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Abstract. We show that Li–Yorke chaos ensures the existence of
a scrambled Cantor set.

Introduction

A dynamical system is a pair (X, f), where X is a metric space and
f : X → X is a continuous function. Given such a system, we say
that points x, y ∈ X are proximal if lim infn→∞ dX(fn(x), fn(y)) = 0,
and asymptotic if lim supn→∞ dX(fn(x), fn(y)) = 0. The pair (x, y) is
Li–Yorke if x and y are proximal but not asymptotic, a set Y ⊆ X is
scrambled if (x, y) is Li–Yorke for all distinct x, y ∈ Y , and the system
(X, f) is Li–Yorke chaotic if there is an uncountable scrambled set
Y ⊆ X. In [LY75], Li and Yorke showed that every dynamical system
on the unit interval with a point of period three is Li–Yorke chaotic.

The scrambled set constructed in [LY75] is indexed by an interval on
the real line, and therefore has cardinality 2ℵ0 . Moreover, subsequent
constructions of uncountable scrambled sets in the literature typically
gave rise to sets of cardinality 2ℵ0 , or even Cantor sets, i.e., homeomor-
phic copies of the Cantor space 2N. One example is the construction,
in [BGKM02], of uncountable scrambled sets in dynamical systems of
positive topological entropy.

A metric space is Polish if it is complete and separable, and a dynam-
ical system (X, f) is Polish if X is Polish. At the end of [BHS08, §3],
Blanchard, Huang, and Snoha asked whether every Li–Yorke chaotic
Polish dynamical system admits a scrambled Cantor set. Here we uti-
lize the descriptive set theory of definable graphs to obtain the following
answer to their question:
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Theorem 1. Suppose that (X, f) is a Li–Yorke chaotic Polish dynam-
ical system. Then there is a scrambled Cantor set C ⊆ X.

In §1, we establish an analog of the Kechris–Solecki–Todorcevic char-
acterization of the existence of ℵ0-colorings (see [KST99, Theorem 6.3])
within cliques. In §2, we use this to establish a similar analog of Silver’s
perfect set theorem for co-analytic equivalence relations (see [Sil80]).
In §3, we use the latter to establish Theorem 1. And in §4, we discuss
several generalizations.

1. Colorings in cliques

Endow N with the discrete topology, and NN with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and Polish if it is second countable
and admits a compatible complete metric. A subset of a topological
space is Borel if it is in the smallest σ-algebra containing the open sets,
and co-analytic if its complement is analytic. Every non-empty Polish
space is a continuous image of NN (see, for example, [Kec95, Theorem
7.9]), thus so too is every non-empty analytic space, and a subset of
an analytic Hausdorff space is Borel if and only if it is analytic and
co-analytic (see, for example, the proof of [Kec95, Theorem 14.11]).

A digraph on a set X is an irreflexive binary relation G on X. A set
Y ⊆ X is G-independent if G � Y = ∅. An I-coloring of G is a function
c : X → I such that c(x) 6= c(y) for all (x, y) ∈ G, or equivalently, such
that c−1({i}) is G-independent for all i ∈ I. A homomorphism from
a binary relation R on a set X to a binary relation S on a set Y is
a function φ : X → Y for which (φ × φ)(R) ⊆ S. We say that a set
Y ⊆ X is an R-clique if x R y for all distinct x, y ∈ Y .

We use X<N to denote
⋃
n∈NX

n, (i) to denote the singleton sequence
with value i, and v to denote extension. Following standard practice,
we also use Ns to denote {b ∈ NN | s v b} or {c ∈ 2N | s v c} (with the
context determining which of the two we have in mind). Fix sequences
sn ∈ 2n such that ∀s ∈ 2N∃n ∈ N s v sn, and let G0 denote the digraph
on 2N given by G0 = {(sn a (i) a c)i<2 | c ∈ 2N and n ∈ N}. A subset
of a topological space is Gδ if it is a countable intersection of open sets.

Theorem 1.1. Suppose that X is a Hausdorff space, G is an analytic
digraph on X, and R is a reflexive Gδ binary relation on X. Then at
least one of the following holds:

(1) For every R-clique Y ⊆ X, there is an N-coloring of G � Y .
(2) There is a continuous homomorphism φ : 2N → X from G0 to

G for which φ(2N) is an R-clique.
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Proof. Suppose that there is an R-clique Y ⊆ X for which there is no
N-coloring of G � Y . Then G 6= ∅, so there are continuous surjections
φG : NN � G and φX : NN �

⋃
i<2 proji(G). Fix a decreasing sequence

(Rn)n∈N of open subsets of X ×X whose intersection is R.
We will define a decreasing sequence (Y α)α<ω1 of subsets of Y , off of

which there are N-colorings of G � Y . We begin by setting Y 0 = Y .
For all limit ordinals λ < ω1, we set Y λ =

⋂
α<λ Y

α. To describe the
construction at successor ordinals, we require several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na), where
na ∈ N, φa : 2n

a → N<N, ψan : 2n
a−(n+1) → Nna for all n < na, and

φX(Nφa(s)) × φX(Nφa(t)) ⊆ Rna for all distinct s, t ∈ 2n
a
. A one-step

extension of an approximation a is an approximation b such that:

(a) nb = na + 1.

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s @ t =⇒ φa(s) @ φb(t)).

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s @ t =⇒ ψan(s) @ ψbn(t)).

Similarly, a configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ),
where nγ ∈ N, φγ : 2n

γ → NN, ψγn : 2n
γ−(n+1) → NN for all n < nγ,

and (φG ◦ ψγn)(t) = ((φX ◦ φγ)(sn a (i) a t))i<2 for all n < nγ and
t ∈ 2n

γ−(n+1). We say that γ is compatible with a set Y ′ ⊆ Y if
(φX ◦ φγ)(2n

γ
) ⊆ Y ′, and compatible with a if:

(i) na = nγ.
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

An approximation a is Y ′-terminal if no configuration is compatible
with both Y ′ and a one-step extension of a. Let A(a, Y ′) denote the
set of points of the form (φX ◦ φγ)(sna), where γ varies over all config-
urations compatible with a and Y ′.

Lemma 1.2. Suppose that Y ′ ⊆ Y and a is a Y ′-terminal approxima-
tion. Then A(a, Y ′) is G-independent.

Proof. Suppose, towards a contradiction, that there are configurations
γ0 and γ1, both compatible with a and Y ′, with the property that
((φX ◦ φγi)(sna))i<2 ∈ G. Fix a sequence d ∈ NN with the property
that φG(d) = ((φX ◦ φγi)(sna))i<2, and let γ be the configuration given
by nγ = na + 1, φγ(t a (i)) = φγi(t) for all i < 2 and t ∈ 2n

a
,

ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and t ∈ 2n
a−(n+1), and

ψγna(∅) = d. Then γ is compatible with a one-step extension of a,
contradicting the fact that a is Y ′-terminal.

Let Y α+1 be the difference of Y α and the union of the sets of the
form A(a, Y α), where a varies over all Y α-terminal approximations.
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Lemma 1.3. Suppose that α < ω1 and a is a non-Y α+1-terminal ap-
proximation. Then a has a non-Y α-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration
γ compatible with b and Y α+1. Then (φX ◦φγ)(snb) ∈ Y α+1, so b is not
Y α-terminal.

Fix α < ω1 such that the families of Y α- and Y α+1-terminal approx-
imations coincide, and note that the triple a0 = (na0 , φa0 , (ψa0n )n<na0 ),
where na0 = 0 and φa0 : 20 → N0, is an approximation (as the fact
that 20 has only one element ensures that a0 vacuously satisfies the
final clause in the definition of approximation). As A(a0, Y

′) = Y ′ ∩⋃
i<2 proji(G) for all Y ′ ⊆ Y , we can assume that a0 is not Y α-terminal,

since otherwise there is an N-coloring of G � Y .
By recursively applying Lemma 1.3, we obtain non-Y α-terminal one-

step extensions an+1 of an for all n ∈ N. Define φ′, ψn : 2N → NN by
φ′(c) =

⋃
n∈N φ

an(c � n) and ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1))) for

all c ∈ 2N and n ∈ N. Clearly these functions are continuous.
To see that the function φ = φX ◦ φ′ is a homomorphism from G0

to G, we will show the stronger fact that if c ∈ 2N and n ∈ N, then
(φG ◦ψn)(c) = ((φX ◦ φ′)(sn a (i) a c))i<2. It is sufficient to show that
if U is an open neighborhood of ((φX ◦φ′)(sn a (i) a c))i<2 and V is an
open neighborhood of (φG ◦ψn)(c), then U ∩V 6= ∅. Towards this end,
fixm > n such that

∏
i<2 φX(Nφam (sna(i)as)) ⊆ U and φG(Nψamn (s)) ⊆ V ,

where s = c � (m − (n + 1)). As am is not Y α-terminal, there is a
configuration γ compatible with am, so ((φX ◦φγ)(sn a (i) a s))i<2 ∈ U
and (φG ◦ ψγn)(s) ∈ V , thus U ∩ V 6= ∅.

To see that φ(2N) is an R-clique, observe that if c, d ∈ 2N are
distinct and n ∈ N is sufficiently large that c � n 6= d � n, then
φ(c) ∈ φX(Nφan (c�n)) and φ(d) ∈ φX(Nφan (d�n)), so φ(c) Rn φ(d).

2. Separability in cliques

The following well-known fact rules out the existence of a Baire-
measurable N-coloring of G0:

Proposition 2.1. Suppose that B ⊆ 2N is a non-meager set with the
Baire property. Then B is not G0-independent.

Proof. Fix a sequence s ∈ 2<N for which B is comeager in Ns (see,
for example, [Kec95, Proposition 8.26]). Then there exists n ∈ N for
which s v sn. Let ι be the involution of Nsn sending sn a (0) a c to
sn a (1) a c for all c ∈ 2N. As ι is a homeomorphism, it follows that
B∩ι(B) is comeager inNsn (see, for example, [Kec95, Exercise 8.45]), so
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B∩ι(B)∩Nsna(0) 6= ∅. As (c, ι(c)) ∈ G0 � B for all c ∈ B∩ι(B)∩Nsna(0),
it follows that B is not G0-independent.

The following corollary is also well known:

Proposition 2.2. Suppose that E is a non-meager equivalence relation
on 2N with the Baire property. Then E is not disjoint from G0.

Proof. By the Kuratowski-Ulam theorem (see, for example, [Kec95,
Theorem 8.41]), there is a sequence c ∈ 2N for which [c]E has the Baire
property and is not meager, so Proposition 2.1 ensures that [c]E is not
G0-independent.

A partial transversal of an equivalence relation E on a set X is a set
Y ⊆ X that does not contain distinct E-related points.

Theorem 2.3. Suppose that X is a Hausdorff space, E is a co-analytic
equivalence relation on X, and R is a reflexive Gδ binary relation on X
for which there is an R-clique Y ⊆ X intersecting uncountably-many
E-classes. Then there is a Cantor set C ⊆ X that is both a partial
transversal of E and an R-clique.

Proof. Set G = ∼E, appeal to Theorem 1.1 to obtain a continuous
homomorphism φ : 2N → X from G0 to G for which φ(2N) is an R-
clique, and let F be the pullback of E through φ. As G0 ∩ F = ∅,
Proposition 2.2 implies that F is meager, thus Mycielski’s Theorem
(see, for example, [Kec95, Theorem 19.1]) yields a continuous injection
ψ : 2N ↪→ 2N sending distinct elements of 2N to F -inequivalent elements
of 2N, in which case the set C = (φ ◦ ψ)(2N) is as desired.

3. Li-Yorke chaos

We say that a dynamical system (X, f) is analytic ifX is analytic. As
every Polish dynamical system is analytic, Theorem 1 is a consequence
of the following result:

Theorem 3.1. Suppose that (X, f) is a Li–Yorke chaotic analytic dy-
namical system. Then there is a scrambled Cantor set C ⊆ X.

Proof. Note first that the set

R = {(x, y) ∈ X ×X | x and y are proximal}
=

⋂
ε>0

⋂
n∈N

⋃
m≥n{(x, y) ∈ X ×X | dX(fm(x), fm(y)) < ε}

is Gδ, and the equivalence relation

E = {(x, y) ∈ X ×X | x and y are asymptotic}
=

⋂
ε>0

⋃
n∈N

⋂
m≥n{(x, y) ∈ X ×X | dX(fm(x), fm(y)) ≤ ε}
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is Borel. As the fact that (X, f) is Li–Yorke chaotic yields an R-
clique intersecting uncountably-many E-classes, Theorem 2.3 yields a
scrambled Cantor set.

4. Further generalizations

If φ : S → R is a function on a metric space, then lim infdS(s,s0)→∞ φ(s)
and lim supdS(s,s0)→∞ φ(s) do not depend on the choice of s0 ∈ S, so
we can safely denote them by lim inf ||s||→∞ φ(s) and lim sup||s||→∞ φ(s).
A metric semigroup is a semigroup S equipped with a metric dS (we
do not require that multiplication is continuous). Given an action
S y X of a metric semigroup on a metric space, we say that points
x, y ∈ X are proximal if lim inf ||s||→∞ dX(s ·x, s ·y) = 0, and asymptotic
if lim sup||s||→∞ dX(s · x, s · y) = 0. The pair (x, y) is Li–Yorke if x and
y are proximal but not asymptotic, a set Y ⊆ X is scrambled if (x, y)
is Li–Yorke for all distinct points x, y ∈ Y , and the action S y X is
Li–Yorke chaotic if there is an uncountable scrambled set Y ⊆ X.

Generalizing Theorem 3.1, we have the following:

Theorem 4.1. Suppose that S y X is a Li–Yorke-chaotic action of a
metric semigroup by continuous functions on an analytic metric space.
Then there is a scrambled Cantor set C ⊆ X.

Proof. Fix s0 ∈ S, and note that the set

R = {(x, y) ∈ X ×X | x and y are proximal}
=

⋂
ε>0

⋂
n∈N

⋃
dS(s,s0)≥n{(x, y) ∈ X ×X | dX(s · x, s · y) < ε}

is Gδ, and the equivalence relation

E = {(x, y) ∈ X ×X | x and y are asymptotic}
=

⋂
ε>0

⋃
n∈N

⋂
dS(s,s0)≥n{(x, y) ∈ X ×X | dX(s · x, s · y) ≤ ε}

is Borel. As the fact that S y X is Li–Yorke chaotic yields an R-
clique intersecting uncountably-many E-classes, Theorem 2.3 yields a
scrambled Cantor set.

Given any real number δ ≥ 0, we say that points x, y ∈ X are (≤δ)-
proximal if lim infn→∞ dX(fn(x), fn(y)) ≤ δ. The proof of Theorem
3.1 easily generalizes to yield the analogous result for the version of
Li–Yorke chaos where proximality is replaced with (≤δ)-proximality.

Along similar lines, we say that points x, y ∈ X are (≤δ)-asymptotic
if lim supn→∞ dX(fn(x), fn(y)) ≤ δ. We next describe the additional
results necessary to apply our arguments to the analog of Li–Yorke
chaos where asymptoticity is replaced with (≤δ)-asymptoticity.
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Given a setR ⊆ X×Y , defineR−1 = {(y, x) ∈ Y×X | x R y}. Given
a set S ⊆ Y × Z, define RS = {(x, z) ∈ X × Z | ∃y ∈ Y x R y S z}.
Slightly generalizing Proposition 2.2, we have the following:

Proposition 4.2. Suppose that R is a binary relation on 2N with the
Baire property and G0 ∩R−1R = ∅. Then R is meager.

Proof. Suppose, towards a contradiction, that R is not meager. The
Kuratowski-Ulam theorem then yields a sequence c ∈ 2N for which the
set Rc = {d ∈ 2N | c R d} has the Baire property and is not meager. As
Rc × Rc ⊆ R−1R, it follows that Rc is G0-independent, contradicting
Proposition 2.1.

An extended-valued quasi-metric on X is a map d : X ×X → [0,∞]
such that d(x, x) = 0 for all x ∈ X, d(x, y) = d(y, x) for all x, y ∈ X,
and d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. Given δ > 0, we say
that (X, d) is δ-discrete if d(x, y) > δ for all distinct x, y ∈ X. We say
that a set Y ⊆ X is ℵ0-universally Baire if its pre-image under every
continuous function φ : 2N → X has the Baire property.

Generalizing Theorem 2.3, we have the following:

Theorem 4.3. Suppose that δ ≥ 0, ε ≥ 2δ, X is a Hausdorff space, d
is an extended-valued quasi-metric on X for which d−1([0, δ]) is an ℵ0-
universally-Baire binary relation on X and d−1([0, ε]) is a co-analytic
binary relation on X, and R is a reflexive Gδ binary relation on X.
Then at least one of the following holds:

(1) Every R-clique Y ⊆ X is a countable union of sets of d-diameter
at most ε.

(2) There is a continuous injection π : 2N ↪→ X for which π(2N) is
an R-clique and (π(2N), d � π(2N)) is δ-discrete.

Proof. Suppose that condition (1) fails, fix an R-clique Y ⊆ X for
which there is no cover of Y by countably-many sets of d-diameter
at most ε, set G = d−1((ε,∞]), note that Theorem 1.1 yields a con-
tinuous homomorphism φ : 2N → X from G0 to G for which φ(2N)
is an R-clique, and define G′ = (d ◦ (φ × φ))−1([0, δ]). As ε ≥ 2δ,
the triangle inequality ensures that G0 ∩ (G′)−1G′ = ∅, so Proposi-
tion 4.2 implies that G′ is meager, thus Mycielski’s Theorem yields
a continuous homomorphism ψ : 2N → 2N from the complete graph
K2N = {c ∈ 2N × 2N | c(0) 6= c(1)} on 2N to ∼G′. Then the function
π = φ ◦ ψ is as desired.

While not necessary for our results on Li–Yorke chaos, the following
additional generalization of Theorem 2.3 is perhaps worth noting:
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Theorem 4.4. Suppose that X is a Hausdorff space, d is an extended-
valued quasi-metric on X for which there are arbitrarily small ε > 0
such that d−1([0, ε]) is a co-analytic binary relation on X, and R is a
reflexive Gδ binary relation on X. Then exactly one of the following
holds:

(1) For every R-clique Y ⊆ X, the space (Y, d � Y ) is second count-
able.

(2) There exists δ > 0 for which there is a continuous injection
π : 2N ↪→ X with the property that π(2N) is an R-clique and
(π(2N), d � π(2N)) is δ-discrete.

Proof. It is sufficient to show that if condition (2) fails, then condition
(1) holds. Towards this end, suppose that Y ⊆ X is an R-clique, and fix
real numbers εn > 0 such that d−1([0, εn]) is co-analytic and εn+1 ≤ εn/2
for all n ∈ N. As pre-images of analytic sets under continuous functions
with Polish domains are analytic (see, for example, the proof of [Kec95,
Proposition 14.4]) and analytic subsets of Polish spaces have the Baire
property (see, for example, [Kec95, Theorem 21.6]), it follows that for
all n ∈ N, the set d−1([0, εn]) is ℵ0-universally Baire, so Theorem 4.3
yields a countable cover Yn of Y by sets of d-diameter at most εn.
Setting Un = {Bd(Y ′, εn) ∩ Y | Y ′ ∈ Yn} for all n ∈ N, it only remains
to observe that the set U =

⋃
n∈N Un is a basis for (Y, d � Y ).

We say that a set Y ⊆ X is (≤δ)-scrambled if x and y are proximal
but not (≤δ)-asymptotic for all distinct x, y ∈ Y . By replacing the use
of Theorem 2.3 with that of Theorem 4.3 in the proof of Theorem 3.1,
one can show that the existence of an uncountable (≤δ)-scrambled set
ensures the existence of a (≤δ/2)-scrambled Cantor set.

However, when δ > 0, a substantially stronger result can be obtained
through substantially simpler means. We say that points x, y ∈ X are
(<δ)-asymptotic if lim supn→∞ dX(fn(x), fn(y)) < δ, or equivalently, if
there exist ε < δ and n ∈ N such that ∀m ≥ n dX(fm(x), fm(y)) ≤ ε.
Blanchard, Huang, and Snoha have established the analog of Theorem 1
where asymptoticity is replaced with (<δ)-asymptoticity (see [BHS08,
Theorem 16]). As the negation of (<δ)-asymptoticity is a Gδ condition,
so too is the corresponding analog of Li–Yorke pair, thus their result
follows from the special case of Theorem 2.3 where E is equality, which
is far simpler to establish (see [She99, Remark 1.14]).

We say that a dynamical system (X, f) is complete if X is complete.
At the end of [Aki04, §6], Akin noted that the analog of Theorem 3.1
for complete dynamical systems is open in the case that X is perfect.

Recall that the density of a topological space X is the minimal cardi-
nal κ for which there is a dense set Y ⊆ X of cardinality κ. While our
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approach does not fully resolve Akin’s problem beyond the separable
case, it does yield a weaker generalization of Theorem 1:

Theorem 4.5. Suppose that (X, f) is a complete dynamical system
that admits a scrambled set of cardinality strictly greater than the den-
sity of X. Then there is a scrambled Cantor set C ⊆ X.

Much as we obtained Theorem 1 from Theorem 3.1, we will obtain
Theorem 4.5 from a generalization to a broader class of topological
spaces. Endow each infinite cardinal κ with the discrete topology, and
κN with the corresponding product topology. A topological space is
κ-Souslin if it is a continuous image of a closed subset of κN. The
idea behind the proof that every Polish space is analytic works just as
well to show that every complete metric space of density κ is κ-Sous-
lin. Other examples of κ-Souslin spaces include all definable subsets of
analytic Hausdorff spaces, under definable determinacy. For instance,
every co-analytic subset of an analytic Hausdorff space is ℵ1-Souslin
(see, for example, [Kec95, Theorem 36.12]). More generally, ∆1

2n-
determinacy ensures that every Π1

2n+1 subset of an analytic Hausdorff

space is δ1
2n+1-Souslin (see, for example, [Kec95, Corollary 39.9]).

We say that a dynamical system (X, f) is κ-Souslin if X is κ-Sous-
lin. Theorem 4.5 is a consequence of the following generalization of
Theorem 3.1:

Theorem 4.6. Suppose that κ is an infinite cardinal and (X, f) is a
κ-Souslin dynamical system that admits a scrambled set of cardinality
strictly greater than κ. Then there is a scrambled Cantor set C ⊆ X.

Proof. The proof of Theorem 1.1 easily adapts to show the analogous
result in which the digraph G is merely κ-Souslin and the N-coloring
in condition (1) is replaced with a κ-coloring. The proof of Theorem
2.3 therefore adapts to show the analogous result in which E is ℵ0-
universally Baire and co-κ-Souslin, and Y intersects strictly more than
κ classes. But this can be plugged into the proof of Theorem 3.1 to
obtain the desired result.

It is easy to see that the generalizations mentioned in this section
can all be combined with one another.
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