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Abstract. We establish generalizations of the Feldman–Moore
theorem, the Glimm–Effros dichotomy, and the Lusin–Novikov
uniformization theorem from Polish spaces to their quotients by
Borel orbit equivalence relations.

Introduction

A topological space is Polish if it is separable and admits a compat-
ible complete metric. A subset of a topological space is Borel if it is in
the smallest σ-algebra containing the open sets. Given an equivalence
relation E on a topological space X, we say that a set B ⊆ X/E is
Borel if

⋃
B is Borel. More generally, given equivalence relations Ei

on topological spaces Xi, we say that a set R ⊆
∏

i∈I Xi/Ei is weakly
Borel if the corresponding set R̃ = {(xi)i∈I ∈

∏
i∈I Xi | ([xi]Ei)i∈I ∈ R}

is Borel. Given equivalence relations E and F on topological spaces X
and Y , we say that a partial function φ : X/E ⇀ Y/F is strongly Borel
if its graph is weakly Borel.

A σ-ideal on a set X is a family of subsets of X that is closed under
containment and countable unions. When X is a Polish space, we say
that an assignment x 7→ Ix, sending each point of X to a σ-ideal on
X, is strongly Borel-on-Borel if {(x, y) ∈ X × Y | R(x,y) ∈ Ix} is Borel
for all Polish spaces Y and Borel sets R ⊆ (X × Y ) × X. A Borel
equivalence relation E on a Polish space X is strongly idealistic if there
is an E-invariant strongly Borel-on-Borel assignment x 7→ Ix sending
each point in X to a σ-ideal on X for which [x]E /∈ Ix. Following
the usual abuse of language, we say that an equivalence relation is
countable if each of its equivalence classes is countable. The Feldman–
Moore theorem ensures that every countable Borel equivalence relation
on a Polish space is the orbit equivalence relation induced by a Bor-
el action of a countable discrete group (see [FM77, Theorem 1]), and
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the proof of [Kec92, §1.II.i] shows that every Borel orbit equivalence
relation induced by a Borel action of a Polish group on a Polish space
is strongly idealistic.

Our goal here is to generalize several basic results underlying the
study of countable Borel equivalence relations from Polish spaces to
their quotients by strongly idealistic Borel equivalence relations. More
precisely, we provide countably-infinite bases of minimal counterexam-
ples to such generalizations.

A transversal of an equivalence relation E on X is a set Y ⊆ X that
intersects every E-class in exactly one point. An embedding of E into
an equivalence relation F on a set Y is an injection π : X → Y such
that w E x ⇐⇒ π(w) F π(x) for all w, x ∈ X. The diagonal on X is
given by ∆(X) = {(x, y) ∈ X ×X | x = y} and E0 is the equivalence
relation on 2N given by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m).
We use Fk to denote the index k subequivalence relation of E0 given
by c Fk d ⇐⇒ ∃n ∈ N∀m ≥ n

∑
i<m c(i) ≡

∑
i<m d(i) (mod k) for

all k ≥ 2. The following fact generalizes the Glimm–Effros dichotomy
for countable Borel equivalence relations from Polish spaces to their
quotients by strongly idealistic Borel equivalence relations:

Theorem 1. Suppose that X is the quotient of a Polish space by
a strongly idealistic Borel equivalence relation and E is a countable
weakly Borel equivalence relation on X. Then exactly one of the fol-
lowing holds:

(1) The set X is a countable union of Borel transversals of E.
(2) There is a strongly Borel embedding of E0/F into E for some

F ∈ {∆(2N)} ∪ {Fp | p is prime}.

The horizontal sections of a set R ⊆ X × Y are the sets of the form
Ry = {x ∈ X | x R y} for y ∈ Y , whereas the vertical sections are
those of the form Rx = {y ∈ Y | x R y} for x ∈ X. The product of
equivalence relations E on X and F on Y is the equivalence relation
on X × Y given by (x, y) E × F (x′, y′) ⇐⇒ (x E x′ and y F y′). A
rectangular homomorphism from a binary relation R on X × Y to a
binary relation R′ on X ′ × Y ′ is a function of the form φ × ψ, where
φ : X → X ′ and ψ : Y → Y ′, with the property that (φ × ψ)(R) ⊆
R′. The following fact generalizes the Lusin–Novikov uniformization
theorem from Polish spaces to their quotients by strongly idealistic
Borel equivalence relations:

Theorem 2. Suppose that X is the quotient of a Polish space by a Bor-
el equivalence relation, Y is the quotient of a Polish space by a strongly
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idealistic Borel equivalence relation, and R ⊆ X × Y is a weakly Bor-
el set whose vertical sections are countable. Then exactly one of the
following holds:

(1) The set projX(R) is Borel and there are strongly Borel functions
φn : projX(R)→ Y for which R =

⋃
n∈N graph(φn).

(2) There is an injective strongly Borel rectangular homomorphism
from E0/(E0×F) to R for some F ∈ {∆(2N)}∪{Fp | p is prime}.

Remark 3. In the special case that X is a Polish space, condition (2)
cannot hold, so condition (1) always holds.

Remark 4. In the special case that Y is a Polish space, condition (2)
cannot hold when F ∈ {Fp | p is prime}, so E0/(E0 × ∆(2N)) is the
minimal counterexample to condition (1), answering a question that
originally arose in a conversation with Kechris.

The complete equivalence relation on X is given by I(X) = X ×X,
and the disjoint union of equivalence relations E0 and E1 on X is
the equivalence relation on X × 2 given by (x, i) E0 t E1 (y, j) ⇐⇒
(i = j and x Ei y). The following fact generalizes the Feldman–Moore
theorem from Polish spaces to their quotients by strongly idealistic
Borel equivalence relations:

Theorem 5. Suppose that X is the quotient of a Polish space by
a strongly idealistic Borel equivalence relation and E is a countable
weakly Borel equivalence relation on X. Then exactly one of the fol-
lowing holds:

(1) There is a countable group Γ of strongly Borel automorphisms
of X for which E = EX

Γ .
(2) There is a strongly Borel embedding of (E0×I(2))/(E0tF) into

E for some F ∈ {∆(2N)} ∪ {Fp | p is prime}.

In §1, we provide the original classical proof of the G0 dichotomy.
While the underlying argument has been known for some time, it has
somehow never appeared in full. We provide it here for future refer-
ence, and because our later arguments depend not only upon the G0

dichotomy, but its proof, as well.
In §2, we establish the special case of Theorem 2 referred to in Re-

mark 3. While it is not strictly necessary to establish this case sepa-
rately, our argument is substantially simpler than those appearing in
the latter sections—to which it serves as a stepping stone—and also
yields a more general result.

In §3, we establish versions of the special cases of Theorem 1 where
every E-class has cardinality at most k, Theorem 2 where every vertical
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section of R has cardinality at most k, and Theorem 5 where every E-
class has cardinality at most k + 1. In these special cases, condition
(2) can only hold when F ∈ {Fp | p ≤ k}.

In §4, we establish analogs of Theorems 1, 2, and 5 in which the first
conditions are relaxed to allow for bounded finite error, but the second
conditions are strengthened to ensure that F = ∆(2N). While it is not
difficult to derive these from [CCM16, Theorem 1] and the results of
§2, we instead show them using a substantial simplification of the proof
of the former. The special case of Theorem 2 referred to in Remark 4
easily follows, and by combining the results of the final three sections,
we obtain Theorems 1, 2, and 5.

1. The G0 dichotomy

Endow N with the discrete topology and NN with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and a subset of a topological space is
co-analytic if its complement is analytic. Every Polish space is analytic
(see, for example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures
that a subset of an analytic Hausdorff space is Borel if and only if it is
analytic and co-analytic (see, for example, [Kec95, Theorem 14.11]1).

Given a natural number n ≥ 2, a sequence (Xi)i<n, and sets R ⊆∏
i<nXi and Yi ⊆ Xi for all i < n, we say that (Yi)i<n is R-independent

if R ∩
∏

i<n Yi = ∅. We identify
∏

i<nXi with
∏

i≤mXi ×
∏

m<i<nXi

for all m < n.

Proposition 1.1. Suppose that n ≥ 2 is a natural number, (Xi)i<n
is a sequence of Hausdorff spaces, Ai ⊆ Xi is analytic for all i < n,
R ⊆

∏
i<nXi is analytic, and (Ai)i<n is R-independent. Then there

are Borel sets Bi ⊆ Xi such that Ai ⊆ Bi for all i < n and (Bi)i<n is
R-independent.

Proof. It is sufficient to show that if m < n, Bi ⊆ Xi is a Borel set such
that Ai ⊆ Bi for all i < m, and (Bi)i<m ∪ (Ai)m≤i<n is R-independent,
then there is a Borel set Bm ⊆ Xm for which Am ⊆ Bm and (Bi)i≤m ∪
(Ai)m<i<n is R-independent. Towards this end, let proji denote the
projection function from Xn onto the ith coordinate for all i < n. As
the class of analytic Hausdorff spaces is closed under continuous images,
intersections, products, and Borel subsets (see, for example, [Kec95,
Proposition 14.4]), the fact that R∩ ((

∏
i<mBi)×X× (

∏
m<i<nAi)) =

R∩((
∏

i≤m proji(R))×(
∏

m<i<nAi))∩((
∏

i<mBi)×Xn−m) ensures that

1While the results of [Kec95] are stated for Polish spaces, the proofs of those to
which we refer go through just as easily in the generality discussed here.
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projm(R ∩ ((
∏

i<mBi)×X × (
∏

m<i<nAi))) is analytic, and since Am
is disjoint from this set, Lusin’s separation theorem (see, for example,
[Kec95, Theorem 14.7]) yields a Borel set Bm ⊆ X containing Am
and disjoint from projm(R ∩ ((

∏
i<mBi) × X × (

∏
m<i<nAi))), thus

(Bi)i≤m ∪ (Ai)m<i<n is R-independent.

For all sets X and natural numbers n, we use (X)n to denote the
constant sequence of length n with value X. For all n ≥ 2, an n-
dimensional dihypergraph on a set X is an n-ary relation G on X con-
sisting solely of non-constant sequences. We say that a set Y ⊆ X is
G-independent if (Y )n is G-independent.

Proposition 1.2. Suppose that n ≥ 2, X is a Hausdorff space, G
is an analytic n-dimensional dihypergraph on X, and A ⊆ X is a
G-independent analytic set. Then there is a G-independent Borel set
B ⊆ X for which A ⊆ B.

Proof. By Proposition 1.1, there are Borel sets Bi ⊆ X such that A ⊆
Bi for all i < n and (Bi)i<n is G-independent. Set B =

⋂
i<nBi.

We use X<N to denote
⋃
n∈NX

n, (i) to denote the singleton sequence
with value i, v to denote extension, and a to denote concatenation
of sequences. Following standard practice, we also use Ns to denote
{b ∈ NN | s v b} or {c ∈ 2N | s v c} (with the context determining
which of the two we have in mind). A digraph is a two-dimensional
dihypergraph. Fix sequences sn ∈ 2n such that ∀s ∈ 2<N∃n ∈ N s v sn
and let G0 denote the digraph on 2N given by G0 = {(sn a (i) a c)i<2 |
c ∈ 2N and n ∈ N}.
Proposition 1.3. Every G0-independent set B ⊆ 2N with the Baire
property is meager.

Proof. Suppose, towards a contradiction, that B is not meager, and fix
a sequence s ∈ 2<N for which B is comeager in Ns (see, for example,
[Kec95, Proposition 8.26]) and n ∈ N for which s v sn, and let ι be the
involution of Nsn given by ι(sn a (0) a c) = sn a (1) a c for all c ∈ 2N.
As ι is a homeomorphism, it follows that B ∩ ι(B) is comeager in Nsn

(see, for example, [Kec95, Exercise 8.45]), so B ∩ ι(B) ∩ Nsna(0) 6= ∅.
But (c, ι(c)) ∈ G0∩(B×B) for all c ∈ B∩ ι(B)∩Nsna(0), contradicting
the fact that B is G0-independent.

An I-coloring of a digraph G on a set X is a function c : X → I such
that c(x) 6= c(y) for all (x, y) ∈ G, or equivalently, such that c−1({i}) is
G-independent for all i ∈ I. A homomorphism from a binary relation
R on a set X to a binary relation S on a set Y is a function φ : X → Y
for which (φ× φ)(R) ⊆ S.
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Theorem 1.4 (Kechris–Solecki–Todorcevic). Suppose that X is a Haus-
dorff space and G is an analytic digraph on X. Then exactly one of
the following holds:

(1) There is a Borel N-coloring c : X → N of G.
(2) There is a continuous homomorphism φ : 2N → X from G0 to G.

Proof (Miller). To see that the two conditions are mutually exclusive,
note that if both hold, then c ◦ φ is a Borel N-coloring of G0, so there
exists n ∈ N for which (c ◦ φ)−1({n}) is a non-meager G0-independent
Borel set, contradicting Proposition 1.3.

It remains to show that at least one of the two conditions holds.
We can clearly assume that G is not empty, so there are continuous
surjections φG : NN � G and φX : NN �

⋃
i<2 proji(G).

We will recursively construct a decreasing sequence (Bα)α<ω1 of Bor-
el subsets of X, off of which there are Borel N-colorings of G. We begin
by setting B0 = X and we define Bλ =

⋂
α<λB

α for all limit ordinals
λ < ω1. To describe the construction of Bα+1 from Bα, we require
several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na), where
na ∈ N, φa : 2n

a → Nna , and ψan : 2n
a−(n+1) → Nna for all n < na. A

one-step extension of a is an approximation b such that:

(a) nb = na + 1,

(b) ∀s ∈ 2n
a∀t ∈ 2n

b
(s v t =⇒ φa(s) v φb(t)), and

(c) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s v t =⇒ ψan(s) v ψbn(t)).

A configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ), where
nγ ∈ N, φγ : 2n

γ → NN, ψγn : 2n
γ−(n+1) → NN for all n < nγ, and

(φG ◦ ψγn)(t) = ((φX ◦ φγ)(sn a (0) a t), (φX ◦ φγ)(sn a (1) a t)) for
all n < nγ and t ∈ 2n

γ−(n+1). We say that γ is compatible with a set
X ′ ⊆ X if (φX ◦ φγ)(2n

γ
) ⊆ X ′, and compatible with a if:

(i) na = nγ,
(ii) ∀t ∈ 2n

a
φa(t) v φγ(t), and

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

An approximation a is X ′-terminal if no configuration is compatible
with both X ′ and a one-step extension of a. Let A(a,X ′) denote the
set of points of the form (φX ◦ φγ)(sna), where γ varies over all config-
urations compatible with a and X ′.

Lemma 1.5. Suppose that X ′ ⊆ X and a is an X ′-terminal approxi-
mation. Then A(a,X ′) is G-independent.

Proof. Suppose, towards a contradiction, that there are configurations
γ0 and γ1, both compatible with a and X ′, with the property that
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((φX ◦φγ0)(sna), (φX ◦φγ1)(sna)) ∈ G. Fix a sequence d ∈ NN such that
φG(d) = ((φX ◦φγ0)(sna), (φX ◦φγ1)(sna)), and let γ be the configuration
given by nγ = na + 1, φγ(t a (i)) = φγi(t) for all i < 2 and t ∈ 2n

a
,

ψγn(t a (i)) = ψγin (t) for all i < 2, n < na, and t ∈ 2n
a−(n+1), and

ψγna(∅) = d. Then γ is compatible with a one-step extension of a,
contradicting the fact that a is X ′-terminal.

For all Bα-terminal approximations a, Proposition 1.2 yields a G-
independent Borel set B(a,Bα) ⊇ A(a,Bα). Let Bα+1 be the set
obtained from Bα by subtracting the union of the sets of the form
B(a,Bα), where a varies over all Bα-terminal approximations.

Lemma 1.6. Suppose that α < ω1 and a is a non-Bα+1-terminal ap-
proximation. Then a has a non-Bα-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration
γ compatible with b and Bα+1. Then (φX ◦φγ)(snb) ∈ Bα+1, so b is not
Bα-terminal.

Fix α < ω1 such that the families of Bα- and Bα+1-terminal approx-
imations coincide, and let a0 be the unique approximation for which
na0 = 0. As A(a0, X

′) =
⋃
i<2 proji(G)∩X ′ for all X ′ ⊆ X, we can as-

sume that a0 is not Bα-terminal, since otherwise Bα+1 is disjoint from⋃
i<2 proji(G), so there is a Borel N-coloring of G.
By recursively applying Lemma 1.6, we obtain non-Bα-terminal one-

step extensions an+1 of an for all n ∈ N. Define φ, ψn : 2N → NN by
φ(c) =

⋃
n∈N φ

an(c � n) and ψn(c) =
⋃
m>n ψ

am
n (c � (m− (n+ 1))) for

all n ∈ N. Clearly these functions are continuous.
To establish that the function π = φX ◦ φ is a homomorphism from

G0 to G, we will show the stronger fact that if c ∈ 2N and n ∈ N, then

(φG ◦ ψn)(c) = ((φX ◦ φ)(sn a (0) a c), (φX ◦ φ)(sn a (1) a c)).

As X × X is Hausdorff, it is sufficient to show that if U is an open
neighborhood of ((φX ◦φ)(sn a (0) a c), (φX ◦φ)(sn a (1) a c)) and V
is an open neighborhood of (φG ◦ψn)(c), then U ∩V 6= ∅. Towards this
end, fix m > n such that φX(Nφam (sna(0)as))× φX(Nφam (sna(1)as)) ⊆ U
and φG(Nψamn (s)) ⊆ V where s = c � (m − (n + 1)). The fact that
am is not Bα-terminal yields a configuration γ compatible with am.
Then ((φX ◦ φγ)(sn a (0) a s), (φX ◦ φγ)(sn a (1) a s)) ∈ U and
(φG ◦ ψγn)(s) ∈ V , so U ∩ V 6= ∅.

Remark 1.7. The apparent use of choice beyond DC in the above argu-
ment can be eliminated by first running the simplified version without
Proposition 1.2, i.e., by setting B(a,Bα) = A(a,Bα), in order to obtain
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an upper bound α′ < ω1 on the least ordinal α < ω1 for which the sets
of Bα- and Bα+1-terminal approximations coincide.

2. Generalizations

Given an equivalence relation E on a set X, the E-saturation of a set
Y ⊆ X is given by [Y ]E = {x ∈ X | ∃y ∈ Y x E y}. We say that an n-
dimensional dihypergraph G on X is E-invariant if x ∈ G ⇐⇒ y ∈ G
for all x, y ∈ Xn with the property that ∀i < n x(i) E y(i).

Proposition 2.1. Suppose that n ≥ 2, X is a Hausdorff space, E is
an analytic equivalence relation on X, G is an E-invariant analytic
n-dimensional dihypergraph on X, and A ⊆ X is a G-independent
analytic set. Then there is an E-invariant G-independent Borel set
B ⊆ X for which A ⊆ B.

Proof. Set A0 = A. Given n ∈ N and a G-independent analytic set
An ⊆ X, Proposition 1.2 yields a G-independent Borel set Bn ⊆ X
containing An, and since the class of analytic Hausdorff spaces is closed
under continuous images and Borel subsets, it follows that the G-
independent set An+1 = [Bn]E = proj0(E ∩ (X × Bn)) is analytic.
Define B =

⋃
n∈NAn =

⋃
n∈NBn.

Clearly G0 ⊆ E0. The following observation is slightly less obvious:

Proposition 2.2. The smallest equivalence relation E on 2N contain-
ing G0 is E0.

Proof. To see that ∀c ∈ 2N∀u, v ∈ 2n u a c E v a c for all n ∈ N,
observe that if it holds at some n ∈ N, c ∈ 2N, and u, v ∈ 2n, then
u a (0) a c E sn a (0) a c G0 sn a (1) a c E v a (1) a c, so it holds
at n+ 1.

We next note another connection between Baire category and G0:

Proposition 2.3. Suppose that E and F are equivalence relations on
2N with the Baire property, every E-class is a countable union of (E ∩
F )-classes, and F ∩G0 = ∅. Then E and F are meager.

Proof. Suppose, towards a contradiction, that F is not meager. As F
has the Baire property, the Kuratowski–Ulam theorem (see, for exam-
ple, [Kec95, Theorem 8.41]) yields a sequence c ∈ 2N whose F -class has
the Baire property but is not meager, in which case Proposition 1.3
yields a pair (a, b) ∈ G0 � [c]F , contradicting the fact that F ∩G0 = ∅.
It therefore follows that F is meager.

The Kuratowski–Ulam theorem now ensures that every F -class is
meager, in which case every (E ∩ F )-class is meager, so every E-class
is meager, thus E is meager.
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A homomorphism from a sequence (Ri)i∈I of binary relations on a
set X to a sequence (Si)i∈I of binary relations on a set Y is a function
φ : X → Y that is a homomorphism from Ri to Si for all i ∈ I. In
this section, we only need the weakening of the following fact where
(Fk,E0 \ Fk) is replaced with E0:

Proposition 2.4. Suppose that k ≥ 2, D is a closed nowhere-dense
binary relation on 2N, and R is a meager binary relation on 2N. Then
there is a continuous homomorphism φ : 2N → 2N from (∼∆(2N),Fk,E0\
Fk,∼E0) to (∼D,Fk,E0 \ Fk,∼R).

Proof. Fix a decreasing sequence (Un)n∈N of dense open symmetric sub-
sets of ∼D whose intersection is disjoint from R, as well as φ0 : 20 → 20.

Lemma 2.5. Suppose that n ∈ N and φn : 2n → 2<N. Then there exist
`n > 0 and un ∈ 2`n × 2`n with the property that 1 +

∑
j<`n

un(0)(j) ≡∑
j<`n

un(1)(j) (mod k) and
∏

i<2Nφn+1(t(i)a(i)) ⊆ Un for all t ∈ 2n×2n,

where φn+1 : 2n+1 → 2<N is given by φn+1(t a (i)) = φn(t) a un(i) for
all i < 2 and t ∈ 2n.

Proof. Fix an enumeration (tj)j<4n of 2n × 2n and u0,n ∈ 2<N × 2<N.
Given j < 4n and uj,n ∈ 2<N × 2<N, fix uj+1,n ∈ 2<N × 2<N such that:

(1) ∀i < 2 uj,n(i) v uj+1,n(i).
(2)

∏
i<2Nφn(tj(i))auj+1,n(i) ⊆ Un.

Then any `n > 0 and un ∈ 2`n × 2`n such that ∀i < 2 u4n,n(i) v un(i)
and 1 +

∑
j<`n

un(0)(j) ≡
∑

j<`n
un(1)(j) (mod k) are as desired.

As φn(t) @ φn+1(t a (i)) for all i < 2, n ∈ N, and t ∈ 2n, we obtain
a continuous function φ : 2N → 2N by setting φ(c) =

⋃
n∈N φn(c � n) for

all c ∈ 2N. To see that φ is a homomorphism from ∼∆(2N) to ∼D, note
that if c ∈ ∼∆(2N), then there exists n ∈ N for which c(0)(n) 6= c(1)(n),
so (φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆ Un ⊆ ∼D. To see that φ is a

homomorphism from (Fk,E0 \ Fk) to (Fk,E0 \ Fk), note that if c ∈ E0,
then there exists n ∈ N such that c(0)(m) = c(1)(m) for all m ≥ n,
and setting ` =

∑
j<n `j, it follows that φ(c(0))(m) = φ(c(1))(m) for

all m ≥ `, in which case

c(0) Fk c(1)

⇐⇒
∑

m<n c(0)(m) ≡
∑

m<n c(1)(m) (mod k)

⇐⇒
∑

m<n

∑
j<`m

um(c(0))(j) ≡
∑

m<n

∑
j<`m

um(c(1))(j) (mod k)

⇐⇒
∑

m<` φn(c(0) � n)(m) ≡
∑

m<` φn(c(1) � n)(m) (mod k)

⇐⇒ φ(c(0)) Fk φ(c(1)).
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To see that φ is a homomorphism from ∼E0 to ∼R, note that if c ∈
∼E0, then there are infinitely many n ∈ N with the property that
(φ(c(i)))i<2 ∈

∏
i<2Nφn+1(c(i)�(n+1)) ⊆ Un, so (φ(c(i)))i<2 ∈ ∼R.

A partial transversal of an equivalence relation E on a set X over a
subequivalence relation F is a set Y ⊆ X for which E � Y = F � Y .

Theorem 2.6. Suppose that X is a Hausdorff space, E is an analytic
equivalence relation on X into which E0 does not continuously embed,
F is a Borel equivalence relation on X, and every E-class is a countable
union of (E ∩ F )-classes. Then X is a countable union of (E ∩ F )-
invariant Borel partial transversals of E over E ∩ F .

Proof. Note that a set Y ⊆ X is a partial transversal of E over E ∩ F
if and only if it is independent with respect to the digraph G = E \F .
Moreover, Proposition 2.1 ensures that every G-independent Borel set
is contained in an (E ∩ F )-invariant G-independent Borel set, so we
need only show that there is a Borel N-coloring of G.

Suppose, towards a contradiction, that there is no such coloring.
Then Theorem 1.4 yields a continuous homomorphism φ : 2N → X
from G0 to G. As the sets E ′ = (φ× φ)−1(E) and F ′ = (φ× φ)−1(F )
have the Baire property (see, for example, [Kec95, Theorem 21.6]),
Proposition 2.3 ensures that E ′ is meager. As the closed relation
D′ = (φ × φ)−1(∆(X)) is contained in E ′, it is nowhere dense, so
Proposition 2.4 yields a continuous homomorphism ψ : 2N → 2N from
(∼∆(2N),E0,∼E0) to (∼D′,E0,∼E

′). As G0 ⊆ E ′, Proposition 2.2 en-
sures that E0 ⊆ E ′, so φ ◦ ψ is a continuous embedding of E0 into E,
the desired contradiction.

Remark 2.7. Under the weaker assumption that F is co-analytic,
one can run the same argument without Proposition 2.1 to obtain the
weaker conclusion in which the Borel partial transversals of E over
E ∩ F need not be (E ∩ F )-invariant.

A partial function φ : X ⇀ Y uniformizes a set R ⊆ X × Y if
dom(φ) = projX(R) and graph(φ) ⊆ R.

Proposition 2.8. Suppose that X and Y are Polish spaces, F is a
strongly idealistic Borel equivalence relation on Y , and P ⊆ X × Y
is a Borel set whose non-empty vertical sections are F -classes. Then
projX(P ) is Borel and there is a Borel function φ : projX(P )→ Y that
uniformizes P .

Proof. Fix a witness y 7→ Jy to the strong idealisticity of F , and de-
fine Ix = Jy for all (x, y) ∈ P . Given a Borel set R ⊆ P , observe



FELDMAN–MOORE, GLIMM–EFFROS, AND LUSIN–NOVIKOV 11

that the set R′ = {((y, x), z) ∈ (Y × X) × Y | x P y and x R z} is
Borel, so the set S = {x ∈ X | ∃y ∈ Px R′(y,x) ∈ Jy} is analytic, the set
T = {x ∈ X | ∀y ∈ Px R′(y,x) ∈ Jy} is co-analytic, and Rx ∈ Ix ⇐⇒
x ∈ S ⇐⇒ x ∈ T for all x ∈ projX(P ). As noted in [Kec, Theo-
rem 18.6*], the proof of [Kec95, Theorem 18.6] can therefore be easily
modified to ensure that projX(P ) is Borel, as well as to obtain a Borel
function φ : projX(P )→ Y that uniformizes P .

We say that a partial function T : X/E ⇀ X/E is Borel if preimages
of Borel subsets of X/E are Borel.

Proposition 2.9. Suppose that X is a Polish space, E is a strongly
idealistic Borel equivalence relation on X, and T : X/E ⇀ X/E is a
strongly Borel partial function. Then T is Borel.

Proof. By Proposition 2.8, the set D =
⋃

dom(T ) is Borel and there is
a Borel function T̃ : D → X for which graph(T ) = [graph(T̃ )]∆(X)×E.
It therefore only remains to note that if B ⊆ X/E is Borel, then⋃
T−1(B) = T̃−1(

⋃
B), so T−1(B) is Borel, thus T is Borel.

The composition of partial functions S : Y ⇀ Z and T : X ⇀ Y is
given by (S ◦ T )(x) = z ⇐⇒ ∃y ∈ Y (T (x) = y and S(y) = z).

Proposition 2.10. Suppose that X is a Polish space, E is a strongly
idealistic Borel equivalence relation on X, and S, T : X/E ⇀ X/E are
strongly Borel partial functions. Then S ◦ T is strongly Borel.

Proof. By Proposition 2.8, the sets C =
⋃

dom(S) and D =
⋃

dom(T )
are Borel and there are Borel functions S̃ : C → X and T̃ : D → X
with graph(S) = [graph(S̃)]∆(X)×E and graph(T ) = [graph(T̃ )]∆(X)×E.
It only remains to note that if x, y ∈ X, then (S ◦T )([x]E) = [y]E ⇐⇒
(x ∈ D ∩ T̃−1(C) and (S̃ ◦ T̃ )(x) E y), so S ◦ T is strongly Borel.

The powers of a partial injection T : X ⇀ X are given by T 0 = idX ,
T n+1 = T ◦T n for all n ∈ N, and T−n = (T n)−1 for all n ∈ Z+. The T -
saturation of a set Y ⊆ X is given by [Y ]T =

⋃
n∈Z T

n(dom(T n) ∩ Y ).
The T -orbit of a point x ∈ X is given by [x]T = [{x}]T and the orbit
equivalence relation induced by T is the equivalence relation on X given
by x EX

T y ⇐⇒ [x]T = [y]T .

Proposition 2.11. Suppose that X is a Polish space, E is a strongly
idealistic Borel equivalence relation on X, and S : X/E ⇀ X/E is a
strongly Borel partial injection. Then there is a strongly Borel bijection

T : X/E → X/E for which E
X/E
S = E

X/E
T .
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Proof. Set Y = ∼dom(S−1) and Z = ∼dom(S), fix transitive permuta-
tions σ of N and τ of −N, and define T : X/E → X/E by

T (x) =


S(x) if x ∈ ∼([Y ]S ∪ [Z]S) ∪ ([Y ]S ∩ [Z]S \ Z),

S−n(x) if n ∈ N and x ∈ Sn(Y ) ∩ Z,

Sσ(n)−n(x) if n ∈ N and x ∈ Sn(Y ) \ [Z]S, and

Sτ(n)−n(x) if n ∈ −N and x ∈ Sn(Z) \ [Y ]S.

Propositions 2.9 and 2.10 ensure that T is strongly Borel. The first
clause in the definition of T ensures that the orbit equivalence relations
of S and T agree on the set of points whose S-orbit has type Z, the
first two clauses ensure that the orbit equivalence relations agree on
the set of points whose S-orbit is finite, the third clause ensures that
the orbit equivalence relations agree on the set of points whose S-orbit
has type N, and the fourth clause ensures that the orbit equivalence
relations agree on the set of points whose S-orbit has type −N.

A reduction of a binary relation R on a set X to a binary relation S
on a set Y is a homomorphism from (R,∼R) to (S,∼S).

Theorem 2.12. Suppose that X and Y are Polish spaces, F is a
strongly idealistic Borel equivalence relation on Y , and R ⊆ X × Y is
a Borel set whose vertical sections are countable unions of F -classes.
Then projX(R) is Borel and there are Borel maps φn : projX(R) → Y
with the property that ∀x ∈ projX(R) Rx =

⋃
n∈N[φn(x)]F .

Proof. Note that there is no continuous embedding π : 2N ↪→ X × Y of
E0 into ∆(X)× I(Y ), since otherwise projX ◦ π would be a continuous
reduction of E0 to ∆(X), contradicting the well-known fact that every
continuous homomorphism from E0 to ∆(X) is constant. Theorem
2.6 therefore yields (∆(X) × F )-invariant Borel partial transversals
Pn ⊆ R of ∆(X) × I(Y ) over ∆(X) × F for which R =

⋃
n∈N Pn. For

all n ∈ N, Proposition 2.8 ensures that the set Dn = projX(Pn) is Borel
and yields a Borel function ψn : Dn → Y that uniformizes Pn. Then
projX(R) =

⋃
n∈NDn, so projX(R) is Borel, and the functions of the

form φn = ψn ∪
⋃
k∈N ψk � (Dk \

⋃
j∈k∪{n}Dj) are as desired.

Remark 2.13. For all n ∈ N, the set Rn = [graph(φn)]∆(X)×F =
{(x, y) ∈ projX(R) × Y | φn(x) F y} is Borel, so Theorem 2.12 yields
the special case of Theorem 2 referred to in Remark 3.

Remark 2.14. Under the weaker assumption that X and Y are Haus-
dorff, F is co-analytic, and R is analytic, the above argument still yields
a conclusion similar to that of Theorem 2, although the resulting sets
neither have full projections nor enjoy the same level of definability.
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We say that a subequivalence relation F of an equivalence relation E
has countable index if every E-class is a countable union of F -classes.

Proposition 2.15. Suppose that X is a Polish space, E is a Bor-
el equivalence relation on X, F is a countable-index strongly idealistic
Borel subequivalence relation of E, and B ⊆ X is an F -invariant Borel
set. Then [B]E is Borel.

Proof. By Theorem 2.12, there are Borel functions φn : X → X for
which E =

⋃
n∈N[graph(φn)]∆(X)×F . Then [B]E =

⋃
n∈N φ

−1
n (B).

Given an equivalence relation E on a set X, we say that a set Y ⊆ X
is E-complete if X = [Y ]E. A transversal of an equivalence relation E
over a subequivalence relation F is an E-complete partial transversal
of E over F .

Proposition 2.16. Suppose that X is a topological space, F ⊆ E
are equivalence relations on X for which the E-saturation of every
F -invariant Borel set is Borel, there is a cover (Bn)n∈N of X by F -
invariant Borel partial transversals of E over F , and B ⊆ X is an
F -invariant Borel partial transversal of E over F . Then B is con-
tained in an F -invariant Borel transversal of E over F .

Proof. Set B′0 = B, recursively define B′n+1 = B′n ∪ (Bn \ [B′n]E) for all
n ∈ N, and observe that the set B′ =

⋃
n∈NB

′
n is as desired.

3. Finite bases

The support of a sequence s ∈ 2<N is given by supp(s) = s−1({1}).

Proposition 3.1. Suppose that X is a set, T : X → X is a bijection,
and φ : 2N → X is a homomorphism from G0 to the graph of T . Then
∀n ∈ N∀u, v ∈ 2n∀c ∈ 2N T |supp(v)|−|supp(u)|(φ(u a c)) = φ(v a c).

Proof. Suppose that we have already established the proposition at
some n ∈ N. To see that it holds at n + 1, observe that if c ∈ 2N and
u, v ∈ 2n, then T |supp(sn)|−|supp(u)|(φ(u a (0) a c)) = φ(sn a (0) a c),
T (φ(sn a (0) a c)) = φ(sn a (1) a c) since φ is a homomorphism, and
T |supp(v)|−|supp(sn)|(φ(sn a (1) a c)) = φ(v a (1) a c). But |supp(sn)| −
|supp(u)|+1+|supp(v)|−|supp(sn)| = |supp(v a (1))|−|supp(u a (0))|,
so T |supp(va(1))|−|supp(ua(0))|(φ(u a (0) a c)) = φ(v a (1) a c).

An equivalence relation E on a space X is generically ergodic if every
E-invariant set with the Baire property is meager or comeager.

Proposition 3.2. Suppose that k ≥ 2. Then Fk is generically ergodic.



14 N. DE RANCOURT AND B.D. MILLER

Proof. Suppose that B ⊆ 2N is a non-meager Fk-invariant set with the
Baire property, fix a sequence s ∈ 2<N for which B is comeager in Ns,
and set n = |s|. It is sufficient to show that B is comeager in Nu for
all u ∈ 2k−1+n. Towards this end, fix an extension t ∈ 2k−1+n of s for
which

∑
i<k−1+n t(i) ≡

∑
i<k−1+n u(i) (mod k) and define ι : Nt → Nu

by ι(t a c) = u a c for all c ∈ 2N. As ι is a homeomorphism, it follows
that ι(B) is comeager in ι(Nt). But the former set is contained in B,
and the latter is Nu.

Proposition 3.3. Suppose that X is a Baire space, E is an equiv-
alence relation on X with respect to which saturations of meager sets
are meager, F is a generically-ergodic subequivalence relation of E, and
B ⊆ X is an F -invariant set with the Baire property whose complement
is E-complete. Then B is meager.

Proof. As [∼B]E = X, it follows that [∼B]E is not meager, so ∼B is
not meager, thus ∼B is comeager.

We next establish a variant of Proposition 2.15:

Proposition 3.4. Suppose that n ∈ Z+, X is a Hausdorff space, E is
an analytic equivalence relation on X, F is a co-analytic equivalence
relation on X, E has index n over E ∩ F , and B ⊆ X is an (E ∩ F )-
invariant Borel set. Then [B]E is Borel.

Proof. As saturations of analytic sets with respect to analytic equiva-
lence relations are clearly analytic, it is sufficient to show that if C ⊆ X
is an (E ∩ F )-invariant co-analytic set, then [C]E is co-analytic. To-
wards this end, let R be the set of pairs (x, y) ∈ X × Xn such that
∀i < n x E y(i), ∀i < j < n ¬y(i) F y(j), and ∀i < n y(i) /∈ C, and
note that ∼[C]E = projX(R) and R is analytic, thus so too is ∼[C]E.

A reduction of a sequence (Ri)i∈I of binary relations on a set X to a
sequence (Si)i∈I of binary relations on a set Y is a function φ : X → Y
that is a reduction of Ri to Si for all i ∈ I. An embedding is an injective
reduction. We next note that the family {(E0,Fp) | p is prime} is a
minimal basis for {(E0,Fk) | k ≥ 2} under any quasi-order between
Baire-measurable reducibility and continuous embeddability:

Proposition 3.5. Suppose that j, k ≥ 2.

(1) If j | k, then there is a continuous embedding φ : 2N → 2N of
(E0,Fj) into (E0,Fk).

(2) If j and k are relatively prime, then there is no Baire-measurable
homomorphism φ : 2N → 2N from (E0 \ Fj,Fj) to (E0 \ Fk,Fk).
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Proof. To see (1), observe that the function φ : 2N → 2N given by φ(c) =⊕
n∈N(c(n))k/j is a continuous embedding of (E0,Fj) into (E0,Fk).
To see (2), suppose, towards a contradiction, that there is such a

homomorphism φ : 2N → 2N. For all ` ∈ {j, k}, define ψ` : 2N → 2N by
ψ`((1)n a (0) a c) = (1)n a (1) a c for all c ∈ 2N and n ∈ N and
ψ`((1)∞) = (0)`−1 a (1)∞, so that ψ` factors over F` to a permutation
of 2N/F` whose orbit equivalence relation is E0/F`. In particular, it
follows that the sets of the form Bi = {c ∈ 2N | φ(ψj(c)) Fk ψik(φ(c))},
for 0 < i < k, are Fj-invariant and partition 2N, so Proposition 3.2
yields a unique i for which Bi is comeager. As E0-saturations of meager
sets are meager, there are comeagerly-many c ∈ 2N for which [c]E0 ⊆ Bi.
Given any such c, note that c Fj ψjj (c), so φ(c) Fk ψijk (φ(c)), thus k | ij,
the desired contradiction.

Along with Propositions 2.15 and 2.16, the following fact yields the
special case of Theorem 1 where there exists k ∈ N for which every
E-class has cardinality at most k:

Theorem 3.6. Suppose that k ≥ 2, X is a Hausdorff space, E is an
analytic equivalence relation on X, F is a Borel equivalence relation
on X, and every E-class is a union of at most k (E∩F )-classes. Then
exactly one of the following holds:

(1) There is a cover (Bi)i<k of X by (E∩F )-invariant Borel partial
transversals of E over E ∩ F .

(2) There is a continuous embedding π : 2N ↪→ X of (E0,Fp) into
(E,F ) for some prime p ≤ k.

Proof. To see that the conditions are mutually exclusive, note that if
both hold, then there exists i < k for which π−1(Bi) is a non-meager
Borel partial transversal of E0 over Fp, contradicting Proposition 3.3.

To see that at least one of the conditions holds, suppose that we
have already established the theorem strictly below k, and define Y =
{y ∈ Xk | ∀i < j < k y(i) (E \ F ) y(j)}. It is sufficient to show that
at least one of the following holds:

(a) There is an (E ∩ F )-invariant Borel partial transversal B ⊆ X
of E over E ∩ F for which proj0(Y ) ⊆ [B]E.

(b) There is a continuous embedding π : 2N ↪→ proj0(Y ) of (E0,Fp)
into (E � proj0(Y ), F � proj0(Y )) for some prime p ≤ k.

Let Σ be the set of permutations σ of k for which σ(0) 6= 0, and
for each σ ∈ Σ, let Gσ be the digraph on Y with respect to which two
sequences y and z are related if and only if ∀i < k y(σ(i)) (E ∩ F ) z(i).
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Lemma 3.7. Suppose that there are Borel N-colorings cσ : Y → N of
Gσ for all σ ∈ Σ. Then there is an (E ∩ F )-invariant Borel partial
transversal B ⊆ X of E over E ∩ F for which proj0(Y ) ⊆ [B]E.

Proof. Note that the function cΣ : Y → NΣ given by cΣ(y)(σ) = cσ(y)
is a Borel NΣ-coloring of the digraph GΣ =

⋃
σ∈Σ Gσ, and if Z ⊆ Y is a

Borel GΣ-independent set, then proj0(Z) is an analytic partial transver-
sal of E over E ∩ F , so Proposition 2.1 ensures that it is contained in
an (E ∩ F )-invariant Borel partial transversal of E over E ∩ F , thus
there is a cover (Bn)n∈N of proj0(Y ) by (E ∩F )-invariant Borel partial
transversals of E over E ∩ F . Then Propositions 2.16 and 3.4 yield an
(E ∩F )-invariant Borel transversal C ⊆ proj0(Y ) of E � proj0(Y ) over
(E ∩ F ) � proj0(Y ), in which case one more application of Proposition
2.1 yields an (E ∩ F )-invariant Borel partial transversal B ⊇ C of E
over E ∩ F .

Suppose now that there exists σ ∈ Σ for which there is no Borel
coloring cσ : Y → N of Gσ. Then Theorem 1.4 yields a continuous
homomorphism φ : 2N → Y from G0 to Gσ. Define φ0 = proj0 ◦ φ and
j = |{σn(0) | n ∈ Z}|. As the relations E ′ = (φ0 × φ0)−1(E) and F ′ =
(φ0 × φ0)−1(F ) have the Baire property, Proposition 2.3 ensures that
they are meager, and since the closed relation D′ = (φ0×φ0)−1(∆(X))
is contained in E ′, it is nowhere dense, so Proposition 2.4 yields a
continuous homomorphism ψ : 2N → 2N from (∼∆(2N),Fj,E0 \Fj,∼E0)
to (∼D′,Fj,E0 \Fj,∼(E ′∪F ′)). As Proposition 3.1 ensures that φ0 is a
homomorphism from (Fj,E0\Fj) to (E∩F,E\F ), it follows that φ0◦ψ
is a continuous embedding of (E0,Fj) into (E,F ), so it only remains to
observe that if p is any prime dividing j, then Proposition 3.5 ensures
that there is a continuous embedding of (E0,Fp) into (E0,Fj), and
therefore of (E0,Fp) into (E,F ).

A partial uniformization of a set R ⊆ X × Y over an equivalence re-
lation F on Y is a subset of R whose vertical sections are contained in
F -classes. Along with Theorem 2.12 and Proposition 2.16, the follow-
ing fact yields the special case of Theorem 2 where there exists k ∈ N
for which every vertical section of R has cardinality at most k:

Theorem 3.8. Suppose that k ≥ 2, X and Y are Hausdorff spaces,
E is an analytic equivalence relation on X, F is a Borel equivalence
relation on Y , and R ⊆ X×Y is an (E×∆(Y ))-invariant analytic set
whose vertical sections are contained in unions of at most k F -classes.
Then exactly one of the following holds:

(1) There is a cover (Ri)i<k of R by ((E × F ) � R)-invariant Bor-
el-in-R partial uniformizations of R over F .
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(2) There are continuous embeddings πX : 2N ↪→ X of E0 into E
and πY : 2N ↪→ Y of Fp into F such that (πX ×πY )(E0) ⊆ R for
some prime p ≤ k.

Proof. To see that the conditions are mutually exclusive, note that if
both hold, then there exists i < k for which proj1((πX × πY )−1(Ri)) is
a non-meager partial transversal of E0 over Fp with the Baire property,
contradicting Proposition 3.3.

To see that at least one of the conditions holds, note that (E×I(Y )) �
R is analytic and (I(X)× F ) � R is Borel, and appeal to Theorem 3.6
to see that if condition (1) fails, then there is a continuous embedding
π : 2N ↪→ R of (E0,Fp) into ((E × I(Y )) � R, (E × F ) � R) for some
prime p ≤ k. It follows that the function π′X = projX ◦π is a continuous
reduction of E0 to E and the function π′Y = projY ◦ π is a continuous
homomorphism from (Fp,E0 \ Fp) to (F,∼F ), and therefore from G0

to ∼F , so Proposition 2.3 ensures that the equivalence relation F ′ =
(π′Y × π′Y )−1(F ) is meager, in which case the closed relations D′X =
(π′X ×π′X)−1(∆(X)) and D′Y = (π′Y ×π′Y )−1(∆(Y )) are nowhere dense,
so Proposition 2.4 yields a continuous homomorphism π′ : 2N → 2N

from (∼∆(2N),Fp,E0 \Fp,∼E0) to (∼(D′X ∪D′Y ),Fp,E0 \Fp,∼(E0∪F ′)),
thus the functions πX = π′X ◦ π′ and πY = π′Y ◦ π′ are continuous
embeddings of E0 into E and Fp into F . As π(2N) ⊆ R, it follows that
(π′X × π′Y )(∆(2N)) ⊆ R, so the facts that π′X is a homomorphism from
E0 to E and R is (E×∆(Y ))-invariant ensure that (π′X×π′Y )(E0) ⊆ R,
thus the fact that π′ is a homomorphism from E0 to E0 implies that
(πX × πY )(E0) ⊆ R.

Given a binary relation R on X, set R−1 = {(y, x) ∈ X×X | x R y}.
Given an equivalence relation F on X, we say that R is the graph of
a partial injection over F if ∀(x, y), (x′, y′) ∈ R (x F x′ ⇐⇒ y F y′).
Along with Proposition 2.11, the following fact yields the special case
of Theorem 5 where there exists k ∈ N for which every E-class has
cardinality at most k + 1:

Theorem 3.9. Suppose that k ≥ 2, X is a Hausdorff space, E is an
analytic equivalence relation on X, F is a Borel equivalence relation
on X, and every E-class is a union of at most k + 1 (E ∩ F )-classes.
Then exactly one of the following holds:

(1) There is a cover (Ri,j)i,j<k of E \ F by ((E ∩ F ) × (E ∩ F ))-
invariant Borel graphs of partial injections over E ∩ F .

(2) There is a continuous embedding π : 2N × 2 ↪→ X of (E0 ×
I(2),E0 t Fp) into (E,F ) for some prime p ≤ k.
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Proof. To see that the conditions are mutually exclusive, observe that
if they both hold, then there exist i, j < k with the property that
{c ∈ 2N | π(c, 0) Ri,j π(c, 1)}×{1} is a non-meager partial transversal of
E0×∆({1}) over Fp×∆({1}) with the Baire property, a contradiction.

To see that at least one of the conditions holds, note first that if
there are ((E ∩ F ) × F ) � (E \ F )-invariant Borel-in-(E \ F ) partial
uniformizations Rj of E \ F over F for which E \ F =

⋃
j<k Rj, then

the sets of the form Ri ∩R−1
j , where i, j < k, are as desired. By Theo-

rem 3.8, we can therefore assume that there are continuous embeddings
πX : 2N ↪→ X of E0 into E ∩F and πY : 2N ↪→ X of Fp into F such that
(πX×πY )(E0) ⊆ E\F for some prime p ≤ k. As E0 has countable index
below the equivalence relation E ′ = (πX×πX)−1(E), the latter is mea-
ger, so the closed subequivalence relation D′ = (πX × πX)−1(∆(X)) is
nowhere dense, thus Proposition 2.4 yields a continuous homomorphism
π′ : 2N → 2N from (∼∆(2N),Fp,E0 \ Fp,∼E0) to (∼D′,Fp,E0 \ Fp,∼E ′).
Define π : 2N×2→ X by π(c, 0) = (πX ◦π′)(c) and π(c, 1) = (πY ◦π′)(c)
for all c ∈ 2N.

4. Dichotomies

Let [X]n denote the family of subsets of X of cardinality n. When
X is a topological space, we endow [X]n with the topology generated
by the sets of the form {a ∈ [X]n | ∃f : a ↪→ n∀x ∈ a x ∈ Uf(x)},
where (Ui)i<n is a sequence of open subsets of X. Let [X]nE denote the
subspace consisting of sets which are contained in a single E-class, and
let [X]nE,F denote the further subspace consisting of such sets which

are partial transversals of F . Define [X]<ℵ0 =
⋃
n∈N[X]n, [X]<ℵ0E =⋃

n∈N[X]nE, and [X]<ℵ0E,F =
⋃
n∈N[X]nE,F .

The trace of a family A ⊆ [X]<ℵ0E on an equivalence class C of E is
given by A � C = {a ∈ A | a ⊆ C}. We say that two subsets of X
are F -disjoint if their F -saturations are disjoint, A is F -intersecting
if no two sets in A are F -disjoint, and A is E-locally F -intersecting
if its trace on every E-class is F -intersecting. A set Y ⊆ X punctures
A if it intersects every set in A . For each non-empty set a′ ∈ [X]<ℵ0E ,
define [a′,A ]F = {[a]F | a ∈ A and a′ ⊆ [a]F}.

A partial quasi-transversal of an equivalence relation E over a sube-
quivalence relation F is a set Y ⊆ X for which there exists k ∈ N such
that every (E � Y )-class is contained in a union of at most k F -classes.
The following fact is essentially a special case of [CCM16, Proposition
2.3.1]; we provide the proof for the reader’s convenience:
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Proposition 4.1. Suppose that X is a Hausdorff space, E is an an-
alytic equivalence relation on X, F is a Borel equivalence relation on
X, and A ⊆ [X]<ℵ0E,F is an E-locally F -intersecting analytic family of
sets of bounded finite cardinality. Then there is an (E ∩ F )-invariant
Borel partial quasi-transversal B ⊆ X of E over E ∩F puncturing A .

Proof. Recursively define f(n) = nn+1 +
∑

0<k<n f(k) for all n ∈ Z+.
We will show that if every set in A has cardinality at most n, then there
is an (E∩F )-invariant Borel set B ⊆ X puncturing A such that every
(E � B)-class is contained in a union of at most f(n) (E ∩ F )-classes.

We proceed by induction on n. The base case n = 1 follows from an
application of Proposition 2.1 to the equivalence relation E ∩ F and
the digraph E \ F , so suppose that n ≥ 2 and we have established
the proposition strictly below n. We will construct analytic families
Ak ⊆ A and A ′

k ⊆ [X]kE,F , as well as (E ∩ F )-invariant Borel sets
Bk ⊆ X, such that:

(1) ∀k < n Ak = {a ∈ Ak+1 | a ∩Bk+1 = ∅}.
(2) ∀1 ≤ k ≤ n A ′

k = {a′ ∈ [X]kE,F | |[a′,Ak]E∩F | > nn−k}.
(3) ∀1 ≤ k ≤ n Bk punctures A ′

k .
(4) ∀1 ≤ k ≤ n E has index at most f(k) over E ∩ F on Bk.

We proceed by reverse recursion, beginning with An = A , A ′
n = ∅,

and Bn = ∅. Suppose now that 0 < k < n and we have already found
Ak+1, A ′

k+1, and Bk+1. Conditions (1) and (2) then yield Ak and A ′
k .

Lemma 4.2. Suppose that a′ ∈ A ′
k and x ∈ [a′]E \ [a′]F . Then the

family [a′ ∪ {x},Ak]E∩F has cardinality at most nn−(k+1).

Proof. We can clearly assume that [a′ ∪ {x},Ak]E∩F 6= ∅. Given any
set a ∈ [a′∪{x},Ak]E∩F , condition (1) ensures that a∩Bk+1 = ∅, thus
(a′ ∪ {x}) ∩ Bk+1 = ∅. Condition (3) therefore implies that a′ ∪ {x} /∈
A ′
k+1, so |[a′∪{x},Ak+1]E∩F | ≤ nn−(k+1) by condition (2). As condition

(1) also ensures that Ak ⊆ Ak+1, the lemma follows.

Lemma 4.3. Suppose that a′ ∈ A ′
k and b ⊆ [a′]E \ [a′]F has cardinality

at most n. Then there exists a ∈ Ak whose (E∩F )-saturation contains
a′ and is disjoint from b.

Proof. Lemma 4.2 ensures that |[a′ ∪ {x},Ak]E∩F | ≤ nn−(k+1) for all
x ∈ b, so [a′,Ak]E∩F contains at most nn−k sets intersecting b, thus
condition (2) implies that [a′,Ak]E∩F contains a set disjoint from b.

Lemma 4.4. The family A ′
k is E-locally F -intersecting.

Proof. Suppose, towards a contradiction, that there are (E∩F )-disjoint
sets a′, b′ ∈ A ′

k with the property that [a′]E = [b′]E. Then Lemma 4.3
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yields b ∈ Ak whose (E ∩F )-saturation contains b′ and is disjoint from
a′, as well as a ∈ Ak whose (E∩F )-saturation contains a′ and is disjoint
from b, contradicting the fact that A is E-locally F -intersecting.

As the induction hypothesis yields an (E ∩ F )-invariant Borel set
Bk ⊆ X puncturing A ′

k on which E has index at most f(k) over E∩F ,
this completes the recursive construction. Define A0 =

⋃
A0.

Lemma 4.5. Suppose that x ∈ A0. Then A0 ∩ [x]E is contained in a
union of at most nn+1 (E ∩ F )-classes.

Proof. Fix a0 ∈ A0 for which x ∈ a0, and note that if y ∈ a0, then
|{[a]E∩F | a ∈ A0 and y ∈ [a]E∩F}| ≤ nn−1, in which case

⋃
{[a]E∩F |

a ∈ A0 and y ∈ [a]E∩F} is a union of at most nn (E ∩ F )-classes. But
every element of A0∩ [x]E is contained in a set of this form, so A0∩ [x]E
is contained in a union of at most nn+1 (E ∩ F )-classes.

By applying Proposition 2.1 to the equivalence relation E∩F and the
dihypergraph G = {x ∈ Xnn+1+1 | ∀i < j ≤ nn+1 x(i) (E \ F ) y(j)},
we obtain an (E ∩ F )-invariant Borel set B0 ⊇ A0 with the property
that every (E � B0)-class is contained in a union of at most nn+1

(E ∩ F )-classes. It only remains to note that if a ∈ A , then there is
a least k ≤ n such that a ∈ Ak, in which case a ∩ Bk is non-empty, so
the set B =

⋃
k≤nBk punctures A .

A partial quasi-transversal of an equivalence relation E on X is a
partial quasi-transversal of E over ∆(X). Theorem 1 is a consequence
of Propositions 2.15 and 2.16, Theorem 3.6, and the following:

Theorem 4.6. Suppose that X is a Hausdorff space, E is an analytic
equivalence relation on X, F is a Borel equivalence relation on X, and
every E-class is a countable union of (E ∩ F )-classes. Then exactly
one of the following holds:

(1) There is a cover (Bn)n∈N of X by (E∩F )-invariant Borel partial
quasi-transversals of E over E ∩ F .

(2) There exists a continuous embedding π : 2N ↪→ X of (E0,∆(2N))
into (E,F ).

Proof. To see that the conditions are mutually exclusive, note that if
both hold, then there exists n ∈ N for which π−1(Bn) is a non-meager
Borel partial quasi-transversal of E0. But the proof of the well-known
fact that every partial transversal of E0 with the Baire property is
meager works just as well to show that every partial quasi-transversal
of E0 with the Baire property is meager, a contradiction.

To see that at least one of the conditions holds, we can assume
that E * F , so there are continuous surjections φE\F : NN � E \
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F and φX : NN � X. We will recursively define a decreasing se-
quence (Bα)α<ω1 of Borel subsets of X whose complements are count-
able unions of (E ∩ F )-invariant Borel partial quasi-transversals of E
over E∩F . We begin by setting B0 = X. For all limit ordinals λ < ω1,
we set Bλ =

⋂
α<λB

α. To describe the construction at successor ordi-
nals, we require several preliminaries.

An approximation is a triple of the form a = (na, φa, (ψan)n<na), where
na ∈ N, φa : 2n

a → Nna , and ψan : I(2n)×2n
a−(n+1) → Nna for all n < na.

A one-step extension of a is an approximation b for which:

(1) nb = na + 1.

(2) ∀s ∈ 2n
a∀t ∈ 2n

b
(s v t =⇒ φa(s) v φb(t)).

(3) ∀n < na∀r ∈ I(2n)∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1)

(s v t =⇒ ψan(r, s) v ψbn(r, t)).

A configuration is a triple of the form γ = (nγ, φγ, (ψγn)n<nγ ), where
nγ ∈ N, φγ : 2n

γ → NN, ψγn : I(2n) × 2n
γ−(n+1) → NN for all n < nγ,

and (φE\F ◦ ψγn)(r, s) = ((φX ◦ φγ)(r(i) a (i) a s))i<2 for all n < nγ,

r ∈ I(2n), and s ∈ 2n
γ−(n+1). We say that γ is compatible with a set

X ′ ⊆ X if (φX ◦ φγ)(2n
γ
) ⊆ X ′, and compatible with a if:

(i) na = nγ.
(ii) ∀s ∈ 2n

a
φa(s) v φγ(s).

(iii) ∀n < na∀r ∈ I(2n)∀s ∈ 2n
a−(n+1) ψan(r, s) v ψγn(r, s).

An approximation a is X ′-terminal if no configuration is compatible
with both X ′ and a one-step extension of a. Let A (a,X ′) denote the
family of sets of the form [(φX ◦ φγ)(2n

a
)]E∩F , where γ varies over all

configurations compatible with a and X ′.

Lemma 4.7. Suppose that X ′ ⊆ X and a is an X ′-terminal approxi-
mation. Then A (a,X ′) is E-locally F -intersecting.

Proof. Suppose, towards a contradiction, that there are configurations
γ0 and γ1, both compatible with a and X ′, such that (φX ◦ φγ0)(2n

a
)

and (φX ◦ φγ1)(2n
a
) are F -disjoint sets contained in the same E-class.

Fix f : I(2n
a
)→ NN such that (φE\F ◦ f)(r) = ((φX ◦ φγi)(r(i)))i<2 for

all r ∈ I(2n
a
), and let γ be the configuration given by nγ = na + 1,

φγ(s a (i)) = φγi(s) for all i < 2 and s ∈ 2n
a
, ψγn(r, s a (i)) = ψγin (r, s)

for all i < 2, n < na, r ∈ I(2n), and s ∈ 2n
a−(n+1), and ψγna(r, ∅) = f(r)

for all r ∈ I(2n
a
). Then γ is compatible with a one-step extension of

a, contradicting the fact that a is X ′-terminal.

Proposition 4.1 and Lemma 4.7 ensure that if a is Bα-terminal, then
there is an (E ∩ F )-invariant Borel partial quasi-transversal B(a,Bα)
of E over E ∩ F puncturing A (a,Bα). Let Bα+1 be the set obtained
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from Bα by subtracting the union of the sets of the form B(a,Bα),
where a varies over all Bα-terminal approximations.

Lemma 4.8. Suppose that α < ω1 and a is a non-Bα+1-terminal ap-
proximation. Then a has a non-Bα-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration
γ compatible with b and Bα+1. Then (φX ◦ φγ)(2n

b
) ⊆ Bα+1, so b is

not Bα-terminal.

Fix α < ω1 such that the families of Bα- and Bα+1-terminal approxi-
mations coincide, and let a0 denote the unique approximation for which
na0 = 0. As A (a0, X

′) = {[x]E∩F | x ∈ X ′} for all X ′ ⊆ X, we can
assume that a0 is not Bα-terminal, since otherwise Bα+1 = ∅, so X is
a countable union of (E ∩F )-invariant Borel partial quasi-transversals
of E over E ∩ F .

By recursively applying Lemma 4.8, we obtain non-Bα-terminal one-
step extensions an+1 of an for all n ∈ N. Define φ : 2N → NN by
φ(c) =

⋃
n∈N φ

an(c � n), as well as ψn : I(2n) × 2N → NN by ψn(r, c) =⋃
m>n ψ

am
n (r, c � (m− (n+ 1))) for all n ∈ N. Clearly these functions

are continuous.

Lemma 4.9. The function φX ◦φ is a homomorphism from E0 \∆(2N)
to E \ F .

Proof. We will show that if c ∈ 2N, n ∈ N, and r ∈ I(2n), then

(φE\F ◦ ψn)(r, c) = ((φX ◦ φ)(r(i) a (i) a c))i<2.

As X×X is Hausdorff, it is sufficient to show that if U is an open neigh-
borhood of ((φX ◦φ)(r(i) a (i) a c))i<2 and V is an open neighborhood
of (φE\F ◦ψn)(r, c), then U ∩ V 6= ∅. Towards this end, fix m > n such
that

∏
i<2 φX(Nφam (r(i)a(i)as)) ⊆ U and φE\F (Nψamn (r,s)) ⊆ V , where

s = c � (m − (n + 1)). As am is not Bα-terminal, there is a configu-
ration γ compatible with it. Then ((φX ◦ φγ)(r(i) a (i) a s))i<2 ∈ U
and (φE\F ◦ ψγn)(r, s) ∈ V , thus U ∩ V 6= ∅.

Set φ′ = φX ◦φ. As the equivalence relations E ′ = (φ′×φ′)−1(E) and
F ′ = (φ′ × φ′)−1(F ) have the Baire property, Proposition 2.3 ensures
that they are meager, in which case the closed equivalence relation
D′ = (φ′ × φ′)−1(∆(X)) is nowhere dense, so Proposition 2.4 yields
a continuous homomorphism ψ : 2N → 2N from (∼∆(2N),E0,∼E0) to
(∼D′,E0,∼(E ′ ∪ F ′)). As φ′ is a homomorphism from G0 to E, it
follows that G0 ⊆ E ′, so Proposition 2.2 ensures that E0 ⊆ E ′, thus
φ′ ◦ ψ is a continuous embedding of (E0,∆(2N)) into (E,F ).
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Remark 4.10. The apparent use of choice beyond DC in the above ar-
gument can be eliminated by first running the analog of the argument
using the weakening of Proposition 4.1 without any definability con-
straints on the partial quasi-transversal puncturing the family (which
can be proven in the same manner, but without using Proposition 2.1),
in order to obtain an upper bound α′ < ω1 on the least ordinal α < ω1

for which the sets of Bα- and Bα+1-terminal approximations coincide.

A partial quasi-uniformization of a setR ⊆ X×Y over an equivalence
relation F on Y is a set S ⊆ R for which there exists k ∈ N such that
every vertical section of S is contained in a union of at most k F -classes.
Theorem 2 is a consequence of Proposition 2.16, Theorems 2.12 and
3.82, and the following:

Theorem 4.11. Suppose that X and Y are Hausdorff spaces, E is an
analytic equivalence relation on X, F is a Borel equivalence relation
on Y , and R ⊆ X × Y is an (E ×∆(Y ))-invariant analytic set whose
vertical sections are contained in countable unions of F -classes. Then
exactly one of the following holds:

(1) There is a cover (Rn)n∈N of R by ((E ×F ) � R)-invariant Bor-
el-in-R partial quasi-uniformizations of R over F .

(2) There are continuous embeddings πX : 2N ↪→ X of E0 into E and
πY : 2N ↪→ Y of ∆(2N) into F such that (πX × πY )(E0) ⊆ R.

Proof. To see that the conditions are mutually exclusive, note that if
both hold, then there exists n ∈ N for which proj1((πX×πY )−1(Rn)) is
a non-meager partial quasi-transversal of E0 with the Baire property,
a contradiction.

To see that at least one of the conditions holds, observe that (E ×
I(Y )) � R is analytic and (I(X)×F ) � R is Borel, and appeal to Theo-
rem 4.6 to see that if condition (1) fails, then there is a continuous em-
bedding π : 2N ↪→ R of (E0,∆(2N)) into ((E× I(Y )) � R, (E×F ) � R).
It follows that the function π′X = projX ◦ π is a continuous reduction
of E0 to E and the function π′Y = projY ◦ π is a continuous homo-
morphism from E0 \ ∆(2N) to ∼F , and therefore from G0 to ∼F , so
Proposition 2.3 ensures that the relation F ′ = (π′Y × π′Y )−1(F ) is mea-
ger, in which case the closed relations D′X = (π′X × π′X)−1(∆(X)) and
D′Y = (π′Y ×π′Y )−1(∆(Y )) are nowhere dense, so Proposition 2.4 yields
a continuous homomorphism π′ : 2N → 2N from (∼∆(2N),E0,∼E0) to
(∼(D′X ∪ D′Y ),E0,∼(E0 ∪ F ′)), thus the functions πX = π′X ◦ π′ and
πY = π′Y ◦ π′ are continuous embeddings of E0 into E and ∆(2N) into

2Theorem 3.8 can be replaced with the usual Lusin–Novikov uniformization the-
orem to establish the special case referred to in Remark 4.
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F . As π(2N) ⊆ R, it follows that (π′X × π′Y )(∆(2N)) ⊆ R, so the
facts that π′X is a homomorphism from E0 to E and R is (E ×∆(Y ))-
invariant ensure that (π′X × π′Y )(E0) ⊆ R, thus the fact that π′ is a
homomorphism from E0 to E0 implies that (πX × πY )(E0) ⊆ R.

We say that a set R ⊆ X×X is the graph of a partial quasi-function
over an equivalence relation F on X if there exists k ∈ N such that
∀(xi, yi)i<k ∈ Rk (∀i, j < k xi F xj =⇒ ∃i < j < k yi F yj). We
say that R is the graph of a partial quasi-injection if both R and R−1

have this property. Theorem 5 is a consequence of Proposition 2.11,
Theorem 3.9, and the following:

Theorem 4.12. Suppose that X is a Hausdorff space, E is an analytic
equivalence relation on X, F is a Borel equivalence relation on X, and
every E-class is a countable union of (E ∩ F )-classes. Then exactly
one of the following holds:

(1) There is a cover (Rn)n∈N of E\F by ((E∩F )×(E∩F ))-invariant
Borel-in-E graphs of partial quasi-injections over E ∩ F .

(2) There is a continuous embedding π : 2N × 2 ↪→ X of (E0 ×
I(2),E0 t∆(2N)) into (E,F ).

Proof. To see that the conditions are mutually exclusive, note that if
both hold, then there exists n ∈ N with the property that {c ∈ 2N |
π(c, 0) Rn π(c, 1)} × {1} is a non-meager partial quasi-transversal of
E0 ×∆({1}) with the Baire property, a contradiction.

To see that at least one of the conditions holds, note first that if
there are ((E ∩ F ) × F ) � (E \ F )-invariant Borel-in-E partial quasi-
uniformizations Rn of E over E ∩ F for which E =

⋃
n∈NRn, then the

sets of the form Rm∩R−1
n , where m,n ∈ N, are as desired. By Theorem

4.11, we can therefore assume that there are continuous embeddings
πX : 2N ↪→ X of E0 into E and πY : 2N ↪→ X of ∆(2N) into F such that
(πX × πY )(E0) ⊆ E \ F . As E0 has countable index below the equiva-
lence relation E ′ = (πX × πX)−1(E), the latter is meager, so the closed
subequivalence relation D′ = (πX × πX)−1(∆(X)) is nowhere dense,
thus Proposition 2.4 yields a continuous homomorphism π′ : 2N → 2N

from (∼∆(2N),E0,∼E0) to (∼D′,E0,∼E
′). Define π : 2N × 2 → X by

π(c, 0) = (πX ◦ π′)(c) and π(c, 1) = (πY ◦ π′)(c) for all c ∈ 2N.
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