((2m)n), there exist m′, n′ ∈ N and extensions s′, t′ ∈ (2m′)n′ of s, t such 
that Ns′ ×Nt′ ⊆ U and

∀i < m′ ∀k < j < n′ (s′(j)(i) �= t′(j)(i) =⇒ (i < m and j < n)
)
.

Proposition 2.12. Suppose that 	, m, m′, n, n′ ∈ N, φ: (2m)n → (2m′)n′ is an embedding of 
(Fk((2m)n))k≤n into (Fk((2m

′)n′))k≤n, and U is a family of open subsets of (2N)N×(2N)N
whose union is 	-dense. Then there exist m′′, n′′ ∈ N for which there is an embedding 
ψ: (2m)n → (2m′′)n′′ of (Fk((2m)n))k≤n into (Fk((2m

′′)n′′))k≤n extending φ with the 
property that ∀(s, t) ∈ ∼F�((2m)n) ∃U ∈ U Nψ(s) ×Nψ(t) ⊆ U .

Proof. Fix an injective enumeration (si, ti)i<I of ∼F�((2m)n). Define m0 = m′, n0 = n′, 
and φ0 = φ, and recursively find mi+1, ni+1 ∈ N and φi+1: (2m)n → (2mi+1)ni+1 of the 
form φi+1(s) = (φi(s) � σ(s)) ⊕ τ(s), where σ: (2m)n → (2mi)ni+1−ni is of the form
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σ(s) =
{
t if s F�((2m)n) si and
u otherwise,

τ : (2m)n → (2mi+1−mi)ni+1 is of the form

τ(s) =
{
v if s F�((2m)n) si and
w otherwise,

and (t, u) ∈ Fmax(0,�+1−ni)((2mi)ni+1−ni) and (v, w) ∈ F�+1((2mi+1−mi)ni+1) are such 
that N(φi(si)�t)⊕v × N(φi(ti)�u)⊕w is contained in some U ∈ U . Set m′′ = mI and 
ψ = φI . �

We say that a set M ⊆ (2N)N is k-meager if it is disjoint from the intersection of a 
countable family of k-dense open sets.

Proposition 2.13. Suppose that C ⊆ (2N)N is comeager and (Rk)k∈N is a sequence of 
subsets of (2N)N× (2N)N with the property that Rk is k-meager, for all k ∈ N. Then there 
is a continuous homomorphism φ: (2N)N → C from (Fk, ∼Fk)k∈N to (Fk, ∼Rk)k∈N.

Proof. Fix a sequence (Ui)i∈N of dense open subsets of (2N)N whose intersection is con-
tained in C. For all k ∈ N, fix a decreasing sequence (Ui,k)i∈N of k-dense open subsets of 
(2N)N×(2N)N whose intersection is disjoint from Rk. We will recursively construct strictly 
increasing sequences of natural numbers mi, ni ∈ N and embeddings φi: (2i)i → (2mi)ni

of (Fk((2i)i))k≤i into (Fk((2mi)ni))k≤i such that:

(1) ∀s ∈ (2i)i ∀t ∈ (2i+1)i+1 (s � t =⇒ φi(s) � φi+1(t)).
(2) ∀s ∈ (2i+1)i+1 Nφi+1(s) ⊆ Ui.
(3) ∀k ≤ i ∀(s, t) ∈ ∼Fk((2i+1)i+1) Nφi+1(s) ×Nφi+1(t) ⊆ Ui,k.

We begin by setting m0 = n0 = 0 and fixing φ0: (20)0 → (20)0. Given φi: (2i)i → (2mi)ni , 
define ψi: (2i+1)i+1 → (2mi+1)ni+1 by ψi((s � t) ⊕ u) = (φi(s) � t) ⊕ u. We then obtain 
mi+1, ni+1 ∈ N and φi+1: (2i+1)i+1 → (2mi+1)ni+1 by one application of Proposition 2.11
and i + 1 applications of Proposition 2.12. This completes the recursive construction. 
Define φ: (2N)N → (2N)N by φ(x) =

⋃
i∈N

φi ◦ proj(2i)i(x). �
We next give a condition sufficient for ensuring k-meagerness.

Proposition 2.14. Suppose that k ∈ N and R ⊆ (2N)N × (2N)N is an Fσ set disjoint from 
E1 \ Fk. Then R is k-meager.

Proof. It is sufficient to show that every open set U ⊆ 2N × 2N containing E1 \ Fk

is k-dense. Towards this end, suppose that m, n ∈ N and (s, t) ∈ ∼Fk((2m)n). Let 
x, y ∈ (2N)N denote the extensions of s, t with constant value 0 off of the domains of s, t. 
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Then (x, y) ∈ E1 \ Fk, so (x, y) ∈ U , thus there exist m′, n′ ∈ N and s′, t′ ∈ (2m′)n′ such 
that s � s′ � x, t � t′ � y, and Ns′ ×Nt′ ⊆ U . �

We close this section with a closure property of the family of equivalence relations 
into which E1 is reducible.

Proposition 2.15. Suppose that X and Y are Polish spaces, E and F are Borel equivalence 
relations on X and Y , A ⊆ X is analytic, and φ: A → Y is a Borel reduction of E to 
F for which there is a Baire measurable reduction ψ: (2N)N → φ(A) of E1 to F � φ(A). 
Then there is a continuous embedding of E1 into E � A.

Proof. By Proposition 1.7, there is a dense Gδ set C ⊆ (2N)N on which ψ is continuous. 
By Theorem 1.12, there is a σ(Σ1

1)-measurable function φ′: φ(A) → X for which φ ◦ φ′

is the identity function. Then φ′ ◦ (ψ � C) is a σ(Σ1
1)-measurable reduction of E1 � C to 

E. One more appeal to Proposition 1.7 therefore yields a dense Gδ set D ⊆ C for which 
it is a continuous reduction of E1 � D to E. As Propositions 2.13 and 2.14 ensure that 
there is a continuous embedding of E1 into E1 � D, the proposition follows. �
3. Independent perfect sets

We say that a set B ⊆ Y is ℵ0-universally Baire if f−1(B) has the Baire property 
whenever X is a Polish space and f : X → Y is continuous. In this section, we establish 
a local version of the following generalization of the perfect set theorem for co-analytic 
equivalence relations (see [9]).

Proposition 3.1 (Conley–Lecomte–Miller). Suppose that X is a Polish space, A ⊆ X is 
analytic, G is an ℵ0-universally Baire graph on X, R is a reflexive symmetric co-analytic 
binary relation on X, and G(2) ⊆ R. Then at least one of the following holds:

(1) There is a Borel set B ⊇ A on which ∼R has countable Borel chromatic number.
(2) There is a continuous injection π: 2N → A of 2N into a G-independent set.

Proof. As the property of being independent with respect to an analytic graph is 
Π1

1 -on-Σ1
1 , Theorem 1.18 ensures that every (∼R)-independent analytic set is contained 

in a (∼R)-independent Borel set. It follows that if χB(∼R � A) ≤ ℵ0, then there is a 
Borel set B ⊇ A for which χB(∼R � B) ≤ ℵ0. Otherwise, Theorem 1.23 yields a contin-
uous homomorphism φ: 2N → X from G0 to (A × A) ∩ ∼R. As G0 has full projection, 
it follows that φ(2N) ⊆ A, and Proposition 1.22 ensures that φ is meager-to-one. So by 
Proposition 2.1, it only remains to verify that the graph G′ = (φ × φ)−1(G) is meager. 
Suppose, towards a contradiction, that this is not the case. By Theorem 1.10, there ex-
ists x ∈ X for which G′

x is non-meager and has the Baire property. Proposition 1.22
then yields a pair (y, z) ∈ G0 � G′

x, in which case the fact that G(2) ⊆ R implies that 
φ(y) R φ(z), contradicting the fact that φ is a homomorphism from G0 to ∼R. �
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We will need the following complexity calculation.

Proposition 3.2. Suppose that X is a Polish space and G is a co-analytic graph on X. 
Then the property P (A) that there is no continuous injection of 2N into a G-independent 
subset of A is Π1

1 -on-Σ1
1 .

Proof. Let E denote the equality relation on X, and suppose that Y is a Polish space and 
R ⊆ X×Y is analytic. Then Proposition 2.1 ensures that the inexistence of a continuous 
injection of 2N into a G-independent subset of Ry is equivalent to the inexistence of a 
continuous function φ: 2N → X for which (φ × φ)−1((Ry × Ry) \ (E ∪ G)) is comeager. 
Propositions 1.1 and 1.2 along with Theorem 1.17 imply that this latter property is 
Π1

1 -on-Σ1
1 . �

Given an equivalence relation E on X, we say that a graph G on X has countable 
E-local Borel chromatic number if its restriction to each equivalence class of E has 
countable Borel chromatic number.

Proposition 3.3. Suppose that X is a Polish space, A ⊆ X is analytic, E is an analytic 
equivalence relation on X, G is a co-analytic graph on X, R is a reflexive symmetric 
co-analytic binary relation on X, and G(2) ⊆ R. Then at least one of the following holds:

(1) There is a Borel set B ⊇ A on which ∼R has countable E-local Borel chromatic 
number.

(2) There exists x ∈ X for which there is a continuous injection π: 2N → A of 2N into a 
G-independent subset of [x]E.

Proof. By Proposition 3.2, the property Q(A) that there is no x ∈ X for which there is 
a continuous injection π: 2N → A of 2N into a G-independent subset of [x]E is Π1

1 -on-Σ1
1 . 

So if condition (2) fails, then Theorem 1.18 yields a Borel set B ⊆ X containing A such 
that there is no x ∈ X for which there is a continuous injection π: 2N → B of 2N into a 
G-independent subset of [x]E. As Proposition 1.8 ensures that G is ℵ0-universally Baire, 
Proposition 3.1 implies that ∼R has countable E-local Borel chromatic number on B. �
4. Two dichotomy theorems

In this section, we establish the main technical results of the paper. We say that a 
sequence (Gn)n∈N eventually has a property P if Gn has property P for all but finitely 
many n ∈ N.

Theorem 4.1. Suppose that X is a Polish space, E is an analytic equivalence relation 
on X, and (Rn)n∈N is an increasing sequence of reflexive symmetric co-analytic binary 
relations on X such that E ⊆

⋃
n∈N

Rn and R(2)
n ⊆ Rn+1 for all n ∈ N. Then exactly 

one of the following holds:
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(1) The set X is a countable union of Borel sets on which (∼Rn)n∈N eventually has 
countable E-local Borel chromatic number.

(2) There exists f : N → N for which there is a continuous homomorphism φ: (2N)N → X

from (Fn+1 \ Fn)n∈N to (E ∩Rf(n+1) \Rf(n))n∈N.

Proof. Observe that if f : N → N and φ: (2N)N → X is a homomorphism from 
(Fn+1 \ Fn)n∈N to (E ∩ Rf(n+1) \ Rf(n))n∈N, then φ is necessarily a homomorphism 
from E1 to E. Moreover, as each of the sets Fn+1 \ Fn is non-empty and (Rn)n∈N is 
increasing, it follows that f(n + 1) > f(n) for all n ∈ N, so f(n) ≥ n for all n ∈ N, thus 
φ is in fact a homomorphism from (E1 \ Fn)n∈N to (E \Rn)n∈N.

To see that conditions (1) and (2) are mutually exclusive, observe that if both hold, 
then there is a non-meager analytic set A ⊆ (2N)N such that for all x ∈ A, there is 
an ℵ0-coloring c of ∼Rn � [φ(x)]E�φ(A). Then for any such x and c, the function c ◦ φ

is a coloring of ∼Fn � [x]E1�A, so E1 has countable index over Fn on A, contradicting 
Proposition 2.4.

In order to show that at least one of conditions (1) and (2) does indeed hold, it 
will be convenient to assume that X = NN. To see that this special case is sufficient 
to establish the theorem, note that we can assume X is non-empty, in which case 
Proposition 1.4 yields a continuous surjection π: NN → X. Set E′ = (π × π)−1(E) and 
R′

n = (π × π)−1(Rn). If f : N → N and φ′: (2N)N → NN is a continuous homomorphism 
from (Fn+1 \ Fn)n∈N to (E′ ∩ R′

f(n+1) \ R′
f(n))n∈N, then the map φ = π ◦ φ′ is a homo-

morphism from (Fn+1 \Fn)n∈N to (E ∩Rf(n+1) \Rf(n))n∈N. On the other hand, suppose 
there are Borel sets B′

n ⊆ NN and natural numbers kn ∈ N such that NN =
⋃

n∈N
B′

n

and ∼R′
kn

� B′
n has countable E′-local Borel chromatic number for all n ∈ N. Then X

is the union of the analytic sets An = π(B′
n). If x ∈ An, then there exists x′ ∈ B′

n such 
that π(x′) = x, and if c′: B′

n → N is a coloring of ∼R′
kn

� [x′]E′�B′
n
, then the function 

c(y) = min{c(y′) | y = π(y′)} is a coloring of ∼Rkn
� [x]E�An

, so Proposition 3.3 yields 
Borel sets Bn ⊇ An such that ∼Rkn+1 � Bn has countable E-local Borel chromatic 
number for all n ∈ N.

We now proceed to the main argument. We will recursively define a decreasing se-
quence (Xα)α<ω1 of Borel subsets of X, beginning with X0 = X, and taking intersections 
at limit ordinals. In order to describe the construction of Xα+1 from Xα, we need several 
preliminaries.

Lemma 4.2. There is an increasing sequence (Sn)n∈N of reflexive symmetric analytic 
binary relations on X such that ∀n ∈ N Sn ⊆ Rn, E =

⋃
n∈N

Sn, and ∀n ∈ N S(2)
n ⊆

Sn+1.

Proof. As (E \ Rn)n∈N is a sequence of analytic sets with empty intersection, Theo-
rem 1.21 yields a sequence (R′

n)n∈N of Borel sets with empty intersection such that 
∀n ∈ N E \ Rn ⊆ R′

n. By replacing R′
n with 

⋂
i≤n R

′
i, we can ensure that (R′

n)n∈N

is decreasing. By replacing R′
n with {(x, y) ∈ R′

n | x �= y and (y, x) ∈ R′
n}, we can 
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assume that each of these sets is irreflexive and symmetric. Set R′′
n = E \ R′

n. Then 
(R′′

n)n∈N is an increasing sequence of reflexive symmetric analytic binary relations on X
such that ∀n ∈ N R′′

n ⊆ Rn and E =
⋃

n∈N
R′′

n. Set S0 = R′′
0 , and recursively define 

Sn+1 = R′′
n+1 ∪ S

(2)
n . A straightforward induction shows that ∀n ∈ N Sn ⊆ Rn ∩ Sn+1, 

and it is clear that E =
⋃

n∈N
Sn and ∀n ∈ N S(2)

n ⊆ Sn+1. �
Fix trees Tm,n on (N × N) × N for which p[Tm,n] = Sn \ Rm. An approximation

is a quadruple of the form a = (n, f, φ, (ψk)k<n), with the property that n ∈ N, 
f : {0, . . . , n} → N, φ: (2n)n → Nn, and ψk: Fk+1((2n)n) \ Fk((2n)n) → Nn for all k < n.

We say that a is extended by another approximation b if na ≤ nb, fa � f b, φa � φb, 
and ψa � ψb for all k < na. When nb = na + 1, we say that b is a one-step extension
of a.

A configuration is a quadruple of the form γ = (n, f, φ, (ψk)k<n), with the property 
that n ∈ N, f : {0, . . . , n} → N, φ: (2N)n → NN, and ψk: Fk+1((2N)n) \ Fk((2N)n) → NN

for all k < n.
For reasons of definability, it will be important to focus our attention on configurations 

which are continuous, in the sense that the functions φ and ψk are continuous. In the 
course of the argument, it will also be useful to consider configurations which are merely 
Baire measurable, in the sense that the functions φ and ψk are Baire measurable.

We say that γ is compatible with a set Y ⊆ X if φγ(x) ∈ Y for all x ∈ dom(φγ). We 
say that γ is compatible with the sequence (Tm,n)m,n∈N if ((φγ(x), φγ(y)), ψγ

k (x, y)) ∈
[Tf(k),f(k+1)] for all k < nγ and (x, y) ∈ dom(ψγ

k ). We say that γ is compatible with an 
approximation a if na = nγ , fa = fγ , φa � φγ , and ψa

k � ψγ
k for all k < na.

Again for reasons of definability, it will be important to focus on the corresponding 
notions of generic compatibility, in which one only asks for the desired properties on 
a comeager set. Although it is possible to proceed with only this latter notion, the 
arguments provide a strong connection between the two, and only a modicum of further 
effort is required to elucidate the connection between them.

Given an embedding π: (2N)nγ → (2N)nγ of (Fk((2N)nγ ))k<nγ into (Fk((2N)nγ ))k<nγ , 
let π∗γ denote the configuration δ given by nδ = nγ , fδ = fγ , φδ = φγ ◦ π, and 
ψδ
k = ψγ

k ◦ (π × π).

Lemma 4.3. Suppose that a is an approximation, B ⊆ X is a Borel set, γ is a Baire 
measurable configuration which is generically compatible with a, B, and (Tm,n)m,n∈N, 
m, m′ ∈ N, and π: (2m)nγ → (2m′)nγ is an embedding of (Fk((2m)nγ ))k<nγ into 
(Fk((2m

′)nγ ))k<nγ . Then π extends to a continuous embedding π′: (2N)nγ → (2N)nγ of 
(Fk((2N)nγ ))k<nγ into (Fk((2N)nγ ))k<nγ for which π′

∗γ is continuous and compatible with 
a, B, and (Tm,n)m,n∈N.

Proof. By Proposition 1.7, there are comeager sets C ⊆ dom(φγ) and Ck ⊆ dom(ψγ
k )

for which φγ � C and ψγ
k � Ck are continuous. Then the set D = (φγ)−1(B) ∩ C is 

comeager, as are the sets Dk ⊆ dom(ψγ
k ) of (x, y) ∈ Ck with ((φγ(x), φγ(y)), ψγ

k (x, y)) ∈
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[Tfγ(k),fγ(k+1)] and (s, t) ∈ dom(ψa
k) =⇒ ψa

k(s, t) � ψγ
k (x, y), where s and t are the 

projections of x and y onto dom(φa). But Proposition 2.10 ensures that the function π
extends to a continuous homomorphism π′: (2N)nγ → D from (Fk((2N)nγ ), Fk+1((2N)nγ ) \
Fk((2N)nγ ))k<nγ to (Fk((2N)nγ ), Dk)k<nγ , and any such function is as desired. �

Given a natural number n ∈ N and an embedding π: (2nγ )nγ → (2n)nγ of 
(Fk((2n

γ )nγ ))k<nγ into (Fk((2n)nγ ))k<nγ , let π∗γ denote the configuration δ given by 
nδ = nγ , fδ = fγ , φδ(s ⊕x) = φγ(π(s) ⊕x), and ψδ

k(s ⊕x, t ⊕y) = ψγ
k (π(s) ⊕x, π(t) ⊕y).

Lemma 4.4. Suppose that γ is a Baire measurable configuration. Then there exists 
n ∈ N for which there is an embedding π: (2nγ )nγ → (2n)nγ of (Fk((2n

γ )nγ ))k<nγ into 
(Fk((2n)nγ ))k<nγ with the property that π∗γ is generically compatible with an approxi-
mation.

Proof. This follows from one application of Proposition 2.7 and nγ applications of Propo-
sition 2.9. �

Let Γα(a) denote the set of all continuous configurations which are generically com-
patible with Xα, (Tm,n)m,n∈N, and a. Theorem 1.17 ensures that Γα(a) is analytic (and 
even Borel).

Associate with each configuration γ the set Dγ ⊆ (2N)nγ given by

Dγ =
{
x ∈

(
2N

)nγ ∣∣ ∀∗y ∈
(
2N

)nγ

φγ(x) Sfγ(nγ) φ
γ(y)

}
.

If γ is generically compatible with (Tm,n)m,n∈N, then Dγ is comeager. As S(2)
fγ(nγ) ⊆

Sfγ(nγ)+1, it follows that φγ(Dγ) is an Sfγ(nγ)+1-clique.
We say that a is α-terminal if Γα(b) = ∅ for all one-step extensions b of a. Define 

Aα(a) =
⋃

γ∈Γα(a) φ
γ(Dγ).

Lemma 4.5. Suppose that a is an approximation for which there is a continuous injection 
π: 2N → Aα(a) into an (E \Rfa(na)+2)-clique. Then a is not α-terminal.

Proof. We first note that E can be replaced with an appropriate Sn.

Sublemma 4.6. There exists n > fa(na) + 2 for which there is a continuous injection 
π′: 2N → 2N such that (π ◦ π′)(2N) is an Sn-clique.

Proof. Fix x ∈ X with π(2N) ⊆ [x]E , and set S′
m = π−1(Sx

m) for all m ∈ N. Then 
2N =

⋃
m∈N

S′
m, so there exists m ≥ fa(na) + 2 for which S′

m is non-meager. As 
Proposition 1.8 ensures that S′

m has the Baire property, the one-dimensional analog 
of Theorem 1.11 (whose proof is even simpler than in the two-dimensional case) yields a 
continuous injection π′: 2N → S′

m. Set n = m + 1. As (π ◦ π′)(2N) ⊆ Sx
m and S(2)

m ⊆ Sn, 
it follows that (π ◦ π′)(2N) is an Sn-clique. �
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Replacing π with π ◦ π′, we can assume that π(2N) is an Sn-clique.

Sublemma 4.7. There is a continuous injection πΓ : 2N → Γα(a) for which there is a 
continuous injection π′: 2N → 2N with the property that (π ◦ π′)(x) ∈ φπΓ (x)(DπΓ (x)) for 
all x ∈ 2N.

Proof. Note that the set of pairs (x, γ) ∈ 2N×Γα(a) with π(x) ∈ φγ(Dγ) is analytic (and 
even Borel). By Theorem 1.12, there is a σ(Σ1

1)-measurable function π′
Γ : 2N → Γα(a)

such that π(x) ∈ φπ′
Γ (x)(Dπ′

Γ (x)) for all x ∈ 2N. As π is injective and no two distinct 
points of π(2N) are Rfa(na)+2-related, it follows that π′

Γ is injective. By Proposition 1.7, 
there is a comeager set C ⊆ 2N on which π′

Γ is continuous. The one-dimensional analog 
of Theorem 1.11 therefore yields a continuous injection π′: 2N → C. Set πΓ = π′

Γ ◦π′. �
Replacing π with π ◦ π′, we can assume that π(x) ∈ φπΓ (x)(DπΓ (x)) for all x ∈ 2N. 

Note that φπΓ (x)(x′) (Sn+2 \Rfa(na)) φπΓ (y)(y′) whenever x, y ∈ 2N are distinct, 
x′ ∈ DπΓ (x), and y′ ∈ DπΓ (y). Observe further that by Proposition 1.1, the set of 
pairs ((x, x′, y, y′), z) ∈ (2N × (2N)na × 2N × (2N)na) × NN with the property that 
((φπΓ (x)(x′), φπΓ (y)(y′)), z) ∈ [Tfa(na),n+2] is closed, so by Theorem 1.12, there is a 
σ(Σ1

1)-measurable function ψ: Fna+1((2N)na+1) \ Fna((2N)na+1) → NN such that

((
φπΓ (x)(x′), φπΓ (y)(y′)), ψ(x′ � (x), y′ � (y)

))
∈ [Tfa(na),n+2]

for all distinct x, y ∈ 2N, x′ ∈ DπΓ (x), and y′ ∈ DπΓ (y).
Let γ denote the Baire measurable configuration given by nγ = na + 1, fγ �

{0, . . . , na} = fa, fγ(nγ) = n + 2, φγ(x � (z)) = φπΓ (z)(x), ψγ
k (x � (z), y � (z)) =

ψ
πΓ (z)
k (x, y) for k < nγ , and ψγ

na = ψ. Lemma 4.4 then yields an approximation b, 
a natural number n′, and an embedding π′: (2nγ )nγ → (2n′)nγ of (Fk((2n

γ )nγ ))k<nγ into 
(Fk((2n

′)nγ ))k<nγ , extending the identity function on (2nγ )nγ , for which π′
∗γ is gener-

ically compatible with b, (Tm,n)m,n∈N, and Xα. As π′
∗γ is made up of perfectly many 

configurations generically compatible with a, it follows that b is a one-step extension of a. 
As Lemma 4.3 yields a continuous embedding π′′: (2N)nγ → (2N)nγ of (Fk((2N)nγ ))k<nγ

into (Fk((2N)nγ ))k<nγ , extending π′, with the property that π′′
∗γ is continuous and com-

patible with b, (Tm,n)m,n∈N, and Xα, it follows that a is not α-terminal. �
Lemma 4.8. Suppose that a is an α-terminal approximation. Then there is a Borel set 
B ⊆ X containing Aα(a) on which ∼Rfa(na)+3 has countable E-local Borel chromatic 
number.

Proof. As Aα(a) is analytic and Lemma 4.5 ensures that there is no continuous injection 
π: 2N → Aα(a) into an (E \ Rfa(na)+2)-clique, the desired result follows from Proposi-
tion 3.3. �
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Let Tα denote the set of all α-terminal approximations. For every such approxi-
mation a, appeal to Lemma 4.8 to obtain a Borel set Bα(a) ⊆ X containing Aα(a)
on which ∼Rfa(na)+3 has countable E-local Borel chromatic number. Define Xα+1 =
Xα \

⋃
a∈Tα Bα(a). This completes the recursive construction.

Lemma 4.9. Suppose that a is an approximation whose one-step extensions are all 
α-terminal. Then a is (α + 1)-terminal.

Proof. Suppose that b is a one-step extension of a. If γ is a continuous configura-
tion generically compatible with b, then the α-terminality of b ensures that φγ(Dγ) ∩
Xα+1 = ∅. It follows that if γ is also generically compatible with (Tm,n)m,n∈N, then it is 
not generically compatible with Xα+1, thus Γα+1(b) = ∅. �

Note that the family of α-terminal approximations is increasing. As there are only 
countably many approximations, there exists α < ω1 such that every (α + 1)-terminal 
approximation is α-terminal. If the unique approximation a for which na = fa(0) = 0 is 
α-terminal, then Xα+1 = ∅, and Lemma 4.8 ensures that there are Borel sets Bn ⊆ X

and natural numbers kn ∈ N such that X =
⋃

n∈N
Bn and ∼Rkn

has countable E-local 
Borel chromatic number on Bn, for all n ∈ N.

Otherwise, Lemma 4.9 allows us to recursively construct non-α-terminal approxima-
tions an with the property that an+1 is a one-step extension of an. Define f : N → N by 
f(n) = fan(n); define φ: (2N)N → NN by φ(x) � n = φan(s), where s is the projection of 
x onto (2n)n; and define ψk: Fk+1 \ Fk → NN by ψk(x, y) � n = ψan

k (s, t), where k < n

and s and t are the projections of x and y onto (2n)n.
It remains to show that for all k ∈ N, the function φ is a homomorphism 

from Fk+1 \ Fk to Sf(k+1) \ Rf(k). Towards this end, suppose that x Fk+1 \ Fk y, 
and fix n > k sufficiently large that sn (Fk+1((2n)n) \ Fk((2n)n)) tn, where sn
and tn are the projections of x and y onto (2n)n. Then there is a continuous 
configuration γn generically compatible with an and (Tm,n)m,n∈N. Fix (xn, yn) ∈
dom(ψγn

k ) with the property that the projections of xn and yn onto (2n)n are 
s and t; φγn(xn), φγn(yn), ψγn

k (xn, yn) are extensions of φan(sn), φan(tn), and 
ψan

k (sn, tn); and ((φγn(xn), φγn(yn)), ψγn

k (xn, yn)) ∈ [Tf(k),f(k+1)]. In particular, it fol-
lows that ((φan(sn), φan(tn)), ψan

k (sn, tn)) ∈ Tf(k),f(k+1), so ((φ(x), φ(y)), ψk(x, y)) ∈
[Tf(k),f(k+1)], from which it follows that φ(x) (Sf(k+1) \Rf(k)) φ(y). �

As a corollary, we obtain the following.

Theorem 4.10. Suppose that X is a Polish space, E is an analytic equivalence relation 
on X, and (Rn)n∈N is an increasing sequence of reflexive symmetric Fσ binary relations 
on X such that E ⊆

⋃
n∈N

Rn and R(2)
n ⊆ Rn+1 for all n ∈ N. Then exactly one of the 

following holds:
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(1) The set X is a countable union of Borel sets on which (∼Rn)n ∈ N eventually has 
countable E-local Borel chromatic number.

(2) There exists f : N → N for which there is a continuous homomorphism φ: (2N)N → X

from (Fn, ∼Fn)n∈N to (E ∩Rf(n), ∼Rf(n))n∈N.

Proof. In light of Theorem 4.1, it is sufficient to show that if there is a continuous 
homomorphism φ: (2N)N → X from (Fn+1 \ Fn)n∈N into (Rn+1 \Rn)n∈N, then there is a 
continuous homomorphism from (Fn, ∼Fn)n∈N to (E ∩Rn, ∼Rn)n∈N. Towards this end, 
define E′ = (φ × φ)−1(E) and R′

n = (φ × φ)−1(Rn). As Proposition 2.14 ensures that 
R′

n is n-meager, Proposition 2.13 yields a continuous homomorphism ψ: (2N)N → (2N)N
from (Fn, ∼Fn)n∈N to (Fn, ∼R′

n)n∈N, in which case the function π = φ ◦ψ is a continuous 
homomorphism from (Fn, ∼Fn)n∈N to (E ∩Rf(n), ∼Rf(n))n∈N. �
5. Hypersmooth equivalence relations

In this section, we give a classical proof of Theorem [5, Theorem 1]. We first note that 
for witnesses to hypersmoothness, the σ-ideal appearing in Theorems 4.1 and 4.10 has a 
much nicer characterization.

Proposition 5.1. Suppose that X is a Polish space, E is a Borel equivalence relation 
on X, (En)n∈N is an increasing sequence of smooth Borel equivalence relations on X
whose union is E, and there are Borel sets Bn ⊆ X, on which ∼En has countable 
E-local chromatic number, with X =

⋃
n∈N

Bn. Then E is essentially hyperfinite.

Proof. Set Cn =
⋃

m<n Bm and Dn = Bn\Cn, and let Fn denote the equivalence relation 
on X given by

x Fn y ⇐⇒ (x, y ∈ Cn and x En y) or ∃m ≥ n (x, y ∈ Dm and x Em y).

Then (Fn)n∈N is again an increasing sequence of smooth Borel equivalence relations 
whose union is E. In addition, E has countable index over F0. Fix Borel reductions 
φm: X → 2N of Fm to the equality relation on 2N, and observe that the product φ: X →
(2N)N, given by φ(x)(n) = φn(x), is a Borel reduction of E to E1. Then A = φ(X) is 
an analytic set on which E1 is countable, so Theorem 1.18 yields a Borel set B ⊇ A on 
which E1 is countable. Theorem 1.25 then ensures that E1 � B is hyperfinite, thus E is 
essentially hyperfinite. �

As a corollary, we obtain a classical proof of [5, Theorem 1].

Theorem 5.2 (Kechris–Louveau). Suppose that X is a Polish space and E is a hyper-
smooth Borel equivalence relation on X. Then exactly one of the following holds:

(1) The equivalence relation E is essentially hyperfinite.
(2) There is a continuous embedding φ: (2N)N → X of E1 into E.
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Proof. Propositions 2.4 and 2.5 ensure that the two conditions are mutually exclusive.
To see that at least one of them holds, fix an increasing sequence (En)n∈N of smooth 

Borel equivalence relations on X whose union is E. By Proposition 1.3, we can assume 
that each En is closed, in which case Theorem 4.10 and Proposition 5.1 therefore yield 
the desired result. �
6. Treeable equivalence relations

In this section, we establish our dichotomy theorems for treeable Borel equivalence 
relations. Given a binary relation R on a set Y ⊆ X, we say that a set Z ⊆ X is 
R-complete if ∀y ∈ Y ∃z ∈ Z y R z.

Proposition 6.1. Suppose that X is a Polish space, A ⊆ X is analytic, E is a Borel 
equivalence relation on X, G is a Borel treeing of E, and n is a natural number such 
that for all x ∈ A, there is a countable set C ⊆ [x]E which is complete with respect to 
G(≤n) � [x]E�A. Then there is a (G(≤n) � A)-complete Borel set B ⊆ X on which E is 
countable.

Proof. We proceed via induction on n. The base case n = 0 is trivial, so suppose that 
we have already established the proposition at some n ∈ N, and for all x ∈ A, there is 
a countable set C ⊆ [x]E which is complete with respect to G(≤n+1) � [x]E�A. Let A′

denote the set of x ∈ X for which there are uncountably many y ∈ Gx such that for 
some m > n there is an injective G-path (zi)i≤m with x = z0, y = z1, and zm ∈ A. 
As Theorem 1.16 ensures that the property of being countable is Π1

1 -on-Σ1
1 , the set 

A′ is analytic. Moreover, the acyclicity of G ensures that if x ∈ A and C ⊆ [x]E is a 
countable set which is complete with respect to G(≤n+1) � [x]E�A, then A′∩ [x]E ⊆ C. In 
particular, it follows that E is countable on A′. As this latter property is again Π1

1 -on-Σ1
1 , 

Theorem 1.18 yields a Borel set B′ ⊇ A′ on which E is countable. As Theorems 1.14
and 1.20 ensure that G(≤n+1) is Borel, Theorem 1.15 implies that the set B′′ of points 
G(≤n+1)-related to points in B′ is Borel.

Define A′′ = A \ B′′, and observe that if x ∈ A′′ and C ⊆ [x]E is a countable set 
which is complete with respect to G(≤n+1) � [x]E�A, then there exists y ∈ C \ B′ such 
that x is G(≤n)-related to either y or one of its countably many neighbors z for which 
(y, z) extends to a G-path (wi)i≤n+1 from y to A. In particular, the induction hypothesis 
yields a (G(≤n) � A′′)-complete Borel set B′′′ ⊆ X on which E is countable, in which 
case the set B = B′ ∪B′′′ is as desired. �

As corollaries, we obtain the following dichotomy theorems.

Theorem 6.2. Suppose that X is a Polish space, E is a treeable Borel equivalence relation 
on X, and G is a Borel treeing of E. Then exactly one of the following holds:
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(1) There is an E-complete Borel set on which E is countable.
(2) There exists a function f : N → N for which there is a continuous homomorphism 

φ: (2N)N → X from (Fn+1 \ Fn)n∈N to (G(≤f(n+1)) \G(≤f(n)))n∈N.

Proof. As condition (1) ensures that X is of the form 
⋃

n∈N
Bn, where each Bn ⊆ X is 

a Borel set on which ∼G(≤n) has countable E-local Borel chromatic number, Propo-
sition 2.4 ensures that the two conditions are mutually exclusive. Theorem 4.1 and 
Proposition 6.1 imply that at least one of them holds. �
Theorem 6.3. Suppose that X is a Polish space and E is a Borel equivalence relation on 
X which is subtreeable-with-Fσ-iterates. Then for every analytic set A ⊆ X, exactly one 
of the following holds:

(1) There is an (E � A)-complete Borel set B ⊆ X on which E is countable.
(2) There is a continuous embedding φ: (2N)N → X of E1 into E � A.

Proof. Proposition 2.4 ensures that the two conditions are mutually exclusive, and The-
orem 4.10 and Proposition 6.1 imply that at least one of them holds. �

We say that embeddability of E1 is determined below E by E if for every analytic 
set A ⊆ X, either E � A ∈ E or there is a continuous embedding of E1 into E. Theo-
rem 6.3 implies Borel equivalence relations which are subtreeable-with-Fσ-iterates have 
this property, where E is the class of essentially countable Borel equivalence relations on 
Polish spaces. The following fact implies that this holds under the weaker assumption of 
being essentially subtreeable-with-Fσ-iterates.

Proposition 6.4. Suppose that E is a class of Borel equivalence relations on Polish spaces. 
Then the class of Borel equivalence relations below which embeddability of E1 is deter-
mined by essentially E is closed under Borel reducibility.

Proof. Suppose that X and Y are Polish spaces, E and F are Borel equivalence relations 
on X and Y , π: X → Y is a Borel reduction of E to F , and embeddability of E1 is 
determined below F by essentially E . Given an analytic set A ⊆ X, either there is a Borel 
reduction ψ of F � π(A), and therefore of E � A, to a Borel equivalence relation in E , 
or there is a continuous embedding of E1 into F � π(A), in which case Proposition 2.15
yields a continuous embedding of E1 into E � A. �
7. Borel functions

In this section, we establish a natural strengthening of Theorem 6.3 for graphs induced 
by functions. Although not strictly necessary to achieve this goal, we will first establish 
several preliminary results so as to further clarify the nature of essential countability in 
this context.
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Proposition 7.1. Suppose that X and Y are Polish spaces, E is a Borel equivalence 
relation on X, F is a countable equivalence relation on a subset of Y , and π: X → Y is 
a Borel reduction of E to F . Then there is a countable Borel equivalence relation F ′ on 
Y such that π is also a reduction of E to F ′.

Proof. Set R = (π × π)(E). The fact that π is a homomorphism from E to F ensures 
that R ⊆ F . As F is countable and π is a cohomomorphism from E to F , it follows that 
R is subset of Y × Y , with countable horizontal and vertical sections, for which π is a 
cohomomorphism from E to the smallest equivalence relation on Y containing R. As R
is analytic and this latter property is Π1

1 -on-Σ1
1 , Theorem 1.18 yields a Borel set R′ ⊇ R, 

with countable horizontal and vertical sections, for which π is a cohomomorphism from 
E to the smallest equivalence relation on Y containing R′. Let F ′ denote the latter 
equivalence relation. As R ⊆ F ′, it follows that π is also a homomorphism from E to 
F ′, and therefore π is a reduction of E to F ′. As the horizontal and vertical sections 
of R′ are countable, it follows that F ′ is countable, so Theorem 1.15 ensures that F ′ is 
Borel. �
Proposition 7.2. Suppose that X is a Polish space, E and F are Borel equivalence rela-
tions on X, and E ∩F has countable index in E and F . Then E is essentially countable
⇐⇒ F is essentially countable.

Proof. It is sufficient to handle the special case that E ⊆ F .
To see (=⇒), suppose that X ′ is a Polish space, E′ is a countable equivalence relation 

on X ′, and π: X → X ′ is a Borel reduction of E to E′. Then π is a reduction of F to 
the countable equivalence relation (π × π)(F ) on π(X), so F is essentially countable by 
Proposition 7.1.

To see (⇐=), suppose that X ′ is a Polish space, F ′ is a countable equivalence relation 
on X ′, and φ: X → X ′ is a Borel reduction of F to F ′. Let D′ denote the equality relation 
on X ′, and observe that the relation D = (φ × φ)−1(D′) has countable index in F . By 
(=⇒), it is enough to show that D ∩ E is smooth, thus essentially countable. Suppose, 
towards a contradiction, that this is not the case. Then Theorem 1.24 yields a continuous 
embedding ψ: 2N → X of E0 into D ∩E, in which case φ ◦ ψ is a countable-to-one Borel 
homomorphism from E0 to D′, contradicting Proposition 1.9. �

With these preliminaries out of the way, we now turn our attention to functions 
T : X → X. Let Et(T ) denote the equivalence relation on X given by x Et(T ) y ⇐⇒
∃m, n ∈ N Tm(x) = Tn(y).

The eventually periodic part of T is the set of x ∈ X for which there are natural 
numbers m < n with Tm(x) = Tn(x), and T is aperiodic if its eventually periodic part 
is empty. The following observation will allow us to focus our attention on aperiodic 
functions.



28 J.D. Clemens et al. / Advances in Mathematics 265 (2014) 1–31
Proposition 7.3. Suppose that X is a Polish space and T : X → X is Borel. Then there 
is a Borel transversal of the restriction of Et(T ) to the eventually periodic part of T .

Proof. The periodic part of T is the set of x ∈ X for which there is a positive natural 
number n with x = Tn(x). As the periodic part of T intersects every equivalence class of 
Et(T ) in a finite set, the desired result follows from the fact that every finite Borel equiv-
alence relation on a Polish space has a Borel transversal, which itself is a consequence 
of Theorem 1.13. �

The following observation will allow us to apply our earlier results.

Proposition 7.4. Suppose that X is a Polish space and T : X → X is Borel. Then Et(T )
is treeable.

Proof. As Borel equivalence relations with Borel transversals are trivially treeable, 
Proposition 7.3 allows us to assume that T is aperiodic. Then the graph GT on X
given by x GT y ⇐⇒ (T (x) = y or T (y) = x) is a Borel treeing of E. �

This yields another characterization of essential countability of Et(T ).

Proposition 7.5. Suppose that X is a Polish space, T : X → X is Borel, and Et(T )
is essentially countable. Then there is an Et(T )-complete Borel set on which Et(T ) is 
countable.

Proof. By Proposition 7.4, the equivalence relation Et(T ) is treeable. The desired result 
is therefore a consequence of Theorem 1.26. Although this latter result has a classical 
proof (see [8]), we will give a simpler argument using the structure of T .

By Proposition 7.3, we can assume that T is aperiodic. By Proposition 1.3, we can 
assume that X carries a Polish topology with respect to which T is continuous. Then 
the iterates of GT are closed. Theorem 6.3 therefore yields the desired Et(T )-complete 
Borel set on which Et(T ) is countable. �

Define E0(T ) on X by x E0(T ) y ⇐⇒ ∃n ∈ N Tn(x) = Tn(y). Note that E0(T ) is a 
countable index subequivalence relation of Et(T ).

Proposition 7.6. Suppose that X is a Polish space and T : X → X is Borel. Then E0(T )
is essentially countable if and only if Et(T ) is essentially countable.

Proof. This is a direct consequence of Proposition 7.2. �
Together with Proposition 7.5, the following fact ensures that Et(T ) is essentially 

countable if and only if T is essentially countable-to-one.
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Proposition 7.7. Suppose that X is a Polish space, T : X → X is Borel, and B ⊆ X is 
a Borel set on which Et(T ) is countable. Then there is a T -stable Borel set A ⊇ B on 
which Et(T ) is countable.

Proof. Set A =
⋃

n∈N
Tn(B). Then A is T -stable, and Theorem 1.15 ensures that it is 

Borel. �
Define Fn(T ) on X by x Fn(T ) y ⇐⇒ Tn(x) = Tn(y).

Proposition 7.8. Suppose that X is a Polish space, T : X → X is Borel, and there is 
a sequence (Bn)n∈N of Borel sets for which X =

⋃
n∈N

Bn and (∼Fk(T ))k∈N eventu-
ally has countable E0(T )-local chromatic number for all n ∈ N. Then T is essentially 
countable-to-one.

Proof. Fix natural numbers kn ∈ N such that ∼Fkn
(T ) has countable E0(T )-local 

chromatic number on Bn for all n ∈ N. Then E0(T ) is countable on the analytic set 
A =

⋃
n∈N

T kn(Bn). As Theorem 1.16 ensures that the property of being countable is 
Π1

1 -on-Σ1
1 , Theorem 1.18 yields a Borel set B ⊇ A on which E0(T ) is countable. As 

Et(T ) must also be countable on this set, Proposition 7.7 ensures that T is essentially 
countable-to-one. �

Define Rn(T ) on X by x Rn(T ) y ⇐⇒ ∃i, j ≤ n T i(x) = T j(y).

Proposition 7.9. Suppose that X is a Polish space, T : X → X is aperiodic, f : N → N, and 
φ: (2N)N → X is a homomorphism from (Fn, ∼Fn)n∈N into (Ff(n)(T ), ∼Rf(n)(T ))n∈N. 
Then the function π: N × (2N)N → X given by π(n, sn(x)) = T f(n) ◦ φ(x) defines a 
Kakutani embedding of S × s into T .

Proof. To see that π is well-defined, note that if sn(x) = sn(y), then x Fn y, so 
φ(x) Ff(n)(T ) φ(y), thus T f(n) ◦ φ(x) = T f(n) ◦ φ(y). Note also that the set B =
π(N × (2N)N) is trivially T -recurrent, in the sense that B ⊆

⋃
n>0 T

−n(B).
To see that π is injective, suppose that m, n ∈ N and x, y ∈ (2N)N are such that 

π(m, x) = π(n, y). By reversing the roles of x and y if necessary, we can assume that 
m ≤ n. Fix x′, y′ ∈ (2N)N such that x = sm(x′) and y = sn(y′), and observe that 
T f(m) ◦ φ(x′) = π(m, x) = π(n, y) = T f(n) ◦ φ(y′), so the fact that f(m) ≤ f(n) ensures 
that φ(x′) Rf(n)(T ) φ(y′). As φ is a homomorphism from ∼Fn to ∼Rf(n)(T ), it follows 
that x′ Fn y′. As φ is also a homomorphism from Fn to Ff(n)(T ), it follows that T f(n) ◦
φ(x′) = T f(n) ◦ φ(y′). Then T f(m) ◦ φ(x′) = T f(n) ◦ φ(x′), so the injectivity of f and the 
aperiodicity of T ensure that m = n, thus x = sn(x′) = sn(y′) = y.

Suppose now that n ∈ N and x ∈ (2N)N, and fix x′ ∈ (2N)N for which x = sn(x′). As φ is 
a homomorphism from (E0(s), ∼E0(s)) to (E0(T ), ∼Et(T )), it follows that φ([x′]E0(s)) =
φ((2N)N) ∩ [φ(x′)]E0(T ) = φ((2N)N) ∩ [φ(x′)]Et(T ), thus
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Tφ(N×(2N)N) ◦ π(n, x) = Tφ(N×(2N)N) ◦ π
(
n, sn

(
x′))

= Tφ(N×(2N)N) ◦ T f(n) ◦ φ
(
x′)

= T f(n+1) ◦ φ
(
x′)

= π
(
n + 1, sn+1(x′))

= π
(
(S × s)(n, x)

)
,

thus π is a Kakutani embedding of S × s into T . �
We are now ready to establish our final result.

Theorem 7.10. Suppose that X is a Polish space and T : X → X is Borel. Then exactly 
one of the following holds:

(1) The function T is essentially countable-to-one.
(2) There is a continuous Kakutani embedding φ: (2N)N → X of S × s into T .

Proof. To see that the two conditions are mutually exclusive, suppose that B is a 
T -complete, T -stable Borel set on which T is countable-to-one, and π: N × (2N)N → X

is a Borel Kakutani embedding of S × s into T . Then π−1(B) is an (S × s)-complete, 
(S × s)-stable Borel set on which S × s is countable-to-one, so proj(2N)N(π−1(B)) is an 
E1-complete Borel set on which E1 is countable, contradicting Proposition 2.4.

It remains to check that at least one of the two conditions holds. By Proposi-
tion 7.3, we can assume that T is aperiodic. By Proposition 1.3, we can assume that 
T is continuous, in which case each of the relations Rn(T ) is closed. Theorem 4.10
and Proposition 7.8 ensure that if T is not essentially countable-to-one, then there is a 
function f : N → N for which there is a continuous homomorphism from (Fn, ∼Fn)n∈N

to (E0(T ) ∩ Rf(n)(T ), ∼Rf(n)(T ))n∈N. As the aperiodicity of T implies that Fn(T ) =
E0(T ) ∩ Rn(T ) for all n ∈ N, Proposition 7.9 yields a continuous Kakutani embedding 
of S × s into T . �
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