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Abstract. We show that every basis for the countable Borel
equivalence relations strictly above E0 under measure reducibil-
ity is uncountable, thereby ruling out natural generalizations of
the Glimm-Effros dichotomy. We also push many known results
concerning the abstract structure of the measure reducibility hier-
archy to its base, using arguments substantially simpler than those
previously employed.

Introduction

Over the last few decades, the notion of Borel reducibility of equiv-
alence relations has been used to identify obstacles of definability in-
herent in classification problems throughout mathematics. While there
are far too many such applications to provide an exhaustive list here,
a few notable examples include the classifications of torsion-free abelian
groups [Hjo99, AK00, Tho03, Tho06], ergodic measure-preserving trans-
formations [Hjo01, FW04, FRW06, FRW11], separable Banach spaces
[FLR09, Ros11], and separable C∗-algebras [FTT13a, FTT13b, Sab].
In order to better understand such results, one must obtain insight
into the abstract structure of the Borel reducibility hierarchy. Unfor-
tunately, this has turned out to be a very difficult task.

The first of the two main lines of research into the abstract structure
of the Borel reducibility hierarchy concerns its base. The first such
result appeared in [Sil80], where it was shown that equality on R is the
immediate successor of equality on N within the co-analytic equivalence
relations. Building upon this and operator-algebraic work in [Gli61,
Eff65], it was shown in [HKL90] that the relation E0 on 2N, given
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by x E0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m), is the immediate
successor of equality on R within the Borel equivalence relations. Work
in this direction stalled shortly thereafter, with [KL97, Theorem 2]
ruling out further such results within the Borel equivalence relations.
However, the question of whether there are further such results within
the countable Borel equivalence relations remains open.

The first of the two main goals of this paper is to show that every
basis for the countable Borel equivalence relations strictly above E0

under measure reducibility is uncountable.
The second of the two main lines of research into the abstract struc-

ture of the Borel reducibility hierarchy concerns exotic properties ap-
pearing beyond its base. The first such result, due originally to Woodin
and later refined in [LV94], was the existence of uncountable families
of pairwise incomparable Borel equivalence relations. However, the un-
derlying arguments depended heavily upon Baire category techniques,
and [HK96, Theorem 6.2] ensures that such an approach cannot yield
incomparability of countable Borel equivalence relations.

This difficulty was eventually overcome in [AK00], yielding the exis-
tence of uncountable families of pairwise incomparable countable Borel
equivalence relations, in addition to myriad further results concerning
the complexity of the Borel reducibility hierarchy. The arguments be-
hind these theorems marked a sharp departure from earlier approaches,
relying upon sophisticated supperrigidity machinery for actions of lin-
ear algebraic groups.

Soon thereafter, similar techniques were used in [Ada02, Tho02] to
obtain many striking new properties of the Borel reducibility hierar-
chy, such as the existence of countable Borel equivalence relations E to
which the disjoint union of two copies of E is not Borel reducible. While
many of the underlying arguments were later simplified in [HK05],
even these refinements depended upon complex rigidity phenomena.
And while the still simpler arguments of [Hjo12] gave rise to pairwise
incomparable treeable countable Borel equivalence relations, they still
gave little sense of how far one must travel beyond the base of the Borel
reducibility hierarchy before encountering such extraordinary behavior.

The second of the two main goals of this paper is to show that such
phenomena appear just beyond E0 under measure reducibility.

We obtain our results by introducing a measureless notion of rigidity,
which we establish directly for the usual action of SL2(Z) on T2. In the
presence of a measure, this yields strong separability properties of the
induced orbit equivalence relation. Many of our results follow rather
easily from the latter, while others require an additional graph-theoretic
stratification theorem, also established via elementary methods.
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Basic notions

A set X is countable if there is an injection φ : X → N. A sequence
(Xr)r∈R of sets is increasing if Xr ⊆ Xs for all real numbers r ≤ s.

Suppose that X and Y are standard Borel spaces. We say that a
sequence (xy)y∈Y of points of X is Borel if {(xy, y) | y ∈ Y } is a Borel
subset of X × Y , and more generally, a sequence (Xy)y∈Y of subsets of
X is Borel if {(x, y) | x ∈ Xy and y ∈ Y } is a Borel subset of X × Y .

Suppose that E is a Borel equivalence relation on X. We say that
E is aperiodic if all of its classes are infinite, E is countable if all of
its classes are countable, and E is finite if all of its classes are finite.
A subequivalence relation of E is a subset of E that is an equivalence
relation on X. The E-saturation of a set W ⊆ X, or [W ]E, is the
smallest E-invariant set containing W . The orbit equivalence relation
induced by an action of a group Γ on X is the equivalence relation on
X given by x EX

Γ y ⇐⇒ ∃γ ∈ Γ γ · x = y.
Suppose that F is a Borel equivalence relation on Y . A homomor-

phism from E to F is a function φ : X → Y sending E-equivalent
points to F -equivalent points, a reduction of E to F is a homomor-
phism sending E-inequivalent points to F -inequivalent points, and an
embedding of E into F is an injective reduction.

A graph on X is an irreflexive symmetric set G ⊆ X × X. A path
throughG is a sequence (xi)i≤n with the property that ∀i < n xi G xi+1,
in which case n is the length of the path. A graph is acyclic if there is
at most one injective path between any two points. We say that G is a
graphing of E if E is the smallest equivalence relation on X containing
G. When G is acyclic, we also say that G is a treeing of E. We say
that E is treeable if there is a Borel treeing of E.

Suppose that µ is a Borel measure on X. We say that µ is E-ergodic
if every E-invariant Borel set is µ-null or µ-conull, µ is E-invariant
if µ(B) = µ(T (B)) for all Borel sets B ⊆ X and all Borel injections
T : B → X whose graphs are contained in E, and µ is E-quasi-invariant
if the E-saturation of every µ-null set is µ-null.

We say that E is µ-nowhere reducible to F if there is no µ-positive
Borel set B ⊆ X for which E � B is Borel reducible to F , E is µ-
reducible to F if there is a µ-conull Borel set C ⊆ X for which E � C
is Borel reducible to F , E is invariant-measure reducible to F if E � B
is µ-reducible to F for every Borel set B ⊆ X and every (E � B)-
invariant Borel probability measure µ on B, and E is measure reducible
to F if E is µ-reducible to F for every Borel probability measure µ on
X. The corresponding notions of invariant-measure embeddability and
measure embeddability are defined analogously. It is straightforward
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to check that invariant-measure embeddability, measure embeddabil-
ity, and measure reducibility are transitive (and only marginally more
difficult to check that invariant-measure reducibility is transitive).

We say that E is hyperfinite if it is a union of an increasing sequence
(En)n∈N of finite Borel subequivalence relations, E is µ-nowhere hy-
perfinite if there is no µ-positive Borel set B ⊆ X for which E � B is
hyperfinite, E is µ-hyperfinite if there is a µ-conull Borel set C ⊆ X for
which E � C is hyperfinite, E is invariant-measure hyperfinite if E � B
is µ-hyperfinite for every Borel set B ⊆ X and every (E � B)-invariant
Borel probability measure µ on B, and E is measure hyperfinite if E
is µ-hyperfinite for every Borel probability measure µ on X. As a
countable Borel equivalence relation is hyperfinite if and only if it is
Borel reducible to E0 (see Theorem 1.3.8), it immediately follows that
a countable Borel equivalence relation is invariant-measure hyperfinite
if and only if it is invariant-measure reducible to E0, and measure hy-
perfinite if and only if it is measure reducible to E0.

Bases

A quasi-order on Q is a reflexive transitive binary relation ≤ on Q.
A basis for Q under ≤ is a set B ⊆ Q such that ∀q ∈ Q∃b ∈ B b ≤ q.

Here we seek to elucidate the extent to which measure theory can
shed light on the structure of the Borel reducibility hierarchy just be-
yond E0. But given our limited knowledge of the structure of the hier-
archy, the appropriate meaning of “just beyond” is not entirely clear.
We will focus on properties that hold of some relation in every basis
for the non-measure-hyperfinite countable Borel equivalence relations
under measure reducibility. One should first strive to understand the
structure of such bases, the original motivation for this paper.

Theorem A. Every basis for the non-measure-hyperfinite countable
Borel equivalence relations under measure reducibility is uncountable.

Separability

Although we will later give a somewhat different definition, for the
sake of the introduction we will say that F is projectively separable if
whenever X is a standard Borel space, E is a countable Borel equiv-
alence relation on X, and µ is a Borel probability measure on X for
which E is µ-nowhere hyperfinite, there is a Borel set R ⊆ X×Y , whose
vertical sections are countable, such that µ({x ∈ B | ¬x R φ(x)}) = 0
for every Borel set B ⊆ X and every countable-to-one Borel homomor-
phism φ : B → Y from E � B to F . It is easy to see that measure-
hyperfinite Borel equivalence relations are projectively separable.
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Recall that SL2(Z) is the group of all two-by-two matrices with inte-
ger entries and determinant one. The natural action of SL2(Z) on R2

factors over Z2 to an action of SL2(Z) on the quotient space T2. It is
well-known that the orbit equivalence relation induced by this action is
not measure hyperfinite, although it is treeable (see Propositions 1.8.2
and 1.8.3). Our primary new tool here is the following.

Theorem B. The orbit equivalence relation induced by the action of
SL2(Z) on T2 is projectively separable.

We obtain Theorem A by showing that if E is a non-measure-hyper-
finite projectively-separable treeable countable Borel equivalence rela-
tion, then every basis for the non-measure-hyperfinite Borel subequiv-
alence relations of E under measure reducibility is uncountable.

Ultimately, one would like to have the analogous result for bases
for the non-measure-hyperfinite countable Borel equivalence relations
measure reducible to E. We show that E is a counterexample if and
only if it is a countable disjoint union of successors of E0 under measure
reducibility. While the existence of such successors remains open, we
show that if there are any at all, then there are uncountably many.

As projective separability and treeability are closed downward under
Borel reducibility, every basis for the non-measure-hyperfinite count-
able Borel equivalence relations under measure reducibility contains a
relation whose restriction to some Borel set is not measure hyperfinite,
but is projectively separable and treeable. In particular, if we wish
to prove that every such basis contains a relation whose restriction to
some Borel set has a given property, then it is sufficient to show that the
property holds of every non-measure-hyperfinite projectively-separable
treeable countable Borel equivalence relation.

Antichains

The existence of a Borel sequence (Er)r∈R of pairwise non-measure-
reducible treeable countable Borel equivalence relations was first estab-
lished in [Hjo12, Theorem 1.1]. In light of the above observations, the
following yields a simple new proof of this result, while simultaneously
pushing it to the base of the reducibility hierarchy.

Theorem C. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then there is a Borel sequence (Er)r∈R of
pairwise non-measure-reducible subequivalence relations of E.

As with our anti-basis theorem, one would like to have the analogous
result in which each Er is measure reducible to E, rather than contained
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in E. We show that E is a counterexample if and only if there is a finite
family F of successors of E0 under measure reducibility for which E
is a countable disjoint union of countable Borel equivalence relations
measure bi-reducible with those in F .

In particular, it follows that the existence of a sequence (En)n∈N of
pairwise non-measure-reducible countable Borel equivalence relations
measure reducible to E is equivalent to the existence of a Borel se-
quence (Er)r∈R of pairwise non-measure-reducible countable equiva-
lence relations measure reducible to E. Moreover, the nonexistence of
such sequences implies the stronger fact that every sequence (En)n∈N of
countable Borel equivalence relations measure reducible to E contains
an infinite subsequence that is increasing under measure reducibility.

Complexity

In [AK00], the existence of perfect families of pairwise incomparable
countable Borel equivalence relations with distinguished ergodic Borel
probability measures was used to establish a host of complexity results.
We obtain simple new proofs of these results, while simultaneously
pushing them to the base of the reducibility hierarchy, by establishing
the following strengthening of Theorem C.

Theorem D. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then there are Borel sequences (Er)r∈R of
subequivalence relations of E and (µr)r∈R of Borel probability measures
on X such that:

(1) Each µr is Er-ergodic and Er-quasi-invariant.
(2) For all distinct r, s ∈ R, the relation Er is µr-nowhere reducible

to the relation Es.

While this result is somewhat technical, the complexity results of
[AK00] are all obtained as abstract consequences of its conclusion.

Again, one would like to have the analog for which each Er is mea-
sure reducible to E, rather than contained in E. We show that E
is a counterexample if and only if it is a countable disjoint union of
successors of E0 under measure reducibility.

Products

The existence of non-measure-hyperfinite treeable countable Borel
equivalence relations which do not measure reduce every treeable count-
able Borel equivalence relation was originally established in [Hjo08,
Theorem 1.6]. Identify E × F with the equivalence relation on X × Y
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given by (x1, y1) (E × F ) (x2, y2) ⇐⇒ (x1 E x2 and y1 F y2), and let
∆(X) denote the diagonal on X × X. The following yields a simple
new proof of the aforementioned result.

Theorem E. Suppose that X is a standard Borel space and E is a non-
measure-hyperfinite projectively-separable countable Borel equivalence
relation on X. Then E × ∆(R) is not measure reducible to a Borel
subequivalence relation of E.

In [Tho02, Theorem 3.3a], the rigidity results behind [AK00] were
used to establish the existence of countable Borel equivalence relations
E with the property that for no n ∈ N is E×∆(n+1) measure reducible
to E × ∆(n). While there are non-measure-hyperfinite projectively-
separable countable Borel equivalence relations that do not have this
property, in light of our observations on bases, the following yields a
simple new proof of this result, while simultaneously pushing it to the
base of the reducibility hierarchy.

Theorem F. Suppose that X is a standard Borel space and E is a non-
measure-hyperfinite projectively-separable countable Borel equivalence
relation on X. Then there is a Borel set B ⊆ X such that for no
n ∈ N is (E � B)×∆(n+ 1) measure reducible to (E � B)×∆(n).

Containment versus reducibility

In [Ada02], the rigidity results behind [AK00] were used to estab-
lish the existence of countable Borel equivalence relations E ⊆ F on
the same space such that E is not measure reducible to F . This was
strengthened by the proof of [Hjo12, Theorem 1.1], which actually pro-
vided an increasing Borel sequence (Er)r∈R of pairwise non-measure-
reducible treeable countable equivalence relations on the same space.
In light of our observations on bases, the following yields a simple new
proof of this fact, while simultaneously pushing it to the base of the
reducibility hierarchy.

Theorem G. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then there is an increasing Borel sequence
(Er)r∈R of pairwise non-measure-reducible subequivalence relations of
E.

Embeddability versus reducibility

In [Tho02, Theorem 3.3b], the rigidity results behind [AK00] were
used to establish the existence of aperiodic countable Borel equivalence
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relations E and F for which E is Borel reducible to F , but E is not
measure embeddable into F . In fact, such examples were produced
with E = F × I(2), where I(X) = X ×X.

If E is invariant-measure hyperfinite and F is aperiodic and count-
able, then E is measure reducible to F if and only if E is measure em-
beddable into F (see Proposition 3.2.1). In particular, if E is aperiodic
and invariant-measure hyperfinite, then E × I(N) is measure embed-
dable into E. In light of our observations on bases, the following yields
a simple new proof of the aforementioned result, while simultaneously
pushing it to the base of the reducibility hierarchy.

Theorem H. Suppose that X is a standard Borel space and E is an
aperiodic non-invariant-measure-hyperfinite projectively-separable tree-
able countable Borel equivalence relation on X. Then there is an ape-
riodic Borel subequivalence relation F of E with the property that for
no n ∈ N is F × I(n+ 1) measure embeddable into F × I(n).

Refinements

We have taken great care to state our results in forms which make
both the theorems and the underlying arguments as clear as possible.
Nevertheless, by utilizing several additional ideas, one can obtain many
generalizations and strengthenings.

In particular, by establishing analogs of our results for orbit equiva-
lence relations induced by free Borel actions of countable discrete non-
abelian free groups, one can rule out strong dynamical forms of the
von Neumann conjecture, while simultaneously providing an elemen-
tary proof of the existence of continuum-many pairwise incomparable
such relations, as found, for example, in [GP05]. Moreover, as the
notion of comparison we consider is far weaker than those typically
appearing in ergodic theory, our results are correspondingly stronger.

One can also obtain similar results for substantial weakenings of mea-
sure reducibility, as well as for broader classes of equivalence relations.
We plan to explore such developments in future papers.
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Part 1. Preliminaries

We assume familiarity with the basic results and terminology of de-
scriptive set theory, as found in [Kec95]. We provide here all additional
standard definitions and previously known results utilized throughout
the paper. Although we mainly give references to the relevant argu-
ments, we provide proofs when they are particularly short or difficult
to find in the literature. For the sake of simplicity, we assume the ax-
iom of choice throughout. However, with only one slight exception (see
§3.4), our results go through with only the axiom of dependent choice.

1.1. Borel equivalence relations

A partial transversal of an equivalence relation is a subset of its
domain intersecting every equivalence class in at most one point.

Theorem 1.1.1 (Silver). Suppose that X is a Polish space and E is a
co-analytic equivalence relation on X. Then exactly one of the following
holds:

(1) The relation E has only countably-many classes.
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(2) There is a continuous injection of 2N into a partial transversal
of E.

Proof. See [Sil80].

We say that E is smooth if it is Borel reducible to equality on a
standard Borel space. The following fact ensures that E0 is the minimal
non-smooth Borel equivalence relation under Borel reducibility.

Theorem 1.1.2 (Harrington-Kechris-Louveau). Suppose that X is a
Polish space and E is a Borel equivalence relation on X. Then exactly
one of the following holds:

(1) The relation E is smooth.
(2) There is a continuous embedding of E0 into E.

Proof. See [HKL90, Theorem 1.1].

1.2. Countable Borel equivalence relations

We begin by considering smoothness in the presence of countability.

Proposition 1.2.1. Suppose that X is a standard Borel space and E
is a finite Borel equivalence relation on X. Then E is smooth.

Proof. By the isomorphism theorem for standard Borel spaces (see, for
example, [Kec95, Theorem 15.6]), there is a Borel linear ordering ≤
of X. But then the Lusin-Novikov uniformization theorem (see, for
example, [Kec95, Theorem 18.10]) ensures that the function φ : X →
X, given by φ(x) = min≤[x]E, is a Borel reduction of E to equality.

Remark 1.2.2. We say that a subset of X is E-complete if it intersects
every E-class. A selector for E is a reduction of E to equality on X
whose graph is contained in E, and a transversal of E is an E-complete
partial transversal of E. Although the above argument actually yields
the apparently stronger fact that every finite Borel equivalence relation
has a Borel selector, the Lusin-Novikov uniformization theorem implies
that if E is countable, then smoothness, the existence of a Borel selec-
tor, the existence of a Borel transversal, and the existence of a partition
(Bn)n∈N of X into Borel partial transversals are all equivalent. More-
over, in the special case that E is aperiodic, they are also equivalent
to the existence of a partition (Bn)n∈N of X into Borel transversals.

Proposition 1.2.3. Suppose that X is a standard Borel space and E
is a smooth countable Borel equivalence relation on X. Then every
Borel subequivalence relation of E is smooth.
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Proof. By Remark 1.2.2, there is a partition of X into countably-many
Borel partial transversals of E. As every partial transversal of E is
a partial transversal of all of its subequivalence relations, one more
application of Remark 1.2.2 yields the desired result.

A function I : X → X is an involution if I2 = id.

Theorem 1.2.4 (Feldman-Moore). Suppose that X is a standard Bor-
el space and R ⊆ X × X is a reflexive symmetric Borel set whose
vertical sections are all countable. Then there are Borel involutions
In : X → X with the property that R =

⋃
n∈N graph(In).

Proof. This follows from the proof of [FM77, Theorem 1].

The following can be viewed as generalizations of Rokhlin’s Lemma.

Proposition 1.2.5 (Slaman-Steel). Suppose that X is a standard Bor-
el space and E is an aperiodic countable Borel equivalence relation on
X. Then there is a decreasing sequence (Bn)n∈N of E-complete Borel
subsets of X with empty intersection.

Proof. By the isomorphism theorem for standard Borel spaces, we can
assume that X = 2N. For each n ∈ N and x ∈ 2N, let sn(x) be the
lexicographically least s ∈ 2n for which Ns ∩ [x]E is infinite. The Lu-
sin-Novikov uniformization theorem ensures that each of the functions
sn is Borel, thus so too is each of the sets An = {x ∈ 2N | sn(x) v x}.
It follows that the sets Bn = An \

⋂
n∈NAn are as desired.

Proposition 1.2.6. Suppose that X is a standard Borel space and E
is an aperiodic countable Borel equivalence relation on X. Then there
is a sequence (Bn)n∈N of pairwise disjoint E-complete Borel subsets of
X.

Proof. By Proposition 1.2.5, there is a decreasing sequence (An)n∈N of
E-complete Borel subsets of X with empty intersection. Recursively
define functions kn : X → N by first setting k0(x) = 0, and then defin-
ing kn+1(x) = min{k ∈ N | (Akn(x)\Ak)∩[x]E 6= ∅}. The Lusin-Novikov
uniformization theorem ensures that these functions are Borel, so the
sets Bn = {x ∈ X | x ∈ Akn(x) \ Akn+1(x)} are as desired.

1.3. Hyperfiniteness

We begin with the most basic properties of hyperfiniteness.

Proposition 1.3.1 (Dougherty-Jackson-Kechris). Suppose that X is
a standard Borel space and E is a Borel equivalence relation on X.
Then the family of Borel sets on which E is hyperfinite is closed under
countable unions.
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Proof. See, for example, [DJK94, Proposition 5.2].

Proposition 1.3.2 (Dougherty-Jackson-Kechris). The family of hy-
perfinite Borel equivalence relations is closed downward under countable-
to-one Borel homomorphism.

Proof. This follows, for example, from [DJK94, Proposition 5.2].

Proposition 1.3.3 (Jackson-Kechris-Louveau). Suppose that X is a
standard Borel space and E is an aperiodic countable Borel equivalence
relation on X. Then there is an aperiodic hyperfinite Borel subequiva-
lence relation F of E.

Proof. See, for example, [JKL02, Lemma 3.25].

We say that a countable discrete group Γ is hyperfinite if whenever
X is a standard Borel space and Γ y X is a Borel action, the induced
orbit equivalence relation EX

Γ is hyperfinite.

Proposition 1.3.4 (Slaman-Steel, Weiss). The group Z is hyperfinite.

Proof. See, for example, [SS88, Lemma 1].

We say that E is hypersmooth if it is the union of an increasing
sequence (En)n∈N of smooth Borel subequivalence relations.

Theorem 1.3.5 (Dougherty-Jackson-Kechris). Suppose that X is a
standard Borel space and E is a hypersmooth countable Borel equiva-
lence relation on X. Then E is hyperfinite.

Proof. See, for example, the beginning of [DJK94, §8].

The tail equivalence relation induced by a function T : X → X is the
equivalence relation on X given by

x Et(T ) y ⇐⇒ ∃m,n ∈ N Tm(x) = T n(y).

Theorem 1.3.6 (Dougherty-Jackson-Kechris). Suppose that X is a
standard Borel space and T : X → X is Borel. Then Et(T ) is hyper-
smooth.

Proof. See, for example, [DJK94, Theorem 8.1].

We now mention several further facts concerning reducibility.

Theorem 1.3.7 (Dougherty-Jackson-Kechris). All hyperfinite Borel
equivalence relations on standard Borel spaces are Borel embeddable
into all non-smooth Borel equivalence relations on standard Borel spaces.

Proof. This follows from Theorem 1.1.2 and [DJK94, Theorem 1].
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Theorem 1.3.8 (Dougherty-Jackson-Kechris). Suppose that X is a
standard Borel space and E is a countable Borel equivalence relation
on X. Then the following are equivalent:

(1) The relation E is hyperfinite.
(2) The relation E is Borel reducible to E0.

Proof. To see (1) =⇒ (2), note that E0 is non-smooth, and appeal
to Theorem 1.3.7. To see (2) =⇒ (1), note that E0 is hyperfinite, so
Proposition 1.3.2 ensures that so too is every countable Borel equiva-
lence relation Borel reducible to E0.

Theorem 1.3.9 (Dougherty-Jackson-Kechris). All hyperfinite Borel
equivalence relations on standard Borel spaces are comparable under
Borel reducibility.

Proof. As all standard Borel spaces are comparable under Borel em-
beddability, and Remark 1.2.2 implies that smooth countable Borel
equivalence relations have Borel transversals, it follows from the Lu-
sin-Novikov uniformization theorem that all smooth countable Borel
equivalence relations are comparable under Borel reducibility. But the
desired result then follows from Theorem 1.3.7.

Proposition 1.3.10. Suppose that X is a standard Borel space and E
is a non-smooth countable Borel equivalence relation on X. Then there
is a Borel reduction π : X → X of E to E such that E is non-smooth
off of [π(X)]E.

Proof. By Theorem 1.1.2, it is sufficient to establish the proposition for
E0. Towards this end, observe that the function π : 2N → 2N, given by

π(x)(n) =

{
x(m) if n = 2m, and

0 if n is odd,

is as desired.

1.4. Treeability

Here we note the analog of Proposition 1.3.2 for treeability.

Proposition 1.4.1 (Jackson-Kechris-Louveau). The family of treeable
countable Borel equivalence relations is closed downward under count-
able-to-one Borel homomorphism.

Proof. See [JKL02, Proposition 3.3].
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1.5. Measures

Following [Kec95, §17], we use P (X) to denote the standard Borel
space of all Borel probability measures on X, and when X is a Polish
space, we use the same notation to denote the Polish space of all Borel
probability measures on X. Two Borel measures µ and ν are orthogonal
if there is a Borel set which is µ-null and ν-conull.

Theorem 1.5.1 (Burgess-Mauldin). Suppose that X is a standard
Borel space and A ⊆ P (X) is an uncountable analytic set of pairwise
orthogonal measures. Then there are Borel sequences (Bc)c∈2N of pair-
wise disjoint subsets of X and (µc)c∈2N of Borel probability measures
on X in A such that µc(Bc) = 1 for all c ∈ 2N.

Proof. By the isomorphism theorem for standard Borel spaces, we can
assume that X is a zero-dimensional Polish space. Fix a countable
clopen basis A for X. By Theorem 1.1.1, there is a continuous injection
π : 2N → A. Fix real numbers εn > 0 such that

∑
n∈N εn < ∞, and

appeal to the regularity of Borel probability measures on Polish spaces
(see, for example, [Kec95, Theorem 17.10]) to recursively obtain kn ∈
N, φn : 2n → 2kn , and An : 2n → A with the following properties:

(1) ∀n ∈ N∀s ∈ 2n φn+1(sa(0)) 6= φn+1(sa(1)).
(2) ∀i < 2∀n ∈ N∀s ∈ 2n φn(s) v φn+1(sa(i)).
(3) ∀n ∈ N∀s, t ∈ 2n (s = t ⇐⇒ An(s) ∩ An(t) 6= ∅).
(4) ∀n ∈ N∀s ∈ 2n∀µ ∈ π(Nφn(s)) µ(An(s)) ≥ 1− εn.

Define φ : 2N → 2N by φ(c) =
⋃
n∈N φn(c � n), and for each c ∈ 2N,

define Bc =
⋃
n∈N

⋂
m≥nAn(c � n) and µc = (π ◦ φ)(c).

We now describe a means of coding Borel functions, modulo sets
which are null with respect to Borel probability measures, which is
uniform in both the function and the measure in question. Let C(X, Y )
denote the space of continuous functions from X to Y (see, for example,
[Kec95, §4.E]). In order to keep our coding as transparent as possible,
we will assume that X, Y , C(X, Y ), and C(Y,X) are Polish, and that
every continuous partial function from X to Y has a continuous total
extension. This holds, for example, when X = Y = 2N.

Proposition 1.5.2. Suppose that X is a compact Polish space and Y
is a Polish space. Then the function φ : C(X, Y ) × X → Y given by
φ(f, x) = f(x) is continuous.

Proof. It is sufficient to show that if U ⊆ Y is open and φ(f, x) ∈ U ,
then there are open neighborhoods V and W of f and x such that
φ(V ×W ) ⊆ U . Towards this end, fix a Polish metric d on Y compatible
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with its underlying topology. As U is open, there exists ε > 0 such that
B(f(x), ε) ⊆ U . As f is continuous, there is an open neighborhood W
of x such that f(W ) ⊆ B(f(x), ε/2). Fix an open neighborhood V of f
such that ∀g ∈ V ∀x ∈ X d(f(x), g(x)) ≤ ε/2. It only remains to note
that if (g, y) ∈ V ×W , then d(f(x), g(y)) ≤ d(f(x), f(y)) + ε/2 < ε,
thus g(y) ∈ U .

We refer to elements c of C(X, Y )N as codes for measurable functions.
Proposition 1.5.2 ensures that the sets

Dn = {(c, x) ∈ C(X, Y )N ×X | ∀m ≥ n c(m)(x) = c(n)(x)}
and D =

⋃
n∈NDn are Borel. We associate with each c ∈ C(X, Y )N the

map φc : Dc → Y , where φc(x) is the eventual value of (c(n)(x))n∈N.

Proposition 1.5.3. Suppose that X and Y are standard Borel spaces.
Then the function φ : D → Y given by φ(c, x) = φc(x) is Borel.

Proof. As φ(c, x) = y ⇐⇒ ∃n ∈ N∀m ≥ n c(m)(x) = y, the graph of
φ is Borel, so φ is Borel (see, for example, [Kec95, Theorem 14.12]).

The push-forward of a Borel measure µ on X through a Borel func-
tion φ : X → Y is given by (φ∗µ)(B) = µ(φ−1(B)).

Proposition 1.5.4. Suppose that X and Y are standard Borel spaces.
Then the function φ : {(c, µ) ∈ C(X, Y )N×P (X) | µ(Dc) = 1} → P (Y )
given by φ(c, µ) = (φc)∗µ is Borel.

Proof. It is sufficient to show that if B ⊆ Y is Borel and F ⊆ R is of
the form (a, b], where a < b are in R, then the intersection of the sets

R = {(c, µ) ∈ C(X, Y )N × P (X) | µ(Dc) = 1}
and

S = {(c, µ) ∈ C(X, Y )N × P (X) | (φc)∗µ(B) ∈ F}
is Borel. But R is clearly Borel (see, for example, [Kec95, Theorem
17.25]), and to see that S is Borel, observe that (c, µ) ∈ S if and only
if ∃n ∈ N∀m ≥ n µ(c(m)−1(B) ∩ (Dn)c) ∈ F .

1.6. Measured equivalence relations

Here we consider countable Borel equivalence relations in the pres-
ence of measures.

Proposition 1.6.1. Suppose that X is a standard Borel space, E is a
non-smooth Borel equivalence relation on X, and µ is a Borel proba-
bility measure on X. Then there is a µ-null Borel set on which E is
non-smooth.
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Proof. By Theorem 1.1.2, there is a continuous embedding π : 2N → X
of E0 into E. For each c ∈ 2N, the function πc : 2N → 2N, given by

πc(d)(n) =

{
c(m) if n = 2m, and

d(m) if n = 2m+ 1,

is a continuous embedding of E0 into E0. As the sets of the form πc(2
N)

are pairwise disjoint, it follows that for all but countably many c ∈ 2N,
the function π ◦ πc is as desired.

Suppose that ρ : E → (0,∞) is a cocycle, in the sense that ρ(x, z) =
ρ(x, y)ρ(y, z) whenever x E y E z. For each set Y ⊆ [x]E, define
ρ(Y, x) =

∑
y∈Y ρ(y, x). We say that Y is ρ-finite or ρ-infinite accord-

ing to whether ρ(Y, x) is finite or infinite. Our assumption that ρ is a
cocycle ensures that the ρ-finiteness of Y does not depend on the choice
of x ∈ [Y ]E. We say that ρ is finite if every equivalence class of E is
ρ-finite, and ρ is aperiodic if every equivalence class of E is ρ-infinite.
Given Y, Z ⊆ [x]E, define ρ(Y, Z) = ρ(Y, x)/ρ(Z, x). Again, our as-
sumption that ρ is a cocycle ensures that ρ(Y, Z) does not depend on
the choice of x ∈ [Y ]E.

Proposition 1.6.2. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, and there is a finite Borel
cocycle ρ : E → (0,∞). Then E is smooth.

Proof. See, for example, [Mil08, Proposition 2.1].

Theorem 1.6.3 (Ditzen). Suppose that X is a standard Borel space
and E is a countable Borel equivalence relation on X. Then the set of
E-ergodic E-quasi-invariant Borel probability measures on X is Borel.

Proof. See [Dit92, Theorem 2 of Chapter 2].

We say that µ is ρ-invariant if µ(T (B)) =
∫
B
ρ(T (x), x) dµ(x), for

all Borel sets B ⊆ X and all Borel injections T : B → X whose graphs
are contained in E.

Proposition 1.6.4. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and µ is an E-quasi-
invariant Borel probability measure on X. Then there is a Borel cocycle
ρ : E → (0,∞) with respect to which µ is invariant.

Proof. See, for example, [KM04, §8].

We say that E is µ-nowhere smooth if there is no µ-positive Borel
set B ⊆ X for which E � B is smooth.
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Proposition 1.6.5. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, ρ : E → (0,∞) is an aperi-
odic Borel cocycle, and µ is a ρ-invariant Borel probability measure on
X. Then E is µ-nowhere smooth.

Proof. See, for example, [Mil08, Proposition 2.1].

The following fact usually allows us to assume quasi-invariance.

Proposition 1.6.6. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, and µ is a Borel probability
measure on X. Then there is an E-quasi-invariant Borel probability
measure ν on X such that µ� ν and the two measures take the same
values on all E-invariant Borel sets.

Proof. By Theorem 1.2.4, there is a countable group Γ = {γn | n ∈ N}
of Borel automorphisms of X whose induced orbit equivalence relation
is E. Define ν =

∑
n∈N (γn)∗µ/2

n+1.
To see that ν is a Borel probability measure, simply note that it is a

convex combination of Borel probability measures. Moreover, if B ⊆ X
is an E-invariant Borel set, then µ(B) = (γ∗µ)(B) for all γ ∈ Γ, thus
ν(B) =

∑
n∈N µ(B)/2n+1 = µ(B). And if N ⊆ X is a ν-null Borel set,

then µ(N) ≤
∑

n∈N (γn)∗µ(N) = 0, thus µ� ν.

Note that any two E-ergodic E-quasi-invariant Borel probability
measures are either orthogonal or equivalent; the following gives a suf-
ficient condition to strengthen equivalence to equality.

Proposition 1.6.7. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, ρ : E → (0,∞) is a Borel
cocycle, and µ � ν are E-ergodic ρ-invariant Borel probability mea-
sures on X. Then µ = ν.

Proof. The Radon-Nikodým theorem (see, for example, [Kec95, §17.A])
yields a Borel function φ : X → [0,∞) such that µ(B) =

∫
φ(x) dν(x)

for all Borel sets B ⊆ X. As µ(X) = ν(X) = 1, to see that µ = ν, it is
sufficient to show that φ is constant on a µ-conull Borel set. Suppose,
towards a contradiction, that there are µ-positive Borel sets A,B ⊆ X
with the property that ∀x ∈ A∀y ∈ B φ(x) < φ(y). As E is countable,
Theorem 1.2.4 yields a countable group Γ of Borel automorphisms of
X whose induced orbit equivalence relation is E. As µ is E-ergodic,
there exists γ ∈ Γ such that the set A′ = A ∩ γ−1(B) is µ-positive, so

µ(γ(A′)) =

∫
A′
ρ(γ · x, x) dµ(x) =

∫
A′
φ(x)ρ(γ · x, x) dν(x)
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and

µ(γ(A′)) =

∫
γ(A′)

φ(x) dν(x) =

∫
A′
φ(γ · x)ρ(γ · x, x) dν(x),

the desired contradiction.

A Borel disintegration of a Borel probability measure µ onX through
a Borel function φ : X → Y is a Borel sequence (µy)y∈Y of Borel prob-
ability measures on X with the property that µ =

∫
µy d(φ∗µ)(y) and

µy(φ
−1(y)) = 1 for all y ∈ Y . The existence of such sequences is noted,

for example, in [Kec95, Exercise 17.35].
A Borel ergodic decomposition of a Borel cocycle ρ : E → (0,∞) is a

Borel sequence (µx)x∈X of Borel probability measures on X such that
µx = µy for all (x, y) ∈ E, µ({x ∈ X | µ = µx}) = 1 for all E-ergodic
ρ-invariant Borel probability measures µ, and µ =

∫
µx dµ(x) for all

ρ-invariant Borel probability measures µ.

Theorem 1.6.8 (Ditzen). Suppose that X is a standard Borel space,
E is a Borel equivalence relation on X, and ρ : E → (0,∞) is a Borel
cocyle. Then there is a Borel ergodic decomposition of ρ.

Proof. See [Dit92, Theorem 6 of Chapter 2].

A compression of E is a Borel injection T : X → X, whose graph is
contained in E, such that the complement of T (X) is E-complete. We
say that E is compressible if there is a Borel compression of E.

Proposition 1.6.9. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and B ⊆ X is a Borel
E-complete set for which E � B is compressible. Then there is a Borel
injection T : X → B whose graph is contained in E.

Proof. Fix a Borel compression φ : B → B of E � B. The Lusin-Novik-
ov uniformization theorem yields a Borel function ψ : X → B \ φ(B)
whose graph is contained in E, as well as a Borel function ξ : X → N
such that ψ × ξ is injective. Set π(x) = φξ(x) ◦ ψ(x).

We say that E is µ-nowhere compressible if there is no µ-positive
Borel set B ⊆ X for which E � B is compressible.

Theorem 1.6.10 (Hopf). Suppose that X is a standard Borel space,
E is a countable Borel equivalence relation on X, and µ is an E-quasi-
invariant σ-finite Borel measure on X. If E is µ-nowhere compressible,
then there is an E-invariant Borel probability measure ν ∼ µ.

Proof. See, for example, [Nad98, §10].
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When µ is an E-invariant Borel probability measure, the µ-cost of a
graphing G of E is given by

Cµ(G) =
1

2

∫
|Gx| dµ(x).

The µ-cost of E is the infimum of the costs of its Borel graphings.

Proposition 1.6.11 (Gaboriau). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, µ is an E-
invariant Borel probability measure on X, B ⊆ X is an E-complete
Borel set, and µB is the Borel probability measure on B given by
µB(D) = µ(D)/µ(B). Then Cµ(E) − 1 = µ(B)(CµB(E � B) − 1).
In particular, it follows that Cµ(E) ≤ CµB(E � B).

Proof. See, for example, [KM04, Theorem 21.1].

Proposition 1.6.12 (Gaboriau). Suppose that X is a standard Borel
space, E is an aperiodic treeable countable Borel equivalence relation on
X, and µ is an E-invariant Borel probability measure on X for which
E is not µ-hyperfinite. Then Cµ(E) > 1.

Proof. See, for example, [KM04, Corollary 27.12].

An E-ergodic measure µ is (E,F )-ergodic if there is no µ-null-to-one
Borel homomorphism from E to F .

Proposition 1.6.13. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, µ is an (E,E0)-ergodic
Borel probability measure on X, and (En)n∈N is an increasing sequence
of countable Borel equivalence relations on X whose union is E. Then
for all ε > 0, there is a Borel set B ⊆ X of µ-measure at least 1− ε on
which µ is En-ergodic for all sufficiently large n ∈ N.

Proof. See, for example, [Mil12, Proposition 2.2].

For the following, recall the definition of codes for measurable func-
tions given just before Proposition 1.5.3.

Proposition 1.6.14. Suppose that X and Y are compact Polish spaces
and E and F are countable Borel equivalence relations on X and Y .
Then the set of pairs (c, µ) ∈ C(X, Y )N × P (X) for which φc is a
reduction of E to F on an E-invariant µ-conull Borel set is analytic.

Proof. By Theorem 1.2.4, there are countable groups Γ and ∆ of Borel
automorphisms of X and Y whose induced orbit equivalence relations
are E and F . Then (c, µ) has the desired property if and only if there
exists d ∈ C(Y,X)N such that the following conditions hold:
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(1) µ(Dc) = 1.
(2) ∀∗µx ∈ X∀γ ∈ Γ φc(x) F φc(γ · x).
(3) ∀∗µx ∈ X∀δ ∈ ∆ (δ · φc(x) ∈ Dd =⇒ x E φd(δ · φc(x))).
(4) (φc)∗µ(Dd) = 1.

Clearly the sets determined by conditions (1) and (2) are Borel, Propo-
sition 1.5.3 ensures that the set determined by condition (3) is Borel,
and Proposition 1.5.4 implies that the set determined by condition (4)
is Borel.

1.7. Measure hyperfiniteness

Here we consider connections between hyperfiniteness and measures.

Proposition 1.7.1. Suppose that Γ is a countable discrete non-amenable
group, X is a standard Borel space, Γ y X is a free Borel action, and µ
is an EX

Γ -invariant Borel probability measure on X. Then the induced
orbit equivalence relation EX

Γ is not µ-hyperfinite.

Proof. See, for example, [JKL02, Proposition 2.5].

Theorem 1.7.2 (Dye, Krieger). Suppose that X is a standard Bor-
el space, µ is a Borel probability measure on X, and (En)n∈N is an
increasing sequence of µ-hyperfinite Borel equivalence relations on X.
Then the equivalence relation E =

⋃
n∈NEn is also µ-hyperfinite.

Proof. See, for example, [KM04, Propositon 6.11].

Given equivalence relations E and F on X, define

eµ(E,F ) = µ({x ∈ X | [x]E 6= [x]F}).
Proposition 1.7.3. Suppose that X is a standard Borel space and µ
is a Borel probability measure on X. Then eµ is a complete pseudo-
metric.

Proof. To see that eµ is a pseudo-metric, it is sufficient to check the
triangle inequality. Towards this end, suppose that E1, E2, and E3 are
Borel equivalence relations on X, and observe that

eµ(E1, E3)

= 1− µ({x ∈ X | [x]E1 = [x]E3})
≤ 1− µ({x ∈ X | [x]E1 = [x]E2} ∩ {x ∈ X | [x]E2 = [x]E3})
= 1 + µ({x ∈ X | [x]E1 = [x]E2} ∪ {x ∈ X | [x]E2 = [x]E3}) −

(µ({x ∈ X | [x]E1 = [x]E2}) + µ({x ∈ X | [x]E2 = [x]E3}))
≤ 2− (µ({x ∈ X | [x]E1 = [x]E2}) + µ({x ∈ X | [x]E2 = [x]E3}))
= eµ(E1, E2) + eµ(E2, E3).
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To see that eµ is complete, suppose that (En)n∈N is an eµ-Cauchy
sequence, fix a sequence of real numbers εn > 0 such that

∑
n∈N εn <∞,

and fix a strictly increasing sequence of natural numbers kn such that

∀n ∈ N∀i, j ≥ kn eµ(Ei, Ej) ≤ εn.

Note that for all n ∈ N, the set Yn = {x ∈ X | ∀m ≥ n [x]Ekm = [x]Ekn}
has µ-measure at least 1−

∑
m≥n εm. In particular, it follows that the

set Y =
⋃
n∈N Yn is µ-conull. Letting E denote the union of the diagonal

on X with the equivalence relations of the form Ekn � Yn for n ∈ N, it
follows that Ekn →eµ E as n→∞, thus eµ is indeed complete.

It is not difficult to see that eµ is not separable, even when restricted
to the family of Borel equivalence relations on X whose classes are all
of cardinality two. In contrast, we have the following.

Proposition 1.7.4. Suppose that X is a standard Borel space and E is
a countable Borel equivalence relation on X. Then there is a countable
family F of finite Borel subequivalence relations of E such that for all
Borel probability measures µ on X, the family F is eµ-dense in the set
of all finite Borel subequivalence relations of E.

Proof. Fix an enumeration (Un)n∈N of a basis, closed under finite unions,
for a Polish topology generating the Borel structure of X. By Theorem
1.2.4, there is a sequence (fn)n∈N of Borel automorphisms of X such
that E =

⋃
n∈N graph(fn).

For each n ∈ N and s ∈ Nn, let Xs denote the Borel set of x ∈ X with
the property that whenever i, j, k < n, x ∈ Us(i) ∩ Us(j), y ∈ Us(k), and
fi(x) = fk(y), there exists ` < n such that y ∈ Us(`) and fj(x) = f`(y).
Let Fs denote the reflexive Borel relation on X in which distinct points
x and y related if there exist i, j < n and z ∈ Us(i) ∩ Us(j) ∩ Xs such
that x = fi(z) and y = fj(z).

Lemma 1.7.5. Each Fs is an equivalence relation.

Proof. As Fs is clearly reflexive and symmetric, it is sufficient to show
that it is transitive. Towards this end, observe that if x Fs y Fs z are
pairwise distinct, then there exist i, j < n and v ∈ Us(i) ∩ Us(j) ∩ Xs

with the property that x = fi(v) and y = fj(v), as well as k, ` < n and
w ∈ Us(k) ∩Us(`) ∩Xs with the property that y = fk(w) and z = f`(w).
As v ∈ Xs, there exists m < n with w ∈ Us(m) and x = fi(v) = fm(w),
in which case the definition of Fs ensures that x Fs z.

To see that the family F = {Fs | s ∈ N<N} is as desired, suppose
that ε > 0, F is a finite Borel subequivalence relation of E, and µ is
a Borel probability measure on X. Fix n ∈ N sufficiently large that
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the µ-measure of the set Y = {x ∈ X | ∀y, z ∈ [x]F∃i < n f i(y) = z}
is strictly greater than 1 − ε. Set δ = µ(Y ) − (1 − ε), and define
Yk = {x ∈ X | x F fk(x)} for all k < n. As Borel probability measures
on Polish spaces are regular, there exists s ∈ Nn with the property that
the µ-measure of the set

Zi,j,k = {x ∈ X | (f−1
i ◦ fj)(x) ∈ Us(k) ⇐⇒ (f−1

i ◦ fj)(x) ∈ Yk)}
is at least 1− δ/n3, for all i, j, k < n.

Lemma 1.7.6. The set Z = Y ∩
⋂
i,j,k<n Zi,j,k is contained in Xs.

Proof. We must show that if i, j, k < n, z ∈ Us(i) ∩Us(j) ∩Z, y ∈ Us(k),
and fi(z) = fk(y), then there exists ` < n such that y ∈ Us(`) and
fj(z) = f`(y). Towards this end, note that y = (f−1

k ◦ fi)(z), so the
fact that z ∈ Z ensures that z ∈ Yi ∩ Yj and y ∈ Yk. In particular, it
follows that fj(z) F z F fi(z) = fk(y) F y. The fact that z ∈ Y then
yields ` < n such that fj(z) = f`(y). As y ∈ Y`, one more appeal to
the fact that z ∈ Z ensures that y ∈ Us(`).
Lemma 1.7.7. Suppose that z ∈ Z. Then [z]F = [z]Fs.

Proof. Suppose first that x ∈ [z]F . As z ∈ Y , there exist i, j < n such
that x = fi(z) and z = fj(z). Then z ∈ Yi ∩ Yj, so the fact that z ∈ Z
ensures that z ∈ Us(i)∩Us(j). As Lemma 1.7.6 implies that z ∈ Xs, the
definition of Fs ensures that x ∈ [z]Fs .

Suppose now that x ∈ [z]Fs . The definition of Fs then yields i, j < n
and w ∈ Us(i) ∩ Us(j) ∩ Xs such that x = fi(w) and z = fj(w). As
z ∈ Y , there exists ` < n such that z = f`(z). As z ∈ Y`, the fact that
z ∈ Z ensures that z ∈ Us(`), so the fact that w ∈ Xs yields k < n such
that z ∈ Us(k) and x = fk(z). One more appeal to the fact that z ∈ Z
then ensures that z ∈ Yk, in which case x = fk(z) ∈ [z]F .

As µ(Z) ≥ 1− ε, it follows that eµ(F, Fs) ≤ ε.

We use HE denote the space of Borel probability measures µ on X
with respect to which E is µ-hyperfinite. The following fact originally
appeared in [Seg97].

Theorem 1.7.8 (Segal). Suppose that X is a standard Borel space
and E is a countable Borel equivalence relation on X. Then there is a
Borel set F ⊆ (N× (X ×X))× P (X) such that for all µ ∈ P (X), the
following conditions hold:

(1) The sets (F µ)n form an increasing sequence of finite Borel sube-
quivalence relations of E.

(2) The set Bµ = {x ∈ X | [x]E 6=
⋃
n∈N[x](Fµ)n} does not contain

a µ-positive Borel subset on which E is hyperfinite.



MEASURE REDUCIBILITY 23

In particular, it follows that HE is Borel.

Proof. Fix real numbers εn > 0 such that
∑

n∈N εn < ∞. By Proposi-
tion 1.7.4, there is a family E = {Ek | k ∈ N} of finite Borel subequiv-
alence relations of E such that for all Borel probability measures µ on
X, the family E is eµ-dense in the set of all finite Borel subequivalence
relations of E. Then the functions mn : P (X)→ [0, 1] given by

mn(µ) = supk∈N µ({x ∈ X | ∀i < n x Ek fi(x)})
are Borel, as are the functions kn : P (X)→ N given by

kn(µ) = min{k ∈ N | µ({x ∈ X | ∀i < n x Ek fi(x)}) > mn(µ)− εn},
thus so too is the set F ⊆ (N× (X ×X))× P (X) given by

x (F µ)n y ⇐⇒ ∀m ≥ n x Ekm(µ) y.

To see that F is as desired, suppose that µ ∈ P (X). As the sets
(F µ)n =

⋂
m≥nEkm(µ) form an increasing sequence of finite Borel sube-

quivalence relations of E, it is enough to show that if A ⊆ Bµ is a Borel
set on which E is hyperfinite, then µ(A) = 0. As Bµ is E-invariant
and E is countable, the Lusin-Novikov uniformization theorem and
Proposition 1.3.2 allow us to assume that A is E-invariant.

Lemma 1.7.9. Suppose that n ∈ N. Then

µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) ≥ µ(A)− εn.

Proof. As Ekn(µ) is finite, Remark 1.2.2 ensures that it has a Borel
transversal C ⊆ X from which the quotient X/Ekn(µ) inherits a stan-
dard Borel structure, and moreover, that the map associating each
Ekn(µ)-class with the unique point of C it contains is a Borel reduc-
tion of E/Ekn(µ) to E. Proposition 1.3.2 therefore implies that the
restriction of E/Ekn(µ) to A/Ekn(µ) is hyperfinite.

Given ε > 0, observe that all but finitely many relations E ′ along any
sequence witnessing the hyperfiniteness of the restriction of E/Ekn(µ)

to A/Ekn(µ), when viewed as equivalence relations on A, satisfy the
condition that µ({x ∈ A | ∀i < n x E ′ fi(x)}) > µ(A) − ε. The
eµ-density of E therefore yields k ∈ N such that

µ(A)− µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)})− ε
is strictly less than

µ({x ∈ X | ∀i < n x Ek fi(x)})− µ({x ∈ X | ∀i < n x Ekn(µ) fi(x)}).
As the definition of kn(µ) ensures that the latter quantity is itself
strictly less than εn, it follows that

µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) > µ(A)− εn − ε,
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thus µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) ≥ µ(A) − εn, as the former
inequality holds for all ε > 0.

Set A′ =
⋃
n∈N

⋂
m≥n{x ∈ A | ∀i < m x Ekm(µ) fi(x)}, and note that

µ(A) = µ(A′), since
∑

n∈N εn <∞, thus µ(A) = 0, since A′ ∩Bµ = ∅.
As HE = {µ ∈ P (X) | µ(Bµ) = 0} and the Lusin-Novikov uni-

formization theorem ensures that the set B = {(x, µ) ∈ X × P (X) |
x ∈ Bµ} is Borel, it follows that HE is Borel as well.

Proposition 1.7.10. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, ρ : E → (0,∞) is a Borel
cocycle, and there is a ρ-invariant Borel probability measure µ on X
for which E is not µ-hyperfinite. Then there is such a measure which
is also E-ergodic.

Proof. This follows from Theorems 1.6.8 and 1.7.8.

We use EE to denote the family of all E-ergodic Borel probability
measures on X, QE to denote the family of all E-quasi-invariant Borel
probability measures on X, and EQE to denote EE ∩QE.

Theorem 1.7.11. Suppose that X is a standard Borel space and E is
a countable Borel equivalence relation on X. Then exactly one of the
following holds:

(1) The relation E is measure hyperfinite.
(2) The set EQE \ HE is non-empty.

Proof. Suppose that E is not measure hyperfinite. Proposition 1.6.6
then yields an E-quasi-invariant Borel probability measure µ on X
with respect to which E is not µ-hyperfinite, and Propositions 1.6.4
and 1.7.10 give rise to an E-ergodic such measure.

We close this section by considering preservation of µ-hyperfiniteness
under Borel homomorphisms.

Proposition 1.7.12. Suppose that X and Y are standard Borel spaces,
E is a countable Borel equivalence relation on X, φ : X → Y is a Borel
homomorphism from E to equality, µ is a Borel probability measure on
X, (µy)y∈Y is a Borel disintegration of µ through φ, and E � φ−1(y) is
µy-hyperfinite for (φ∗µ)-almost every y ∈ Y . Then E is µ-hyperfinite.

Proof. By Theorem 1.7.8, the set D = {y ∈ Y | E is µy-hyperfinite}
is Borel, and there is a hyperfinite Borel equivalence relation F on
X for which there is a Borel set C ⊆ X such that µy(C) = 1 and
E � C = F � C for all y ∈ D. Then µ(C) = 1, so E is µ-hyperfinite.



MEASURE REDUCIBILITY 25

Proposition 1.7.13. Suppose that X and Y are standard Borel spaces,
E is a countable Borel equivalence relation on X, F is a hyperfinite
Borel equivalence relation on Y , φ : X → Y is a Borel homomorphism
from E to F , µ is a Borel probability measure on X, (µy)y∈Y is a Bor-
el disintegration of µ through φ, and E � φ−1(y) is µy-hyperfinite for
(φ∗µ)-almost every y ∈ Y . Then E is µ-hyperfinite.

Proof. Fix an increasing sequence (Fn)n∈N of finite Borel equivalence
relations on Y whose union is F . Proposition 1.7.12 then ensures that
each of the equivalence relations En = E∩(φ×φ)−1(Fn) is µ-hyperfinite.
As E =

⋃
n∈NEn, Theorem 1.7.2 implies that E is µ-hyperfinite.

1.8. Actions of SL2(Z)

Let ∼ denote the equivalence relation on R2 \ {(0, 0)} given by

v ∼ w ⇐⇒ ∃r ∈ R (r > 0 and rv = w),

and let T denote the quotient. Define projT : R2 \ {(0, 0)} → T by
projT(v) = [v]∼, and let SL2(Z) y T denote the action induced by
SL2(Z) y R2.

Proposition 1.8.1 (Jackson-Kechris-Louveau). The action SL2(Z) y
T is hyperfinite.

Proof. See the remark following the proof of [JKL02, Lemma 3.6].

Let Z2oSL2(Z) denote the group of all functions T : R2 → R2 of the
form T (x) = Ax+b, where A ∈ SL2(Z) and b ∈ Z2, under composition.
Define projSL2(Z) : Z2 o SL2(Z)→ SL2(Z) by projSL2(Z)(Ax+ b) = A.

Proposition 1.8.2. Suppose that µ is the Borel probability measure
on T2 induced by Lebesgue measure on R2. Then the orbit equivalence
relation ET2

SL2(Z) is not µ-hyperfinite.

Proof. As SL2(Z) is not amenable and [JKL02, Lemma 3.6] ensures
that SL2(Z) y R2 is free off of a µ-null set, this is a consequence of
Proposition 1.7.1.

Proposition 1.8.3 (Jackson-Kechris-Louveau). The orbit equivalence

relation ET2

SL2(Z) is treeable.

Proof. See [JKL02, Proposition 3.5].

1.9. Complexity

The conclusion of the following summarizes the main results of [AK00].
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Theorem 1.9.1 (Adams-Kechris). Suppose that X is a standard Borel
space, E is a countable Borel equivalence relation on X, (Er)r∈R is a
Borel sequence of subequivalence relations of E, and (µr)r∈R is a Borel
sequence of Borel probability measures on X such that:

(1) Each µr is Er-ergodic and Er-quasi-invariant.
(2) The relation Er is µr-nowhere reducible to the relation Es, for

all distinct r, s ∈ R.

Then the following hold:

(a) There is an embedding of containment on Borel subsets of R
into Borel reducibility of countable Borel equivalence relations
with smooth-to-one Borel homomorphisms to E (in the codes).

(b) Borel bi-reducibility and reducibility of countable Borel equival-
ence relations with smooth-to-one Borel homomorphisms to E
are both Σ1

2-complete (in the codes).
(c) Every Borel quasi-order is Borel reducible to Borel reducib-

ility of countable Borel equivalence relations with smooth-to-one
Borel homomorphisms to E.

(d) Borel and σ(Σ1
1)-measurable reducibility do not agree on the

countable Borel equivalence relations with smooth-to-one Borel
homomorphisms to E.

Proof. The proof of [AK00, Theorem 4.1] yields (a), the proof of [AK00,
Theorem 5.1] yields (b), the final paragraph of [AK00, §7] yields (c),
and the proof of [AK00, Theorem 5.5] yields (d).

Part 2. Tools

Here we introduce the new ideas underlying our arguments. In §2.1,
we show that SL2(Z) y T satisfies a measureless strengthening of
amenability. In §2.2, we use this to prove that Z2 o SL2(Z) y R2

satisfies a measureless local rigidity property. In §2.3, we establish a
strong separability property for orbit equivalence relations induced by
such actions. In §2.4, we show that the latter yields countability of
an appropriate auxiliary equivalence relation on the underlying space
of ergodic quasi-invariant Borel probability measures witnessing the
failure of hyperfiniteness, and we derive several consequences of this
countability. In §2.5, we provide a general stratification theorem for
treeable countable Borel equivalence relations.

2.1. Productive hyperfiniteness

Suppose that Γ is a countable discrete group. The diagonal product
of actions Γ y X and Γ y Y is the action Γ y X × Y given by
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γ · (x, y) = (γ · x, γ · y). We say that a Borel action Γ y X on a
standard Borel space is productively hyperfinite if whenever Γ y Y is a
Borel action on a standard Borel space, the orbit equivalence relation
induced by the diagonal product action Γ y X × Y is hyperfinite.

Proposition 2.1.1. Suppose that Γ is a countable discrete group, X
is a standard Borel space, and Γ y X is a Borel action such that:

(1) The induced orbit equivalence relation is hyperfinite.
(2) The stabilizer of every point is hyperfinite.
(3) Only countably-many points have infinite stabilizers.

Then Γ y X is productively hyperfinite.

Proof. Let C denote the set of points whose stabilizers are infinite, and
fix an increasing sequence (En)n∈N of finite Borel equivalence relations
whose union is EX

Γ .
Suppose now that Y is a standard Borel space and Γ y Y is a Bor-

el action. For each n ∈ N, let Fn denote the equivalence relation on
(X \C)×Y for which two E

(X\C)×Y
Γ -equivalent pairs (x, y) and (x′, y′)

are related exactly when x En x
′. As each Fn is finite and their union

is E
(X\C)×Y
Γ , the latter equivalence relation is hyperfinite.

It only remains to show that EC×Y
Γ is hyperfinite. As C is countable

and Proposition 1.3.1 ensures that the family of Borel sets on which
a Borel equivalence relation is hyperfinite forms a σ-ideal, we need
only show that EX×Y

Γ is hyperfinite on {x} × Y , for all x ∈ C. But
this follows from the fact that its restriction to such a set is the orbit
equivalence relation induced by a Borel action of the stabilizer of x.

To apply this to SL2(Z) y T, we must first consider its stabilizers.

Proposition 2.1.2. Suppose that θ ∈ T. Then the stabilizer of θ under
SL2(Z) y T is either trivial or infinite cyclic.

Proof. We consider first the case that θ ∩ Z2 6= ∅. Let v denote the
unique element of θ ∩ Z2 of minimal length. Note that the stabilizers
of θ and v are one and the same, for if A is in the stabilizer of θ, then v
is an eigenvector of A, so minimality ensures that Av = v. Minimality
also ensures that the coordinates of v are relatively prime, so there
exists a ∈ Z2 such that a · v = 1, in which case B = ( a1 a2

−v2 v1 ) is a
matrix in SL2(Z) for which Bv = ( 1

0 ), thus conjugation by B yields an
isomorphism of the stabilizer of v with that of ( 1

0 ), and the latter is
the infinite cyclic group {( 1 n

0 1 ) | n ∈ Z}.
It remains to consider the case that θ ∩ Z2 = ∅. Fix v ∈ θ. An

elementary calculation reveals that the stabilizer of v is trivial. Let Λ
denote the set of eigenvalues of matrices in the stabilizer of θ, noting
that Λ forms a group under multiplication.
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Lemma 2.1.3. The group Λ is cyclic.

Proof. It is sufficient to show that 1 is isolated in Λ ∩ [1,∞). Towards
this end, suppose that A is in the stabilizer of θ and v is an eigenvector
of A with eigenvalue λ > 1. If µ is the other eigenvalue of A, then
λµ = det(A) = 1, so tr(A) = λ + µ = λ + 1/λ. As tr(A) ∈ Z, another
elementary calculation reveals that λ ≥ (3 +

√
5)/2.

By Lemma 2.1.3, there is a matrix A in the stabilizer of θ which
has an eigenvalue λ generating Λ. Note that if B is any matrix in the
stabilizer of θ, then there exists n ∈ Z for which v is an eigenvector of
B with eigenvalue λn, in which case AnB−1 is in the stabilizer of v, so
B = An, thus A generates the stabilizer of θ, hence the latter is cyclic.

Observe finally that if A is a non-identity matrix fixing θ, then any
two distinct powers of A are themselves distinct, since the eigenvalues
corresponding to v are distinct. In particular, it follows that if the
stabilizer of θ is non-trivial, then it is infinite.

As a consequence, we can now obtain the main result of this section.

Proposition 2.1.4. The action SL2(Z) y T is productively hyperfi-
nite.

Proof. As Proposition 1.8.1 ensures that the orbit equivalence rela-
tion induced by SL2(Z) y T is hyperfinite, Proposition 2.1.2 ensures
that the non-trivial stabilizers of SL2(Z) y T are infinite cyclic, and
Proposition 1.3.4 ensures that infinite cyclic groups are hyperfinite, it
is sufficient to show that only countably many θ ∈ T have non-trivial
stabilizers, by Proposition 2.1.1. As every such θ is the equivalence
class of an eigenvector of some non-trivial matrix in SL2(Z), and ev-
ery such matrix admits at most two such classes of eigenvectors, this
follows from the countability of SL2(Z).

2.2. Projective rigidity

Given R ⊆ X ×X, ∆ y Y , and ρ : R → ∆, we say that a function
φ : X → Y is ρ-invariant if x1 R x2 =⇒ φ(x1) = ρ(x1, x2) · φ(x2)
for all x1, x2 ∈ X. The difference set associated with two functions
φ : A ⊆ X → Y and ψ : B ⊆ X → Y is given by

D(φ, ψ) = {x ∈ A ∩B | φ(x) 6= ψ(x)} ∪ (A 4 B).

We say that ∆ y Y is projectively rigid if whenever X is a stan-
dard Borel space, E is a countable Borel equivalence relation on X,
and ρ : E → ∆ is a Borel function, there is essentially at most one
countable-to-one ρ-invariant Borel function, in the sense that for any
two such functions φ and ψ, the relation E � D(φ, ψ) is hyperfinite.
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Theorem 2.2.1. The action Z2 o SL2(Z) y R2 is projectively rigid.

Proof. Suppose that X is a standard Borel space, E is a countable
Borel equivalence relation on X, ρ : E → Z2 o SL2(Z) is a Borel func-
tion, φ : X → R2 is a countable-to-one ρ-invariant Borel function, and
ψ : X → R2 is a ρ-invariant Borel function.

Define π : D(φ, ψ) → T by π(x) = projT(φ(x) − ψ(x)), and define
σ : E � D(φ, ψ)→ SL2(Z) by σ(x1, x2) = projSL2(Z)(ρ(x1, x2)).

Lemma 2.2.2. The function π is σ-invariant.

Proof. Simply observe that if x1 (E � D(φ, ψ)) x2, then

π(x1) = projT(φ(x1)− ψ(x1))

= projT(ρ(x1, x2) · φ(x2)− ρ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · φ(x2)− σ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · (φ(x2)− ψ(x2)))

= σ(x1, x2) · projT(φ(x2)− ψ(x2))

= σ(x1, x2) · π(x2),

thus π is σ-invariant.

As (projT2 ◦ φ) � D(φ, ψ) is also σ-invariant, it follows that the
product π × (projT2 ◦ φ) is a countable-to-one homomorphism from
E � D(φ, ψ) to the orbit equivalence relation induced by the diago-
nal product action SL2(Z) y T × T2. As Proposition 2.1.4 ensures
that SL2(Z) y T is productively hyperfinite, it follows that the latter
relation is hyperfinite. As Proposition 1.3.2 ensures that the family
of hyperfinite Borel equivalence relations is closed downward under
countable-to-one Borel homomorphism, it follows that the former rela-
tion is also hyperfinite.

Remark 2.2.3. As noted by both Manuel Inselmann and one of the
anonymous referees, the productive hyperfiniteness of SL2(Z) y T can
also be used to show that the orbit equivalence relation induced by
SL2(Z) y R2 is hyperfinite. To see this, observe that the function
π : R2 \ {0} → T × R2 given by π(x) = (projT(x), x) is a reduction of
the orbit equivalence relation induced by SL2(Z) y (R2 \ {0}) to the
orbit equivalence relation induced by SL2(Z) y T× R2.

2.3. Projective separability

Let L(X, Y ) denote the set of Borel functions φ : B → Y , where B
varies over Borel subsets ofX. Let L(X,µ, Y ) denote L(X, Y ) equipped
with the pseudo-metric dµ(φ, ψ) = µ(D(φ, ψ)).
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Proposition 2.3.1. Suppose that X and Y are standard Borel spaces,
µ is a finite Borel measure on X, and L ⊆ L(X,µ, Y ). Then the
following are equivalent:

(1) The space L is separable.
(2) There is a Borel set R ⊆ X × Y , whose vertical sections are

countable, with the property that

∀φ ∈ L µ({x ∈ dom(φ) | ¬x R φ(x)}) = 0.

Proof. To see (1) =⇒ (2), note that if D is a countable dense subset of
L , then the set R =

⋃
φ∈D graph(φ) is as desired, since graphs of Borel

functions are Borel. To see (2) =⇒ (1), it is sufficient to show that
if condition (2) holds, then there is a countable subset of L(X,µ, Y )
whose closure contains L . As the vertical sections of R are countable,
the Lusin-Novikov uniformization theorem yields a countable family
F of Borel partial functions, the union of whose graphs is R. Fix
a countable algebra B of Borel subsets of X, containing the domain
of every φ ∈ F , such that for all Borel sets A ⊆ X and all ε > 0,
there exists B ∈ B with µ(A 4 B) ≤ ε. We then obtain the desired
countable dense family by considering those ψ : B → Y , whereB ranges
over B, for which there is a finite partition A ⊆ B of B such that
∀A ∈ A ∃φ ∈ F φ � A = ψ � A.

We say that a function φ : Y → Y ′ is a homomorphism from a set
L ⊆ L(X,µ, Y ) to a set L ′ ⊆ L(X,µ, Y ′) if ∀ψ ∈ L φ ◦ ψ ∈ L ′.

Proposition 2.3.2. Suppose that X, Y , and Y ′ are standard Borel
spaces, µ is a Borel probability measure on X, L ⊆ L(X,µ, Y ) and
L ′ ⊆ L(X,µ, Y ′), there is a countable-to-one Borel homomorphism
φ : Y → Y ′ from L to L ′, and L ′ is separable. Then L is separable.

Proof. Fix a Borel set R′ ⊆ X×Y ′ satisfying the analog of condition (2)
of Proposition 2.3.1 for L ′, and observe that the set R = (id×φ)−1(R′)
satisfies condition (2) of Proposition 2.3.1 for L .

Let Hom(E, µ, F ) denote the subspace of L(X,µ, Y ) consisting of all
countable-to-one partial homomorphisms φ ∈ L(X,µ, Y ) from E to F .

Proposition 2.3.3. Suppose that X, Y , and Y ′ are standard Borel
spaces, E, F , and F ′ are countable Borel equivalence relations on X, Y ,
and Y ′, µ is a Borel probability measure on X, there is a countable-to-
one Borel homomorphism φ : Y → Y ′ from F to F ′, and Hom(E, µ, F ′)
is separable. Then Hom(E, µ, F ) is separable.

Proof. As the function φ is also a homomorphism from Hom(E, µ, F )
to Hom(E, µ, F ′), the desired result follows from Proposition 2.3.2.
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We say that F is projectively separable if whenever X is a standard
Borel space, E is a countable Borel equivalence relation on X, and µ is
a Borel probability measure on X with respect to which E is µ-nowhere
hyperfinite, the space Hom(E, µ, F ) is separable.

Proposition 2.3.4. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , there
is a countable-to-one Borel homomorphism from E to F , and F is
projectively separable. Then E is projectively separable.

Proof. This is a direct consequence of Proposition 2.3.3.

We next establish the connection between projective rigidity and
projective separability.

Theorem 2.3.5. Suppose that ∆ is a countable discrete group, Y is a
standard Borel space, and ∆ y Y is a projectively rigid Borel action.
Then the orbit equivalence relation F = EY

∆ is projectively separable.

Proof. Suppose that X is a standard Borel space, E is a countable Bor-
el equivalence relation on X, and µ is a Borel probability measure on
X with respect to which E is µ-nowhere hyperfinite. Let µc denote the
counting measure on X. The Lusin-Novikov uniformization theorem
yields an increasing sequence (Rn)n∈N of Borel subsets of X ×X such
that E =

⋃
n∈NRn and every vertical section of every Rn has cardinality

at most n. Set νn = (µ× µc) � Rn for all n ∈ N.

Lemma 2.3.6. Suppose that φ ∈ Hom(E, µ, F ), ρ : E � dom(φ) → ∆
is a Borel function with respect to which φ is invariant, (Dn)n∈N is
a sequence of Borel subsets of X with

∑
n∈N µ(dom(φ) 4 Dn) < ∞,

(ρn : Rn � Dn → ∆)n∈N is a sequence of Borel functions such that∑
n∈N dνn(ρ � (Rn � dom(φ)), ρn) < ∞, and φn : Dn → Y is a ρn-

invariant Borel function for all n ∈ N. Then dµ(φ, φn)→ 0.

Proof. For all n ∈ N, let En be the equivalence relation on dom(φ)∩Dn

generated by the relation Sn = (Rn � (dom(φ) ∩Dn)) \D(ρ, ρn).

Sublemma 2.3.7. For all n ∈ N, there is a Borel function σn : En →
∆ for which every (ρ � Sn)-invariant function is σn-invariant.

Proof. Note that if x En y, then there are only countably many ` ∈ N
and (zi)i≤` ∈ X`+1 such that x = z0, ∀i < ` zi Sn zi+1, and y = z`,
so the Lusin-Novikov uniformization theorem yields Borel functions
` : En → N and f : En → X<N with the property that

∀(x, y) ∈ En x = f0(x, y) Sn f1(x, y) Sn · · · Sn f`(x,y)(x, y) = y.

Define σn(x, y) =
∏

i<`(x,y) ρ(fi(x, y), fi+1(x, y)).
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As the restrictions of φ and φn to dom(φ)∩Dn are (ρ � Sn)-invariant,
they are σn-invariant. Note that the set D = dom(φ)∩

⋃
n∈N

⋂
m≥nDm

is (µ � dom(φ))-conull.

Sublemma 2.3.8. There is a (µ � D)-conull Borel set C ⊆ D such
that E ∩ (C ×D) ⊆

⋃
n∈N

⋂
m≥n Sm.

Proof. The Lusin-Novikov uniformization theorem ensures that the sets
Cn = {x ∈ dom(φ) ∩Dn | ∃y ∈ dom(φ) ∩Dn x (Rn \ Sn) y} are Borel,
and Fubini’s theorem (see, for example, [Kec95, §17.A]) ensures that
µ(Cn) ≤ dνn(ρ � (Rn � dom(φ)), ρn) for all n ∈ N. In particular, it
follows that the set C = D \

⋂
n∈N

⋃
m≥nCm is (µ � D)-conull. And if

(x, y) ∈ E ∩ (C ×D), then there exists n ∈ N for which x Rn y, so the
fact that x ∈ C ensures that x Sm y for sufficiently large m ≥ n.

Suppose now that ε > 0. Set Fn =
⋂
m≥nEm for all n ∈ N, and

observe that E � C =
⋃
n∈N Fn � C. As Theorem 1.7.2 ensures that the

µ-hyperfinite Borel equivalence relations are closed under increasing
unions, there are Borel sets Bn ⊆ C ∩

⋂
m≥nDm with the property

that µ(C \ Bn) < ε and Fn � Bn is (µ � Bn)-nowhere hyperfinite, thus
φ � Bn = φn � Bn, for sufficiently large n ∈ N.

Fix a countable family B of Borel subsets of X such that for all
Borel sets A ⊆ X and all real numbers ε > 0, there exists B ∈ B
with µ(A 4 B) ≤ ε. Proposition 2.3.1 yields countable dense sets
Dn ⊆ L(Rn, νn,∆). For each n ∈ N, B ∈ B, ε ∈ (0,∞) ∩ Q, and
σ ∈ Dn for which it is possible, fix a Borel set Dn,B,ε,σ ⊆ X with
µ(B 4 Dn,B,ε,σ) ≤ ε, a Borel function ρn,B,ε,σ : Rn � Dn,B,ε,σ → ∆
such that dνn(σ, ρn,B,ε,σ) ≤ ε, and a ρn,B,ε,σ-invariant Borel function
φn,B,ε,σ : Dn,B,ε,σ → Y . It only remains to check that the functions of
the form φn,B,ε,σ are dense in Hom(E, µ, F ).

Towards this end, suppose that φ ∈ Hom(E, µ, F ), and fix a Borel
function ρ : E � dom(φ)→ ∆ for which φ is ρ-invariant. Fix a sequence
(εn)n∈N of positive rational numbers for which

∑
n∈N εn < ∞, and for

each n ∈ N, fix Bn ∈ B with µ(Bn 4 dom(φ)) ≤ εn and σn ∈ Dn such
that dνn(σn, ρ � (Rn � dom(φ))) ≤ εn. Then the sets Dn = Dn,Bn,εn,σn

and the functions ρn = σn,Bn,εn,σn and φn = φn,Bn,εn,σn are well-defined.
As µ(dom(φ) 4 Dn) ≤ 2εn and dνn(ρ � (Rn � dom(φ)), ρn) ≤ 2εn for
all n ∈ N, Lemma 2.3.6 ensures that dµ(φ, φn)→ 0.

In particular, we can now establish the existence of non-trivial projec-
tively-separable countable Borel equivalence relations.

Theorem 2.3.9. The orbit equivalence relation induced by SL2(Z) y
T2 is projectively separable.
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Proof. Note that the orbit equivalence relation in question is Bor-
el reducible to that induced by Z2 o SL2(Z) y R2. As Theorem
2.2.1 ensures that the latter action is projectively rigid, its induced
orbit equivalence relation is projectively separable by Theorem 2.3.5.
But Proposition 2.3.4 ensures that the projectively-separable countable
Borel equivalence relations are closed under Borel reducibility.

2.4. The space of measures

Here we consider connections between E and EQE \ HE. Theorems
1.6.3 and 1.7.8 ensure that the latter is a Borel subset of P (X).

Proposition 2.4.1. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and the set EQE \ HE is
a single measure-equivalence class. Then E is a successor of E0 under
measure reducibility.

Proof. Suppose that Y is a standard Borel space and F is a countable
Borel equivalence relation on Y which is measure reducible to E, but
not to E0. We must show that E is measure reducible to F .

By Theorem 1.7.11, there exists ν ∈ EQF \ HF . By Proposition
1.6.1, there is a ν-null Borel set N ⊆ Y on which F is non-smooth.
As F is countable, the Lusin-Novikov uniformization theorem ensures
that [N ]F is Borel, so by replacing N with [N ]F , we can assume that
N is F -invariant. Fix a ν-conull Borel set C ⊆ ∼N for which there
is a Borel reduction φ : C → X of F � C to E. As E and F are
countable, the Lusin-Novikov uniformization theorem ensures that the
set B = [φ(C)]E is Borel, and that there is a Borel function ψ : B → C
such that graph(φ ◦ ψ) ⊆ E. In particular, it follows that ψ is a Borel
reduction of E � B to F � C.

Suppose now that µ is a Borel probability measure on X. As Proposi-
ton 1.3.2 ensures that the class of hyperfinite Borel equivalence rela-
tions is closed downward under Borel reducibility, it follows that the
push-forward ν ′ of ν � C through φ is not in HE. By Proposition 1.6.6,
there is an E-quasi-invariant Borel probability measure ν ′′ on X such
that ν ′ � ν ′′ and the two measures have the same E-invariant null
Borel sets. Then ν ′′ ∈ EQE \ HE, so E � ∼B is measure hyperfinite,
thus there is a Borel set A ⊆ ∼B such that E � A is hyperfinite and
µ(A ∪ B) = 1. As Theorem 1.3.7 ensures that every hyperfinite Borel
equivalence relation is Borel reducible to every non-smooth Borel equiv-
alence relation, it follows that there is a Borel reduction ψ′ : A→ N of
E � A to F � N . As ψ∪ψ′ is a reduction of E � (A∪B) to F , it follows
that E is µ-reducible to F , thus E is measure reducible to F .
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Proposition 2.4.2. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and EQE \ HE is a non-
empty countable union of measure-equivalence classes. Then E is a
countable disjoint union of successors of E0 under measure reducibility.

Proof. Suppose that N is a non-empty countable set and EQE \ HE

is the disjoint union of the measure-equivalence classes of Borel prob-
ability measures µn on X, for n ∈ N . Fix a partition (Bn)n∈N of X
into E-invariant Borel sets with the property that µn(Bn) = 1 for all
n ∈ N , and observe that Proposition 2.4.1 ensures that each E � Bn is
a successor of E0 under measure reducibility.

On the other hand, we have the following.

Proposition 2.4.3. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and EQE \ HE is not a
countable union of measure-equivalence classes. Then there are Borel
sequences (Bc)c∈2N of pairwise disjoint E-invariant subsets of X and
(µc)c∈2N of Borel probability measures on X in EQE \ HE such that
µc(Bc) = 1 for all c ∈ 2N.

Proof. As measure equivalence is Borel, Theorem 1.1.1 yields a Borel
sequence (µc)c∈2N of pairwise orthogonal Borel probability measures on
X in EQE \ HE. Theorem 1.5.1 then implies that by thinning down
(µc)c∈2N , we can ensure the existence of a Borel sequence (Ac)c∈2N of
pairwise disjoint Borel subsets of X such that µc(Ac) = 1 for all c ∈ 2N.
Define Bc = {x ∈ X | [x]E ⊆ Ac}.

Combining the previous two results yields the following.

Proposition 2.4.4. Suppose that X is a standard Borel space and E is
a non-measure-hyperfinite countable Borel equivalence relation on X.
Then at least one of the following holds:

(1) The relation E is a countable disjoint union of successors of E0

under measure reducibility.
(2) There are Borel sequences (Bc)c∈2N of pairwise disjoint E-invar-

iant subsets of X and (µc)c∈2N of Borel probability measures on
X in EQE \ HE such that µc(Bc) = 1 for all c ∈ 2N.

Proof. This follows from Propositions 2.4.2 and 2.4.3.

Let �E,F denote the set of all (µ, ν) ∈ (EQE \ HE) × (EQF \ HF )
for which there is a µ-conull Borel set C ⊆ X and a Borel reduction
φ : C → Y of E � C to F sending (µ � C)-positive sets to ν-positive
sets. Clearly �E,F is transitive, and if C ⊆ X is a µ-conull Borel
set and φ : C → X is a Borel reduction of E � C to F , then µ �E,F
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φ∗(µ � C). When E = F , we simply write �E. It is easy to see
this is an equivalence relation, in spite of our adherence to the usual
measure-theoretic abuse of notation.

The following fact provides a partial converse to Proposition 2.4.1.

Proposition 2.4.5. Suppose that X is a standard Borel space, E is
a countable Borel equivalence relation on X, and some vertical section
of �E is a countable union of measure-equivalence classes. Then the
following are equivalent:

(1) The set EQE \ HE is a single measure-equivalence class.
(2) The relation E is a successor of E0 under measure reducibility.

Proof. By Proposition 2.4.1, it is sufficient to show that if EQE \ HE

contains multiple measure-equivalence classes, then E is not a successor
of E0 under measure reducibility. Towards this end, fix µ ∈ EQE \ HE

for which the corresponding vertical section of�E is a countable union
of measure-equivalence classes, as well as a Borel probability measure
ν on X in EQE \ HE for which µ 6∼ ν. Fix an E-invariant ν-conull
Borel set D ⊆ X which is null with respect to every measure in the µth

vertical section of �E which is not measure equivalent to ν.

Lemma 2.4.6. Suppose that A ⊆ X \ D is a µ-conull Borel set and
B ⊆ D is a ν-conull Borel set. Then there is no Borel reduction
φ : A ∪B → D of E � (A ∪B) to E � D.

Proof. Suppose that φ is such a reduction. Then our choice ofD ensures
that (φ � A)∗(µ � A) � ν, so µ �E ν. As �E is transitive, it follows
that µ �E (φ � B)∗(ν � B), so our choice of D also ensures that
(φ � B)∗(ν � B) � ν. Then there exist x ∈ A and y ∈ B such that
φ(x) E φ(y), contradicting the fact that φ is a reduction.

In particular, it follows that E is not measure reducible to E � D, and
therefore cannot be a successor of E0 under measure reducibility.

The following provides a partial converse to Proposition 2.4.2.

Proposition 2.4.7. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, and every vertical section
of �E is a countable union of measure-equivalence classes. Then the
following are equivalent:

(1) The set EQE \HE is a non-empty countable union of measure-
equivalence classes.

(2) The relation E is a non-empty countable disjoint union of suc-
cessors of E0 under measure reducibility.
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Proof. By Proposition 2.4.2, it is sufficient to show that if N is a non-
empty countable set and (Bn)n∈N is a partition of X into E-invariant
Borel sets on which E is a successor of E0 under measure reducibility,
then EQE \ HE is a countable union of measure-equivalence classes.
Towards this end, note that for all n ∈ N , every vertical section of
�E�Bn is a countable union of measure-equivalence classes, so Proposi-
tion 2.4.5 ensures that EQE�Bn \HE�Bn is the measure-equivalence class
of some Borel probability measure µn on Bn. Identifying µn with the
corresponding Borel probability measure onX, it follows that EQE\HE

is the union of the measure-equivalence classes of µn, for n ∈ N .

Summarizing these results, we obtain the following.

Theorem 2.4.8. Suppose that X is a standard Borel space, E is a non-
measure-hyperfinite countable Borel equivalence relation on X, and ev-
ery vertical section of �E is a countable union of measure-equivalence
classes. Then exactly one of the following holds:

(1) The relation E is a countable disjoint union of successors of E0

under measure reducibility.
(2) There are Borel sequences (Bc)c∈2N of pairwise disjoint E-invar-

iant subsets of X and (µc)c∈2N of Borel probability measures on
X in EQE \ HE such that µc(Bc) = 1 for all c ∈ 2N.

Proof. If EQE \HE is a non-empty countable union of measure-equival-
ence classes, then Proposition 2.4.7 ensures that condition (2) holds,
and its proof implies that condition (3) fails. If EQE \ HE is not a
countable union of measure-equivalence classes, then Proposition 2.4.7
ensures that condition (2) fails, and Proposition 2.4.3 implies that con-
dition (3) holds.

In light of our earlier results, the following yields a criterion for ensur-
ing that Borel subequivalence relations of successors of E0 under mea-
sure reducibility are again successors of E0 under measure reducibility.

Proposition 2.4.9. Suppose that X is a standard Borel space, E ⊆
F are countable Borel equivalence relations on X, µ is an E-ergodic
F -quasi-invariant Borel probability measure on X, and EQF \ HF is
contained in the measure-equivalence class of µ. Then EQE \ HE is
also contained in the measure-equivalence class of µ.

Proof. Suppose that ν ∈ EQE but µ 6∼ ν. Then there is an E-invariant
µ-null ν-conull Borel set C ⊆ X, in which case Proposition 1.6.6 yields
a Borel probability measure ν ′ � ν with the same F -invariant null
sets. As the F -quasi-invariance of µ ensures that [C]F is µ-null, it
follows that ν ′ ∈ HF . As Proposition 1.3.2 ensures that the class of
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hyperfinite Borel equivalence relations is closed downward under Borel
subequivalence relations, it follows that ν ′ ∈ HE, thus ν ∈ HE.

We also have the following criterion for ensuring strong ergodicity.

Proposition 2.4.10. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , F is
hyperfinite, and µ ∈ EQE \HE is not (E,F )-ergodic. Then EQE \HE

is not a countable union of measure-equivalence classes.

Proof. Fix a µ-null-to-one Borel homomorphism φ : X → Y from E to
F , as well as a Borel disintegration (µy)y∈Y of µ through φ.

Then the set C = {y ∈ Y | E is not µy-hyperfinite} is Borel by The-
orem 1.7.8. As E is µ-nowhere hyperfinite, Proposition 1.7.13 ensures
that C is (φ∗µ)-conull.

In particular, as φ is µ-null-to-one, it follows that C is uncountable,
in which case there is an uncountable partial transversal P ⊆ C of
F . Theorem 1.7.11 then yields Borel probability measures νy on X in
EQE \HE such that [φ−1(y)]E is νy-conull, for all y ∈ P . As the latter
sets are pairwise disjoint, it follows that EQE \ HE is not a countable
union of measure-equivalence classes.

We next compute a bound on the complexity of �E,F .

Proposition 2.4.11. Suppose that X and Y are standard Borel spaces
and E and F are countable Borel equivalence relations on X and Y .
Then �E,F is analytic.

Proof. Note that µ �E,F ν if and only if there is a code c for a mea-
surable function φc : X → Y such that (φc)∗(µ � dom(φc))� ν and φc
is a reduction of E to F on a µ-conull set. Proposition 1.5.4 ensures
that the former relation is Borel, and Proposition 1.6.14 implies that
the latter relation is analytic.

We close this section by noting that our hypothesis on �E holds of
all projectively-separable countable Borel equivalence relations.

Proposition 2.4.12. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , and
F is projectively separable. Then the vertical sections of �E,F are
countable unions of measure-equivalence classes.

Proof. Suppose that µ ∈ EQE \ HE, and let A denote the vertical
section of �E,F corresponding to µ. As Proposition 2.4.11 ensures
that �E,F is analytic, so too is A. As measure equivalence is Bor-
el, Theorem 1.1.1 implies that if A is not a union of countably-many
measure-equivalence classes, then there is a Borel sequence (νc)c∈2N of
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pairwise orthogonal Borel probability measures on Y in A. Theorem
1.5.1 then ensures that by passing to an appropriate subsequence, we
can ensure that there is a Borel sequence (Dc)c∈2N of pairwise disjoint
subsets of Y such that νc(Dc) = 1 for all c ∈ 2N. But for each c ∈ 2N,
there is a µ-conull Borel set Cc ⊆ X for which there is a Borel reduction
φc : Cc → Dc from E � Cc to F � Dc, contradicting the projective
separability of F .

2.5. Stratification

Proposition 1.3.3 ensures that every aperiodic countable Borel equiv-
alence relation has an aperiodic hyperfinite Borel subequivalence rela-
tion. This is the special case of the following fact, in which G is the
difference of E and equality, and ρ is the constant cocycle.

Proposition 2.5.1. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, G is a Borel graphing of E,
and ρ : E → (0,∞) is an aperiodic Borel cocycle. Then there is a Borel
subgraph H of G generating a hyperfinite Borel equivalence relation on
which ρ is aperiodic.

Proof. As graphs of Borel functions are themselves Borel, the following
observation implies that it is sufficient to establish the proposition on
an E-complete Borel set.

Lemma 2.5.2. Suppose that B ⊆ X is an E-complete Borel set and
H is a Borel subgraph of G � B generating a hyperfinite Borel equiva-
lence relation on which ρ is aperiodic. Then there is a Borel function
f : ∼B → X such that graph(f±1)∪H is a subgraph of G generating a
hyperfinite Borel equivalence relation on which ρ is aperiodic.

Proof. As the vertical sections of G are countable, the Lusin-Novikov
uniformization theorem yields Borel sets Bn ⊆ X and Borel functions
fn : Bn → X with the property that G =

⋃
n∈N graph(fn). Let dG(x,B)

denote the length of the shortest G-path from x to an element of B.
Observe that this function is Borel, as it can also be expressed, for
x /∈ B, as the least n ∈ N for which there exist k1, . . . , kn ∈ N such
that fk1 ◦ · · · ◦ fkn(x) ∈ B. Noting that for each x ∈ X, the set of
y ∈ Gx with the property that dG(y,B) = dG(x,B)−1 is countable, one
more application of the Lusin-Novikov uniformization theorem yields
a Borel function f : ∼B → X, whose graph is contained in G, such
that dG(f(x), B) = dG(x,B) − 1 for all x ∈ ∼B. As every connected
component of graph(f±1) ∪ H contains a connected component of H,
it follows that ρ is aperiodic on the equivalence relation generated by
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graph(f±1) ∪ H. As the function sending x to fdG(x,B)(x) is a Bor-
el reduction of the latter equivalence relation to that generated by
H, and Proposition 1.3.2 ensures that the class of hyperfinite Borel
equivalence relations is closed under Borel reducibility, it follows that
the equivalence relation generated by graph(f±1)∪H is hyperfinite.

We will now recursively construct an increasing sequence (Hn)n∈N of
approximations to the desired graph, beginning with H0 = ∅. Given
Hn, let En denote the equivalence relation induced by Hn, and let Bn

denote the set of all x ∈ X for which ρ is finite on En � [x]E. As
Hn and E are countable, the Lusin-Novikov uniformization theorem
ensures that these sets are Borel. As Proposition 1.6.2 implies that
countable Borel equivalence relations admitting finite Borel cocycles
to R are smooth, it follows that En � Bn is smooth. Remark 1.2.2
therefore yields a Borel transversal An ⊆ Bn of En � Bn. Let Rn be
the relation consisting of all (x, (y, (x′, y′))) ∈ An × (An × (Bn × Bn))
for which x En x

′ (G \ En) y′ En y and ρ([x]En , [y]En) ≤ 1. As the
vertical sections of Rn are countable, the Lusin-Novikov uniformization
theorem ensures that the set A′n = projAn(Rn) is Borel, there is a Borel
uniformization f ′n : A′n → An × (Bn × Bn) of Rn, and both of the sets
Sn = f ′n(A′n) and H ′n = projBn×Bn(Sn)±1 are Borel.

Set Hn+1 = Hn ∪ H ′n. To see that the equivalence relation En+1

generated byHn+1 is hyperfinite, we consider the function fn : An → An
given by fn = (projAn ◦ f ′n) ∪ (id � (An \ A′n)). As Theorem 1.3.6
ensures that Et(fn) is hypersmooth, Theorem 1.3.5 implies that it is
hyperfinite. As Proposition 1.3.2 ensures that the class of hyperfinite
Borel equivalence relations is closed downward under Borel reducibility,
and the unique function φn : Bn → An such that ∀x ∈ Bn x En φn(x)
is a Borel reduction of En+1 � Bn to Et(fn), it follows that En+1 is
hyperfinite. This completes the recursive construction.

As every equivalence class of E � ∼Bn contains a ρ-infinite equiva-
lence class of En, it follows from Lemma 2.5.2 that we can construct
the desired graph off of the set B∞ =

⋂
n∈NBn. In order to construct

the desired graph on B∞, set H∞ =
⋃
n∈NHn and let E∞ denote the

equivalence relation generated by H∞. As E∞ =
⋃
n∈NEn, it follows

that E∞ � B∞ is hypersmooth, so Theorem 1.3.5 ensures that it is
hyperfinite. By one more application of Lemma 2.5.2, it is therefore
sufficient to observe that there do not exist (G \ E∞)-related points
x, y ∈ B∞ for which the corresponding equivalence classes [x]E∞ , [y]E∞

are ρ-finite.
Suppose, towards a contradiction, that there are such points. Then

there exists n ∈ N such that ρ([x]E∞ , [x]En), ρ([y]E∞ , [y]En) < 2. As
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ρ([x]En , [y]En) ≤ 1 or ρ([y]En , [x]En) ≤ 1, it follows that φn(x) ∈ A′n
or φn(y) ∈ A′n, so ρ([x]En+1 , [x]En) ≥ 2 or ρ([y]En+1 , [y]En) ≥ 2, thus
ρ([x]E∞ , [x]En+1) < 1 or ρ([y]E∞ , [y]En+1) < 1, which is impossible.

In particular, we obtain the following measure-theoretic corollary.

Proposition 2.5.3. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, µ is an E-quasi-invariant
Borel probability measure on X for which E is µ-nowhere smooth, and
G is a Borel graphing of E. Then there is a Borel subgraph H of G
whose induced equivalence relation is µ-nowhere smooth but hyperfinite.

Proof. By Proposition 1.6.4, there is a Borel cocycle ρ : E → (0,∞)
with respect to which µ is invariant. As Proposition 1.6.2 ensures that
countable Borel equivalence relations admitting finite Borel cocycles
to R are smooth, by throwing away an E-invariant µ-null Borel set on
which E is smooth, we can assume that ρ is aperiodic. Proposition 2.5.1
then yields a Borel subgraph H of G generating a hyperfinite equiv-
alence relation on which ρ is aperiodic. As Proposition 1.6.5 ensures
that every such relation is µ-nowhere smooth, the result follows.

The following yields disjoint Borel sets which, in the measure-theoret-
ic setting, are complete with respect to different equivalence relations.

Proposition 2.5.4. Suppose that X is a standard Borel space, E and
F are aperiodic countable Borel equivalence relations on X, and µ and
ν are Borel probability measures on X. Then there are disjoint Borel
sets A,B ⊆ X such that µ([A]E) = ν([B]F ) = 1.

Proof. By two applications of Proposition 1.2.5, there are decreasing
sequences (An)n∈N and (Bn)n∈N of Borel subsets of X such that each An
is E-complete, each Bn is F -complete, and

⋂
n∈NAn =

⋂
n∈NBn = ∅.

Fix real numbers εn > 0 such that εn → 0 as n → ∞, and recursively
construct strictly increasing sequences (in)n∈N and (jn)n∈N of natural
numbers by setting i0 = 0, and given n ∈ N and in ∈ N, choosing
jn > maxm<n jm sufficiently large that µ([Ain \Bjn ]E) ≥ 1− εn, as well
as in+1 > in sufficiently large that ν([Bjn \ Ain+1 ]F ) ≥ 1 − εn. Define
A =

⋃
n∈N(Ain \Bjn) and B =

⋃
n∈N(Bjn \ Ain+1).

A directed graph on X is an irreflexive subset G of X × X. The
domain of such a relation is the set of x for which Gx is non-empty. An
oriented graph on X is an irreflexive antisymmetric subset H of X×X.
An orientation of a graph G is an oriented graph H with G = H±1.
Although the domain of an orientation H of a graph G can be strictly
smaller than the domain of G itself, we do have the following.
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Proposition 2.5.5. Suppose that X is a standard Borel space, E is
an aperiodic countable Borel equivalence relation on X, G is a locally
countable Borel graph on X, and µ is an E-quasi-invariant Borel prob-
ability measure on X for which E is µ-nowhere smooth and the domain
of G has µ-conull E-saturation. Then there is a Borel orientation H
of G whose domain has µ-conull E-saturation.

Proof. For each Borel set B ⊆ X, put XB = {x ∈ B | [x]E�B is finite}.
As E is countable, the Lusin-Novikov uniformization theorem ensures
that such sets are Borel, as are E-saturations of Borel sets.

Lemma 2.5.6. Suppose that B ⊆ X is Borel. Then [XB]E is µ-null.

Proof. As E is countable, the Lusin-Novikov uniformization theorem
ensures that there is a Borel reduction of E � [XB]E to E � XB. As
Proposition 1.2.1 ensures that E � XB is smooth, so too is E � [XB]E.
As E is µ-nowhere smooth, it follows that [XB]E is µ-null.

We consider now the special case that G is of the form graph(I),
where A ⊆ X is a Borel set and I : A → A is a Borel involution.
Proposition 1.2.1 and Remark 1.2.2 yield a Borel transversal B ⊆ A
of the equivalence relation generated by G. Lemma 2.5.6 ensures that
the set C = [A]E \ [XB ∪XA\B]E is µ-conull.

We use EB, EA\B, µB, and µA\B to denote the restrictions of E,
(I × I)−1(E), µ, and I∗µ to B ∩ C. As EB and EA\B are aperiodic,
Proposition 2.5.4 yields a Borel set B′ ⊆ B, an EB-invariant µB-null
Borel set NB ⊆ C, and an EA\B-invariant µA\B-null Borel set NA\B ⊆
C such that B′ ∪ NB is EB-complete and (B \ B′) ∪ NA\B is EA\B-
complete. As µ is E-quasi-invariant, the set D = C \ [NB ∪NA\B]E is
µ-conull. Let H denote the graph of the restriction of I to B′∪I(B\B′).

The fact that B is a transversal of the equivalence relation gener-
ated by I ensures that H is an oriented graph. To see that H is an
orientation of G, note that if x G y, then x ∈ B or y ∈ B, from which
it follows that (x ∈ B′ or y ∈ I(B \ B′)) or (y ∈ B′ or x ∈ I(B \ B′)),
so (x H y or y H x) or (y H x or x H y), thus x H y or y H x. To see
that the E-saturation of the domain of H is µ-conull, it is enough to
show that the domain of H intersects the E-class of every x ∈ D. To-
wards this end, note that A∩ [x]E is non-empty, thus so too is B∩ [x]E
or (A\B)∩ [x]E, in which case B′∩ [x]E or I(B\B′)∩ [x]E is non-empty
as well, hence the domain of H intersects [x]E.

We now consider the general case. As G is locally countable, Theo-
rem 1.2.4 yields Borel sets An ⊆ X and Borel involutions In : An → An,
with pairwise disjoint graphs, such that G =

⋃
n∈N graph(In). Setting

Gn = graph(In), Xn = [An]E, and µn = µ � Xn, the above special
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case yields Borel orientations Hn of Gn whose domains have µn-conull
E-saturations. Then H =

⋃
n∈NHn is a Borel orientation of G whose

domain has µ-conull E-saturation.

A µ-stratification of E is an increasing sequence (Er)r∈R of subequiv-
alence relations of E whose union is E and which is strictly increasing
on every µ-positive Borel set.

Theorem 2.5.7. Suppose that X is a standard Borel space, E is a
treeable countable Borel equivalence relation on X, and µ is an E-quasi-
invariant Borel probability measure on X for which E is µ-nowhere
hyperfinite. Then there is a Borel µ-stratification of E.

Proof. Fix a Borel treeing G of E. By Proposition 2.5.3, we can assume
that there is Borel subgraph H of G whose induced equivalence relation
F is µ-nowhere smooth but hyperfinite. As E is µ-nowhere hyperfinite,
the F -saturation of the domain of G\H is µ-conull. As F is µ-nowhere
smooth, Proposition 2.5.5 ensures that there is a Borel orientation K
of G \ H whose domain has µ-conull F -saturation. As µ is E-quasi-
invariant, by throwing out an E-invariant µ-null Borel set, we can
assume that the domain of K intersects every F -class. By Proposition
1.6.4, there is a Borel cocycle ρ : E → (0,∞) with respect to which µ
is invariant. As F is µ-nowhere smooth and Proposition 1.6.2 ensures
that F is smooth on the finite part of ρ � (F � dom(K)), by throwing
out another µ-null Borel set, we can assume that ρ � (F � dom(K)) is
aperiodic, and therefore that F � dom(K) is aperiodic. The E-quasi-
invariance of µ again allows us to ensure that the set we throw out is
E-invariant. Proposition 1.2.6 then yields a partition of the domain of
K into a sequence (Bq)q∈Q of pairwise disjoint F -complete Borel sets.
Set Kr = K � (

⋃
q<r Bq×X) and Gr = H∪K±1

r for all r ∈ R. As Gr is
locally countable, the Lusin-Novikov uniformization theorem ensures
that the equivalence relations Er induced by the graphs Gr are Borel.

Suppose now that B ⊆ X is a Borel set for which there are real
numbers r < s with Er � B = Es � B. Then B ∩ [x]Es ⊆ [x]Er for all
x ∈ B. As Gr ⊆ Gs and the latter graph is acyclic, it follows that if
x ∈ B and y ∈ [x]Es \ [x]Er , then there is a unique point of [y]Er of
minimal distance to [x]Er with respect to the graph metric associated
with Gs. Let φ : [B]Es \ [B]Er → [B]Es \ [B]Er be the function sending
each point of its domain to the corresponding point of its Er-class. As
E is countable, the Lusin-Novikov uniformization theorem ensures that
[B]Er , [B]Es , and φ are Borel. As φ is a selector for the restriction of
Er to [B]Es \ [B]Er , it follows that this restriction is smooth. As F is µ-
nowhere smooth and Proposition 1.2.3 ensures that the class of smooth
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countable Borel equivalence relations is closed downward under Borel
subequivalence relations, it follows that Er is also µ-nowhere smooth.
In particular, this means that the set [B]Es \ [B]Er is µ-null, and since
µ is Es-quasi-invariant, so too is the Es-saturation of [B]Es \ [B]Er . As
every Er-class is properly contained in the corresponding Es-class, it
follows that B is contained in this saturation, and is therefore µ-null
as well, hence (Er)r∈R is indeed a µ-stratification of E.

Part 3. Applications

Here we obtain our main results. While our theorems were listed
in the introduction in order of importance, we now proceed according
to the amount of new machinery behind the arguments, with those
requiring the least appearing first. In §3.1, we use the countability of
the vertical sections of �E to establish our results on products. In
§3.2, we combine the countability of the vertical sections of �E with
facts about compressibility and costs of equivalence relations to obtain
our results on the distinction between embeddability and reducibility.
In §3.3, we combine projective separability, facts about �E, and the
existence of stratifications to obtain our results on antichains and the
distinction between containment and reducibility. In §3.4, we use these
tools to obtain our anti-basis theorems. And in §3.5, we combine these
tools with Theorem 1.9.1 to obtain our complexity results.

3.1. Products

We begin this section with an observation concerning measurable
reducibility of products.

Proposition 3.1.1. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , m is a
continuous Borel probability measure on R, µ ∈ EQE \HE, and the µth

vertical section of �E,F is a countable union of measure-equivalence
classes. Then E ×∆(R) is (µ×m)-nowhere reducible to F .

Proof. Suppose, towards a contradiction, that there is a (µ × m)-
positive Borel set B ⊆ X × R on which there is a Borel reduction
φ : B → Y of E × ∆(R) to F . As E is countable, the Lusin-No-
vikov uniformization theorem ensures that [B]E×∆(R) is Borel, in ad-
dition to yielding a Borel reduction of (E × ∆(R)) � [B]E×∆(R) to
(E × ∆(R)) � B. By replacing B with its (E × ∆(R))-saturation, we
can therefore assume that B is (E×∆(R))-invariant. Note that the set
R = {r ∈ R | µ(Br) > 0} is m-positive, by Fubini’s theorem. As m is
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continuous, it follows that R is uncountable. For each r ∈ R, Proposi-
tion 1.6.6 yields an F -quasi-invariant Borel probability measure νr on
Y such that (φr)∗(µ � B

r) � νr, but the two measures have the same
F -invariant null sets. But then the νr are pairwise orthogonal elements
of the µth vertical section of �E,F , the desired contradiction.

This has the following consequences for measure reducibility.

Proposition 3.1.2. Suppose that X and Y are standard Borel spaces,
E is a non-measure-hyperfinite countable Borel equivalence relation on
X, and F is a projectively separable countable Borel equivalence rela-
tion on Y . Then E ×∆(R) is not measure reducible to F .

Proof. By Theorem 1.7.11, there exists µ ∈ EQE \ HE. Proposition
2.4.12 then implies that the µth vertical section of �E,F is a countable
union of measure-equivalence classes. Fix a continuous Borel probabil-
ity measure m on R. As Proposition 3.1.1 ensures that E × ∆(R) is
(µ ×m)-nowhere reducible to F , the former is not measure reducible
to the latter.

Theorem 3.1.3 (Hjorth). There is a non-measure-hyperfinite treeable
countable Borel equivalence relation to which some treeable countable
Borel equivalence relation is not measure reducible.

Proof. Proposition 3.1.2 ensures that every non-measure-hyperfinite
projectively-separable treeable countable Borel equivalence relation has
the desired property.

We now consider products with smaller equivalence relations.

Proposition 3.1.4. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , m is a
strictly positive probability measure on 2, µ ∈ EQE\HE, ν ∈ EQF \HF ,
and µ�E,F ν. If the µth vertical section of �E,F is a countable union
of measure-equivalence classes, then there is an F -invariant ν-conull
Borel set C ⊆ Y for which E×∆(2) is not (µ×m)-reducible to F � C.

Proof. Fix an F -invariant ν-conull Borel set C ⊆ Y which is ν ′-null for
every measure ν ′ in the vertical section of �E,F corresponding to µ,
other than those which are measure equivalent to ν. Suppose, towards
a contradiction, that there is a (µ ×m)-positive Borel set B ⊆ X × 2
on which there is a Borel reduction φ : B → Y of E ×∆(2) to F � C.
As E is countable, the Lusin-Novikov uniformization theorem ensures
that [B]E×∆(2) is Borel, in addition to yielding a Borel reduction of
(E × ∆(2)) � [B]E×∆(2) to (E × ∆(2)) � B. By replacing B with its
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(E ×∆(2))-saturation, we can therefore assume that B is (E ×∆(2))-
invariant. Proposition 1.6.6 then yields (F � C)-quasi-invariant Borel
probability measures νi on C with the property that (φi)∗(µ � B

i)� νi
but the two measures have the same E-invariant null Borel sets, for all
i < 2. As ν0 and ν1 are orthogonal elements of the vertical section of
�E,F �C , this contradicts our choice of C.

This has the following consequence for measure reducibility.

Proposition 3.1.5. Suppose that X is a standard Borel space and
E is a non-measure-hyperfinite projectively-separable countable Borel
equivalence relation on X. Then there is a Borel set B ⊆ X on which
E is not measure hyperfinite such that (E � B)×∆(2) is not measure
reducible to E � B.

Proof. By Theorem 1.7.11, there exists µ ∈ EQE \ HE. Proposition
2.4.12 then implies that the µth vertical section of �E is a countable
union of measure-equivalence classes. Fix a strictly positive probability
measure m on 2. As Proposition 3.1.4 yields a µ-conull Borel set C ⊆ X
for which E ×∆(2) is not (µ ×m)-reducible to E � C, it follows that
(E � C)×∆(2) is not measure reducible to E � C.

Remark 3.1.6. A similar argument can be used to show that if X and
Y are standard Borel spaces, E is a non-measure-hyperfinite countable
Borel equivalence relation on X, and F is a non-measure-hyperfinite
projectively-separable countable Borel equivalence relation on Y , then
there is a Borel set B ⊆ Y on which F is not measure-hyperfinite such
that E ×∆(2) is not measure reducible to F � B.

3.2. Reducibility without embeddability

We begin this section with an observation concerning the relationship
between measurable reducibility and measurable embeddability.

Proposition 3.2.1. Suppose that X and Y are standard Borel spaces,
E is an invariant-measure-hyperfinite countable Borel equivalence re-
lation on X, F is an aperiodic countable Borel equivalence relation Y ,
and µ is a Borel probability measure on X. Then E is µ-reducible to
F if and only if E is µ-embeddable into F .

Proof. Suppose that E is µ-reducible to F , and fix a µ-conull Bor-
el set C ⊆ X on which there is a Borel reduction φ : C → Y of E
to F . As E is countable, the Lusin-Novikov uniformization theorem
ensures that [C]E is Borel, and there is a Borel reduction of E � [C]E
to E � C. By replacing φ with its composition with such a function,
we can therefore assume that C is itself E-invariant. Proposition 1.6.6
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ensures that there is an E-quasi-invariant Borel probability measure on
X, with respect to which µ is absolutely continuous, which agrees with
µ on all E-invariant Borel sets. By replacing µ with such a measure,
we can assume that µ is E-quasi-invariant.

We handle first the case that F is smooth. Then E � C is also
smooth. As E is countable, Remark 1.2.2 yields partitions (Cn)n∈N of
C into Borel partial transversals of E, and (Dn)n∈N of Y into Borel
transversals of F . One then obtains an embedding π : C → Y of E � C
into F by setting

π(x) = y ⇐⇒ ∃n ∈ N (x ∈ Cn, y ∈ Dn, and φ(x) F y).

As C inherits a standard Borel structure from X and functions between
standard Borel spaces are Borel if and only if their graphs are Borel,
it follows that π is Borel.

We next turn to the case that F is non-smooth. As Proposition
1.3.10 ensures that there is a Borel reduction of F to the restriction of
F to an F -invariant Borel set off of which F is smooth, by composing
such a reduction with φ, we can assume that the restriction of F to the
set Z = ∼[φ(X)]E is non-smooth. As φ is countable-to-one, the Lusin-
Novikov uniformization theorem yields an (E � C)-complete Borel set
B ⊆ C on which φ is injective.

Fix a Borel set A ⊆ B of maximal µ-measure on which E is com-
pressible. As E is countable, the Lusin-Novikov uniformization the-
orem ensures that [A]E is Borel. As Proposition 1.6.9 ensures that
countable Borel equivalence relations can be Borel embedded into their
restrictions to complete compressible Borel sets, there is a Borel injec-
tion ψ : [A]E → A whose graph is contained in E. Then the function
π = φ ◦ ψ is a Borel embedding of E � [A]E into F � φ(C).

If µ([A]E) = 1, then it follows that E is µ-embeddable into F . Oth-
erwise, Theorem 1.6.10 ensures that µ � (B \ [A]E) is equivalent to
an E � (B \ [A]E)-invariant Borel probability measure ν on B \ [A]E.
As E is invariant-measure hyperfinite, there is a ν-conull Borel set
A′ ⊆ B \ [A]E on which E is hyperfinite. As E is countable, the Lu-
sin-Novikov uniformization theorem ensures that [A′]E is Borel and
there is a Borel reduction of E � [A′]E to E � A′. As Proposition
1.3.2 ensures that the class of hyperfinite Borel equivalence relations
is closed downward under Borel reducibility, it follows that E � [A′]E
is also hyperfinite. As Theorem 1.3.7 ensures that every hyperfinite
Borel equivalence relation is Borel embeddable into every non-smooth
Borel equivalence relation, there is a Borel embedding π′ : [A′]E → Z of
E � [A′]E into F � Z. As µ([A ∪ A′]E) = 1 and π ∪ π′ is an embedding
of E � [A ∪ A′]E into F , the proposition follows.



MEASURE REDUCIBILITY 47

This has the following consequence for the relationship between mea-
sure embeddability and measure reducibility.

Proposition 3.2.2. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , E is
invariant-measure hyperfinite, and F is aperiodic. Then E is measure
reducible to F if and only if E is measure embeddable into F .

Proof. This is a direct consequence of Proposition 3.2.1.

In particular, we obtain the following.

Proposition 3.2.3. Suppose that X is a standard Borel space and E is
an aperiodic invariant-measure-hyperfinite countable Borel equivalence
relation on X. Then E × I(N) is measure embeddable into E.

Proof. This is a direct consequence of Proposition 3.2.2.

We next record a natural obstacle to measurable embeddability. We
use IE to denote the family of all E-invariant Borel probability mea-
sures on X, and EIE to denote EE ∩ IE.

Proposition 3.2.4. Suppose that X and Y are standard Borel spaces,
E and F are countable Borel equivalence relations on X and Y , µ ∈
EIE \ HE, ν ∈ EIF \ HF , Cµ(E) < Cν(F ), and the µth vertical sec-
tion of �E,F is the measure-equivalence class of ν. Then E is not
µ-embeddable into F .

Proof. Suppose, towards a contradiction, that there is a µ-conull Bor-
el set C ⊆ X on which there is a Borel embedding π : C → Y of
E into F . Then π∗(µ � C) � ν, since otherwise Proposition 1.6.6
would yield an F -quasi-invariant Borel probability measure ν ′ on Y
with the same F -invariant Borel sets as π∗(µ � C), in which case the
E-ergodicity of µ would ensure that ν ′ is F -ergodic, and the downward
closure of the family of hyperfinite Borel equivalence relations under
Borel embeddability (see Proposition 1.3.2) would imply that F is ν ′-
nowhere hyperfinite, despite the fact that ν and ν ′ are orthogonal. Let
νD be the Borel probability measure on the set D = π(C) given by
νD(B) = ν(B)/ν(D). As π∗(µ � C) � νD and both measures are
(F � D)-ergodic and (F � D)-invariant, Proposition 1.6.7 implies that
π∗(µ � C) = νD. The formula for the cost of Borel restrictions given by
Proposition 1.6.11 then ensures that Cν(F ) ≤ CνD(F � D) = Cµ(E), a
contradiction.

As a special case, we obtain the following.
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Proposition 3.2.5. Suppose that X is a standard Borel space, E is a
countable Borel equivalence relation on X, µ ∈ EIE\HE, 1 < Cµ(E) <
∞, and the µth vertical section of �E is the measure-equivalence class
of µ. Then for no n ∈ N is it the case that E×I(n+1) is µ-embeddable
into E × I(n).

Proof. Let mn denote the uniform probability measure on n. Then the
formula for the cost of Borel restrictions given by Proposition 1.6.11
ensures that Cµ×mn+1(E×I(n+1)) < Cµ×mn(E×I(n)) for all n ∈ N, so
Proposition 3.2.4 implies that E×I(n+1) is not (µ×mn+1)-embeddable
into E × I(n).

Putting these observations together, we obtain the following.

Proposition 3.2.6. Suppose that X is a standard Borel space and E
is an aperiodic non-invariant-measure-hyperfinite projectively-separable
treeable countable Borel equivalence relation on X. Then there is an
aperiodic Borel subequivalence relation F of E such that for no n ∈ N
is F × I(n+ 1) measure embeddable into F × I(n).

Proof. Fix a Borel set B ⊆ X and an (E � B)-invariant Borel probabil-
ity measure µ on B such that E � B is not µ-hyperfinite. Fix a Borel
graphing G of E � B. As G is locally countable, the Lusin-Novikov
uniformization theorem yields an increasing sequence (Gn)n∈N of Borel
subgraphs of G of bounded vertex degree whose union is G. As Theo-
rem 1.7.2 ensures that the increasing union of µ-hyperfinite Borel equiv-
alence relations is µ-hyperfinite, there exists n ∈ N sufficiently large for
which the equivalence relation F generated by Gn is not µ-hyperfinite.
Note that Cν(F ) <∞ for every F -invariant Borel probability measure
ν on B. By Proposition 1.7.10, there exists ν ∈ EIF \ HF . As Propo-
sition 2.3.4 ensures that the class of projectively-separable countable
Borel equivalence relations is closed downward under Borel restrictions
and Borel subequivalence relations, it follows that F is projectively
separable. As Proposition 2.4.12 ensures that the vertical sections of
�F ′ are countable unions of measure-equivalence classes, there is a ν-
conull Borel set C ⊆ B which is null with respect to every measure
in the νth vertical section of �F ′ , with the exception of those in the
measure-equivalence class of ν. By removing a ν-null Borel subset of
C, we can assume that the relation F ′ = F � C is aperiodic. As
Proposition 1.4.1 ensures that the family of treeable countable Borel
equivalence relations is closed downward under Borel subequivalence
relations, it follows that F ′ is treeable, so 1 < Cν(F

′) < ∞ by Propo-
sition 1.6.12, thus Proposition 3.2.5 implies that for no n ∈ N is it the
case that F ′ × I(n + 1) is ν-embeddable into F ′ × I(n). Proposition
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1.3.3 then yields an aperiodic hyperfinite Borel subequivalence relation
F ′′ of E � ∼C, in which case F ′ ∪ F ′′ is as desired.

3.3. Antichains

In this section, we produce perfect sequences of pairwise non-measure
reducible Borel subequivalence relations of a given projectively-separable
treeable countable Borel equivalence relation.

We begin by noting that hyperfiniteness rules out such sequences.

Proposition 3.3.1. Suppose that X is a standard Borel space, E is a
hyperfinite Borel equivalence relation on X, and E1 and E2 are Borel
subequivalence relations of E. Then E1 and E2 are comparable under
Borel reducibility.

Proof. As Proposition 1.3.2 ensures that the family of hyperfinite Bor-
el equivalence relations is closed downward under Borel subequivalence
relations, it follows that E1 and E2 are themselves hyperfinite. But
Theorem 1.3.9 implies that any two hyperfinite Borel equivalence rela-
tions are comparable under Borel reducibility.

We next turn our attention to very special sorts of antichains.

Proposition 3.3.2. Suppose that X is a standard Borel space and
E is a non-measure-hyperfinite projectively-separable countable Borel
equivalence relation on X. Then exactly one of the following holds:

(1) The relation E is a non-empty countable disjoint union of suc-
cessors of E0 under measure reducibility.

(2) There are Borel sequences (Bc)c∈2N of pairwise disjoint E-inva-
riant subsets of X and (µc)c∈2N of Borel probability measures
on X in EQE \ HE with the property that µc(Bc) = 1 for all
c ∈ 2N, and for no distinct c, d ∈ 2N is it the case that E � Bc

is µc-reducible to E � Bd.

Proof. By Theorem 2.4.8, it is sufficient to show that if (Bc)c∈2N is a
Borel sequence of pairwise disjoint E-invariant sets and (µc)c∈2N is a
Borel sequence of Borel probability measures on X in EQE \ HE such
that µc(Bc) = 1 for all c ∈ 2N, then by passing to a perfect subsequence,
one can ensure that for no distinct c, d ∈ 2N is it the case that E � Bc

is µc-reducible to E � Bd. Towards this end, let R denote the binary
relation on 2N in which two sequences c, d ∈ 2N are R-related if E � Bc

is µc-reducible to E � Bd. Then Proposition 1.6.14 ensures that R
is analytic, and therefore has the Baire property. As the projective
separability of E ensures that the vertical sections of R are countable,
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it follows that the vertical sections of R are meager, so the Kuratowski-
Ulam theorem (see, for example, [Kec95, Theorem 8.41]) ensures that
R is itself meager, in which case Mycielski’s theorem (see, for example,
[Kec95, Theorem 19.1]) yields the desired perfect subsequence.

In particular, this allows us to characterize the circumstances under
which there is a perfect sequence of pairwise non-measure reducible
countable Borel equivalence relations which are measure reducible to a
given projectively-separable countable Borel equivalence relation.

Proposition 3.3.3. Suppose that X is a standard Borel space and
E is a non-measure-hyperfinite projectively-separable countable Borel
equivalence relation on X. Then exactly one of the following holds:

(1) There is a finite family F of successors of E0 under measure
reducibility for which E is a non-empty countable disjoint union
of Borel equivalence relations which are measure bi-reducible
with those in F .

(2) There is a Borel sequence (Ec)c∈2N of pairwise non-measure-red-
ucible countable equivalence relations measure reducible to E.

Proof. In light of Proposition 3.3.2, we can assume that E is a non-
empty countable disjoint union of a sequence (En)n∈N of successors of
E0 under measure reducibility.

To see that at least one of these conditions holds, note that if condi-
tion (1) fails, then by passing to an infinite subsequence, we can assume
that the relations En are pairwise non-measure-reducible. Proposition
2.4.5 then ensures that if n ∈ N and µ ∈ EQEn \ HEn , then En is
not µ-reducible to

⊔
m∈N\{n}Em. In particular, if (Nc)c∈2N is a Borel

sequence of subsets of N such that Nc * Nd for all distinct c, d ∈ 2N,
then the relations Ec =

⊔
n∈Nc En are pairwise non-measure-reducible.

To see that the conditions are mutually exclusive, we will estab-
lish the stronger fact that if condition (1) holds, then every sequence
(Fn)n∈N of countable Borel equivalence relations measure reducible to
E has an infinite subsequence that is (not necessarily strictly) increas-
ing under measure reducibility. Towards this end, note that for each
n ∈ N, there is a sequence (kF,n)F∈F of countable cardinals such that
Fn is measure bi-reducible with

⊔
F∈F F ×∆(kF,n). A straightforward

induction shows that, by passing to an infinite subsequence, we can
assume that kF,m ≤ kF,n for all F ∈ F and m ≤ n in N. But this
implies that (Fn)n∈N is increasing under measure reducibility.

As a corollary, we obtain the following.
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Proposition 3.3.4. Suppose that X is a standard Borel space and E
is a projectively-separable countable Borel equivalence relation on X.
Then the following are equivalent:

(1) There is a sequence (En)n∈N of countable Borel equivalence rela-
tions measure reducible to E for which no infinite subsequence is
(not necessarily strictly) increasing under measure reducibility.

(2) There is a sequence (En)n∈N of pairwise non-measure-reducible
countable Borel equivalence relations measure reducible to E.

(3) There is a Borel sequence (Ec)c∈2N of pairwise non-measure-red-
ucible countable equivalence relations measure reducible to E.

Proof. This follows from the proof of Proposition 3.3.3.

We next turn our attention to subequivalence relations. The main
additional tool we will need is the following observation concerning the
power of µ-stratifications in the presence of projective separability.

Proposition 3.3.5. Suppose that X is a standard Borel space, E is a
projectively-separable countable Borel equivalence relation on X, µ is
a Borel probability measure on X, (Bn)n∈N is a sequence of µ-positive
Borel subsets of X, and (En,r)r∈R is a Borel (µ � Bn)-stratification
of E � Bn such that

⋂
r∈REn,r is (µ � Bn)-nowhere hyperfinite, for

all n ∈ N. Then there is a Borel embedding π : R → R of the usual
ordering of R into itself such that Em,π(r) is (µ � Bm)-nowhere reducible
to En,π(s) for all distinct (m, r), (n, s) ∈ N× R.

Proof. Let Rm,n denote the relation on R in which two real numbers r
and s are related if Em,r is (µ � Bm)-somewhere reducible to En,s.

Lemma 3.3.6. Every horizontal section of every Rm,n is countable.

Proof. Suppose, towards a contradiction, that there exist m,n ∈ N and
t ∈ R for which Rt

m,n is uncountable. For each r ∈ Rt
m,n, fix a µ-positive

Borel set Bm,r ⊆ Bm on which there is a Borel reduction φr : Bm,r → Bn

of Em,r to En,t. Then there exists ε > 0 such that µ(Bm,r) ≥ ε for
uncountably many r ∈ Rt

m,n. As each φr is a homomorphism from
(
⋂
r∈REm,r) � Bm,r to E, the (µ � Bm)-nowhere hyperfiniteness of

(
⋂
r∈REm,r) � Bm coupled with the projective separability of E ensures

the existence of distinct r, s ∈ Rt
m,n for which µ(Bm,r), µ(Bm,s) ≥ ε and

dµ(φr, φs) < ε. Then {x ∈ Bm,r ∩ Bm,s | φr(x) = φs(x)} is a µ-positive
Borel set on which Em,r and Em,s coincide, a contradiction.

Proposition 1.6.14 ensures that each Rm,n is analytic, and there-
fore has the Baire property. As the horizontal sections of each Rm,n

are countable and therefore meager, the Kuratowski-Ulam theorem en-
sures that each Rm,n is meager, thus so too is their union R, in which
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case Mycielski’s theorem yields a continuous injection φ : 2N → R with
respect to which pairs of distinct sequences in 2N are mapped to R-
unrelated pairs of real numbers. Galvin’s theorem (see, for example,
[Kec95, Theorem 19.7]) ensures that by replacing φ with its composi-
tion with an appropriate continuous function from 2N to 2N, we can
assume that it is an embedding of the lexicographical ordering of 2N

into the usual ordering of R. Fix a Borel embedding ψ : R→ 2N of the
usual ordering of R into the lexicographical ordering of 2N, and observe
that the function π = φ ◦ ψ is as desired.

In particular, this yields the following measure-theoretic result.

Theorem 3.3.7. Suppose that X is a standard Borel space, E is a
projectively-separable treeable countable Borel equivalence relation on
X, and µ is a Borel probability measure on X for which E is µ-nowhere
hyperfinite. Then there is an increasing Borel sequence (Er)r∈R of pair-
wise µ-nowhere reducible subequivalence relations of E.

Proof. As Proposition 1.6.6 yields an E-quasi-invariant Borel proba-
bility measure ν for which µ � ν, Theorem 2.5.7 yields a Borel µ-
stratification (Fr)r∈R of E. As Theorem 1.7.2 ensures that the family
of µ-hyperfinite countable Borel equivalence relations is closed under
increasing unions, there is a partition (Bn)n∈N of X into µ-positive
Borel sets, as well as a sequence (rn)n∈N of real numbers, such that
Frn � Bn is (µ � Bn)-nowhere hyperfinite for all n ∈ N. Fix order-
preserving Borel injections φn : R → (rn,∞), and appeal to Proposi-
tion 3.3.5 to obtain a Borel embedding φ : R→ R of the usual ordering
of R into itself such that F(φm◦φ)(r) � Bm is (µ � Bm)-nowhere reducible
to F(φn◦φ)(s) for all distinct (m, r), (n, s) ∈ N × R. Then the relations
Er =

⋃
n∈N(F(φn◦φ)(r) � Bn) are as desired.

In the special case that the equivalence relation in question is a
successor of E0 under measure reducibility, we can ensure that the
same holds of the subequivalence relations.

Theorem 3.3.8. Suppose that X is a standard Borel space, E is a
projectively-separable treeable countable Borel equivalence relation on
X which is a successor of E0 under measure reducibility, and µ is
a Borel probability measure on X for which E is µ-nowhere hyperfi-
nite. Then there is an increasing Borel sequence (Er)r∈R of pairwise
µ-nowhere reducible subequivalence relations of E consisting of suc-
cessors of E0 under measure reducibility with the property that µ is
(
⋂
r∈REr)-ergodic.
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Proof. Proposition 1.6.6 yields an E-quasi-invariant Borel probability
measure ν � µ agreeing with µ on all E-invariant Borel sets. By
Proposition 1.6.4, there is a Borel cocycle ρ : E → (0,∞) with respect
to which ν is invariant. As Theorem 1.6.8 ensures the existence of a
Borel ergodic decomposition of ρ, Proposition 2.4.5 implies that EQE \
HE consists of a single measure-equivalence class, and Proposition 1.6.7
implies that E is not almost-everywhere hyperfinite with respect to at
most one measure along the ergodic decomposition, it follows from
Proposition 1.7.12 that ν is E-ergodic. Proposition 2.4.10 therefore
implies that ν is (E,E0)-ergodic.

Theorem 2.5.7 yields a Borel ν-stratification (Fr)r∈R of E. Theorem
1.7.2 ensures that not every Fr is ν-hyperfinite, so by passing to a
Borel subsequence, we can assume that there is a ν-positive Borel set
B ⊆ X on which

⋂
r∈R Fr is ν-nowhere hyperfinite. Proposition 1.6.13

implies that by passing to a further subsequence, we can also assume
that ν � B is (

⋂
r∈R Fr � B)-ergodic. Proposition 3.3.5 therefore yields

a Borel embedding φ : R → R of the usual ordering of R into itself
such that Fφ(r) � B is (ν � B)-nowhere reducible to Fφ(s) for all distinct
r, s ∈ R. As E is countable, the Lusin-Novikov uniformization theorem
ensures that the set [B]E is Borel, and that there is an extension of the
identity function on B to a Borel function ψ : [B]E → B whose graph
is contained in E. Let Er denote the equivalence relation given by
x Er y ⇐⇒ ψ(x) Fφ(r) ψ(y) on [B]E, and which is trivial off of [B]E.
As Proposition 2.4.9 ensures that each EQEr \ HEr consists of a single
measure-equivalence class, Proposition 2.4.1 implies that each Er is a
successor of E0 under measure reducibility.

We close this section with the Borel analogs of these results.

Theorem 3.3.9. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then there is an increasing Borel sequence
(Er)r∈R of pairwise non-measure-reducible subequivalence relations of
E.

Proof. Appeal to Theorem 1.7.11 to obtain a Borel probability measure
µ ∈ EQE \ HE, and apply Theorem 3.3.7.

Theorem 3.3.10. Suppose that X is a standard Borel space and E
is a projectively-separable treeable countable Borel equivalence relation
on X which is a successor of E0 under measure reducibility. Then
there is an increasing Borel sequence (Er)r∈R of pairwise non-measure-
reducible subequivalence relations of E which are themselves successors
of E0 under measure reducibility.



54 C.T. CONLEY AND B.D. MILLER

Proof. Appeal to Theorem 1.7.11 to obtain a Borel probability measure
µ ∈ EQE \ HE, and apply Theorem 3.3.8.

3.4. Bases

Here we establish the nonexistence of small bases B ⊆ E for E under
measure reducibility. We obtain the optimal result in this direction
when working below successors of E0 under measure reducibility.

Theorem 3.4.1. Suppose that X is a standard Borel space and E is
a projectively-separable treeable countable Borel equivalence relation on
X that is a successor of E0 under measure reducibility. Then every
basis for the non-measure-hyperfinite Borel subequivalence relations of
E has cardinality at least 2ℵ0.

Proof. By Theorem 3.3.10, there is an increasing Borel sequence (Er)r∈R
of pairwise non-measure-reducible subequivalence relations of E, which
are also successors of E0 under measure reducibility. Then each element
of B is measure reducible to at most one Er, thus |B| ≥ 2ℵ0 .

While we can nearly obtain the analogous result without the as-
sumption that E is a successor of E0 under measure reducibility, there
is a slight metamathematical wrinkle. Although we have thus far freely
used the axiom of choice throughout the paper, it is not difficult to push
through all of our arguments under the axiom of dependent choice.
While the cardinality restriction appearing below implies only that
bases are necessarily uncountable under the axiom of dependent choice,
it yields the full result that bases have size continuum under the axiom
of choice, as well as in models of the axiom of dependent choice where
every subset of the real numbers has the Baire property and there is
an injection of the real numbers into every non-well-orderable set, such
as L(R) under the axiom of determinacy (see [CK11]).

Theorem 3.4.2. Suppose that X is a standard Borel space, E is a
non-measure-hyperfinite projectively-separable treeable countable Bor-
el equivalence relation on X, and B is a basis for the non-measure-
hyperfinite Borel subequivalence relations of E under measure reducibil-
ity. Then R is a union of |B|-many countable sets.

Proof. By Theorem 3.3.9, there is an increasing Borel sequence (Er)r∈R
of pairwise non-measure-reducible subequivalence relations of E. But
then each element of B is measure reducible to only countably-many
relations of the form Er.
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3.5. Complexity

In this section, we establish a technical strengthening of Theorem
3.3.7 which gives rise to our complexity results.

Theorem 3.5.1. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then there are Borel sequences (Er)r∈R of
subequivalence relations of E and (µr)r∈R of Borel probability measures
on X such that:

(1) Each µr is Er-quasi-invariant and Er-ergodic.
(2) The relation Er is µr-nowhere reducible to the relation Es, for

all distinct r, s ∈ R.

Proof. Note that if E is not a countable disjoint union of successors of
E0 under measure reducibility, then Proposition 3.3.2 yields the desired
result. On the other hand, if E is a countable disjoint union of suc-
cessors of E0 under measure reducibility, then there is an E-invariant
Borel set B ⊆ X on which E is a successor of E0 under measure re-
ducibility. Proposition 2.4.5 then yields a Borel probability measure
µ on B for which E � B is µ-nowhere hyperfinite, in which case one
obtains the desired equivalence relations by trivially extending those
given by Theorem 3.3.8 from B to X.

As a consequence, we obtain the following.

Theorem 3.5.2. Suppose that X is a standard Borel space and E is a
non-measure-hyperfinite projectively-separable treeable countable Borel
equivalence relation on X. Then the following hold:

(a) There is an embedding of containment on Borel subsets of R
into Borel reducibility of countable Borel equivalence relations
with smooth-to-one Borel homomorphisms to E (in the codes).

(b) Borel bi-reducibility and reducibility of countable Borel equival-
ence relations with smooth-to-one Borel homomorphisms to E
are both Σ1

2-complete (in the codes).
(c) Every Borel quasi-order is Borel reducible to Borel reducib-

ility of countable Borel equivalence relations with smooth-to-one
Borel homomorphisms to E.

(d) Borel and σ(Σ1
1)-measurable reducibility do not agree on the

countable Borel equivalence relations with smooth-to-one Borel
homomorphisms to E.

Proof. By Theorem 3.5.1, there are Borel sequences (Er)r∈R of sube-
quivalence relations of E and (µr)r∈R of Borel probability measures on
X such that:
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(1) Each µr is Er-quasi-invariant and Er-ergodic.
(2) The relation Er is µr-nowhere reducible to the relation Es, for

all distinct r, s ∈ R.

But then Theorem 1.9.1 yields the desired result.
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