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Abstract. We establish the generic inexistence of stationary Bor-
el probability measures for aperiodic Borel actions of countable
groups on Polish spaces. Using this, we show that every aperiodic
continuous action of a countable group on a compact Polish space
has an invariant Borel set on which it has no σ-compact realization.

1. Introduction

It is well known that every standard Borel space is Borel isomorphic
to a σ-compact Polish space (see [Kec95, Theorem 15.6]), and that
every Borel action of a countable discrete group on a standard Borel
space is Borel isomorphic to a continuous action on a Polish space (see
[Kec95, Theorem 13.1]). Here we consider obstacles to simultaneously
achieving both results.

In §2, we give elementary examples of continuous actions of countable
groups on Polish spaces which are not Borel isomorphic to continuous
actions on σ-compact Hausdorff spaces. The remainder of the paper
is devoted to the implementation of a measure-theoretic strategy for
generalizing one of the examples to a much broader context. In §3, we
provide some preliminaries concerning invariant and stationary Bor-
el probability measures. In §4, we prove our main technical result, a
strengthening of Kechris’s theorem concerning the generic compress-
ibility of aperiodic countable Borel equivalence relations (see [KM04,
Theorem 13.1]). In §5, we establish the generic inexistence of station-
ary Borel probability measures. In §6, we show that every aperiodic
continuous action of a countable group on a compact Polish space ad-
mits an invariant Borel set on which it is not Borel isomorphic to any
continuous action on a σ-compact Hausdorff space.
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2. Examples

Suppose that X is a standard Borel space. We say that a topology
τ on X is compatible with the Borel structure of X if the σ-algebra
generated by τ is the family of Borel subsets of X. Such a τ is a
topological realization of an action Γ y X of a topological group if it
is Hausdorff and Γ y X is τ -continuous.

An equivalence relation is countable if each of its classes is countable.
A transversal of an equivalence relation is a set which intersects every
equivalence class in exactly one point. We say that a countable Borel
equivalence relation on a standard Borel space is smooth if it admits a
Borel transversal. While such equivalence relations are typically con-
sidered to be simple, even they can be induced by group actions which
have no σ-compact realizations.

Example 1. Consider the action Z<N y Z<N×NN given by γ ·(x, y) =
(x′, y), where x′(n) = χUn(y) · γ(n) + x(n) and (Un)n∈N enumerates a
basis for NN. If τ is a topological realization of Z<N y Z<N × NN,
n ∈ N, and γn ∈ Z<N is chosen so that supp(γn) = {n}, then

proj−1
NN(Un) = {(x, y) ∈ Z<N × NN | γn · (x, y) 6= (x, y)},

so projNN is τ -continuous, thus τ cannot satisfy any property preserved
under continuous images beyond those satisfied by the topology of NN.
In particular, it is neither σ-compact nor connected.

Remark 2. The same idea can be used to obtain actions without σ-
compact representations for direct sums of countably many countable
abelian groups, and free products of countably many countable groups.

One would really like a free action without a σ-compact realization,
and this particular example is very far from being free. The next ob-
servation shows that in the presence of smoothness, this is impossible.

Proposition 3. Suppose that Γ is a countable group, X is a standard
Borel space, and Γ y X is a Borel action, with only countably many
stabilizers, whose orbit equivalence relation is smooth. Then Γ y X
has a σ-compact Polish realization.

Proof. Fix a Borel transversal B ⊆ X of E. Then there is a partition
of B into countably many Borel sets Bn ⊆ B such that any two points
of Bn have the same stabilizer Γn. The Borel isomorphism theorem
(see [Kec95, Theorem 15.6]) yields compact Polish topologies τn on Bn

compatible with the Borel structure of Bn. Let τ ′n denote the natural
extension of τn to the Γ-saturation of Bn for which the action is con-
tinuous, and note that the topologies τ ′n can be amalgamated into a
single σ-compact Polish realization of Γ y X.
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Remark 4. It follows that if Γ is a group with only countably many
subgroups, then every Borel action Γ y X whose induced orbit equiv-
alence relation is smooth has a σ-compact Polish realization.

A Borel measure µ on X is invariant with respect to a Borel auto-
morphism T : X → X if µ(B) = µ(T (B)) for all Borel sets B ⊆ X.
A classical theorem of Krylov-Bogolyubov asserts the existence of in-
variant Borel probability measures for all homeomorphisms of compact
Hausdorff spaces (see Corollary 9 for a more general result).

Example 5. Define Z<N y ZN by γ · x(n) = γ(n) + x(n). Suppose,
towards a contradiction, that τ is a σ-compact realization of Z<N y ZN.
Then there is a τ -compact set K ⊆ ZN which is non-meager (with
respect to the usual topology on ZN). Fix n ∈ N and s ∈ Zn such that
K is comeager in the clopen set Ns = {x ∈ ZN | s v x}. Fix γ ∈ Z<N

with supp(γ) = {n}. As γ is continuous, it sends meager sets to meager
sets, so the τ -compact set L = {x ∈ ZN | ∀k ∈ Z (kγ) · x ∈ K} is
non-empty. Then the function T : L → L given by T (x) = γ · x is a
τ -homeomorphism, so there is a T -invariant Borel probability measure
µ on L. Setting Li = {x ∈ L | x(n) = i}, it follows that

µ(L) =
∑
i∈Z

µ(Li) =
∑
i∈Z

µ(T i(L0)) =
∑
i∈Z

µ(L0),

thus µ(L) 6= 1, a contradiction.

Remark 4 ensures that every Borel action Z y X whose orbit equiv-
alence relation is smooth has a σ-compact Polish realization. Never-
theless, there are also actions of Z without such realizations.

Example 6. Consider the action Z y 2N induced by the odometer
σ, i.e., the isometry of 2N sending (1)na(0)ax to (0)na(1)ax. It is not
difficult to see that the usual product measure on 2N is the unique
σ-invariant Borel probability measure on 2N. In particular, it follows
that if C ⊆ 2N is a σ-invariant comeager µ-null Borel set, then there
is no (σ � C)-invariant Borel probability measure. Suppose, towards
a contradiction, that τ is a σ-compact realization of Z y C. Then
there is a τ -compact set K ⊆ C which is non-meager (with respect
to the usual topology on 2N). As K has the Baire property, there
exist n ∈ N and s ∈ 2n with the property that K is comeager in
the basic clopen set Ns = {x ∈ 2N | s v x}. Note that the sets of
the form σj(Ns), for j < 2n, cover 2N. As σ is a homeomorphism
and therefore sends meager sets to meager sets, the τ -compact set
L = {x ∈ 2N | ∀i ∈ Z∃j < 2n σi(x) ∈ σj(K)} is non-empty. As σ is
a τ -homeomorphism and L is σ-invariant, there is a σ-invariant Borel
probability measure on L, contradicting our choice of C.
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Although there are aperiodic Borel automorphisms with multiple
invariant Borel probability measures, [KM04, Theorem 13.1] ensures
that one can always find a comeager invariant Borel set on which there
are no such measures (see also Corollary 14 of §5). As a consequence,
one can generalize the last example to aperiodic homeomorphisms of
compact Polish spaces which are topologically minimal, in the sense that
all of their orbits are dense. As every homeomorphism of a compact
Polish space admits an invariant closed set on which it is topologically
minimal, every aperiodic such homeomorphism admits an invariant
Borel set on which it does not have a σ-compact realization.

While this approach generalizes to amenable countable groups, the
fact that the natural generalization of the Krylov-Bogolyubov theorem
fails beyond amenable groups provides a significant barrier to more
general results. In what follows, we obtain a generalization by replacing
invariance with stationarity.

3. Existence of measures

Suppose that X is a Hausdorff space. A Borel probability measure
µ on X is regular if for all Borel sets B ⊆ X and all ε > 0, there is
an open set U ⊆ X such that B ⊆ U and µ(U \ B) < ε. A Borel
probability measure µ on X is invariant with respect to a Borel action
Γ y X if it is γ-invariant for all γ ∈ Γ.

Proposition 7. Suppose that Γ is a countable group, X is a compact
Hausdorff space, and Γ y X is a continuous action with the property
that for every finitely generated group ∆ ≤ Γ, there is a ∆-invariant
regular Borel probability measure. Then there is a Γ-invariant regular
Borel probability measure.

Proof. Let C(X,R) be the vector space of continuous functions f : X →
R, and let C∗(X,R) be the vector space of linear functionals Λ: C(X,R)→
R. The weak*-topology on C∗(X,R) is the coarsest topology rendering
the evaluation functions Λ 7→ Λ(f) continuous, for all f ∈ C(X,R).
With this topology, C∗(X,R) becomes a locally convex (in fact normed)
topological vector space.

Let P (X) denote the family of regular Borel probability measures
on X. We view P (X) as a subset of C∗(X,R) by identifying µ ∈ P (X)
with the functional f 7→

∫
f dµ. The Riesz representation theorem

ensures that P (X) coincides with the convex subset of C∗(X,R) com-
prising all positive linear functionals sending the characteristic function
of X to 1. It then follows from the Banach-Alaoglu theorem that P (X)
is weak*-compact.
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Fix an increasing sequence of finitely generated groups ∆n with Γ =⋃
n∈N ∆n. For each n ∈ N, let Kn denote the non-empty compact set

of ∆n-invariant regular Borel probability measures. As Kn+1 ⊆ Kn for
all n ∈ N, it follows that the set K =

⋂
n∈NKn is non-empty, and every

µ ∈ K is a Γ-invariant regular Borel probability measure.

The push-forward of a measure µ on X via a function f : X → Y is
the measure f∗µ on Y given by f∗µ(B) = µ(f−1(B)). The convolution
of a probability measure ς on Γ with a Borel probability measure µ onX
is the Borel probability measure ς ∗µ on X given by ς ∗µ =

∫
γ∗µ dς(γ).

We say that µ is ς-stationary if µ = ς ∗ µ. Note that a measure is Γ-
invariant if and only if it is ς-stationary with respect to all probability
measures ς on Γ.

We close this section by recalling both the Markov-Kakutani fixed
point theorem and its corollary asserting the existence of stationary
measures for continuous actions on compact Hausdorff spaces.

Theorem 8 (Markov-Kakutani). Suppose that K is a compact convex
subset of a locally convex topological vector space, and T : K → K is
an affine continuous function. Then there exists x ∈ K with T (x) = x.

Corollary 9. Suppose that Γ is a countable group, X is a compact
Hausdorff space, Γ y X is continuous, and ς is a probability measure
on Γ. Then there is a regular ς-stationary Borel probability measure.

Proof. As
∫
f d(ς ∗ µ) =

∑
γ∈Γ ς({γ})

∫
f ◦ γ dµ, the map µ 7→ ς ∗ µ is

weak*-continuous, so Theorem 8 yields a fixed point µ, and any such
µ is a ς-stationary regular Borel probability measure.

4. Paradoxicality

We use Pow(X) to denote the family of all subsets of X. We say
that a function φ : X → Pow(Y ) is strongly injective if it sends distinct
points to disjoint sets.

A graph on X is an irreflexive symmetric set G ⊆ X × X. We
say that G is locally finite if for all x ∈ X, there are only finitely
many y ∈ X for which x G y. We say that G is aperiodic if all of its
connected components are infinite. A G-barrier for a set Y ⊆ X is a
set Z ⊆ X \ Y such that the connected component of each point of Y
under G � (X \Z) is finite. Note that X \Y is a G-barrier for Y if and
only if every connected component of G � Y is finite.

When X is a standard Borel space and B ⊆ X is a Borel set, we use
[B]<ℵ0 to denote the family of all finite subsets of B, equipped with
the standard Borel structure it inherits from X. When E is a Borel
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equivalence relation on X, we use [B]<ℵ0E to denote the subspace of
[B]<ℵ0 consisting of those finite sets F ⊆ B for which F × F ⊆ E.

Suppose that G ⊆ E and D ⊆ [X]<ℵ0E . We say that a function

φ : D → [X]<ℵ0E is a G-barrier selector if for all D ∈ D , the set φ(D)
is a G-barrier for D contained in [D]E. We say that E is G-barrier N-
paradoxical on B if there is a strongly injective Borel function φ : N×
[B]<ℵ0E → [B]<ℵ0E such that for all n ∈ N, the function φn(D) = φ(n,D)
is a G-barrier selector.

Theorem 10. Suppose that X is a Polish space, E is a countable Bor-
el equivalence relation on X, and G ⊆ E is an aperiodic locally finite
Borel graph on X. Then there is an E-invariant comeager Borel set
C ⊆ X on which E is G-barrier N-paradoxical.

Proof. We will recursively find Borel sets Dt ⊆ [X]<ℵ0E and strongly

injective Borel G-barrier selectors φt : Dt → [X \X@t]<ℵ0E , for t ∈ N<N,
Rt = φt(Dt), Xt =

⋃
Rt, X@t =

⋃
s@tXs, and Xvt =

⋃
svtXs, while

ensuring that X \Xvt is a G-barrier for Xvt and [X]<ℵ0E =
⋃
n∈N Dta(n).

We begin by setting D∅ = ∅ and φ∅ = ∅.
Suppose now that t ∈ N<N and we have already found Dt and φt. Let

Xt denote the set of all (D,R, S) ∈ [X]<ℵ0E ×[X \Xvt]<ℵ0E ×[X \Xvt]<ℵ0E

with the property that R is a G-barrier for D and S is a G-barrier
for D ∪ R. Let Gt denote the graph on Xt consisting of all distinct
(D,R, S), (D′, R′, S ′) ∈Xt for which (D ∪R∪ S)∩ (D′ ∪R′ ∪ S ′) 6= ∅.
Lemma 11. There is a Borel coloring ct : Xt → N of Gt.

Proof. Let G denote the graph on [X]<ℵ0E consisting of all pairs of dis-
tinct finite sets with non-empty intersection. By [Mil08, Proposition
4.1], there is a Borel coloring c : [X]<ℵ0E → N of G . Fix a Borel linear
ordering ≤ of [X]<ℵ0 , and let i(D,R, S), j(D,R, S), and k(D,R, S)
be the unique natural numbers i, j, and k such that D, R, and S are
the ith, jth, and kth smallest subsets of D ∪ R ∪ S with respect to the
ordering ≤. Then the function ct : Xt → N × N × N × N given by
ct(D,R, S) = (c(D ∪ R ∪ S), i(D,R, S), j(D,R, S), k(D,R, S)) yields
the desired Borel coloring of Gt.

For each n ∈ N, let Dta(n) denote the family of sets D ∈ [X]<ℵ0E

for which there exist sets R, S ∈ [X \ Xvt]<ℵ0E with the property that

(D,R, S) ∈ Xt and ct(D,R, S) = n. Define φta(n) : Dta(n) → [X]<ℵ0E

by setting φta(n)(D) = R whenever there is S ∈ [X \ Xvt]<ℵ0E with
(D,R, S) ∈ Xt and ct(D,R, S) = n. The definition of Gt ensures that
φta(n) is well-defined and strongly injective, while the definition of Xt

ensures that φta(n) is a G-barrier selector and Rta(n) ⊆ [X \Xvt]<ℵ0E .
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To see that [X]<ℵ0E =
⋃
n∈N Dta(n), note that if D ∈ [X]<ℵ0E and R is

the set of points outside of D∪Xvt with G-neighbors in the connected
component of some point of D with respect to G � (D ∪ Xvt), then
R is a G-barrier for D. Moreover, the fact that G is locally finite and
X \Xvt is a G-barrier for Xvt ensures that R is finite. Repeating this
argument with D ∪ R in place of D then yields a finite G-barrier S
for D ∪ R, in which case (D,R, S) ∈ Xt. Setting n = ct(D,R, S), it
follows that D ∈ Dta(n).

It remains to check that X \Xvta(n) is a G-barrier for Xvta(n). Sup-
pose, towards a contradiction, that (xi)i∈N is an injective path through
G � Xvta(n). As X \ Xvt is a G-barrier for Xvt, there exists i ∈ N
such that xi /∈ Xvt. Fix (D,R, S) ∈ Xt such that c(D,R, S) = n and
xi ∈ R. Then there exists j > i such that xj ∈ S, which contradicts
the fact that S ∩Xvta(n) = ∅.

This completes the recursive construction. Define C ⊆ NN ×X by

C = {(p, x) ∈ NN ×X | ∀D ∈ [x]<ℵ0E ∃∞n ∈ N D ∈ Dp�n}.

Lemma 12. The set C has a comeager vertical section.

Proof. We will show that, in fact, there are comeagerly many p ∈ NN

for which the vertical section Cp is comeager. By the Kuratowski-Ulam
theorem (see, for example, [Kec95, Theorem 8.41]), it is enough to show
that for all x ∈ X, the horizontal section Cx is comeager. For this, it is
sufficient to check that for all D ∈ [x]<ℵ0E , there are comeagerly many
p ∈ NN for which there are infinitely many n ∈ N such that D ∈ Dp�n.
And for this, it is sufficient to show that for all k ∈ N, the open set
Uk = {p ∈ NN | ∃≥kn ∈ N D ∈ Dp�n} is dense.

We proceed by induction on k. The base case k = 0 is trivial, so
suppose that k ∈ N and we have already established that Uk is dense.
Given r ∈ N<N, fix s ∈ N<N such that r v s and Ns ⊆ Uk. Fix n ∈ N
such that D ∈ Dsa(n), set t = sa(n), and observe that Nt ⊆ Uk+1, thus
Uk+1 is dense.

Fix p ∈ NN for which Cp is comeager, noting that it is also E-

invariant by the definition of C. Define φ : N × [Cp]
<ℵ0
E → [Cp]

<ℵ0
E by

φ(k,D) = φp�n(D), where n is the kth natural number with D ∈ Dp�n.
Then φ is strongly injective and each of the functions φk(D) = φ(k,D)
is a G-barrier selector, thus E is G-barrier N-paradoxical on Cp.

We say that E is N-paradoxical on B if there is an injective Borel
function φ : N×B → B such that ∀n ∈ N∀x ∈ B x E φ(n, x).
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Corollary 13 (Kechris). Suppose that X is a Polish space and E is an
aperiodic countable Borel equivalence relation on X. Then there is an
E-invariant comeager Borel set C ⊆ X on which E is N-paradoxical.

Proof. By Theorem 10, it is sufficient to show that there is an aperiodic
locally finite Borel graph G ⊆ E. By the remark at the end of [JKL02,
§3.4], there is in fact such a graph which generates E.

5. Inexistence of measures

We say that a Borel measure µ on X is E-invariant if for every Borel
automorphism T : X → X whose graph is contained in E, the measure
µ is T -invariant.

Corollary 14 (Kechris). Suppose that X is a Polish space and E is
an aperiodic countable Borel equivalence relation on X. Then there is
an E-invariant comeager Borel set C ⊆ X which is null with respect
to every E-invariant Borel probability measure.

Proof. By appealing to Corollary 13, we obtain an E-invariant comea-
ger Borel set C ⊆ X on which E is N-paradoxical. Let φn denote the
corresponding Borel injections, and observe that if µ is an E-invariant
Borel probability measure, then µ(C) ≥

∑
n∈N µ(φn(C)) =

∑
n∈N µ(C),

so µ(C) = 0.

Identifying X with [X]1E, we use our earlier terminology concerning
functions on subsets of [X]<ℵ0E for functions on subsets of X. We say

that f : B → X is a choice function for φ : B → [X]<ℵ0E if f(x) ∈ φ(x)
for all x ∈ B.

Proposition 15. Suppose that Γ is a finitely generated infinite group,
S is a finite symmetric set which generates Γ, ς is a probability measure
on Γ whose support is S, X is a Polish space, Γ y X is an aperiodic
Borel action, E is the orbit equivalence relation induced by Γ y X,
G is the graph induced by S y X, B ⊆ X is Borel, φ : B → [X]<ℵ0E

is a strongly injective Borel G-barrier selector, and µ is a ς-stationary
Borel measure. Then there is a Borel choice function f for φ with the
property that µ(B) ≤ µ(f(B)).

Proof. We first isolate the feature of ς-stationarity relevant to the de-
sired result.

Lemma 16. Suppose that B ⊆ X is a Borel set. If there exists γ ∈ S
for which µ(B) 6= γ∗µ(B), then there exists δ ∈ S for which µ(B) <
δ∗µ(B).
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Proof. As the ς-stationarity of µ ensures that µ(B) is a weighted av-
erage of {δ∗µ(B) | δ ∈ S}, it follows that if some element of this set
is distinct from µ(B), then some element of this set is strictly greater
than µ(B).

By the uniformization theorem for Borel subsets of the plane with
countable vertical sections (see, for example, [Kec95, Theorem 18.10]),
it is sufficient to produce the desired function off of a µ-null Borel set.
In fact, by a measure exhaustion argument, we need only produce the
desired function on a µ-positive Borel subset of B. As G is locally
finite, we can therefore assume that there is a natural number n such
that every injective G-path of length n+1 originating at a point x ∈ B
intersects φ(x). Setting γs =

∏
i<|s| s(i) for s ∈ S<N, we can moreover

assume that for all i, j ≤ n and s ∈ Sn, the questions of whether
γ−1
s�i · x ∈ φ(x) or γ−1

s�i · x = γ−1
s�j · x do not depend upon the choice of

x ∈ B.
Fix x ∈ B. Then the aperiodicity of Γ y X ensures that there is an

injective G-path (xi)i≤n for which x = x0. Fix m ≤ n with xm ∈ φ(x),
as well as s ∈ Sm such that xi+1 = s(i)−1 · xi for all i < m, noting that
xi = γ−1

s�i · x for all i ≤ m.

If µ(B) = (γs)∗µ(B), then the function f(x) = γ−1
s · x is as desired.

Otherwise, there is a least natural number k < m for which µ(B) 6=
(γs�(k+1))∗µ(B), in which case our assumption that S is symmetric al-
lows us to recursively appeal to Lemma 16 so as to obtain an extension
t ∈ Sn of s � k with the property that (γt�i)∗µ(B) < (γt�(i+1))∗µ(B)

for all k ≤ i < n. Then the G-path (yi)i≤n given by yi = γ−1
t�i · x is

injective, so there exists ` ≤ n for which y` ∈ φ(x), thus the function
f(x) = γ−1

t�` · x is as desired.

Remark 17. Although it requires a somewhat more detailed argument,
the generalization of Proposition 15 holds in which the symmetry of S
is dropped and it generates Γ as a semigroup.

Corollary 18. Suppose that Γ is a finitely generated infinite group, X
is a Polish space, Γ y X is an aperiodic Borel action, and E is the
orbit equivalence relation induced by Γ y X. Then there is a comeager
E-invariant Borel set C ⊆ X such that for every finite symmetric set
S generating Γ, every probability measure ς on Γ whose support is S,
and every ς-stationary Borel probability measure µ, the set C is µ-null.

Proof. Theorem 10 yields a comeager E-invariant Borel set C ⊆ X on
which E is G-barrier N-paradoxical, for all graphs G induced by finite
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symmetric sets S generating Γ. Given a probability measure ς sup-
ported by S and a ς-stationary Borel probability measure µ, Proposi-
tion 15 yields Borel functions fn : C → C with µ(C) ≥

∑
n∈N µ(fn(C)) ≥∑

n∈N µ(C), so µ(C) = 0.

Remark 19. The same proof actually yields the stronger statement
in which S is merely required to be a finite set generating a subgroup
∆ ≤ Γ (as a semigroup) for which ∆ y X is aperiodic.

6. Topological realizations

An action Γ y X is topologically minimal if its orbits are dense.

Theorem 20. Suppose that Γ is a countable group, X is a compact Po-
lish space, and Γ y X is an aperiodic topologically minimal continuous
action. Then there is a comeager Γ-invariant Borel set C ⊆ X such
that Γ y C has no σ-compact realization.

Proof. Appeal first to Corollary 14 to obtain a comeager Γ-invariant
Borel set C ⊆ X which is null with respect to every Γ-invariant Borel
probability measure. If there is no finitely generated group ∆ ≤ Γ for
which the union of the finite orbits of ∆ y X is meager, then the set
C is already as desired. To see this, suppose, towards a contradiction,
that τ is a σ-compact realization of Γ y C.

Lemma 21. Suppose that K ⊆ C is a non-meager τ -compact set.
Then there is a comeager Γ-invariant τ -compact set L ⊆ Γ ·K.

Proof. Fix a non-empty open set U ⊆ X in which K is comeager. Then
U \K is meager, so the continuity of Γ y X ensures that γ · (U \K)
is meager for all γ ∈ Γ, thus so too is the intersection of these sets. It
follows that the set D = C \

⋃
γ∈Γ γ · (U \K) is a comeager Γ-invariant

Borel set for which D ∩ U ⊆ D ∩ K. The topological minimality of
Γ y X yields a finite set Λ ⊆ Γ with X = Λ · U , in which case the set
L = {x ∈ X | Γ ·x ⊆ Λ ·K} is Γ-invariant and τ -compact, and the fact
that D ⊆ L ensures that it is comeager.

It follows that there is a comeager Γ-invariant τ -compact set K ⊆ C.
Fix an increasing sequence of finitely generated groups ∆n whose union
is Γ. As K contains a finite orbit of each ∆n, Proposition 7 ensures
that there is a Γ-invariant Borel probability measure supported on K,
which contradicts our choice of C.

It remains to handle the case that there is finitely generated group
∆ ≤ Γ for which the union of the finite orbits of ∆ y X is meager.
Fix a finite symmetric set S generating ∆ and a probability measure
ς on Γ whose support is S. By appealing to Corollary 18, we obtain
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a comeager Γ-invariant Borel set D ⊆ C which is null with respect
to every ς-stationary Borel probability measure. Suppose, towards a
contradiction, that τ is a σ-compact realization of Γ y D. As Lemma
21 goes through with D in place of C, there is a comeager Γ-invariant
τ -compact set K ⊆ D. Corollary 9 then ensures that there is a ς-
stationary Borel probability measure supported on K, which contra-
dicts our choice of C.

Corollary 22. Suppose that Γ is a countable group, X is a compact Po-
lish space, and Γ y X is a continuous action whose induced equivalence
relation is aperiodic. Then there is a Γ-invariant Borel set C ⊆ X such
that Γ y C has no σ-compact realization.

Proof. As compactness yields a Γ-invariant closed set K ⊆ X on which
Γ y X is topologically minimal, Theorem 20 yields the desired result.

Let Γ y 2Γ denote the shift action given by γ · x(δ) = x(γ−1δ).

Corollary 23. Suppose that Γ is a countably infinite group. Then there
is a Γ-invariant Borel set B ⊆ 2Γ with the property that Γ y B is free
and has no σ-compact realization.

Proof. By [GJS09, Theorem 1.5], there is a non-empty Γ-invariant
closed set C ⊆ X on which Γ y C is free, and an application of
Corollary 22 then yields the desired result.
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Addendum. The idea behind the proof of [KM04, Theorem 13.1] was
originally used by Kechris to give a simpler proof of [HK96, Theorem
6.2], asserting that every countable Borel equivalence relation is hy-
perfinite on a comeager Borel set. The latter result was inspired by
the earlier [SWW86, Theorem 1.8], a topological special case whose
proof is somewhat simpler than even Kechris’s later argument. Shortly
after submitting this paper, Benjamin Weiss pointed out that there is
a simpler proof of a topological special case of Corollary 18 which is
sufficient for the proof of the results in §6.
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