
MARKERS AND THE RATIO ERGODIC THEOREM

BENJAMIN D. MILLER AND ANUSH TSERUNYAN

Abstract. We establish a generalization and strengthening of the
marker lemma for Borel automorphisms that can also be viewed
as a measureless strengthening of Dowker’s ratio ergodic theorem.

Introduction

Identify [N]<N with the set of strictly increasing sequences of natural
numbers of finite length. A decreasing sequence (Xi)i∈N is vanishing
if
⋂

i∈NXi = ∅. The forward orbit of x ∈ X under T : X → X is
given by [x]→T = {T k(x) | k ∈ N}. A set Y ⊆ X is forward T -
invariant if T (Y ) ⊆ Y , T -bounded if there exists n ∈ N for which
X =

⋃
m≤n T

−m(Y ), and T -complete if X =
⋃

n∈N T
−n(Y ). In the lat-

ter case, define nT
Y (x) = min{n ∈ Z+ | T n(x) ∈ Y }. Given w : X →

(0,∞), define ρTw : X × N → (0,∞) by ρTw(x, k) =
∏

j<k(w ◦ T j)(x).
Given f : X → R, define Sn(f, T, w) : X → R by Sn(f, T, w)(x) =∑

k<n(f ◦ T k)(x)ρTw(x, k) for all n ∈ N. Given g : X → (0,∞), de-
fine Rn(f, g, T, w) : X → R as well as R(f, g, T, w) : X → [−∞,∞] by
Rn(f, g, T, w)(x) = Sn(f, T, w)(x)/Sn(g, T, w)(x) for all n ∈ N and
R(f, g, T, w)(x) = lim supn→∞Rn(f, g, T, w)(x). A Borel space is a set
equipped with a distinguished σ-algebra of Borel subsets. A function
between Borel spaces is Borel if preimages of Borel sets are Borel. Here
we establish the following measureless version of [Dow50, Theorem II]:

Theorem 1. Suppose that X is a Borel space, f : X → R, g : X →
(0,∞), h : X → R, T : X → X, and w : X → (0,∞) are Borel, and
h(x) < R(f, g, T, w)(x) for all x ∈ X. Then there exist a forward T -
invariant T -complete Borel set C ⊆ X, a decreasing vanishing sequence
(Ai)i∈N of Borel subsets of C, a decreasing sequence (Bi)i∈N of (T � C)-
bounded Borel subsets of C, and Borel functions si : Bi → [N]<N such
that, for all i ∈ N and x ∈ Bi, the following hold:

(1) si(x)(0) = 0 and si(x)(|si(x)| − 1) = nT
Bi

(x).
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(2) For all k < |si(x)| − 1, exactly one of the following holds:
(a) T si(x)(k)(x) ∈ Ai and si(x)(k + 1) = si(x)(k) + 1.
(b) (Rsi(x)(k+1)−si(x)(k)(f, g, T, w)◦T si(x)(k))(x) > (h◦T si(x)(k))(x).

In §1, we establish an elementary decomposition result allowing us
to assume that f×g×w is eventually periodic along the forward orbits
of T or T is aperiodic and satisfies a local notion of separability. In §2
and §3, we establish strengthenings of Theorem 1 in both cases. And
in §4, we show that Theorem 1 implies Dowker’s ratio ergodic theorem.

1. Decomposition

A family B of subsets of a set X separates points if, for all distinct
x, y ∈ X, there exists B ∈ B such that x ∈ B but y /∈ B. We say
that a Borel space X is separable if there is a countable family of Borel
subsets of X that separates points. This easily implies that the equality
relation on X is Borel.

Given n ∈ Z+ and T : X → X, the T -period n part of f : X → Y
is given by PerTn (f) = {x ∈ X | ∀y ∈ [x]→T f(y) = (f ◦ T n)(y)}. If X
and Y are Borel spaces, Y is separable, and f and T are Borel, then
the fact that the class of Borel functions is closed under appropriate
compositions and products ensures that PerTn (f) is Borel.

Given a binary relation R on a set X, we say that a family B of
subsets of X separates R-related points if, for all distinct x R y, there
exists B ∈ B such that x ∈ B but y /∈ B. When X is a Borel space,
we say that R is separable if there is a countable family of Borel sets
that separates R-related points.

Proposition 1.1. Suppose that n ∈ Z+, X and Y are Borel spaces, Y
is separable, f : X → Y and T : X → X are Borel, and PerTn (f) = ∅.
Then T n has no fixed points and its graph is separable.

Proof. Fix a countable family B of Borel subsets of Y that separates
points. We need only show that, for all x ∈ X, there exist B ∈ B
and k ∈ N with x ∈ (f ◦ T k)−1(B) but T n(x) /∈ (f ◦ T k)−1(B). But
x /∈ PerTn (f), so there exists k ∈ N with (f ◦ T k)(x) 6= (f ◦ T k+n)(x),
thus there exists B ∈ B with (f ◦T k)(x) ∈ B but (f ◦T k+n)(x) /∈ B.

We say that T is aperiodic if its positive powers are fixed-point free.
We say that T is separable if its positive powers have separable graphs.

Proposition 1.2. Suppose that X and Y are Borel spaces, Y is sep-
arable, f : X → Y and T : X → X are Borel, and

⋃
n∈Z+ PerTn (f) = ∅.

Then T is aperiodic and separable.

Proof. By Proposition 1.1.
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2. The aperiodic separable case

The proof of the marker lemma for Borel automorphisms (see [SS88,
Lemma 1 of §3]) generalizes beyond the injective and standard cases:

Proposition 2.1. Suppose that X is a Borel space and T : X → X
is an aperiodic separable Borel function. Then there is a decreasing
vanishing sequence (Bi)i∈N of T -complete Borel subsets of X.

Proof. Set R =
⋃

n∈Z+ graph(T n). Then the separability of T yields
a family {Ai | i ∈ N} of Borel subsets of X that separates R-related
points. Set As =

⋂
i∈s−1({0})Ai ∩

⋂
i∈s−1({1}) ∼Ai for all s ∈ 2<N, let

≤i denote the lexicographical ordering of 2i for all i ∈ N, and define
si(x) = min≤i

{s ∈ 2i | |As∩ [x]→T | = ℵ0} for all i ∈ N and x ∈ X. As si
is T -invariant, the intersection of the set B′i =

⋃
s∈2i As ∩ s−1i ({s}) with

each forward orbit of T is infinite. The fact that As = Asa(0)
∐
Asa(1) for

all s ∈ 2<N ensures that s−1i ({s}) = s−1i+1({s a (0)}) ∐
s−1i+1({s a (1)})

for all i ∈ N and s ∈ 2i, so B′i+1 ⊆ B′i for all i ∈ N. And the set
B′ =

⋂
i∈NB

′
i intersects each forward orbit of T in at most one point,

for if k ∈ Z+ and x ∈ B′, then there exists i ∈ N such that x ∈ Ai and
T k(x) /∈ Ai, so the fact that x ∈ B′i+1 implies that T k(x) /∈ B′i+1, thus
T k(x) /∈ B′. The sets Bi = B′i \B′ are therefore as desired.

Set T−≤i(Y ) =
⋃

j≤i T
−j(Y ) for all i ∈ N, T : X → X, and Y ⊆ X.

Proposition 2.2. Suppose that X is a Borel space, T : X → X is Bor-
el, and there is a decreasing vanishing sequence (Ai)i∈N of T -complete
Borel sets. Then there is a decreasing vanishing sequence (Bi)i∈N of
T -bounded Borel sets.

Proof. We can assume that A0 = X. For all i ∈ N, define Bi = Ai ∪⋃
j<iAj \ T−≤i(Aj+1). To see that Bi+1 ⊆ Bi for all i ∈ N, note that

Ai+1, Ai \T−≤i+1(Ai+1) ⊆ Ai and Aj \T−≤i+1(Aj+1) ⊆ Aj \T−≤i(Aj+1)
for all j < i. To see that

⋂
i∈NBi = ∅, note that if j ∈ N and x ∈

Aj \Aj+1, then there exists i > j for which x ∈ T−≤i(Aj+1), so x /∈ Bi.

And to see that X = T−≤i
2
(Bi) for all i ∈ N, note that if j < i, then

Aj ⊆ Bi ∪T−≤i(Aj+1), so Aj ⊆ T−≤i(i−j)(Bi) by induction on i− j.
The following fact generalizes and strengthens the special case of

Theorem 1 where T is aperiodic and separable:

Proposition 2.3. Suppose that ` ∈ N, X is a Borel space, Y is a
metric space, ε : X → (0,∞), fn, hj : X → Y , and T : X → X are Bor-
el, T is aperiodic and separable, and hj(x) ∈ {fn(x) | n ∈ N} for all j <
` and x ∈ X. Then there are decreasing vanishing sequences (Ai)i∈N
and (Bi)i∈N of Borel subsets of X and Borel functions si,j : Bi → [N]<N
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such that each Bi is T -bounded and, for all i ∈ N, j < `, and x ∈ Bi,
the following hold:

(1) si,j(x)(0) = 0 and si,j(x)(|si,j(x)| − 1) = nT
Bi

(x).
(2) For all k < |si,j(x)| − 1, exactly one of the following holds:

(a) T si,j(x)(k)(x) ∈ Ai and si,j(x)(k + 1) = si,j(x)(k) + 1.
(b) dY ((fsi,j(x)(k+1)−si,j(x)(k)◦T si,j(x)(k))(x), (hj◦T si,j(x)(k))(x)) <

(ε ◦ T si,j(x)(k))(x).

Proof. By Propositions 2.1 and 2.2, there is a decreasing vanishing se-
quence (Bi)i∈N of T -bounded Borel sets. Then the sequence given by
Ai = {x ∈ X | ∃j < `∀n < nT

Bi
(x) dY (fn(x), hj(x)) ≥ ε(x)} is also de-

creasing and vanishing. For all i ∈ N, j < `, and x ∈ Bi, define
si,j(x)(0) = 0. Suppose now that k ∈ N and si,j(x)(k) has been de-
fined and is strictly less than nT

Bi
(x). If T si,j(x)(k)(x) ∈ Ai, then define

si,j(x)(k+ 1) = si,j(x)(k) + 1. Otherwise, let si,j(x)(k+ 1) be the least
natural number n > si,j(x)(k) with the property that dY ((fn−si,j(x)(k) ◦
T si,j(x)(k))(x), (hj ◦ T si,j(x)(k))(x)) < (ε ◦ T si,j(x)(k))(x).

3. The eventually periodic case

The function ρTw satisfies an appropriate cocycle identity:

Proposition 3.1. Suppose that X is a set, T : X → X, and w : X →
(0,∞). Then ∀m,n ∈ N∀x ∈ X ρTw(x,m+n) = ρTw(x,m)ρTw(Tm(x), n).

Proof. We need only note that ρTw(x,m + n) =
∏

k<m+n(w ◦ T k)(x) =

(
∏

k<m(w ◦ T k)(x))(
∏

k<n(w ◦ T k+m)(x)) = ρTw(x,m)ρTw(Tm(x), n).

The setR′(f, g, T, w)(x) of limit points of {Rn(f, g, T, w)(x) | n ∈ N}
is easily computed in the periodic case:

Proposition 3.2. Suppose that n ∈ Z+, r ∈ N, X is a set, f : X → R,
g : X → (0,∞), T : X → X, w : X → (0,∞), and x ∈ PerTn (f × g × w).

(1) If ρTw(x, n) ≤ 1, then Rnq+r(f, g, T, w)(x)→ Rn(f, g, T, w)(x).
(2) If ρTw(x, n) > 1, then Rnq+r(f, g, T, w)(x)→ (Rn(f, g, T, w)◦T r)(x).

Proof. Repeated application of Proposition 3.1 ensures that if q, s ∈ N,
then ρTw(x, nq + s) = ρTw(x, s)

∏
p<q ρ

T
w(T np+s(x), n) = ρTw(x, s)ρTw(x, n)q.
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It follows that if h ∈ {f, g} and q ∈ N, then

Snq+r(h, T, w)(x)

=
∑

p<q

∑
s<n(h ◦ T np+s)(x)ρTw(x, np+ s) +∑

s<r(h ◦ T nq+s)(x)ρTw(x, nq + s)

=
∑

p<q ρ
T
w(x, n)p

∑
s<n(h ◦ T s)(x)ρTw(x, s) +

ρTw(x, n)q
∑

s<r(h ◦ T s)(x)ρTw(x, s)

= (
∑

p<q ρ
T
w(x, n)p)Sn(h, T, w)(x) + ρTw(x, n)qSr(h, T, w)(x).

Case 1: If ρTw(x, n) < 1, then
∑

p<q ρ
T
w(x, n)p → 1/(1− ρTw(x, n)) and

ρTw(x, n)q → 0, so Snq+r(h, T, w)(x) → Sn(h, T, w)(x)/(1 − ρTw(x, n)),
thus Rnq+r(f, g, T, w)(x)→ Rn(f, g, T, w)(x).

Case 2: If ρTw(x, n) = 1, then
∑

p<q ρ
T
w(x, n)p = q and ρTw(x, n)q = 1,

so Snq+r(h, T, w)(x) = qSn(h, T, w)(x) + Sr(h, T, w)(x), in which case
Rnq+r(f, g, T, w)(x)→ Rn(f, g, T, w)(x).

Case 3: If ρTw(x, n) > 1, then set sq =
∑

p<q ρ
T
w(x, n)p and observe

that ρTw(x, n)q = (ρTw(x, n)− 1)sq + 1, so

Snq+r(h, T, w)(x)

= sq(Sn(h, T, w)(x) + (ρTw(x, n)− 1)Sr(h, T, w)(x)) + Sr(h, T, w)(x)

= sq(Sn(h, T, w) ◦ T r)(x) + Sr(h, T, w)(x).

But sq →∞, thus Rnq+r(f, g, T, w)(x)→ (Rn(f, g, T, w) ◦ T r)(x).

We say that h : X → Y is eventually T -periodic if
⋃

n∈Z+ PerTn (h) is
T -complete. The following fact strengthens the special case of Theorem
1 where f × g × w is eventually T -periodic:

Proposition 3.3. Suppose that X is a Borel space, f : X → R, g : X →
(0,∞), T : X → X, and w : X → (0,∞) are Borel, and f × g × w
is eventually T -periodic. Then there exist a forward T -invariant T -
complete Borel set C ⊆ X and a (T � C)-bounded Borel set B ⊆ C
such that RnT

B(x)(f, g, T, w)(x) = R(f, g, T, w)(x) for all x ∈ B.

Proof. Define C =
⋃

n∈Z+ PerTn (f × g × w) as well as n : C → Z+ by
n(x) = min{n ∈ Z+ | x ∈ PerTn (f × g × w)}. By Proposition 3.2, the
set A = {x ∈ C | Rn(x)(f, g, T, w)(x) = R(f, g, T, w)(x)} is T -complete.
Endow the set Y = R× (0,∞)× (0,∞) with the lexicographical order-
ing, let ≤lex denote the corresponding lexicographical ordering of Y N,
and define φ : C → Y N by φ(x)(k) = ((f × g × w) ◦ T k)(x). Then the
set B = {x ∈ A | ∀y ∈ A ∩ [x]→T φ(x) ≤lex φ(y)} is as desired, since
n(x) = nT

B(x) for all x ∈ B.

Theorem 1 follows from Propositions 1.2, 2.3, and 3.3.
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4. The ratio ergodic theorem

Here we show that Theorem 1 implies Dowker’s ratio ergodic theorem
by using the former to obtain a new proof of Proposition 4.5. The other
results of this section are well known and provided for completeness.

Proposition 4.1. Suppose that X is a set, f : X → R, T : X → X,
w : X → (0,∞), n ∈ N, and x ∈ X. Then Sn+1(f, T, w)(x) = f(x) +
w(x)(Sn(h, T, w) ◦ T )(x).

Proof. Simply observe that

Sn+1(f, T, w)(x) = f(x) +
∑

0<k<n+1(f ◦ T k)(x)ρTw(x, k)

= f(x) +
∑

k<n(f ◦ T k+1)(x)ρTw(x, k + 1)

= f(x) + w(x)(Sn(f, T, w) ◦ T )(x),

since ρTw(x, k + 1) = w(x)ρTw(T (x), k) by Proposition 3.1.

Proposition 4.2. Suppose that X is a set, f : X → R, g : X → (0,∞),
T : X → X, w : X → (0,∞), and Sn(g, T, w)(x) → ∞ for all x ∈ X.
Then R′(f, g, T, w) is T -invariant.

Proof. For all n ∈ N and x ∈ X, set εn(x) = f(x)/Sn(g, T, w)(x) and
rn(x) = (Sn(g, T, w)(x)− g(x))/Sn(g, T, w)(x). Then

Rn+1(f, g, T, w)(x)

= f(x)+(Sn(f,T,w)◦T )(x)w(x)
Sn+1(g,T,w)(x)

= εn+1(x) + (Rn(f, g, T, w) ◦ T )(x)
(

(Sn(g,T,w)◦T )(x)w(x)
Sn+1(g,T,w)(x)

)
= εn+1(x) + (Rn(f, g, T, w) ◦ T )(x)rn+1(x)

by two applications of Proposition 4.1. As εn(x) → 0 and rn(x) → 1,
it easily follows that (R′(f, g, T, w) ◦ T )(x) = R′(f, g, T, w)(x).

A Borel measure on a Borel space X is a measure µ on the Borel
subsets of X. Given T : X → X and w : X → (0,∞), we say that µ is
T -w-invariant if µ(B) =

∫
T−1(B)

w dµ for all Borel sets B ⊆ X.

Proposition 4.3. Suppose that k ∈ Z+, X is a Borel space, f : X →
R, T : X → X, and w : X → (0,∞) are Borel, and µ is a T -w-
invariant Borel measure on X for which f is µ-integrable. Then

∫
f dµ

=
∫

(f ◦ T k)(x)ρTw(x, k) dµ(x).

Proof. Let ν be the Borel measure on X given by ν(B) =
∫
B
w dµ.

Then µ(B) =
∫
T−1(B)

w dµ = ν(T−1(B)) for all Borel sets B ⊆ X, so
µ = T∗ν, thus

∫
g dµ =

∫
g d(T∗ν) =

∫
g ◦ T dν =

∫
(g ◦ T )w dµ for all
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µ-integrable Borel functions g : X → R, hence Proposition 3.1 ensures
that if x 7→ (f ◦ T k)(x)ρTw(x, k) is µ-integrable, then∫

(f ◦ T k)(x)ρTw(x, k) dµ(x) =
∫

(f ◦ T k+1)(x)ρTw(T (x), k)w(x) dµ(x)

=
∫

(f ◦ T k+1)(x)ρTw(x, k + 1) dµ(x),

in which case the obvious induction on k yields the desired result.

We use 1Y to denote the characteristic function of a set Y ⊆ X.

Proposition 4.4. Suppose that X is a Borel space, f : X → R, T : X →
X, and w : X → (0,∞) are Borel, B ⊆ X is a T -bounded Borel
set, and µ is a T -w-invariant Borel measure on X for which f is µ-
integrable. Then

∫
f dµ =

∫
B
SnT

B(x)(f, T, w)(x) dµ(x).

Proof. For all n ∈ N, set Bn =
⋃

1≤k≤n T
−k(B). Then∫

∼(B∪Bn)
(f ◦ T n)(x)ρTw(x, n) dµ(x)

=
∫
∼T−1(B∪Bn)

(f ◦ T n+1)(x)ρTw(T (x), n)w(x) dµ(x)

=
∫
∼T−1(B∪Bn)

(f ◦ T n+1)(x)ρTw(x, n+ 1) dµ(x)

=
∫
∼Bn+1

(f ◦ T n+1)(x)ρTw(x, n+ 1) dµ(x)

=
∫
∼(B∪Bn+1)

(f ◦ T n+1)(x)ρTw(x, n+ 1) dµ(x) +∫
B\Bn+1

(f ◦ T n+1)(x)ρTw(x, n+ 1) dµ(x)

by Propositions 3.1 and 4.3. As
∫
f dµ =

∫
∼(B∪B0)

f dµ+
∫
B\B0

f dµ,
the obvious induction ensures that if n ∈ N, then∫

f dµ =
∫
∼(B∪Bn)

(f ◦ T n)(x)ρTw(x, n) dµ(x) +∑
k≤n
∫
B\Bk

(f ◦ T k)(x)ρTw(x, k) dµ(x).

As B is T -bounded, there exists n ∈ N for which X = B ∪Bn, so∫
f dµ =

∑
k≤n
∫
B\Bk

(f ◦ T k)(x)ρTw(x, k) dµ(x)

=
∫
B

∑
k≤n 1∼Bk

(x)(f ◦ T k)(x)ρTw(x, k) dµ(x).

But the latter integrand is SnT
B(x)(f, T, w)(x) for all x ∈ B.

A subset of X is T -wandering if it intersects every forward orbit of
T in at most one point. A Borel measure on X is T -conservative if
every T -wandering Borel subset of X is null.

Proposition 4.5. Suppose that X is a Borel space, f : X → R, g : X →
(0,∞), h : X → R, T : X → X, and w : X → (0,∞) are Borel, h is
T -invariant, h(x) ≤ R(f, g, T, w)(x) for all x ∈ X, and µ is a T -
conservative T -w-invariant Borel measure on X for which f , g, and
gh are µ-integrable. Then

∫
f dµ ≥

∫
gh dµ.
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Proof. We need only show that
∫
f dµ ≥

∫
gh dµ − ε for all ε > 0,

so we can assume that h(x) < R(f, g, T, w)(x) for all x ∈ X. Fix
Ai, Bi, C ⊆ X and si : Bi → N<N satisfying the conclusion of The-
orem 1 and i ∈ N sufficiently large that

∫
Ai
|f |+ |gh| dµ ≤ ε. Set

A = Ai, B = Bi, s = si, K(x) = {k < |s(x)| − 1 | T s(x)(k)(x) /∈ A},
N(x) =

⋃
k∈K(x){s(x)(k), . . . , s(x)(k + 1)− 1}, D(x) = {T n(x) | n ∈

N(x)}, and D′(x) = {T n(x) | n < nT
B(x)} \D(x) for all x ∈ B. Then∫

C
f dµ =

∫
B
SnT

B(x)(f, T, w)(x) dµ(x)

=
∫
B
SnT

B(x)(f1D(x), T, w)(x) + SnT
B(x)(f1D′(x), T, w)(x) dµ(x)

≥
∫
B
SnT

B(x)(f1D(x), T, w)(x)− SnT
B(x)(|f |1A, T, w)(x) dµ(x)

=
∫
B
SnT

B(x)(f1D(x), T, w)(x) dµ(x)−
∫
A
|f | dµ

by Proposition 4.4 and∫
B
SnT

B(x)(f1D(x), T, w)(x) dµ(x)

=
∫
B

∑
k∈K(x)(Ss(x)(k+1)−s(x)(k)(f, T, w) ◦ T s(x)(k))(x)

ρTw(x, s(x)(k)) dµ(x)

≥
∫
B

∑
k∈K(x)(h ◦ T s(x)(k))(x)(Ss(x)(k+1)−s(x)(k)(g, T, w) ◦ T s(x)(k))(x)

ρTw(x, s(x)(k)) dµ(x)

=
∫
B

∑
k∈K(x)(Ss(x)(k+1)−s(x)(k)(gh, T, w) ◦ T s(x)(k))(x)

ρTw(x, s(x)(k)) dµ(x)

=
∫
B
SnT

B(x)(gh, T, w)(x)− SnT
B(x)(gh1D′(x), T, w)(x) dµ(x)

≥
∫
B
SnT

B(x)(gh, T, w)(x)− SnT
B(x)(|gh|1A, T, w)(x) dµ(x)

=
∫
C
gh dµ−

∫
A
|gh| dµ

by Proposition 3.1, the T -invariance of h, and Proposition 4.4, in which
case

∫
C
f dµ ≥

∫
C
gh dµ−

∫
A
|f |+ |gh| dµ ≥

∫
C
gh dµ− ε, so we need

only check that C is µ-conull. But the forward T -invariance of C
ensures that the set C ′n = T−(n+1)(C) \ T−n(C) is T -wandering for all
n ∈ N and the T -completeness of C implies that ∼C =

⋃
n∈NC

′
n.

Define R∞(f, g, T, w)(x) = limn→∞Rn(f, g, T, w)(x) for all x ∈ X.

Theorem 4.6 (Dowker’s ratio ergodic theorem). Suppose that X is a
Borel space, f : X → R, g : X → (0,∞), T : X → X, and w : X →
(0,∞) are Borel, Sn(g, T, w)(x) → ∞ for all x ∈ X, and µ is a T -
conservative T -w-invariant Borel measure on X for which f and g are
µ-integrable. Then

∫
f dµ =

∫
gR∞(f, g, T, w) dµ.
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Proof. Define R(f, g, T, w)(x) = lim infn→∞Rn(f, g, T, w)(x) for all x ∈
X. It is sufficient to show that

∫
f dµ ≥

∫
gR(f, g, T, w) dµ, as the

corresponding ostensible weakening of the theorem implies that∫
f dµ = −

∫
−f dµ

≤ −
∫
gR(−f, g, T, w) dµ

= −
∫
−gR(f, g, T, w) dµ

=
∫
gR(f, g, T, w) dµ.

Lemma 4.7. The function gR(f, g, T, w) is µ-integrable.

Proof. If
∫
g|R(f, g, T, w)| dµ = ∞, then there exists r > 0 for which∫

|f | dµ <
∫
gmin{|R(f, g, T, w)|, r} dµ. But R(f, g, T, w) is T -inva-

riant by Proposition 4.2, so
∫
|f | dµ ≥

∫
gmin{R(|f |, g, T, w), r} dµ ≥∫

gmin{|R(f, g, T, w)|, r} dµ by an application of Proposition 4.5 at

|f |, g, and min{R(|f |, g, T, w), r}, a contradiction.

Lemma 4.7 implies that the Borel set B = R(f, g, T, w)−1(R) is
µ-conull. As R(f, g, T, w) is T -invariant, so too is B and therefore
R(f, g, T, w)1B, thus an application of Proposition 4.5 at f , g, and
R(f, g, T, w)1B ensures that

∫
f dµ ≥

∫
gR(f, g, T, w) dµ.
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