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ABSTRACT

Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X. We show that if there is a Borel assignment
of means to the equivalence classes of E, then E is smooth. We
also show that if there is a Baire measurable assignment of means
to the equivalence classes of E, then E is generically smooth.

1. Introduction
A mean on a countable set S is a positive linear functional ϕ : `∞(S) → C such
that ϕ(1) = 1, where 1 denotes the constant function on S with value 1. Means
provide a way of associating an average value with each element of `∞(S).

Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X. An assignment of means is a map which associates with each
equivalence class [x]E a mean ϕ[x]E on [x]E . Assignments of means provide a
way of associating an assignment of average values x 7→ ϕ[x]E (fx) with each
assignment of functions x 7→ fx ∈ `∞([x]E).

An assignment of functions x 7→ fx ∈ `∞([x]E) is Borel if the corresponding
function f : E → C, given by f(x, y) = fx(y), is Borel. Given a family Γ ⊆ P(X)

Not yet received.
∗Research partially supported by NSF Grants DMS-9987437 and DMS-0455285.
†Research partially supported by NSF VIGRE Grant DMS-0502315.

1



2 A.S. KECHRIS AND B.D. MILLER

of subsets of X, we say that a function F : X → C is Γ-measurable if

∀U ⊆ C open (F−1(U) ∈ Γ).

We say that an assignment of means [x]E 7→ ϕ[x]E is Γ-measurable if for every
Borel assignment of functions x 7→ fx ∈ `∞([x]E), the corresponding assignment
of average values x 7→ ϕ[x]E (fx) is Γ-measurable.

Suppose that µ is a (Borel) probability measure on X. An equivalence rela-
tion E is µ-amenable if it admits a µ-measurable assignment of means. This
notion has played an important role in ergodic theory over the last few decades.
In Connes-Feldman-Weiss [2], it is shown that the existence of such assignments
is equivalent to the existence of a µ-conull Borel set B ⊆ X such that E|B is
of the form

S
n∈N Fn, where F0 ⊆ F1 ⊆ · · · is an increasing sequence of finite

Borel equivalence relations. That is, the equivalence relation E|B is hyperfi-
nite. From the point of view of descriptive set theory, the hyperfinite equiva-
lence relations are the simplest non-trivial equivalence relations (see, for exam-
ple, Jackson-Kechris-Louveau [7]). Thus, the result of Connes-Feldman-Weiss [2]
says that µ-amenability characterizes those countable Borel equivalence relations
which are µ-almost everywhere no more complicated than the simplest non-trivial
sort of equivalence relation.

Kaimanovich has asked what happens to the notion of µ-amenability if the
family Γ of µ-measurable subsets of X is replaced with the family of Borel sub-
sets of X, and whether hyperfiniteness in the Borel context (in fact, even whether
the condition of 1-amenability as in Jackson-Kechris-Louveau [7]) implies the ex-
istence of a Borel assignment of means. In light of the result of Connes-Feldman-
Weiss [2], one might think that this modified notion should characterize hyper-
finiteness. However, it turns out that this is far from the truth. Our main goal is
to describe which equivalence relations admit Borel assignments of means, as well
as which equivalence relations admit Baire measurable assignments of means.

In §2, we use an argument of Adams [1] to show that if E is a meager-preserving
countable Borel equivalence relation which admits a Baire measurable assignment
of means, then every treeing of E is of a certain form. In §3, we introduce the
object which lies at the heart of our argument — the generic n-regular treeing of
an aperiodic countable Borel equivalence relation. In §4, we show that if E is a
meager-preserving, generically non-smooth countable Borel equivalence relation,
then the generic 3-regular treeing of E from §3 is not of the form described in §2.

In §5, we obtain our main results. We say that E is smooth if there is a Borel
set B ⊆ X which contains exactly one point of every E-class, E is generically
smooth if there is a comeager Borel set C ⊆ X such that E|C is smooth, and
E is generically non-smooth if for every non-meager Borel set B ⊆ X, the
equivalence relation E|B is not smooth.
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Theorem: Suppose that X is a Polish space and E is a countable Borel equiv-

alence relation on X. Then the following are equivalent:

1. E is generically smooth.

2. E admits a Baire measurable assignment of means.

Coupled with the Glimm-Effros dichotomy, this yields the following:

Theorem: Suppose that X is a Polish space and E is a countable Borel equiv-

alence relation on X. Then the following are equivalent:

1. E is smooth.

2. E admits a Borel assignment of means.

We also note that strong set-theoretic assumptions can be employed to obtain
similar results when the family Γ of Borel subsets of X is substantially enlarged.

2. Adams’s argument
In this section, we use the argument of Adams [1] to show that every treeing of
a meager-preserving countable Borel equivalence relation which admits a Baire
measurable assignment of means must be of a certain form.

Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X. The E-saturation of a Borel set B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.

We say E is meager-preserving if the E-saturations of meager sets are meager.
(Such equivalence relations are sometimes called generic — we reserve this term,
however, to refer only to properties which occur comeagerly often.) A set B ⊆ X

is an E-complete section if X = [B]E , and E-invariant if B = [B]E .
A forest is a graph whose connected components are trees. A treeing of E is

a Borel forest T ⊆ E whose connected components coincide with the equivalence
classes of E. A function f : X → X is aperiodic if

∀x ∈ X ∀n > 0 (x 6= fn(x)).

Associated with every such function is an induced forest, given by

Tf = {(x, y) ∈ X ×X : f(x) = y or f(y) = x}.

We say that a Borel forest T on X is directable if it is of the form Tf , for some
aperiodic Borel function f : X → X. A set B ⊆ X is T -convex if the vertex
set of every T -path which begins and ends in B is contained in B. Such a set is
T -linear if each point of B has at most two T -neighbors within B.
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Proposition 2.1 (essentially Adams): Suppose that X is a Polish space, E

is a meager-preserving countable Borel equivalence relation on X which admits

a Baire measurable assignment of means, and T is a locally finite treeing of E.

Then there are disjoint E-invariant Borel sets A1, A2 ⊆ X such that:

1. A1 ∪A2 is comeager.

2. T |A1 is directable.

3. E|A2 admits a T -linear Borel complete section.

Proof: We say that an assignment of sets x 7→ Sx ⊆ [x]E is Borel if the cor-
responding set S = {(x, y) ∈ X × X : y ∈ Sx} is Borel. Given a family
Γ ⊆ P(X), we say that an assignment of finitely additive probability measures
[x]E 7→ µ[x]E ∈ P ([x]E) is Γ-measurable if for every Borel assignment of sets
x 7→ Sx ⊆ [x]E , the corresponding assignment x 7→ µ[x]E (Sx) is Γ-measurable.

It is clear that every Γ-measurable assignment of means gives rise to a Γ-
measurable assignment of finitely additive probability measures. For our pur-
poses, it will be more convenient to work with the latter, so fix a Baire measurable
assignment of finitely additive probability measures [x]E 7→ µ[x]E .

For each x ∈ X, let Tx̂ denote the forest obtained from T |[x]E by deleting all
edges of the form (y, z), where x ∈ {y, z}. Let Ex̂ be the equivalence relation
on [x]E whose equivalence classes are the connected components of Tx̂. By
Feldman-Moore [3], there is a countable group Γ of Borel automorphisms such
that E = EX

Γ , where EX
Γ is the orbit equivalence relation associated with Γ,

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

For each γ ∈ Γ, define Fγ : X → [0, 1] by

Fγ(x) = µ[x]E ([γ · x]Ex̂
).

As the assignment x 7→ [γ · x]Ex̂
is Borel, it follows that Fγ is Baire measurable.

Lemma 2.2: There is a comeager E-invariant Borel set C ⊆ X such that

∀γ ∈ Γ (Fγ |C is Borel).

Proof: For each γ ∈ Γ, fix a comeager Borel set Cγ ⊆ X on which Fγ |Cγ is Borel.
As E is meager-preserving, it follows that the E-invariant Borel set

C = X \
[

γ∈Γ

[X \ Cγ ]E

is also comeager. As C ⊆
T

γ∈Γ Cγ , it follows that each Fγ |C is Borel.
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By replacing X with the set C ⊆ X of Lemma 2.2, we may assume that each
of the functions Fγ is Borel.

A partial transversal of E is a set B ⊆ X which intersects every equivalence
class of E in at most one point. A transversal is a partial transversal which is
also an E-complete section, and E is smooth if it admits a Borel transversal.

Lemma 2.3: The restriction of E to the set

A =
¦
x ∈ X : ∃y ∈ [x]E

�
µ[x]E ({y}) > 0

�©

is smooth.

Proof: Define B ⊆ A by

B =
¦
x ∈ A : ∀y ∈ [x]E

�
µ[x]E ({y}) ≤ µ[x]E ({x})

�©
.

It is clear that B intersects each equivalence class of E|A in a non-empty, finite
set. Fix a Borel linear ordering ≤ of X, set

C = {x ∈ B : ∀y ∈ B ∩ [x]E (y ≤ x)},

and observe that C is a Borel transversal of E|A, thus E|A is smooth.

As partial transversals constitute the simplest examples of T -linear sets, we
may therefore assume that ∀x ∈ X (µ[x]E ({x}) = 0). Define R ⊆ T by

R =
¦
(x, y) ∈ T : ∀z ∈ [x]E

�
µ[x]E ([z]Ex̂

) ≤ µ[x]E ([y]Ex̂
)
�©
,

and note that R is Borel, since

R =
[

γ∈Γ

¦
(x, γ · x) ∈ T : ∀δ ∈ Γ

�
Fδ(x) ≤ Fγ(x)

�©
.

[u]Ex̂
r
y

r ··· r
u

r
x
H

HH

��
�

r
w

rv
[v]Ex̂

[w]Ex̂

[x]Eŷ

Figure 1: If |Rx| ≥ 3 and y 6= x, then |Ry| = 1.
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Lemma 2.4: The set {x ∈ X : |Rx| ≥ 3} is a partial transversal of E.

Proof: It is enough to show that if |Rx| ≥ 3, then

∀y ∈ [x]E (x 6= y ⇒ |Ry| = 1).

Fix y ∈ [x]E with x 6= y, and find distinct points u, v, w ∈ Tx such that y ∈ [u]Ex̂

and v, w ∈ Rx (see Figure 1). Then [v]Ex̂
∪ [w]Ex̂

⊆ [x]Eŷ
and every other

equivalence class of Eŷ is contained in [u]Ex̂
. As

µ[x]E ([u]Ex̂
) < µ[x]E ([v]Ex̂

) + µ[x]E ([w]Ex̂
),

it follows that [x]Eŷ
is the unique Eŷ-class of maximal measure, so |Ry| = 1.

Again appealing to the fact that partial transversals are T -linear sets, we may
now assume that ∀x ∈ X (|Rx| ≤ 2).

[x]Eŷ [w]Ex̂
r
w

r
x

r ··· r r
y

r
z

[z]Eŷ [y]Ex̂

Figure 2: If [x]Eŷ
is not of maximal µ[x]E -measure, then |Rx| = 1.

Lemma 2.5: The set A2 = {x ∈ X : |Rx| = 2} is T -linear.

Proof: It is enough to show that A2 is T -convex. The main point is as follows:

Sublemma 2.6: Suppose that y ∈ [x]E \ {x} and there exists z ∈ [x]E such that

µ[x]E ([z]Eŷ
) > µ[x]E ([x]Eŷ

).

Then |Rx| = 1.

Proof: Suppose that w is a T -neighbor of x which is not Tx̂-connected to y.
Now, observe that [w]Ex̂

⊆ [x]Eŷ
and [z]Eŷ

⊆ [y]Ex̂
(see Figure 2), thus

µ[x]E ([y]Ex̂
) ≥ µ[x]E ([z]Eŷ

)

> µ[x]E ([x]Eŷ
)

≥ µ[x]E ([w]Ex̂
),

so [y]Ex̂
is the unique Ex̂-class of maximal measure, hence |Rx| = 1.
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To see that A2 is T -convex, suppose x, z ∈ A2 and y ∈ X lies along the T -
path from x to z. By Sublemma 2.6, both x and z lie in an equivalence class of
Eŷ of maximal measure. It follows that |Ry| = 2, thus y ∈ A2.

Thus, we may assume that ∀x ∈ X (|Rx| = 1). Let f be the Borel function
which associates with each point x ∈ X the unique element of Rx.

r
y

r ··· r
x

r
f(x)

[f(x)]Ex̂
[x]Ey

Figure 3: If y 6∈ {x, f(x)}, then dT (f(y), {x, f(x)}) < dT (y, {x, f(x)}).

Lemma 2.7: The restriction of E to {x ∈ X : ∃y ∈ [x]E (f2(y) = y)} is smooth.

Proof: It is enough to show that the set

A = {x ∈ X : f2(x) = x}

intersects each equivalence class of E in at most two points. Fix x ∈ A. We will
show that for every y ∈ [x]E which lies outside of the set {x, f(x)}, there exists
n ∈ N such that fn(y) ∈ {x, f(x)}. Letting dT denote the graph metric, it is
enough to show that for each y ∈ [x]E which lies outside of the set {x, f(x)},

dT (f(y), {x, f(x)}) < dT (y, {x, f(x)}).

That is, we must show that [x]Eŷ
is of maximal measure. By reversing the roles

of x, f(x) if necessary, we may assume that the unique path from x to y avoids
f(x). It then follows that every equivalence class of Eŷ other than that of x is
contained in [y]Ex̂

and [f(x)]Ex̂
⊆ [x]Eŷ

(see Figure 3), thus [x]Eŷ
is the unique

equivalence class of Eŷ of maximal measure.

By appealing once more to the fact that partial transversals are T -linear, we
may now assume that f2(x) 6= x, for all x ∈ X. As T is a forest, it follows that
f is aperiodic. The following fact completes the proof of the proposition:

Lemma 2.8: T = Tf .
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[y]Ex̂
r
y

r
x

r
z

[z]Ex̂
[x]Eŷ

Figure 4: If (x, y) ∈ T and f(x) 6= y, then f(y) = x.

Proof: Clearly Tf ⊆ T , so we must show that whenever (x, y) ∈ T , either
f(x) = y or f(y) = x. Suppose that z = f(x) is distinct from y. Then [z]Ex̂

is
the unique equivalence class of Ex̂ of maximal measure, every equivalence class
of Eŷ other than that of x is contained in [y]Ex̂

, and [z]Ex̂
⊆ [x]Eŷ

(see Figure 4).
It follows that [x]Eŷ

is the unique equivalence class of Eŷ of maximal measure,
thus f(y) = x.

Remark 2.9: As in §3 of Jackson-Kechris-Louveau [7], the assumption that T

is locally finite is unnecessary in the statement of Proposition 2.1. Although we
will have no need for this generalization, it certainly could be used to extend the
results of the upcoming sections to the generic (ℵ0-regular) treeing of E.

3. Generic treeings
An equivalence relation E is aperiodic if every equivalence class of E is infinite.
In this section, we introduce a parameterized collection of attempts at building an
n-regular treeing of an aperiodic countable Borel equivalence relation, for n ≥ 2.
We show that the generic such attempt successfully produces an n-regular treeing
of the restriction of the equivalence relation to an invariant comeager Borel set.

Fix a natural number n ≥ 2. We say that a treeing of E is n-regular if all
of its vertices have exactly n neighbors. A finite partial n-regular treeing of
E is a Borel forest T ⊆ E whose connected components are finite and whose
vertices have at most n neighbors. (It is rare for such treeings to literally be of
finite cardinality!) The equivalence relation induced by T is given by

xET y ⇔ (x, y lie in the same connected component of T ),

and a one-step proper extension of T is a pair (x, y) ∈ E \ ET such that
both x, y are of T -vertex degree strictly less than n. We will use ΦT to denote
the standard Borel space of all such extensions of T .
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A coloring of a graph G on X is a function c : X → Y such that

∀x, y ∈ X
�
(x, y) ∈ G ⇒ c(x) 6= c(y)

�
.

The Borel chromatic number of G is the cardinality of the smallest Polish
space Y for which there is a Borel coloring c : X → Y (see Kechris-Solecki-
Todorcevic [11] for a detailed study of this notion). Associated with each finite
partial n-regular treeing T of E is the graph GT on ΦT , whose vertices are
one-step proper extensions of T and whose edges consist of pairs ((x, y), (x′, y′))
of distinct one-step proper extensions of T for which

([x]ET ∪ [y]ET ) ∩ ([x′]ET ∪ [y′]ET ) 6= ∅.

Note that if Φ ⊆ ΦT is a Borel subset of ΦT and no two elements of Φ are GT -
neighbors, then the graph obtained by adding Φ to T is again a finite partial
n-regular treeing of E.

Proposition 3.1: The graph GT has countable Borel chromatic number.

Proof: We will produce a Borel coloring c : ΦT → N<N. We use [E]<∞ to denote
the standard Borel space of all finite sets S ⊆ X such that

∀x, y ∈ S (xEy).

Associated with this space is a graph G on [E]<∞, given by

G = {(S, T ) ∈ [E]<∞ × [E]<∞ : S 6= T and S ∩ T 6= ∅}.

Lemma 3.2: The graph G has countable Borel chromatic number.

Proof: By Feldman-Moore [3], there are Borel involutions ιn : X → X such that

E =
[

n∈N
graph(ιn).

Let ≤ be a Borel linear ordering of X, and given S ∈ [E]<∞, let x(S)
1 , . . . , x

(S)
|S|

be the ≤-increasing enumeration of S. Define c : Φ → N<N by letting c(S) be
the unique sequence 〈kij〉1≤i,j≤|S| such that

∀1 ≤ i, j ≤ |S|
�
kij = min{k ∈ N : ιk · x(S)

i = x
(S)
j }

�
.

Now suppose, towards contradiction, that c is not a coloring. Fix (S, T ) ∈ G

such that c(S) = c(T ), put n = |S| = |T |, and fix i, j < n such that

x
(S)
i = x

(T )
j .
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Then

i < j ⇔ x
(S)
i <X x

(S)
j

⇔ x
(S)
i <X ιkij (x

(S)
i )

⇔ x
(T )
j <X ιkij

(x(T )
j )

⇔ x
(T )
j <X x

(T )
i

⇔ j < i,

thus i = j, so x(S)
i = x

(T )
i . It follows that for all m < n,

x(S)
m = ιkim

(x(S)
i )

= ιkim(x(T )
i )

= x(T )
m ,

thus S = T , which contradicts our assumption that (S, T ) ∈ G .

Fix a Borel coloring c0 : [E]<∞ → N of G , fix a Borel linear ordering ≤ of X,
and define c1 : X ×X → N× N by

c1(x, y) = (i, j),

where x is the ith element of the ≤-increasing enumeration of [x]ET ∪ [y]ET , and
y is the jth element of the ≤-increasing enumeration of [x]ET ∪ [y]ET . Now define

c(x, y) =
�
c0([x]ET ∪ [y]ET ), c1(x, y)

�
,

and suppose, towards a contradiction, that there exists ((x, y), (x′, y′)) ∈ G such
that c(x, y) = c(x′, y′). As c0([x]ET ∪ [y]ET ) = c0([x′]ET ∪ [y′]ET ), it follows that

[x]ET ∪ [y]ET = [x′]ET ∪ [y′]ET .

As c1(x, y) = c1(x′, y′), it follows that (x, y) = (x′, y′), a contradiction.

Next, we define a family of finite partial n-regular treeings Ts of E, for s ∈ N<N.
We begin by putting T∅ = ∅. Given Ts, set Es = ETs

, Φs = ΦTs
, and Gs = GTs

,
and fix a Borel coloring cs : Φs → N of Gs. Then, for each k ∈ N, set

Ts_k = Ts ∪ {(x, y) ∈ Φs : cs(x, y) = k or cs(y, x) = k}.

(Here we use s_k to denote the concatenation of s with the singleton sequence
〈k〉.) Note that Ts_k is a partial n-regular treeing of E whose connected compo-
nents each consist of at most two connected components of Ts, and are therefore
finite. Once the recursion is complete, we associate with each α ∈ NN the forest

Tα =
[

n∈N
Tα|n,
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as well as the associated equivalence relation Eα = ETα
, and the set

Cα = {x ∈ X : Tα|[x]E is an n-regular tree}.

Proposition 3.3: Suppose thatX is a Polish space and E is an aperiodic count-

able Borel equivalence relation on X. Then for comeagerly many α ∈ NN, the

set Cα is comeager.

Proof: By Feldman-Moore [3], there is a countable group Γ of Borel automor-
phisms of X such that E = EX

Γ . We must show that

∀∗α ∈ NN ∀∗x ∈ X (Tα|[x]E is an n-regular tree).

By the theorem of Kuratowski-Ulam (see, for example, §8 of Kechris [9]), it is
enough to show that for all x ∈ X,

∀∗α ∈ NN (Tα|[x]E is an n-regular tree).

It is therefore sufficient to verify the following two lemmas:

Lemma 3.4: ∀∗α ∈ NN (Tα|[x]E is connected).

Proof: It is enough to show that for all γ, δ ∈ Γ and s ∈ 2<N, there exists
t ⊇ s such that γ · xEtδ · x, as this implies that the set of α ∈ NN for which
γ ·xEαδ ·x contains a dense open set, thus the set of α ∈ N<N for which Tα|[x]E
is connected contains a countable intersection of dense open sets. Suppose that
(γ · x, δ · x) 6∈ Es. As the connected components of Ts are finite, there exists
y ∈ [γ ·x]Es

and z ∈ [δ ·x]Es
which are of Ts-vertex degree strictly less than n. It

follows that the pair (y, z) is a one-step proper extension of Ts, thus there exists
k ∈ N such that yEs_kz, so γ · xEs_kδ · x. Hence, t = s_k is as desired.

Lemma 3.5: ∀∗α ∈ NN (Tα|[x]E is n-regular).

Proof: It is enough to show that for all γ ∈ Γ, m ≤ n, and s ∈ 2<N, there exists
t ⊇ s such that degTt

(γ · x) ≥ m, as this implies that the set of α ∈ NN for
which degTα

(γ · x) = n, thus the set of α ∈ N<N for which Tα|[x]E is n-regular
contains a countable intersection of dense open sets. We proceed by induction
on m. Of course, the case m = 0 is trivial, so it is enough to show that if m < n

and degTs
(γ ·x) = m, then there exists t ⊇ s such that degTt

(γ ·x) = m+1. The
aperiodicity of E coupled with the fact that the connected components of Ts are
finite ensures that there exists y ∈ [x]E \ [γ · x]Es

such that degTs
(y) < n. It

follows that the pair (x, y) is a one-step proper extension of Ts, thus there exists
k ∈ N such that (x, y) ∈ Ts_k. Hence, t = s_k is as desired.
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Remark 3.6: For each α ∈ NN, the union of the equivalence relations

Eα0 ⊆ Eα0α1 ⊆ Eα0α1α2 ⊆ · · ·

is Eα. It follows from Proposition 3.3 that for comeagerly many α ∈ NN, the
equivalence relation E|Cα is hyperfinite. The fact that every countable Borel
equivalence relation is generically hyperfinite was originally shown in Hjorth-
Kechris [5], and extends results of Sullivan-Weiss-Wright [13] and Woodin. See
also §12 of Kechris-Miller [10].

4. Generic treeings of non-smooth equivalence relations
In this section, we show that the generic 3-regular treeing of a meager-preserving,
generically non-smooth equivalence relation does not satisfy the conclusion of
Proposition 2.1.

Recall that an equivalence relation E is generically non-smooth if for every
non-meager Borel set B ⊆ X, the equivalence relation E|B is not smooth.

Proposition 4.1: Suppose X is a Polish space and E is a meager-preserving,

generically non-smooth countable Borel equivalence relation on X. Then for

comeagerly many α ∈ NN and every E-invariant non-meager Borel set B ⊆ X,

Tα|B is undirectable.

Proof: Fix a countable open basis B for X. By Feldman-Moore [3], there is
a countable group Γ of Borel automorphisms such that E = EX

Γ . In order to
implement a category argument similar to that used in the proof of Proposition
3.3, we must first describe the conclusion that we wish to draw in terms of
countably many conditions which depend only on B and Γ:

Lemma 4.2: Suppose that A ⊆ X is an E-invariant non-meager Borel set and

T is a directable treeing of E|A. Then there exists U ∈ B and γ ∈ Γ such that

∀∗x ∈ U ∀x0, x1 ∈ U ∩ [x]E
�
dT (γ · x0, γ · x1) ≤ dT (x0, x1)

�
.

Proof: Fix an aperiodic Borel f : A→ A which induces T , fix γ ∈ Γ such that

B = {x ∈ A : f(x) = γ · x}

is non-meager, fix U ∈ B such that B is comeager in U , and observe that the set

C = X \ [U \B]E

is comeager, since E is meager-preserving. As T = Tf , it follows that

∀x ∈ A∀x0, x1 ∈ [x]E
�
dTf

(f(x0), f(x1)) ≤ dTf
(x0, x1)

�
.

As U ∩ C ⊆ B ∩ C ⊆ A ∩ C, the lemma follows.
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It is therefore enough to show that for every U ∈ B and γ ∈ Γ,

∀∗α ∈ NN ∀∗x ∈ U ∃x0, x1 ∈ U ∩ [x]E
�
dTα(γ · x0, γ · x1) > dTα(x0, x1)

�
.

By the theorem of Kuratowski-Ulam, it is enough to show that

∀∗x ∈ U ∀∗α ∈ NN ∃x0, x1 ∈ U ∩ [x]E
�
dTα

(γ · x0, γ · x1) > dTα
(x0, x1)

�
.

Lemma 4.3: Suppose that X is a Polish space, E is a generically non-smooth

countable Borel equivalence relation on X, and A ⊆ X is Borel. Then

∀∗x ∈ X (A ∩ [x]E = ∅ or |A ∩ [x]E | = ∞).

Proof: Define B ⊆ X by

B = {x ∈ X : 0 < |A ∩ [x]E | <∞},

fix a Borel linear ordering ≤ of X, and observe that the set

C = {x ∈ A ∩B : ∀y ∈ A ∩ [x]E (x ≤ y)}

is a Borel transversal of E|B, thus B is meager, and the lemma follows.

Thus, it is enough to show that if |U ∩ [x]E | = ∞, then

∀∗α ∈ NN ∃x0, x1 ∈ U ∩ [x]E
�
dTα

(γ · x0, γ · x1) > dTα
(x0, x1)

�
.

It is therefore sufficient to verify the following lemma:

Lemma 4.4: For all s ∈ N<N, there exists v ⊇ s and x0, x1 ∈ U ∩ [x]E such that

the points x0, x1, γ · x0, γ · x1 are pairwise Tv-connected, and

dTv
(γ · x0, γ · x1) > dTv

(x0, x1).

Proof: Set x0 = x, and find t ⊇ s such that x0Etγ · x0. As |U ∩ [x]E | = ∞,
there exists x1 ∈ U ∩ [x]E which lies outside of the finite set [x0]Et

∪ γ−1([x0]Et
).

In particular, it follows that neither x1 nor γ · x1 lies in [x0]Et , thus there is an
extension u ⊇ t such that x1Euγ · x1 but (x0, x1) 6∈ Eu (see Figure 5).

Let x′i be the Tu-neighbor of xi which is dTu
-closest to γ ·xi, let Ti be the forest

obtained from Tu by deleting the edge (xi, x
′
i), and fix yi ∈ [xi]ETi

such that
degTu

(yi) < n. Then (y0, y1) is a one-step proper extension of Tu, thus there
exists v ⊇ u such that (y0, y1) ∈ Tv. It follows that the points x0, x1, γ ·x0, γ ·x1

are pairwise Tv-connected, and dTv
(γ · x0, γ · x1) > dTv

(x0, x1).
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r rr r r rr rp p p p p p p p p p p p
γ·x0 x′

0 x0 y0 y1 x1 x′
1 γ·x1

[x0]Eu [x1]Eu

[x]Ev

× ×

Figure 5: Finding an extension v ⊇ s such that dTv
(γ · x0, γ · x1) > dTv

(x0, x1).

Remark 4.5: The directability of Borel forests can be characterized in terms of
a Glimm-Effros style dichotomy. See Hjorth-Miller [6] for more on this.

Next, we prove a similar fact about the existence of (non-trivial) convex sets:

Proposition 4.6: Suppose X is a Polish space and E is a meager-preserving,

generically non-smooth countable Borel equivalence relation on X. Then for

comeagerly many α ∈ NN and every non-meager E-invariant Borel set B ⊆ X,

the forest Tα|B admits no convex Borel complete, co-complete section.

Proof: Fix a countable open basis B for X. Again, we begin by describing the
conclusion that we wish to draw in terms of countably many conditions which
depend only on B. We say that B ⊆ X is generically non-trivial if the set

[B]E ∩ [X \B]E = {x ∈ X : ∅ ( B ∩ [x]E ( [x]E}

is non-meager.

Lemma 4.7: Suppose that A ⊆ X is a non-meager E-invariant Borel set and

T is a treeing of E|A. If E|A admits a T -convex Borel complete, co-complete

section, then there is a set U ∈ B with generically non-trivial convex T -closure.

Proof: Suppose that B ⊆ X is a T -convex Borel complete, co-complete sec-
tion for E|A. Then B is non-meager, since A is non-meager and E is meager-
preserving. Fix U ∈ B such that B is comeager in U , and observe that

C = A \ [U \B]E

is comeager in U , since E is meager-preserving. As U ∩ C ⊆ B ∩ C, it follows
that the convex T -closure of U is generically non-trivial.

Thus, it is enough to show that for all U ∈ B,

∀∗α ∈ NN ∀∗x ∈ X
�
Uα ∩ [x]E = ∅ or (X \ Uα) ∩ [x]E = ∅

�
,
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where Uα is the convex Tα-closure of U . By Feldman-Moore [3], there is a
countable group Γ of Borel automorphisms such that E = EX

Γ . By Lemma 4.3,
the set

A = {x ∈ U : |U ∩ [x]E | = ∞}

is comeager in U , thus by the theorem of Kuratowski-Ulam, it is enough to show

∀x ∈ A∀γ ∈ Γ∀∗α ∈ NN
�
γ · x ∈ Uα

�
.

Fix x ∈ A and γ ∈ Γ. It only remains to check the following:

Lemma 4.8: For all s ∈ N<N, there exists u ⊇ s such that γ · x ∈ Uu, where Uu

is the convex Tu-closure of U .

Proof: As x ∈ U , we may assume that γ ·x 6= x. Fix an extension t ⊇ s such that
xETtγ · x. Let x′ be the Tt-neighbor of γ · x which is dTt-closest to x, let T be
the forest obtained from Tt by deleting the edge (γ ·x, x′), and find y0 ∈ [γ ·x]ET

such that degTt
(y0) < n. As |U ∩ [x]E | = ∞, there exists z ∈ U ∩ [x]E which lies

outside of [x]ETt
.

r r r r r re ep p p p p p p p p
x x′ γ·x y0 y1 z

[x]Et [z]Et

[x]Eu

×

Figure 6: Finding an extension u ⊇ s such that γ · x ∈ Uu.

Fix y1 ∈ [z]Et
such that degTt

(y1) < n (see Figure 6). As (y0, y1) is a one-step
proper extension of Tt, it follows that there is an extension u ⊇ t such that
(y0, y1) ∈ Tu. As γ · x lies along the unique injective Tu-path from x to z, it
follows that γ · x is in the convex Tu-closure of U .

Remark 4.9: The existence of T -linear Borel complete, co-complete sections
can be characterized in terms of a Glimm-Effros style dichotomy. See Miller-
Rosendal [12] for more on this.

5. Assignments of means
In this section, we finally prove our main results on assignments of means.

Recall that an equivalence relation E is generically smooth if there is a
comeager Borel set C ⊆ X such that E|C is smooth.
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Theorem 5.1: Suppose that X is a Polish space and E is a countable Borel

equivalence relation on X. Then the following are equivalent:

1. E is generically smooth.

2. There is a comeager E-invariant Borel set C ⊆ X on which E|C admits a

Borel assignment of means.

3. E admits a Baire measurable assignment of means.

Proof: To see (1) ⇒ (2), fix a comeager E-invariant Borel set C ⊆ X on which
E|C is smooth, let B ⊆ C be a Borel transversal of E|C, and let s : C → C be
the (Borel) function which associates with each point x ∈ C the unique element
of B ∩ [x]E . The map which assigns to each equivalence class [x]E the mean

ϕ[x]E (f) = f ◦ s(x)

is as desired.
To see (2) ⇒ (3), suppose [x]E|C 7→ ϕ[x]E|C is a Borel assignment of means.

By AC, this can be extended to an assignment of means [x]E 7→ ψ[x]E . For every
Borel assignment of functions x 7→ fx ∈ `∞([x]E) and open U ⊆ C, the sets

{x ∈ C : ϕ[x]E (fx) ∈ U} and {x ∈ X : ψ[x]E (fx) ∈ U}

have meager symmetric difference. As the former set is Baire measurable, so too
is the latter. It follows that the assignment x 7→ ψ[x]E is Baire measurable.

It only remains to show (3) ⇒ (1). Suppose, towards a contradiction, that E
admits a Baire measurable assignment of means, but E is not generically smooth.

Lemma 5.2: There is an open U ⊆ X such that E|U is generically non-smooth.

Proof: Fix a countable open basis B for X. Now suppose, towards a contra-
diction, that for each U ∈ B, the equivalence relation E|U is not generically
non-smooth, and find non-meager Borel sets BU ⊆ U such that E|BU is smooth.
It follows that the restriction of E to the comeager Borel set

B =
[

U∈B

BU

is smooth, which contradicts the fact that E is not generically smooth.

Fix such an open set U ⊆ X. Next, we will need the following fact:

Lemma 5.3 (Woodin): Suppose that X is a Polish space and E is a countable

Borel equivalence relation on X. Then there is a dense Gδ set C ⊆ X such that

E|C is meager-preserving.
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Proof: Fix a countable open basis B for X. By Feldman-Moore [3], there is a
countable group Γ of Borel automorphisms of X such that E = EX

Γ . For each
pair (γ, U) ∈ Γ×B for which it is possible, fix a Borel set B(γ,U) ⊆ U such that

B(γ,U) is comeager in U and γ−1(B(γ,U)) is meager.

Each of the maps γ−1(B(γ,U))
γ−→ B(γ,U) witnesses that E is not meager-preserving.

We now remove these witnesses by restricting our attention a dense, Gδ set

C ⊆ X \
[

γ,U

γ−1(B(γ,U)).

Suppose, towards a contradiction, that there is a meager Borel set A ⊆ C

such that [A]E|C is non-meager in C, and therefore non-meager in X. Set Cγ =
C ∩ γ−1(C), and note that

[A]E|C =
[

γ∈Γ

γ(A ∩ Cγ).

In particular, it follows that there exists γ ∈ Γ such that γ(A∩Cγ) is non-meager,
thus comeager in U , for some U ∈ B. Then B(γ,U) exists and B(γ,U) ∩ γ(A∩Cγ)
is comeager in U , thus γ−1(B(γ,U)) ∩ A 6= ∅, which contradicts the fact that
A ⊆ C, and completes the proof of the lemma.

Now fix a Gδ set C ⊆ U which is dense in U , such that the equivalence relation
F = E|C is meager-preserving. As F is generically non-smooth, it follows from
the results of §4 that the conclusion of Proposition 2.1 does not hold for the
generic 3-regular treeing of F . Thus, to draw out the desired contradiction, it
only remains to show the following:

Lemma 5.4: F admits a Baire measurable assignment of means.

Proof: By Feldman-Moore [3], there is a countable group Γ = {γn}n∈N of Borel
automorphisms such that E = EX

Γ . For each x ∈ [C]E , let n(x) = min{n ∈
N : γn · x ∈ C}, and associate with each f : [x]F → [x]F the map f∗ : [x]E →
[x]E given by f∗(x) = f(γn(x) · x). Then ψ[x]F (f) = ϕ[x]E (f∗) defines a Baire
measurable assignment of means to the equivalence classes of F .

We say that a set B ⊆ X is globally Baire measurable if for every Polish
space Y and Borel injection π : Y → X, the set π−1(B) is Baire measurable.
(This notion should be thought of as an analog of universal measurability.)

Theorem 5.5: Suppose that X is a Polish space and E is a countable Borel

equivalence relation on X. Then the following are equivalent:
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1. E is smooth.

2. E admits a Borel assignment of means.

3. E admits a globally Baire measurable assignment of means.

Proof: To see (1) ⇒ (2), fix a Borel transversal B ⊆ X of E, and let s : X → X

be the Borel function which associates with each point x ∈ X the unique element
of B ∩ [x]E . The map which assigns to each equivalence class [x]E the mean

ϕ[x]E (f) = f ◦ s(x)

is as desired.
As (2) ⇒ (3) is obvious, only ¬(1) ⇒ ¬(3) remains. By the Glimm-Effros

dichotomy (see, for example, Harrington-Kechris-Louveau [4]), there is a contin-
uous injection π : 2N → X such that

∀x, y ∈ 2N (xE0y ⇔ π(x)Eπ(y)),

where E0 is the equivalence relation on 2N given by

xE0y ⇔ ∃N ∈ N∀n ≥ N (xn = yn).

Now suppose, towards a contradiction, that E admits a globally Baire measurable
assignment of means. Setting B = π(2N), it follows as in the proof of Lemma
5.4 that E|B admits a globally Baire measurable assignment of means. Pulling
back through π, it then follows that E0 admits a Baire measurable assignment
of means. As E0 is generically non-smooth, this contradicts Theorem 5.1.

Remark 5.6: Under CH, the existence of a universally measurable assignment
of means is equivalent to the µ-hyperfiniteness of E with respect to every Borel
probability measure on X (see Kechris [8]).

Recall that a set A ⊆ X is analytic, or Σ1
1, if it is of the form

A = {x ∈ X : ∃y ∈ NN ((x, y) ∈ B)},

where B ⊆ X × NN is Borel. A set C ⊆ X is co-analytic, or Π1
1, if it is the

complement of an analytic set. A set A ⊆ X is Σ1
n+1 if it is of the form

A = {x ∈ X : ∃y ∈ NN ((x, y) ∈ B)},

where B ⊆ X ×NN is Π1
n, and A ⊆ X is Π1

n+1 if it is the complement of a Σ1
n+1

set. A set P ⊆ X is projective if it is Σ1
n, for some n ∈ N.
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One of the successes of modern descriptive set theory has been the resolu-
tion of various classical questions about the projective hierarchy via determinacy
axioms (which transcend ZFC). In particular, it follows from the axiom of Pro-
jective Determinacy (PD) that every projective subset of a Polish space is Baire
measurable. Theorem 5.5 therefore implies the following:

Theorem 5.7 (PD): Suppose that X is a Polish space and E is a countable

Borel equivalence relation on X. Then the following are equivalent:

1. E is smooth.

2. E admits a projective assignment of means.

By employing still stronger set-theoretic hypotheses, we can show that there
are even weaker notions of measurability with respect to which only smooth
equivalence relations admit measurable assignments of means.

Along similar lines, Theorem 5.5 can be used to see that in certain models
of ZF + DC in which the axiom of choice fails, non-smooth equivalence relations
cannot admit assignments of means whatsoever. Let BP abbreviate the statement
that every subset of a Polish space is Baire measurable.

Theorem 5.8 (ZF + DC + BP): Suppose that X is a Polish space and E is a

countable Borel equivalence relation on X. Then the following are equivalent:

1. E is smooth.

2. E admits an assignment of means.
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