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Abstract. Burgess-Mauldin have proven the Ramsey-theoretic result that

continuous sequences (µc)c∈2N of pairwise orthogonal Borel probability mea-

sures admit continuous orthogonal subsequences. We establish an analogous
result for sequences indexed by 2N/E0, the next Borel cardinal. As a corollary,

we obtain a strengthening of the Harrington-Kechris-Louveau E0 dichotomy

for restrictions of measure equivalence. We then use this to characterize the
family of countable Borel equivalence relations which are non-hyperfinite with

respect to an ergodic Borel probability measure which is not strongly ergodic.

Introduction

A Polish space is a separable topological space admitting a compatible complete
metric. A subset of such a space is Borel if it is in the σ-algebra generated by the
underlying topology.

A standard Borel space is a set X equipped with the family of Borel sets associ-
ated with a Polish topology on X. Every subset of a standard Borel space inherits
the σ-algebra consisting of its intersection with each Borel subset of the original
space; this restriction is again standard Borel exactly when the subset in question
is Borel (see, for example, [Kec95, Corollary 13.4 and Theorem 15.1]). The product
of standard Borel spaces X and Y is the set X × Y , equipped with the σ-algebra
generated by the family of all sets of the form A×B, where A ⊆ X and B ⊆ Y are
Borel. A function between standard Borel spaces is Borel if pre-images of Borel
sets are Borel.

Suppose that E and F are equivalence relations on X and Y . A homomorphism
from E to F is a function φ : X → Y sending E-equivalent points to F -equivalent
points, a reduction of E to F is a homomorphism sending E-inequivalent points to
F -inequivalent points, and an embedding of E into F is an injective reduction.

Following the standard abuse of language, we say that an equivalence relation is
finite if all of its classes are finite, and countable if all of its classes are countable.
We say that a Borel equivalence relation is hyperfinite if it is the union of an
increasing sequence (Fn)n∈N of finite Borel subequivalence relations. We say that a
Borel equivalence relation is smooth if it is Borel reducible to equality on a standard
Borel space. By the Lusin-Novikov uniformization theorem for Borel subsets of the
plane with countable vertical sections (see, for example, [Kec95, Theorem 18.10]),
examples of smooth Borel equivalence relations include all finite Borel equivalence
relations on standard Borel spaces. However, the relation E0 on 2N, given by

c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m),
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is an example of a hyperfinite Borel equivalence relation which is not smooth. In
fact, the Harrington-Kechris-Louveau E0 dichotomy (see [HKL90, Theorem 1.1])
ensures that, under Borel reducibility, it is the minimal non-smooth Borel equiva-
lence relation.

The inner saturation of a set Y ⊆ X under an equivalence relation E on X is
given by (Y )E = {y ∈ Y | [y]E ⊆ Y }, whereas the outer saturation of Y under
E is given by [Y ]E =

⋃
y∈Y [y]E . The uniformization theorem for Borel subsets of

the plane with countable vertical sections ensures that when E is a countable Borel
equivalence relation and Y is Borel, then both types of saturations are also Borel.

Much recent work on countable Borel equivalence relations has utilized measure-
theoretic techniques. A Borel measure on a standard Borel space X is a function
µ associating an element of [0,∞] with each Borel subset of X in such a fashion
that µ(∅) = 0 and µ(

⋃
n∈NBn) =

∑
n∈N µ(Bn), whenever (Bn)n∈N is a sequence of

pairwise disjoint Borel subsets of X. We say that µ is a Borel probability measure
if µ(X) = 1. We say that a Borel set B ⊆ X is µ-null if µ(B) = 0. Otherwise,
we say that B is µ-positive. We say that a Borel set is µ-conull if its complement
is µ-null. Two Borel measures are equivalent if they have the same µ-null Borel
sets. We say that a countable Borel equivalence relation E on X is µ-hyperfinite if
there is a µ-conull Borel set on which E is hyperfinite. We say that µ is E-quasi-
invariant if the family of µ-null Borel sets is closed under outer E-saturation. We
say that µ is E-ergodic if every E-invariant Borel set is either µ-null or µ-conull, or
equivalently, if every Borel homomorphism from E to equality on a standard Borel
space is constant on a µ-conull Borel set. More generally, we say that µ is (E,F )-
ergodic if for every Borel homomorphism from E to F , the induced homomorphism
from E to equality on Y/F is constant on a µ-conull Borel set. In the special case
that F = E0, this notion is also referred to as strong E-ergodicity, and has played
a pivotal role in descriptive set theory and ergodic theory over the last few years.

Given a Polish space X, we use P (X) to denote the set of all Borel probability
measures on X, equipped with the smallest (necessarily Polish) topology making
the functions of the form Λf (µ) =

∫
f(x) dµ(x) continuous, where f : X → R

varies over all bounded continuous functions (see, for example, [Kec95, Theorem
17.19]). It is not difficult to see that measure equivalence is Borel with respect to
this topology (see, for example, [Kec95, Exercise 17.39]).

Much recent work in descriptive set theory has focused upon Borel reducibility
of countable Borel equivalence relations, which refines the classical notion of car-
dinality and has shed new light on the nature of classification problems through-
out mathematics (see, for example, [Hjo99, AK00, Hjo01, Tho03, FW04, FRW06,
Tho06, FLR09, FRW11, Ros11, FTT13a, FTT13b, Sab13]). In [CM14], a some-
what weaker notion of measure reducibility was considered, in which one merely
requires that for every Borel probability measure µ on X, there is a µ-conull Borel
set on which E is Borel reducible to F . A basic idea there was to consider the
connection between E and measure equivalence on EQE \HE , where EQE denotes
the Borel set of E-ergodic E-quasi-invariant Borel probability measures on X (see,
for example, [Dit92, Theorem 2 of Chapter 2]), and HE denotes the Borel set of
Borel probability measures µ on X with respect to which E is µ-hyperfinite (see
[Seg97], or [CM14, Theorem J.10] for a simpler exposition in English). In partic-
ular, it was noted that if the latter relation has only countably many equivalence
classes, then E is a countable disjoint union of successors of E0 (under measure
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reducibility), and every measure in EQE \ HE is strongly E-ergodic. As the latter
property has proven quite useful, it is natural to ask under what circumstances such
a conclusion can be obtained. Our primary goal here is to establish the following
characterization.

Theorem A. Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X. Then the following are equivalent:

(1) The restriction of measure equivalence to EQE \ HE is smooth.
(2) Every measure in EQE \ HE is strongly E-ergodic.

The proof of (2) =⇒ (1) goes through variants of a pair of well-known results,
worth mentioning in their own right.

We say that Borel probability measures µ and ν on X are orthogonal if there
is a µ-conull ν-null Borel subset of X. It is clear that if (µn)n∈N is a sequence
of pairwise orthogonal Borel probability measures on X, then there is a sequence
(Bn)n∈N of pairwise disjoint Borel subsets of X such that Bn is µn-conull, for
all n ∈ N. On the other hand, it is not difficult to produce sequences (µc)c∈2N
of pairwise orthogonal Borel probability measures on a standard Borel space for
which there is no sequence (Bc)c∈2N of pairwise disjoint Borel sets such that Bc is
µc-conull, for all c ∈ 2N. Nevertheless, Burgess-Mauldin have discovered a Ram-
sey-theoretic salvage: If X is a Polish space and (µc)c∈2N is a continuous sequence
of pairwise orthogonal Borel probability measures on X, then there is a continuous
injection π : 2N → 2N for which there is a Kσ sequence (Kc)c∈2N of pairwise disjoint
sets such that Kc is µπ(c)-conull, for all c ∈ 2N (see [BM81, Theorem 1]). Here, we
say that a sequence (xi)i∈I of points of X is continuous if it is continuous when
viewed as a function from I to X, and we say that a sequence (Kc)c∈2N of subsets
of X is Kσ if {(c, x) ∈ 2N ×X | x ∈ Kc} is a countable union of compact sets.

The primary result underlying our proof of (2) =⇒ (1) is the analogous result
for sequences indexed by 2N/E0, the Borel-cardinal successor of 2N. We say that
measure-equivalence classes C and D of Borel probability measures on X are orthog-
onal if there are orthogonal measures µ ∈ C and ν ∈ D. We say that a sequence
(CC)C∈I/E of measure-equivalence classes of Borel probability measures on X is
continuous if there is a continuous sequence (µi)i∈I of Borel probability measures
on X with the property that µi ∈ C[i]E , for all i ∈ I. We say that a sequence
(KC)C∈I/E of subsets of X is Kσ if the sequence (Ki)i∈I given by Ki = K[i]E is
Kσ. We say that a function π : X/E → Y/F is continuous if there is a continuous
function φ : X → Y such that φ(x) ∈ π([x]E), for all x ∈ X.

Theorem B. Suppose that X is a Polish space and (CC)C∈2N/E0
is a continu-

ous sequence of pairwise orthogonal measure-equivalence classes of Borel probabil-
ity measures on X. Then there is a continuous injection π : 2N/E0 → 2N/E0 for
which there is a Kσ sequence (KC)C∈2N/E0

of pairwise disjoint sets such that KC

is µ-conull, for all C ∈ 2N/E0 and µ ∈ Cπ(C).

Our use of this result in the proof of (2) =⇒ (1) is via a corollary, strengthening
the E0 dichotomy for restrictions of measure equivalence. We say that a subset of
a standard Borel space is analytic if it is the image of a standard Borel space under
a Borel function.

Theorem C. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X, and A ⊆ EQE is analytic. Then exactly one of the following holds:
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(1) The restriction of measure equivalence to A is smooth.
(2) There is a continuous embedding π : 2N → A of E0 into measure equivalence

for which there is a Kσ sequence (KC)C∈2N/E0
of pairwise disjoint subsets

of X such that KC is π(c)-conull, for all C ∈ 2N/E0 and c ∈ C.

In §1, we prove Theorems B and C. In §2, we establish Theorem A.

1. Orthogonal sequences of measures

We begin this section by establishing the analog of [BM81, Theorem 1] for se-
quences indexed by 2N/E0.

Theorem 1. Suppose that X is a Polish space and (CC)C∈2N/E0
is a continu-

ous sequence of pairwise orthogonal measure-equivalence classes of Borel probabil-
ity measures on X. Then there is a continuous injection π : 2N/E0 → 2N/E0 for
which there is a Kσ sequence (KC)C∈2N/E0

of pairwise disjoint sets such that KC

is µ-conull, for all C ∈ 2N/E0 and µ ∈ Cπ(C).

Proof. Fix a continuous sequence (µc)c∈2N of Borel probability measures on X such
that µc ∈ C[c]E0 for all c ∈ 2N, as well as positive real numbers δn and εn with
limn→∞ δn = 0 and

∑
n∈N εn < ∞. We will recursively construct, for i < 2 and

n ∈ N, positive natural numbers kn and sets Un,i ⊆ X, expressible as unions of
finitely many open sets of diameter at most δn, such that Un,0 ∩ Un,1 = ∅ and

∀n ∈ N∀s ∈ 2n+1∀c ∈ 2N µφn+1(s)ac(Un,s(n)) > 1− εn,

where φn+1(s) = (s(0))k0 a · · · a (s(n))kn .
Suppose that n ∈ N and we have already found km and Um,i for i < 2 and m < n.

To handle the case n = 0 at the same time as the others, set φ0(∅) = ∅. For all
s0, s1 ∈ 2n, the E0-inequivalence of φn(s0) a (0)∞ and φn(s1) a (1)∞ yields disjoint
Borel sets Bn,s0,s1,0, Bn,s0,s1,1 ⊆ X with µφn(si)a(i)∞(Bn,s0,s1,i) = 1 for all i < 2.
The tightness of Borel probability measures on Polish spaces (see, for example,
[Kec95, Theorem 17.11]) then gives rise to compact sets Kn,s0,s1,i ⊆ Bn,s0,s1,i such
that µφn(si)a(i)∞(Kn,s0,s1,i) > 1− εn/2n for all i < 2. The disjointness of Kn,s0,s1,0

and Kn,s0,s1,1 ensures that they are of positive distance apart, in which case they
are contained in open sets Un,s0,s1,0 and Un,s0,s1,1 with disjoint closures. As each
Kn,s0,s1,i is compact, we can assume that Un,s0,s1,0 and Un,s0,s1,1 are expressible as
finite unions of open sets of diameter at most δn.

Now define Un,si,i =
⋂
s1−i∈2n Un,s0,s1,i and Un,i =

⋃
si∈2n Un,si,i. The latter sets

are unions of finitely many open sets of diameter at most δn, since the property
of being such a union is itself closed under finite intersections and finite unions.
Moreover, an elementary calculation reveals that they have disjoint closures and
µφn(s)a(i)∞(Un,i) > 1 − εn for all i < 2 and s ∈ 2n. As each of the functions
µ 7→ µ(Un,i) is upper semi-continuous (see, for example, [Kec95, Corollary 17.21]),
there is a natural number kn > 0 such that

∀i < 2∀s ∈ 2n∀c ∈ 2N µφn(s)a(i)knac(Un,i) > 1− εn.

This completes the construction. Note that the sequences (Kn,c)c∈2N given by
Kn,c =

⋂
m≥n Um,c(m) are closed and totally bounded, and therefore compact (see,

for example, [Kec95, Proposition 4.2]). It follows that the sequence (Kc)c∈2N given
by Kc =

⋃
n∈NKn,c is Kσ. Clearly Kc = Kd whenever c E0 d, and Kc ∩Kd = ∅
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whenever ¬c E0 d. Define a continuous embedding φ : 2N → 2N of E0 into itself by
setting φ(c) =

⋃
n∈N φn(c � n), and observe that

∀c ∈ 2N µφ(c)(Kc) = supn∈N µφ(c)(Kn,c) ≥ 1− infn∈N
∑
m≥n εm = 1,

thus the function π : 2N/E0 → 2N/E0 induced by φ is as desired.

Much as the previously mentioned result of Burgess-Mauldin can be combined
with Souslin’s perfect set theorem (see, for example, [Kec95, Exercise 14.13]) to
yield a strengthening of the special case of the latter for analytic families of pairwise
orthogonal Borel probability measures, Theorem 1 can be combined with the E0

dichotomy to yield a strengthening of the special case of the latter for measure
equivalence.

Theorem 2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X, and A ⊆ EQE is analytic. Then exactly one of the following holds:

(1) The restriction of measure equivalence to A is smooth.
(2) There is a continuous embedding π : 2N → A of E0 into measure equivalence

for which there is a Kσ sequence (KC)C∈2N/E0
of pairwise disjoint subsets

of X such that KC is π(c)-conull, for all C ∈ 2N/E0 and c ∈ C.

Proof. The easy direction of the E0 dichotomy yields (1) =⇒ ¬(2). To see
¬(1) =⇒ (2), appeal to the difficult direction of the E0 dichotomy to obtain a
continuous embedding ψ : 2N → A of E0 into measure equivalence. Theorem 1 then
yields a continuous embedding φ : 2N → 2N of E0 into E0 for which there is a Kσ

sequence (KC)C∈2N/E0
such that K[c]E0

is (ψ ◦φ)(c)-conull, for all c ∈ 2N. Then the
function π = ψ ◦ φ is as desired.

2. Smoothness and strong ergodicity

As before, we say that a sequence (xi)i∈I of points of X is Borel if it is Borel
when viewed as a function from I to X, we say that a sequence (Bi)i∈I of subsets
of X is Borel if {(i, x) ∈ I × X | x ∈ Bi} is Borel, and we say that a sequence
(BC)C∈I/E of subsets of X is Borel if the sequence (Bi)i∈I given by Bi = B[i]E0

is
Borel.

Suppose that (µc)c∈2N is a Borel sequence of Borel probability measures on X
for which there is a Borel sequence (Bc)c∈2N of pairwise disjoint sets such that Bc
is µc-conull, for all c ∈ C. Then for any Borel probability measure µ2N on 2N which
is continuous in the sense that every singleton is µ-null, the corresponding Borel
probability measure µ on X given by µ =

∫
µc dµ2N(c) is orthogonal to every µc.

However, Fubini’s Theorem (see, for example, [Kec95, §17.A]) ensures that every µ-
positive Borel set is also µc-positive, for µ2N-positively many c ∈ 2N. In particular,
it follows that there is no µ-conull Borel subset of the complement of

⋃
c∈2N Bc.

Nevertheless, it is not difficult to see that if µc ∈ EQE for all c ∈ 2N, then there is
no µ ∈ EQE with this property. The following similar observation provides a useful
sufficient condition for orthogonality of measures arising from integration.

Proposition 3. Suppose that I, J , and X are Polish spaces, E is a countable
Borel equivalence relation on X, µ and ν are Borel probability measures on I and
J , (µi)i∈I and (νj)j∈J are Borel sequences of E-ergodic E-quasi-invariant Borel
probability measures on X such that µi and νj are orthogonal for all i ∈ I and
j ∈ J , and (Ai)i∈I and (Bj)j∈J are Borel sequences of pairwise disjoint sets such
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that Ai is µi-conull and Bj is νj-conull for all i ∈ I and j ∈ J . Then the measures
µ′ =

∫
µi dµ(i) and ν′ =

∫
νj dν(j) are orthogonal.

Proof. If λ is an E-quasi-invariant Borel probability measure on X and C ⊆ X is
a λ-conull Borel set, then (C)E is also λ-conull. We can therefore assume that the
Ai and Bj are E-invariant.

As a result of Lusin-Souslin ensures that images of Borel sets under Borel in-
jections are Borel (see, for example, [Kec95, Theorem 15.1]), it follows that for all
Borel sets I ′ ⊆ I and J ′ ⊆ J , the sets

⋃
i∈I′ Ai and

⋃
j∈J′ Bj are also Borel. Define

A =
⋃
i∈I Ai and B =

⋃
j∈J Bj .

We say that a sequence (Jn)n∈N of subsets of J separates points if for all distinct
j, k ∈ J , there exists n ∈ N such that j ∈ Jn and k /∈ Jn. Given such a sequence
(Jn)n∈N of Borel sets, note that

⋃
j∈Jn Bj is either µi-conull or µi-null, for all n ∈ N.

In particular, it follows that if i ∈ I and B is µi-conull, then there is a unique j ∈ J
for which Bj is µi-conull.

Set Ik = {i ∈ I | µi(B) = k}, for k < 2. For each i ∈ I1, let φ(i) denote the
unique j ∈ J for which µi(Bj) = 1. As the graph of φ is Borel (see, for example,
[Kec95, Theorem 17.25]), so too is φ (see, for example, [Kec95, Theorem 14.12]).

Fix an enumeration (Un)n∈N of a basis for X. For each sequence t ∈ NN, define
Ut =

⋃
n∈N Ut(n). For each sequence t ∈ (NN)N, define Gt =

⋂
n∈N Ut(n).

The regularity of Borel probability measures on Polish spaces (see, for example,
[Kec95, Theorem 17.10]) ensures that for all i ∈ I1, there exists t ∈ (NN)N such
that Gt is µi-conull and νφ(i)-null. Moreover, the set of all such pairs (i, t) is Borel
(see, for example, [Kec95, Theorem 17.25]).

We use σ(Σ1
1) to denote the σ-algebra generated by the family of analytic sets.

By the Jankov-von Neumann uniformization theorem for analytic subsets of the
plane (see, for example, [Kec95, Theorem 18.1]), there is a σ(Σ1

1)-measurable func-
tion τ : I1 → (NN)N such that Gτ(i) is µi-conull and νφ(i)-null, for all i ∈ I1. As
Lusin’s theorem on the measurability of analytic sets (see, for example, [Kec95,
Theorem 29.7]) ensures that τ is (µ � I1)-measurable, Lusin’s theorem on the ap-
proximation of measurable functions by continuous ones (see, for example, [Kec95,
Theorem 17.12]) yields a (µ � I1)-conull Borel set C1 ⊆ I1 on which τ is Borel.

Set A′i = Ai \ B for all i ∈ I0, and A′i = Ai ∩ Bφ(i) ∩ (Gτ(i))E for all i ∈ C1.
Then A′i is µi-conull for all i in the set C = I0 ∪ C1, so the set A′ =

⋃
i∈C A

′
i is

µ′-conull. As above, if j ∈ J and A′ is νj-conull, then there is a unique i ∈ C for
which A′i is νj-conull. So A′i ∩ Bj 6= ∅, thus φ(i) = j, in which case the definition
of A′i ensures that it is νj-null, a contradiction. It follows that A′ is νj-null for all
j ∈ J , and therefore ν′-null, thus µ′ and ν′ are orthogonal.

The push-forward of a Borel measure µ on X through a Borel function φ : X → Y
is the Borel measure φ∗µ on Y given by (φ∗µ)(B) = µ(φ−1(B)).

Proposition 4. Suppose that X is a Polish space, E is a countable Borel equiv-
alence relation on X, and B ⊆ X is Borel. Then there is a Borel reduction of
measure equivalence on EQE�B \ HE�B to measure equivalence on EQE \ HE.

Proof. Fix εn > 0 such that
∑
n∈N εn = 1, appeal to the uniformization theorem for

Borel subsets of the plane with countable vertical sections to obtain Borel functions
φn : B → X with E ∩ (B × X) =

⋃
n∈N graph(φn), and define π : P (B) → P (X)

by π(µ) =
∑
n∈N εn(φn)∗µ. Clearly π[EQE�B ] ⊆ EQE , and since the family of
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Borel sets on which E is hyperfinite is closed under E-saturation (see, for example,
[DJK94, Proposition 5.2]), it follows that π[EQE�B \ HE�B ] ⊆ EQE \ HE , so π is
the desired reduction.

We say that E is µ-nowhere hyperfinite if there is no µ-positive Borel set on
which E is hyperfinite.

Theorem 5. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X for which the restriction of measure equivalence to EQE \ HE is
smooth, and µ is a Borel probability measure on X for which E is µ-nowhere hy-
perfinite. If there is a µ-null-to-one Borel homomorphism from E to E0, then there
is a µ-null-to-one Borel homomorphism from E to equality on 2N. In particular, it
follows that µ is not E-ergodic.

Proof. We will establish that every E-invariant µ-positive Borel set has an E-
invariant µ-positive Borel subset of strictly smaller µ-measure. By a straightforward
measure exhaustion argument, this implies the apparently stronger statement that
every E-invariant µ-positive Borel set has an E-invariant µ-positive Borel subset
of exactly half its µ-measure. And a straightforward recursive application of this
latter statement then yields the desired conclusion.

As Proposition 4 ensures that our hypotheses are preserved under passage to
µ-positive Borel subsets, it is sufficient to show that µ is not E-ergodic.

Suppose that φ : X → 2N is a µ-null-to-one Borel homomorphism from E to E0.
A disintegration of µ through φ is a sequence (µc)c∈2N of Borel probability measures
on X such that (1) µc(φ

−1(c)) = 1 for all c ∈ φ[X], and (2) µ =
∫
µc d(φ∗µ)(c).

Fix a Borel disintegration (µc)c∈2N of µ through φ (the existence of which follows,
for example, from [Kec95, Exercise 17.35]).

By the uniformization theorem for Borel subsets of the plane with countable
vertical sections, there are Borel functions φn : X → X with the property that
E =

⋃
n∈N graph(φn). Fix a sequence (εn)n∈N of positive real numbers for which∑

n∈N εn = 1. Then for each c ∈ 2N, the Borel probability measure νc on X given
by νc =

∑
n∈N εn(φn)∗µc is E-quasi-invariant.

Lemma 6. The relation E is νc-nowhere hyperfinite, for (φ∗µ)-almost every c ∈ 2N.

Proof. By a result from [Seg97] (see [CM14, Theorem J.8] for a simpler proof in
English)), there is a Borel set F ⊆ (N×(X×X))×P (X) such that for all ν ∈ P (X),
the following conditions hold:

(1) The sets (F ν)n form an increasing sequence of finite Borel subequivalence
relations of E.

(2) The set Bν = {x ∈ X | [x]E 6=
⋃
n∈N[x](F ν)n} does not contain a ν-positive

Borel subset on which E is hyperfinite.

In particular, it follows that E is ν-hyperfinite if and only if ν(Bν) = 1, for all Borel
probability measures ν on X. And the uniformization theorem for Borel subsets of
the plane with countable vertical sections ensures that the set B = {(x, ν) ∈ X ×
P (X) | x ∈ Bν} is Borel. It follows that {ν ∈ P (X) | E is ν-nowhere hyperfinite}
is Borel (see, for example, [Kec95, Theorem 17.25]), thus so too is the set of c ∈ 2N

for which E is µc-nowhere hyperfinite. As φ is a homomorphism from E to E0

and the latter is hyperfinite, it easily follows from [Seg97] ([CM14, Propositon J.13]
for a simpler proof in English) that this set is (φ∗µ)-conull. But the nowhere
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hyperfiniteness of E with respect to µc and νc are equivalent (see, for example,
[DJK94, Proposition 5.2]).

We say that a sequence (φi)i∈I of functions from X to Y is Borel if the corre-
sponding function φ : I ×X → Y given by φ(i, x) = φi(x) is Borel.

A function ρ : E → R+ is a cocycle if ρ(x, z) = ρ(x, y)ρ(y, z) whenever x E y E z.
For each c ∈ 2N, fix a Borel cocycle ρc : E → R+ with respect to which νc is
invariant, in the sense that

νc(T
−1(B)) =

∫
B

ρc(T
−1(x), x) dνc(x),

whenever B ⊆ X is a Borel set and T : X → X is a Borel automorphism whose
graph is contained in E. The existence of such cocycles follows, for example, from
[KM04, Proposition 8.3], and a rudimentary inspection of the proof of the latter
reveals that it is sufficiently uniform so as to ensure the existence of such cocycles
for which the corresponding sequence (ρc)c∈2N is Borel.

For each c ∈ 2N, fix a sequence (νc,x)x∈X of E-ergodic ρc-invariant Borel prob-
ability measures on X which forms an ergodic decomposition of ρc, in the sense
that (1) ν({x ∈ X | νc,x = ν}) = 1 for all E-ergodic ρc-invariant Borel probability
measures ν on X, and (2) ν =

∫
νc,x dν(x) for all ρc-invariant Borel probability

measures ν on X. Ditzen has established the existence of Borel ergodic decompo-
sitions (see [Dit92, Theorem 6 of Chapter 2]), and a rudimentary inspection of the
proof again reveals that it is sufficiently uniform so as to ensure the existence of
such decompositions for which the corresponding sequence (νc,x)c∈2N,x∈X is Borel.

Lemma 7. Suppose that c ∈ 2N. Then φ−1([c]E0
) is νc,x-conull, for νc-almost every

x ∈ X.

Proof. If n ∈ N and x ∈ φ−1(c), then the fact that φ is a homomorphism from E to
E0 ensures that φ(x) E0 (φ ◦ φn)(x), or equivalently, that x ∈ (φ ◦ φn)−1([c]E0

), so
φ−1(c) ⊆ (φ ◦ φn)−1([c]E0). As φ−1(c) is µc-conull, so too is (φ ◦ φn)−1([c]E0), from
which it follows that νc(φ

−1([c]E0)) =
∑
n∈N εn(φn)∗µc(φ

−1([c]E0)) =
∑
n∈N εn = 1.

As νc(φ
−1([c]E0

)) =
∫
νc,x(φ−1([c]E0

)) dνc(x), it also follows that φ−1([c]E0
) is νc,x-

conull, for νc-almost every x ∈ X.

Let B denote the set of Borel probability measures of the form νc,x, where c ∈ 2N,
x ∈ X, and φ−1([c]E0) is νc,x-conull.

Lemma 8. The set B is Borel.

Proof. As φ is Borel, so too is {(c, x) ∈ 2N ×X | x ∈ φ−1([c]E0
)} (see, for example,

[Kec95, Proposition 12.4]), thus the set

R = {(ν, c) ∈ (EQE \ HE)× 2N | ν(φ−1([c]E0
)) = 1}

is also Borel (see, for example, [Kec95, Theorem 17.25]).
As (νc,x)c∈2N,x∈X is Borel, another appeal to [Kec95, Proposition 12.4] ensures

that so too is {(ν, (c, x)) ∈ P (X)× (2N ×X) | ν = νc,x}. And one more appeal to
[Kec95, Theorem 17.25] yields that the set

S = {(ν, c) ∈ P (X)× 2N | ν({x ∈ X | ν = νc,x}) = 1}

is also Borel.
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As ν ∈ B if and only if there exists c ∈ 2N such that (ν, c) ∈ R ∩ S, the lemma
now follows from the uniformization theorem for Borel subsets of the plane with
countable vertical sections.

Lemma 9. The restriction of measure equivalence to B is countable.

Proof. The definition of ergodic decomposition ensures that if c ∈ 2N, x, y ∈ X,
and νc,x 6= νc,y, then νc,x and νc,y are orthogonal. Similarly, if c, d ∈ 2N are not
E0-related, x, y ∈ X, φ−1([c]E0

) is νc,x-conull, and φ−1([d]E0
) is νd,y-conull, then

νc,x and νd,y are orthogonal. The countability of E0 therefore yields that of the
restriction of measure equivalence to B.

A transversal of an equivalence relation is a set intersecting every equivalence
class in exactly one point. As the uniformization theorem for Borel subsets of the
plane with countable vertical sections ensures that smooth countable Borel equiv-
alence relations have Borel transversals, it follows that the restriction of measure
equivalence to B∩(EQE \HE) has a Borel transversal. Together with another appli-
cation of the uniformization theorem for Borel subsets of the plane with countable
vertical sections, this yields the existence of a measure-equivalence-invariant Bor-
el function ψ : B ∩ (EQE \ HE) → 2N such that φ−1([ψ(ν)]E0

) is ν-conull, for all
ν ∈ B ∩ (EQE \ HE).

For each c ∈ 2N, let Λc denote the Borel probability measure on P (X) obtained
by pushing forward νc through the function x 7→ νc,x.

Lemma 10. Suppose that c ∈ 2N and E is νc-nowhere hyperfinite. Then the
intersection B ∩ (EQE \ HE) is Λc-conull.

Proof. The fact that φ−1([c]E0
) is νc,x-conull for νc-almost every x ∈ X ensures that

Λc(B) ≥ νc({x ∈ X | φ−1([c]E0
) is νc,x-conull}) = 1. As every νc,x is E-ergodic and

ρc-invariant, it follows that Λc(EQE) = νc({x ∈ X | νc,x ∈ EQE}) = 1. As E
is νc-nowhere hyperfinite, one more appeal to [Seg97] (or [CM14, Theorem J.8])
ensures that Λc(HE) = νc({x ∈ X | E is νc,x-hyperfinite}) = 0.

Let R denote the set of pairs (c, d) ∈ E0 for which ψ−1(d) is Λc-positive. As the
graph of ψ is Borel (see, for example, [Kec95, Proposition 12.4]), it follows that R
is Borel (see, for example, [Kec95, Theorem 17.25]).

Lemma 11. Suppose that c ∈ 2N and E is νc-nowhere hyperfinite. Then there
exists d ∈ 2N such that c R d.

Proof. As B ∩ (EQE \ HE) is Λc-conull, it follows that νc,x ∈ B ∩ (EQE \ HE) for
νc-almost every x ∈ X. As φ−1([c]E0) is νc,x-conull for νc-almost every x ∈ X, it
follows that νc,x ∈ ψ−1([c]E0

) for νc-almost every x ∈ X. Fix d ∈ [c]E0
with the

property that νc,x ∈ ψ−1(d) for νc-positively many x ∈ X, and observe that ψ−1(d)
is Λc-positive, thus c R d.

By the uniformization theorem for Borel subsets of the plane with countable
vertical sections, there are Borel sets Bn ⊆ 2N and Borel injections ψn : Bn → 2N

such that R =
⋃
n∈N graph(ψn). Fix n ∈ N such that Bn is (φ∗µ)-positive.

For each b ∈ Bn, let λb be the E-quasi-invariant Borel measure on X given by

λb =

∫
ψ−1(ψn(b))

ν dΛb(ν).
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Proposition 3 ensures that λa and λb are orthogonal, for all distinct a, b ∈ Bn.
Fix an enumeration (Un)n∈N of a basis for X. For each sequence t ∈ NN, define

Ut =
⋃
n∈N Ut(n). For each sequence t ∈ (NN)N, define Gt =

⋂
n∈N Ut(n).

Another application of [Kec95, Theorem 17.25] ensures that we obtain a Borel
set by considering the family of pairs (b, t) ∈ Bn × (NN)N such that Gt is λb-conull
and λa-null, for all a ∈ [b]E0∩Bn other than b itself. The uniformization theorem for
analytic subsets of the plane then yields a σ(Σ1

1)-measurable function associating
with every b ∈ Bn a sequence tb ∈ (NN)N for which (b, tb) is in this set. As every
such function is necessarily ((φ∗µ) � Bn)-measurable (see, for example, [Kec95,
Theorem 29.7]), by deleting a (φ∗µ)-null Borel set from Bn, we can assume that
this function is Borel (see, for example, [Kec95, Theorem 17.12]).

As φ is µ-null-to-one, it follows that φ∗µ is continuous, so there is a Borel set
An ⊆ Bn with the property that 0 < (φ∗µ)(An) < (φ∗µ)(Bn). By the uniformiza-
tion theorem for Borel subsets of the plane with countable vertical sections, the
E-invariant set A ⊆ X given by

A =
⋃
a∈An,b∈[a]E0

(Gta)E ∩ φ−1(b)

is Borel (recall that (Gta)E in the above expression denotes the inner saturation).
Note that if a ∈ An, then the fact that Gta is λa-conull ensures that A is λa-conull,
so the set of ν ∈ ψ−1(ψn(a)) for which A is ν-conull is Λa-positive. This means
that the set of x ∈ X for which A is νa,x-conull is νa-positive, so the definition of
ergodic decomposition ensures that A is νa-positive. As A is E-invariant, it is nec-
essarily µa-positive. And since An is itself (φ∗µ)-positive, the definition of measure
disintegration ensures that A is µ-positive. However, if b ∈ Bn \ An, then the fact
that Gtb is λa-null for all b ∈ [a]E0

other than b itself ensures that A is λb-null, so
the set of ν ∈ ψ−1(ψn(b)) for which A is ν-null is Λb-conull. This means that the
set of x ∈ X for which A is νb,x-null is νb-conull, so the definition of ergodic de-
composition ensures that A is νb-null. As A is E-invariant, it is necessarily µb-null.
And since Bn \ An is itself (φ∗µ)-positive, the definition of measure disintegration
ensures that the complement of A is µ-positive, thus µ is not E-ergodic.

We are now prepared to establish our primary result.

Theorem 12. Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X. Then the following are equivalent:

(1) The restriction of measure equivalence to EQE \ HE is smooth.
(2) Every measure in EQE \ HE is strongly E-ergodic.

Proof. To see (1) =⇒ (2), note that if the restriction of measure equivalence to
EQE \ HE is smooth and µ ∈ EQE \ HE , then Theorem 5 ensures that there is no
µ-null-to-one Borel homomorphism from E to E0, thus µ is strongly E-ergodic.

To see ¬(1) =⇒ ¬(2), appeal to Theorem 2 to obtain a Borel embedding
π : 2N → EQE\HE of E0 into measure equivalence and a Borel sequence (BC)C∈2N/E0

of pairwise disjoint sets such that B[c]E0
is π(c)-conull, for all c ∈ 2N. By replacing

the sets along this sequence with their inner E-saturations, we can assume that they
are E-invariant. Define Bc = B[c]E0

for c ∈ 2N, fix a continuous E0-ergodic Borel

probability measure µ2N on 2N, and let µ denote the Borel probability measure on
X given by µ =

∫
π(c) dµ2N(c).

To see that µ is E-ergodic, note that if B ⊆ X is an E-invariant Borel set, then
the E0-invariant set A = {c ∈ 2N | B is π(c)-conull} is also Borel, in which case
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µ2N(A) = 0 or µ2N(A) = 1, so the definition of µ ensures that µ2N(A) = µ(B), thus
µ(B) = 0 or µ(B) = 1. To see that µ is E-quasi-invariant, note that if B ⊆ X is
Borel, then

µ(B) > 0 ⇐⇒ µ2N({c ∈ 2N | π(c)(B) > 0}) > 0

⇐⇒ µ2N({c ∈ 2N | π(c)([B]E) > 0}) > 0

⇐⇒ µ([B]E) > 0.

To see that E is not µ-hyperfinite, note that otherwise E is π(c)-hyperfinite for a
µ2N -conull set of c ∈ 2N, contradicting our choice of π. To see that µ is not strongly
E-ergodic, apply the uniformization theorem for Borel subsets of the plane with
countable vertical sections to the set B = {(x, c) ∈ X×2N | x ∈ Bc} to obtain a Bor-
el homomorphism φ : projX [B]→ 2N from E � projX [B] to E0 such that c E0 φ(x)
for all c ∈ 2N and all x ∈ Bc. As projX [B] is E-invariant, we can extend φ to a
homomorphism from E to E0 by fixing any b ∈ 2N and asking that φ(x) = b for all
x ∈ X \ projX [B]. It only remains to observe that if c, d ∈ 2N are E0-inequivalent,
then φ−1(c) is π(d)-null, and since µ2N is continuous, it follows that φ−1(c) is µ-null
for all c ∈ 2N.

Remark 13. As there is a homeomorphism φ : 2N → 2N×2N sending E0 to E0×E0,
it follows that if there exists µ ∈ EQE \ HE which is not strongly E-ergodic, then
measure equivalence is non-smooth on the set of all such µ.
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useful suggestions.
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