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THE BOREL CARDINALITY OF LASCAR STRONG TYPES

ITAY KAPLAN, BENJAMIN MILLER, AND PIERRE SIMON

Abstract. We show that if the restriction of the Lascar equivalence relation to a KP-strong

type is non-trivial, then it is non-smooth (when viewed as a Borel equivalence relation on an

appropriate space of types).

1. Introduction

Notions of strong type play an important role in the study of first-order theories. A strong

type (over ∅) is a class of an automorphism-invariant equivalence relation on C
α which is bounded

(i.e., the quotient has small cardinality) and refines equality of types. The phrase “strong type”

by itself often refers to a Shelah strong type, which is simply a type over the algebraic closure of ∅

(in T eq). In other words, two sequences have the same Shelah strong type if they are equivalent

with respect to every definable equivalence relation with finitely many classes. Refining this is the

notion of KP strong type (≡α
KP ), in which two sequences are equivalent if they are equivalent with

respect to every bounded type-definable equivalence relation. The KP strong type can also be

characterized as the finest notion of strong type for which the corresponding quotient is a compact

Hausdorff space. Finally, the Lascar strong type (≡α
L) is the finest notion of strong type. The

classes of ≡α
L coincide with the connected components of the Lascar graph on C

α, in which two

sequences are neighbors if they lie along an infinite indiscernible sequence. The Lascar distance d

is the associated graph distance. All of this is explained in detail in Subsection 1.1.

In [New03], Newelski established the following fundamental facts:

Fact 1.1. [New03] Suppose that T is a complete first-order theory and α is an ordinal.

(1) A Lascar strong type is type definable iff it has finite diameter.

(2) If Y is an ≡α
L-invariant closed set, contained in some p ∈ Sα (∅), on which every ≡α

L-class

has infinite diameter, then Y contains at least 2ℵ0 -many ≡α
L-classes.

(3) Lascar strong types of unbounded diameter are not Gδ sets (when viewed as subsets of an

appropriate space of types, as explained in Subsection 1.4).

(4) If T is small (i.e., T is countable and the number of finitary types over ∅ is countable),

then ≡n
L = ≡n

KP for all n < ω (i.e., the two notions of type agree on finite sequences).
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As opposed to Shelah and KP strong types, the space of Lascar strong types does not come

equipped with a Hausdorff topology. It is therefore unclear to what category this quotient belongs.

In [KPS12], the authors suggest viewing it through the framework of descriptive set theory (this

idea was already mentioned in [CLPZ01]). They formally interpret the notion of equality of Lascar-

strong types as a Borel equivalence relation over a compact Polish space, and then consider the

position of this relation in the Borel reducibility hierarchy.

Given two Polish spaces X and X ′ and two Borel equivalence relations E and E′ respectively

on X and X ′, we say that E is Borel reducible to E′ if there is a Borel map f from X to X ′

such that x E y ⇐⇒ f(x) E′ f(y) for all x, y ∈ X . Two relations are Borel bi-reducible if each

is Borel reducible to the other. The quasi-order of Borel reducibility is a well-studied object in

descriptive set theory, and enjoys a number of remarkable properties. One of them is given by the

Harrington-Kechris-Louveau dichotomy, which asserts that a Borel equivalence relation is either

smooth (Borel reducible to equality on 2ω) or at least as complicated as E0 (eventual equality on

2ω). This is explained in detail in Subsections 1.2 and 1.2.

In this paper, we provide the following solution to the main conjecture of [KPS12].

Main Theorem A. [Simplified version] Suppose that T is a complete countable first-order theory.

If ≡L does not coincide with ≡KP , then ≡L is not smooth.

We will actually prove a slightly stronger result (see Theorem 4.12). Our proof will not make

use of Fact 1.1, which we will recover (for countable T ) as a corollary.

Let us say a few words about our method. In [NP06], Newelski and Petrykowski introduce the

notion of weakly generic types for definable groups. An analog for groups of automorphisms was

used in Pelaez’s thesis [Pel08] to give an alternate proof of Fact 1.1 (1). We follow this lead in our

own proof.

A consequence of the proof of an early special case of the Harrington-Kechris-Louveau di-

chotomy theorem is that if X is a Polish space, G is a Polish group acting continuously on X ,

and the orbit equivalence relation EG is Fσ , then either EG is smooth or E0 can be continuously

embedded into EG. This is related to [BK96, Theorem 3.4.5], which gives a sufficient condition

for embedding E0 in an equivalence relation induced by a group action (namely that there is a

dense orbit and that EG is meager).

As a corollary of the latter result, we establish a sufficient criterion for embedding E0 into an

equivalence relation E whose classes are each equipped with a metric. Roughly speaking, the

group G of homeomorphisms of the Cantor space whose graphs are contained in E0 acts in a

sufficiently rich fashion that it can move any element to another which is arbitrarily close in the

topological sense, but far away in the sense of the metric associated with the class. We show that

if a similar property holds for E then one can embed E0 into E.
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Assuming that there is a Lascar-strong type of unbounded diameter, it is thus natural to try to

find a type p whose orbit under the group of Lascar-strong automorphisms is also sufficiently rich.

When T is countable, we construct such a type formula-by-formula. At each stage, we must make

sure that we still have room to go on, namely, that the partial type has many images which are

at large Lascar distance from each other. To this end, we make sure that the type stays weakly

generic. We actually need a slightly stronger property which we call “properness”.

Main Theorem A does not seem to be enough to deduce Fact 1.1 for uncountable theories.

However, we adapt our argument to also take care of this case. This is Main Theorem B. For

uncountable languages, the space of types is no longer a Polish space, so we do not state the

theorem in terms of Borel cardinality. Apart from that, the result is essentially the same as for

countable theories. In particular, it implies Newelski’s theorem. In order to prove it, we will need

a little bit more from the descriptive set theoretic side, namely, the notion of (strong) Choquet

space. This is used to replace completeness. In fact, eventually we deal with a non-Hausdorff

space. (A non-Hausdorff space will arise as the space of types over a model M with the topology

induced by a countable sub-language L′ of L and a corresponding countable model M ′.)

Organization of the paper. We have made an effort to keep this paper self-contained and accessible

to model theorists and descriptive set theorists alike. Thus we start by giving all of the required

definitions from both sides. In Section 2, we state a set theoretic criterion for non-smoothness. In

Section 3, we treat a special case of the main theorem, where T is small (hence Lascar strong types

coincide with KP strong types on finite tuples) and α is infinite. Although this result will not be

used to prove the general case, we thought it worthwhile to include, as the proof is considerably

simpler and gives insight into the general case. In Section 4, we prove Main Theorem A for all

countable theories. Finally, in section 5, we prove Main Theorem B, thereby taking care of the

general case.

1.1. Model-theoretic preliminaries. Let T be any complete first order theory. The theory

T may be many sorted, but for the simplicity of the presentation one may assume that it is one

sorted. We recall some basic notions. We fix a sequence of variables 〈vi | i ∈ ord 〉. For the rest of

this section, α will be some ordinal.

Definition 1.2. Suppose M |= T , A ⊆ M . Let Lα (A) the set of formulas in variables 〈vi | i < α 〉

with parameters from A — the set of formulas over A. An α-type over A (sometimes a partial

α-type over A) is a consistent subset of Lα (A). An α-type p over A is called complete if for any

formula ϕ ∈ Lα (A), {ϕ,¬ϕ} intersects p. We denote by Sα (A) the space of all complete α-types

over A. For a tuple a ∈ Mα, let

tp (a/A) = {ϕ ∈ Lα (A) |M |= ϕ (a)} .
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We write a ≡A b for tp (a/A) = tp (b/A). If A = ∅, we omit it. If p is an α-type over A and

tp (a/A) ⊇ p we write a |= p. We say that p is realized in M if there exists some a ∈ Mα such

that a |= p.

We sometimes write p (x) (respectively ϕ (x)) when we want to stress that the free variables of

p (respectively ϕ) are contained in the tuple of variables x.

Remark 1.3. The set Sα (A) is naturally a compact Hausdorff topological space, the Stone space

of α-types over A, with clopen basis {[ϕ] |ϕ ∈ Lα (A)}, where [ϕ] = {p ∈ Sα (A) |ϕ ∈ p}.

Definition 1.4. For a cardinal κ, a model M |= T is called κ-saturated when for all sets A ⊆ M

of cardinality < κ all types in S1 (A) are realized in M . The model M is κ-homogeneous when for

all α < κ and a, b ∈ Mα if a ≡ b then there is an automorphism of M mapping a to b.

Recall that the cardinality of T , |T |, is identified with the cardinality of the set of formulas in

T .

Fact 1.5. [Hod93, Theorem 10.2.1] For any cardinal κ ≥ |T |, and any model M |= T there exists

a κ-saturated, κ-homogeneous model N ≻ M of T .

Fix some κ ≥
(

2|T |
)+

. We denote by C a κ-saturated, κ-homogeneous model of T . In model

theory, this is usually referred to as the “monster model” of T (and it is often harmless to assume

in addition that C is |C|-saturated and is very big). The convention is that all sets of parameters

and tuples we deal with are small, that is, of cardinality < κ, and that they are all contained in

C. Similarly all small models are assumed to be elementary substructures of C.

Recall that for A ⊆ C, Aut (C/A) denotes the group of automorphisms of C which fix A point-

wise.

Definition 1.6. Let A ⊆ C a small set. A set X ⊆ C
α is called A-type-definable (or type-definable

over A) if it is empty or there is an α-type p over A such that

X = {a ∈ C
α |a |= p} .

It is A-invariant (or invariant over A) when for all σ ∈ Aut (C/A), σα (X) = X (usually we omit

α from this notation). When A is omitted, it is understood that A = ∅.

We define a “topology” on subsets of Cα.

Definition 1.7. Call a subset X ⊆ C
α pseudo closed if X is type definable over some small set.

A pseudo open set is a complement of a pseudo closed set. Pseudo Gδ sets and pseudo Fσ sets are

defined in the obvious way.

By saturation C
α is pseudo compact in the sense that any small intersection of non-empty pseudo

closed sets is non-empty. This why we often say “by compactness”, instead of “by saturation”.



THE BOREL CARDINALITY OF LASCAR STRONG TYPES 5

Remark 1.8. By compactness, for a small set A ⊆ C, the map rα,A : C
α → Sα (A) defined by

a 7→ tp (a/A) is pseudo closed, in the sense that it sends pseudo closed sets to closed sets (in the

Stone topology). So rα,A maps pseudo Fσ subsets of Cα to Fσ subsets of Sα (A).

We also recall the notion of an indiscernible sequence:

Definition 1.9. Let A be a small set. Let (I,<) be some linearly ordered set. A sequence

ā = 〈ai | i ∈ I 〉 ∈ (Cα)
I

is called A-indiscernible (or indiscernible over A) if for all n < ω, every

increasing n-tuple from ā realizes the same type over A. When A is omitted, it is understood that

A = ∅.

An easy but very important fact about indiscernible sequences is that they exist.

Fact 1.10.

(1) [TZ12, Lemma 5.1.3] Let (I,<I), (J,<J) be small linearly ordered sets, and let A be some

small set. Suppose b̄ = 〈bj | j ∈ J 〉 is some sequence of elements from C
α. Then there

exists an indiscernible sequence ā = 〈ai | i ∈ I 〉 ∈ (Cα)I such that:

• For any n < ω and ϕ ∈ Lα·n, if C |= ϕ
(

bj0
, . . . , bjn−1

)

for every j0 <J . . . <J jn−1

from J then C |= ϕ
(

ai0
, . . . , ain−1

)

for every i0 <I . . . <I in−1 from I.

(2) [Ker07, proof of Proposition 3.1.4] If M is a small model and a ≡M b, then there is an

indiscernible sequence c̄ = 〈ci | i < ω 〉 such that both a a c̄ and b a c̄ are indiscernible.

Point (1) in Fact 1.10 is proved using Ramsey’s theorem and compactness, while (2) is proved

with ultrafilters.

Definition 1.11. An equivalence relation E on a set X is called bounded if |X/E| < κ.

Remark 1.12. By saturation and homogeneity, every invariant set is a union of types over ∅. So

by saturation if E is an invariant equivalence relation with an invariant domain X ⊆ C
α, it makes

sense to consider E in any monster model. When E is bounded, and |α| ≤ |T | then |X/E| ≤ 2|T |.

To see that, let M |= T be of size |T |. If a, b ∈ X and a ≡M b then (a, b) ∈ E, since otherwise, by

Fact 1.10 (2) and saturation, we may assume that 〈a, b〉 starts an indiscernible sequence of length

κ. By homogeneity, any two elements in it are not E-equivalent. Now the result follows from the

fact that |Sα (M)| ≤ 2|T |. It is now easy to see that if C′ ≻ C is another monster model then every

E-class in C
′ intersects C, so there are no “new” classes.

We come to the central definition.

Definition 1.13. The Lascar graph on C
α is the set Gα of pairs (a, b) of distinct elements of Cα

which lie along an infinite indiscernible sequence. The Lascar metric dα is the metric associated

with this graph. Let ≡α
L denote the equivalence relation on C

α whose classes coincide with the
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connected components of Gα. The Lascar strong type of a tuple a ∈ C
α is its ≡α

L-class. We will

omit α from the notation when it is clear from context.

Remark 1.14. By Fact 1.10 (2), it follows that for a, b ∈ C
α and M ≺ C, if a ≡M b then d (a, b) ≤ 2.

Fact 1.15. (see e.g., [Ker07, Proposition 3.1.4]) The relation ≡α
L is the finest bounded invariant

equivalence relation on C
α.

Proof (sketch.) If E is some bounded invariant equivalence relation on C
α and dα (a, b) ≤ 1, then

as in Remark 1.12, (a, b) ∈ E. Similarly, ≡α
L is bounded since it is bounded by |Sα (M)| for any

model M |= T . �

Definition 1.16. The group of Lascar strong automorphisms of C is the group generated by

automorphisms σ of C for which there is a small model M ≺ C fixed pointwise by σ, i.e., the group

Aut fL (C) = 〈σ ∈ Aut (C/M) |M ≺ C 〉 .

Fact 1.17. (see e.g., [Ker07, Section 3.1])

(1) The group of Lascar strong automorphisms is a normal subgroup of Aut (C). It consists of

all automorphisms that fix all Lascar strong types (of any length).

(2) The Lascar strong type equivalence relation is the orbit equivalence relation of the group

of Lascar strong automorphisms.

(3) If σ is a Lascar strong automorphism, then there is some m < ω such that for any tuple

c (of any length), d (c, σ (c)) ≤ m. In this case we say that m bounds σ.

Remark 1.18. Suppose a, b ∈ C
α and dα (a, b) ≤ n. Then there is a Lascar strong automorphism

σ of C bounded by 2n such that σ (a) = b.

Proof. (of Remark 1.18) It is enough to establish it in the case d (a, b) ≤ 1: if d (a, b) ≤ n, then

there are c0, . . . , cn with a = c0, cn = b and d (ci, ci+1) ≤ 1 for all i < n. For each i < n, we find

some σi bounded by 2 that maps ci to ci+1. Let σ = σn−1 ◦ . . . ◦ σ0.

So suppose I = 〈ai | i < ω 〉 is an indiscernible sequence that starts with a0 = a, a1 = b. Let M

be a model of size |T |. By saturation we can extend the sequence I to length
(

2|T |
)+

. So there

must be two elements in I that have the same type over M . By indiscernibility and homogeneity,

there is some model M ′ such that a ≡M ′ b.

The remark now follows from Remark 1.14. �

We also recall the notion of KP strong type:

Definition 1.19. Let ≡α
KP denote the finest bounded type-definable equivalence relation on C

α.

The KP strong type1 of a tuple a ∈ C
α is its ≡α

KP -class.

1KP stands for Kim-Pillay. This notation was introduced by Hrushovski in [Hru98].
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Fact 1.20. [Cas11, Proposition 15.25] Let X be any type-definable subset of Cα.

(1) The restriction ≡α
L
↾ X of ≡α

L
to X is the finest bounded invariant equivalence relation on

realizations of X.

(2) The restriction ≡α
KP

↾ X of ≡α
KP

is the finest bounded type-definable equivalence relation

on realizations of p.

Remark 1.21. By saturation and homogeneity if X ⊆ C
α is type-definable over some small set B

and invariant over another small set A, then it is type-definable over A. It follows that if K ⊆ C
α is

a KP strong type, and for some a ∈ K, [a]≡α
L

is pseudo closed, then ≡α
L ↾ K is trivial. Indeed, it is

type-definable over a so there is a type π (x, y) such that π (x, a) defines [a]≡L
. Let p (x) = tp (a/∅).

Then ≡α
L ↾ p is defined by: x ≡α

L y iff π (x, y). Fact 1.20 implies that ≡α
L ↾ p = ≡α

KP ↾ p, so ≡α
L ↾ K

is trivial.

Definition 1.22. Let Y ⊆ C
α be closed under ≡α

L. We say that Y is d-bounded if there is some

n < ω such that a ≡α
L b iff d (a, b) ≤ n for all a, b ∈ Y .

Remark 1.23. For a set of parameters A, Lascar distance over A, Lascar strong type over A, KP-

strong type over A, etc., are the parallel notions for TA: the complete theory of the structure CA

which is just C after naming all elements from A. All the facts above hold for A with the obvious

adjustments.

1.2. Preliminaries on Borel equivalence relations. Here we give the basic facts about Borel

equivalence relations.

Definition 1.24. Suppose X and Y are Polish spaces, and E and F are Borel equivalence relations

on X and Y . We say that a function f : X → Y is a reduction of E to F if for all x0, x1 ∈ X ,

(x0, x1) ∈ E iff (f (x0) , f (x1)) ∈ F .

(1) We say that E is Borel reducible to F , denoted by E ≤B F , when there is a Borel reduction

f : X → Y of E to F .

(2) We say that E is continuously reducible to F , denoted by E ⊑c F , when there is a

continuous injective reduction f : X → Y of E to F .

(3) We say that E and F are Borel bi-reducible, denoted by E ∼B F , when E ≤B F and

F ≤B E.

(4) We write E <B F to mean that E ≤B F but E 6∼B F .

Example 1.25. For a Polish space X , the relations ∆ (X) denotes equality on X . Then ∆ (1) <B

∆ (2) <B . . . <B ∆ (ω) <B ∆ (2ω).

Definition 1.26. We say that E is smooth iff E ≤B ∆ (2ω).
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Note that being smooth is equivalent to the existence of “separating Borel sets,” i.e., Borel sets

Bi ⊆ X such that x E y iff for all i < ω, x ∈ Bi iff y ∈ Bi.

Fact 1.27. [Sil80](Silver dichotomy) For all Borel equivalence relations E, E ≤B ∆ (ω) or

∆ (2ω) ⊑c E . It follows that ∆ (2ω) is the successor of ∆ (ω).

Proposition 1.28. Closed equivalence relations are smooth.

Proof. Suppose E is a closed equivalence relation on a Polish space X . We must find Borel set

Bi ⊆ X for i < ω such that xEy iff for all i < ω, x ∈ Bi ⇔ y ∈ Bi. Since X2\E is open, it equals
⋃

i<ω Ui × Vi for Ui, Vi ⊆ X open. Let UE
i = {x ∈ X | ∃y (y ∈ Ui & xEy)} be the E-closure of Ui

and V E
i be the E-closure of Vi. These are analytic sets. Since UE

i ∩V E
i = ∅, by Lusin’s separation

theorem, there are Borel sets U0
i such that U0

i ⊇ UE
i , U0

i ∩ V E
i = ∅. Recursively we construct

Borel sets U j
i for j < ω such that U j

i contains the E-closure of U j−1
i and is disjoint from V E

i . Let

Bi =
⋃

j<ω U
j
i . �

Example 1.29. Let E0 be the following equivalence relation on the Cantor space 2ω: (η, ν) ∈ E0

iff there exists some n < ω such that for all m > n, η (m) = ν (m).

Proposition 1.30. The relation E0 is non-smooth.

Proof. Recall that all Borel subsets B of a Polish space X have the Baire property: there is an

open set O ⊆ X such that O∆B is meager. Suppose {Bi | i ∈ ω } are Borel separating sets of E0,

so all of them have the Baire property.

Fix some i < ω, and suppose Bi is not meager. Then there is some n < ω and some s ∈ 2n such

that, letting Os = {η ∈ 2ω | s ⊳ η }, Os\Bi is meager. Let t ∈ 2n. Since Bi is closed under E0, and

there is a homeomorphism of 2ω taking Os to Ot fixing all E0-classes, Ot\Bi is also meager. But

then 2ω\Bi =
⋃

s∈2n Os\Bi is meager, so Bi is comeager. This shows that Bi is either meager or

comeager.

But then,

B =
⋂

{Bi | i < ω, Bi is comeager} ∩
⋂

{∼Bi | i < ω, Bi is meager}

is a comeager E0-class, which is a contradiction (since it is countable). �

In addition, we have the following dichotomy:

Fact 1.31. [HKL90] (Harrington-Kechris-Louveau dichotomy) For every Borel equivalence rela-

tion E either E ≤B ∆ (2ω) (i.e., E is smooth) or E0 ⊑c E. It follows that E0 is the successor of

∆ (2ω).

We also mention:
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Corollary 1.32. Suppose Y is a Polish space, and E is a Borel equivalence relation on Y such

that all its classes are Gδ-subsets. Then E is smooth.

Proof. Suppose E is not smooth. By Fact 1.31, there is a continuous map f : 2ω → Y that reduces

E0 to E. But then it follows that all the E0-classes are continuous pre-images of Gδ sets, so they

are themselves Gδ. As they are also dense, this is a contradiction. �

1.3. Preliminaries on Choquet spaces. As we mentioned above, when the language is not

necessarily countable we will work with Choquet spaces instead of Polish spaces.

Definition 1.33. The Choquet game on a topological space X is a two player game in ω-many

rounds. In round n, player A chooses a non-empty open set Un ⊆ Vn−1 (where V−1 = X), and

player B responds by choosing a non-empty open subset Vn ⊆ Un. Player B wins if the intersection
⋂

{Vn |n < ω } is not empty.

The strong Choquet game is similar: in round n player A chooses an open set Un ⊆ Vn−1 and

xn ∈ Un, and player B responds by choosing an open set Vn ⊆ Un containing xn. Again, player B

wins when the intersection
⋂

{Vn |n < ω} is not empty.

A topological space X is a (strong) Choquet space if player B has a winning strategy in every

(strong) Choquet game.

Given a subset A of X , we say that X is strong Choquet over A to mean that the points that

player A chooses are taken from A.

It is easy to see that:

Example 1.34. Every Polish space is strong Choquet.

But for our purposes, we shall need the following example:

Example 1.35. If X is compact (not necessarily Hausdorff) and has a basis consisting of clopen

sets then it is strong Choquet.

Proof. In round n, player B will choose a clopen set xn ∈ Vn ⊆ Un. By compactness, the

intersection
⋂

{Vn |n < ω } is not empty. �

Proposition 1.36. If X is strong Choquet and ∅ 6= U ⊆ X is Gδ, then U is also strong Choquet.

Proof. Suppose U =
⋂

{Wn |n < ω } where Wn ⊆ X are open. Let St be a strategy for the strong

Choquet game in X and we will describe a strategy StU for the strong Choquet game in U . So we

play a game aU in U , and we run a parallel game aX in X as follows. Assume we have already

played all the rounds up to n: the sets Ui, Vi were chosen for i < n in the game aU , and U ′
i , V

′
i

are the corresponding moves in the aX . The construction will ensure that for all i < n, we have
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U ′
i ∩ U = Ui, V

′
i ∩ U = Vi and U ′

n ⊆ Wn. Assume that A plays (Un, xn), with xn ∈ Un. Pick

an open subset U∗ of X such that U∗ ∩ U = Un. We set A’s move in the parallel game to be

(U∗ ∩Wn ∩ V ′
n−1, xn). Let V ′

n be B’s move according to the strategy St. Then in aU , have B play

V ′
n ∩ U . Note that this set is non-empty since it contains xn. This defines a winning strategy for

B. �

1.4. Context.

1.4.1. Countable language. In [KPS12], the authors gave a natural way of considering ≡α
L and ≡α

KP

for a countable complete first order theory T and a countable α as Borel equivalence relations on

the space of types Sα (M) over a countable model M (this is a Polish space — see Remark 1.3

about the topology). Fix some countable T and α.

Definition 1.37. Let M be a countable model. For p, q ∈ Sα (M), we write p ≡α,M
L q iff

∃a |= p, b |= q (a ≡α
L b) and similarly we define ≡α,M

KP .

It will be useful to define the Lascar metric on types:

Definition 1.38. For p, q ∈ Sα (M) let dα (p, q) = min {n ∈ N | ∃a |= p, b |= q (dα (a, b) ≤ n)}.

Note that:

Remark 1.39. [KPS12, Remark 2.2] Let M be a countable model. By Remark 1.14, for p, q ∈

Sα (M), p ≡α,M
L q iff ∀a |= p, b |= q (a ≡α

L b) and similarly for ≡α,M
KP .

Let qα,M : Sα·2 (M) → Sα (M) be defined by p (x, y) 7→ (p ↾ x, q ↾ y). This is a continuous map,

and hence it is closed. Using this notation, ≡α,M
KP = qα,M ◦ rα·2,M (≡α

KP ) (see Remark 1.8), and

hence ≡α,M
KP is closed. Similarly, the set

Fn = {(p, q) ∈ Sα (M) | dα (p, q) ≤ n}

is closed, and ≡α,M
L is the union

⋃

n<ω Fn hence it is Kσ.

They proved that as far as Borel cardinality goes, this does not depend on the model M , even

when restricting to a KP strong type:

Fact 1.40. [KPS12, Propositions 2.3, 2.6] Let M and N be any countable models. Then,

(1) ≡α,M
L ∼B ≡α,N

L .

(2) For any a ∈ C, ≡α,M
L ↾ [tp (a/M)]≡α,M

KP

∼B ≡α,N
L ↾ [tp (a/N)]≡α,N

KP

.

One can extend this observation to deal also with pseudo Gδ sets. Suppose Y ⊆ C
α is a pseudo

Gδ set. For a countable model M , YM = rα,M (Y ) ⊆ Sα (M) is not necessarily Gδ. But in case Y

is closed under ≡α
L, it is. Indeed, Cα\Y is pseudo Fσ, and so rα,M (Cα\Y ) is Fσ. But by Remark

1.14, rα,M (Cα\Y ) ∩ YM = ∅.
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For a countable model M , YM is a Polish space (as every Gδ set is). In addition, changing the

model does not change the Borel cardinality:

Proposition 1.41. Fix a pseudo Gδ set Y ⊆ C
α, closed under ≡α

L. Then

≡α,M
L ↾ YM ∼B ≡α,N

L ↾ YN .

Proof. The proof is exactly the same as in [KPS12, Propositions 2.3, 2.6], but we repeat it for

completeness. It is enough to establish this when M ⊆ N . Let π : Sα (N) → Sα (M) be the

restriction map. Then π is a continuous map that reduces ≡α,N
L to ≡α,M

L . By [KPS12, Fact 1.7

(i)] there is a Borel section, i.e., a Borel function π′ : Sα (M) → Sα (N) such that π ◦π′ = id. Now

it follows that π and π′ restricted to YM and YN witness Borel bi-reducibility. �

This allows us to refer to the Borel cardinality of ≡α
L↾ Y without specifying the model.

1.4.2. Countable or uncountable language. Let T be any complete first order theory and α any

ordinal. In order to state our theorem in full generality, we shall need the following definition:

Definition 1.42. We say that a set Y ⊆ C
α for some small α is pseudo strong Choquet if YM is

strong Choquet for all M .

Example 1.43. Pseudo closed and pseudo Gδ sets which are closed under ≡α
L are pseudo strong

Choquet by the observation after Fact 1.40 and Proposition 1.36.

Remark 1.44. For countable T and α, “pseudo strong Choquet” is the correct analog of pseudo

Gδ for sets closed under ≡α
L. By [Kec95, Theorem 8.17] if Y ⊆ C

α is such a set, then Y is pseudo

strong Choquet iff Y is pseudo Gδ iff YM is Polish for every M .

1.5. Results. Our main theorem, proved in Section 4, is:

Main Theorem A. Suppose T is a complete countable first-order theory, α a countable ordinal,

and suppose Y is a pseudo Gδ subset of Cα which is closed under ≡α
L. If for some a ∈ Y , [a]≡α

L

is

not d-bounded, then ≡α
L ↾ Y is non-smooth.

Remark 1.45. This theorem remains true also for many-sorted countable theories, with the obvious

adjustments.

We immediately get Conjecture 1 of [KPS12]:

Corollary 1.46. Suppose T and α are as above. Suppose K ⊆ C
α is a KP strong type. If ≡α

L ↾ K

is not d-bounded, then ≡α
L ↾ K is non-smooth. In particular, by Remark 1.21, if ≡α

L ↾ K is not

trivial, then it is non-smooth.
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Proof. Observe that if ≡α
L ↾ K is not d-bounded, then there is a ≡α

L-class inside K which is not

d-bounded (else all classes will have the same bound, since they are conjugates). �

Corollary 1.47. Suppose T and α are as above. Then ≡α
L is closed iff it is smooth.

Proof. If ≡α
L is not closed, then ≡α

L 6= ≡α
KP , so there is a KP strong type K such that ≡α

L ↾ K

is not trivial, so ≡α
L ↾ K is not smooth, so also ≡α

L. The other direction follows from Proposition

1.28. �

Remark 1.48. Since our main result concerns E0, it actually says something about the “definable

cardinality” of ≡α
L, i.e., it is stronger than just saying something about the Borel cardinality of

≡α
L, but also allows reductions to be “definable”. In the proof of Proposition 1.30, we showed

that there are no separating sets for E0 with the Baire property. In any reasonable interpretation

of the term, any “definable” reduction of E0 to ∆ (Y ) for some Polish space Y will give rise to

such separating sets. So our main result implies that the “definable cardinality” of ≡α
L is greater

than ∆ (2ω). We will not give an exact definition of “definable cardinality” (see more in [BK96,

Chapter 8]).

For a general language and α we have:

Main Theorem B. [Simplified version] Suppose T is a complete first-order theory, α a small

ordinal. Suppose Y ⊆ C
α is closed under ≡α

L and for some a ∈ Y , [a]≡α
L

is not d-bounded. Suppose

Y is pseudo strong Choquet. Then |Y/≡α
L| ≥ 2ℵ0 .

The full theorem says a bit more, see 5.1.

Corollary 1.49. Fact 1.1 holds for any theory T and any small ordinal α.

Proof. (1), (2) and (3) follow immediately from Main Theorem B. (3) is also connected to Corollary

1.32.

(4) Suppose T is small. Let n < ω, let a be some tuple of length n and let Y = Sn (a). This is

a countable Polish space. Thus every subset of Y is Gδ, in particular the set

Q = {q ∈ Sn (a) | ∀b |= q (b ≡n
L a)} .

(which can also can also be defined with ∃). Let M be any countable model containing a. Then

the restriction map π : S (M) → S (a) is continuous. Thus, π−1 (Q) is also Gδ. But it is exactly

the Lascar strong type of a in S (M). By (3), this class is d-bounded, but then by Remark 1.21

≡n
L ↾ [a]≡n

KP

is trivial and hence ≡n
KP = ≡n

L. �
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2. Descriptive set theoretic lemmas

2.1. Polish spaces. Given a group Γ of homeomorphisms of a topological space X , we use EX
Γ

to denote the corresponding orbit equivalence relation. Although the following fact can be seen

as a consequence of the proof of [BK96, Theorem 3.4.5], for the sake of completeness we provide

a proof.

Theorem 2.1. Suppose that X is a perfect Polish space, Γ is a group of homeomorphisms of

X with a dense orbit, and R ⊆ X × X is a meager set. Then there is a continuous, injective

homomorphism φ : 2ω → X from (E0,∼E0) to
(

EX
Γ ,∼R

)

.

Proof. We use 1Γ to denote the identity element of Γ. Given a natural number n and a sequence

〈γi | i < n 〉 of elements of Γ, we use
∏

i<n γi to denote 1Γ when n = 0, and the product γ0 · · · γn−1

when n > 0. When 〈γi | i < n 〉 is constant with value γ, we also use γn to denote
∏

i<n γi.

As X is perfect, the set of pairs of distinct points of X is comeager, so there is a decreasing

sequence 〈Un |n ∈ N 〉 of dense, irreflexive, open, symmetric subsets of X × X whose intersection

is disjoint from R. We will recursively construct group elements γn ∈ Γ, with which we associate

the products γs =
∏

i<n γ
s(i)
i , for all n ∈ N and s ∈ 2n. We will simultaneously construct points

xn ∈ X and open neighborhoods Xn of xn with the following properties:

(1) Xn+1 ⊆ Xn ∩ (γ−1
n ·Xn).

(2) ∀s ∈ 2n+1 diam (γs ·Xn+1) ≤ 1/n.

(3) ∀s, t ∈ 2n+1 (s (n) 6= t (n) ⇒ (γs ·Xn+1) × (γt ·Xn+1) ⊆ Un).

We begin by fixing an arbitrary point x0 ∈ X and setting X0 = X .

Suppose now that n ∈ N and we have already found 〈γm |m < n 〉, xn, and Xn. The fact that

Γ consists of homeomorphisms then ensures that the set

Vn =
⋂

{

(γs × γt)
−1 (Un) | (s, t) ∈ 2n × 2n

}

is dense and open, so the fact that Γ has a dense orbit yields γn ∈ Γ and xn+1 ∈ Xn ∩ (γ−1
n ·Xn)

for which (xn+1, γn · xn+1) ∈ Vn. As Γ consists of homeomorphisms and Un is symmetric, there is

an open neighborhood Xn+1 of xn+1 satisfying conditions (1) – (3). This completes the recursive

construction.

Conditions (1) and (2) ensure that we obtain a continuous function φ : 2ω → X by setting

φ(c) = limn→∞ γc↾n · xn. To see that φ is a homomorphism from E0 to EX
Γ , it is sufficient to

observe that if k ∈ N, s ∈ 2k, and y ∈ 2ω, then

φ(s a y) = lim
n→∞

γsay↾n · xn = lim
n→∞

γsγ(0)kay↾n · xn = γs · φ
(

(0)
k
a y

)

.
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Observe now that if y, z ∈ 2ω and y (n) 6= z (n), then conditions (1) and (3) ensure that

(φ (y) , φ (z)) ∈
(

γy↾(n+1) ·Xn+1

)

×
(

γz↾(n+1) ·Xn+1

)

⊆ Un, so the irreflexivity of Un yields the in-

jectivity of φ, and the fact that 〈Un |n ∈ N 〉 is a decreasing sequence whose intersection is disjoint

from R ensures that φ is a homomorphism from ∼E0 to ∼R. �

Given R ⊆ X ×X and x ∈ X , define Rx = {y ∈ X |x R y }.

Theorem 2.2. Suppose that X is a Polish space, 〈Rn |n ∈ N 〉 is a sequence of Fσ subsets of

X × X, Γ is a group of homeomorphisms of X, and O ⊆ X is an orbit of Γ with the property

that for all n ∈ N and open sets U ⊆ X intersecting O, there are distinct x, y ∈ O ∩ U with

O ∩ (Rn)x ∩ (Rn)y = ∅. Then there is a continuous, injective homomorphism φ : 2ω → O from

(E0,∼E0) to
(

EX
Γ ,∼

⋃

{Rn |n ∈ N}
)

.

Proof. In light of Theorem 2.1, it is sufficient to show that O is perfect and
⋃

{Rn |n ∈ N} ↾ O

is meager. For the former, observe that if U ⊆ X is an open set intersecting O , then it intersects

O, so there are distinct x, y ∈ O ∩ U . For the latter, it is sufficient to check that each of the sets

∼Rn ↾ O is dense. Towards this end, suppose that U, V ⊆ X are open sets intersecting O, and

therefore O. Then there exist x, y ∈ O ∩ U with O ∩ (Rn)x ∩ (Rn)y = ∅, as well as z ∈ O ∩ V , so

¬x Rn z or ¬y Rn z, thus ∼Rn ∩ O ∩ (U × V ) 6= ∅. �

We are going to apply this in our context via:

Corollary 2.3. Let T be a countable first order theory, let α be a countable ordinal and M a

countable model. Let Y be a Polish subspace of Sα (M) that is closed under ≡α,M
L . Suppose that

there is some x ∈ Y such that for every open set U ∋ x and for all N ∈ N, there exist some

σ ∈ Aut fL (C) such that:

(1) The automorphism σ∗ that σ induces on Sα (M) fixes Y setwise.

(2) σ∗ (x) ∈ U and N < dα (σ∗ (x) ,x) (see Definition 1.38).

Then there is a continuous, injective homomorphism φ : 2ω → Y from (E0,∼E0) to
(

≡α,M
L ,∼≡α,M

L

)

.

In particular, ≡α,M
L ↾ Y is not smooth.

Proof. For n < ω, let Rn be the closed set {(p, q) ∈ Y × Y | dα (p, q) ≤ n}. Let Γ be the group

of homeomorphisms of Y which are induced by automorphisms in Aut fL (C) which fix Y setwise.

Let O be the orbit of x under Γ.

Let n ∈ N and let W be an open set which intersects O. Then for some γ ∈ Γ, γ (x) ∈ W . Let

U = γ−1 (W ). Then for some σ ∈ Aut fL (C), σ∗ ∈ Γ, σ∗ (x) ∈ U and 2n < dα (σ∗ (x) ,x). Let

x = γ (x) and y = γσ∗ (x). So dα (x, y) = dα (x, σ∗ (x)) > 2n and so x and y are distinct and

O ∩ (Rn)x ∩ (Rn)y = ∅. �
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2.2. Choquet spaces. In order to prove Main Theorem B, we have to work over a model M of

possibly uncountable size, hence S(M) is no longer a Polish space. The idea is to mimic the proof

of Main Theorem A, i.e., construct step-by-step an embedding of E0. In the countable case we

use completeness at the limit stage, but here we use the winning strategy in the (strong) Choquet

game.

The main observation is that Theorem 2.1 has a natural analog in the Choquet context:

Theorem 2.4. Suppose that X is regular topological space, Γ is a group of homeomorphisms of

X and O an orbit of Γ such that X is Choquet over O. Suppose that for n < ω, Vn ⊆ X ×X is a

Gδ subset such that Vn ↾ O × O is dense. Then there is a map φ : 2ω → P (X) such that for every

y, z ∈ 2ω:

• φ (y) is a non-empty closed Gδ subset of X.

• If z E0 y then there is some γ ∈ Γ such that γ · φ (z) = φ (y).

• If ∼z E0 y then (φ (y) × φ (z)) ⊆
⋂

n<ω Vn.

Proof. The proof follows along the lines of the proof of Theorem 2.1. The main difference is that

in condition (2) in the construction, instead of controlling the diameter of the open sets, one has

to refine them so that they obey the winning strategy of player B in the suitable Choquet game

over O. �

From this we get the following analog of 2.2:

Theorem 2.5. Suppose that X is a topological space, 〈Rn |n ∈ N 〉 is a sequence of Fσ subsets of

X × X, Γ is a group of homeomorphisms of X, and O ⊆ X is an orbit of Γ with the property

that for all n ∈ N and open sets U ⊆ X intersecting O, there are distinct x, y ∈ O ∩ U with

O ∩ (Rn)x ∩ (Rn)y = ∅. If X is strong Choquet over O then the conclusion of Theorem 2.4 holds

with Vn = ∼Rn.

And:

Corollary 2.6. Let T be any first order theory with language L, let α be any ordinal and M a

model. Let Y be a subspace of Sα (M) that is closed under ≡α,M
L . Suppose that there is

(1) Some x ∈ Y .

(2) A countable sub-language L′ of L, a countable set M ′ ≺ M ↾ L′ and a countable sub-tuple

of the first α variables which for simplicity we will assume to be the initial segment of

length β.

(3) A countable subgroup Σ ≤ Aut fL (C) of automorphisms that fix M ′ and M setwise.

Such that:
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(1) With the topology induced on Y by L′, M ′, and β (the one generated by formulas in

L′
β (M ′)), Y is strong Choquet over Σ · x.

(2) For every open set U ∋ x in the induced topology and for all N ∈ N, there exist some

σ ∈ Σ such that σ∗ (x) ∈ U and, letting x′ = x ↾ Lβ (M ′), N < d′
β (σ∗ (x′) ,x′) (d′

β is the

Lascar metric of the language L′).

Then there is a map φ : 2ω → P (Y ) such that for every y, z ∈ 2ω:

• φ (y) is a non-empty closed Gδ subset of Y .

• If z E0 y then there is a some γ ∈ Γ such that γ · φ (z) = φ (y).

• If ∼z E0 y then (φ (y) × φ (z)) ∩ ≡α,M
L = ∅.

Proof. Similar to 2.3. Note that if p, q ∈ Sα (M) and p ↾ L′
β (M ′) , q ↾ L′

β (M ′) are not ≡β,M ′

L

equivalent, then p, q are not ≡α,M
L -equivalent. �

The following lemma will not be used directly, but its proof will give insight into the proof of

Main theorem B.

Lemma 2.7. Suppose (X, τ) is a Choquet space with topology τ . Let B ⊆ P (X) be a base for τ ,

and assume it is closed under finite intersections. Let B0 ⊆ B. Then there exists B0 ⊆ B1 ⊆ B

such that |B1| ≤ |B0| + ℵ0 and (X, τB1
) is Choquet, where τB1

is the topology generated by B1.

Proof. Let St be a winning strategy for player B in the Choquet game of (X, τ). Let s = 〈Ui | i ≤ n 〉

be a finite sequence of elements of B0. Suppose s consists of a legal n+ 1-play of player A, where

player B plays his moves according to St for i < n. Let Vs be a nonempty basic open set contained

in player B’s play in the n’th round of his move according to St. Let B1
0 be the closure under finite

intersections of B0 ∪ {Vs | s ∈ B<ω
0 }. This is a subset of B. Repeat this recursively to construct

Bn
0 for n < ω, and let B1 =

⋃

n<ω B
n
0 . Then B1 satisfies the cardinality demand. Let us see that

(X, τB1
) is Choquet. For this we must describe a winning strategy for player B.

So suppose 〈(Ui, Vi) | i < n 〉 is a legal play of the Choquet game in τB1
(where Ui is played by

player A and Vi is played by player B), and player A chooses Un. Suppose that:

• There are basic open sets U ′
i ∈ B1 and open sets V ′

i ∈ τ for i < n such that 〈(U ′
i , V

′
i ) | i < n 〉

is a play of the Choquet game compatible with St, U ′
i ⊆ Ui and Vi ⊆ V ′

i .

Let U ′
n ∈ B1 be such that U ′

n ⊆ Un. There is some m < ω such that U ′
i ⊆ Bm

0 for all i < n and

let s = 〈U ′
i | i ≤ n 〉. By construction of Bm+1

0 , Vs ∈ B1 so let player B play Vs.

If this does not hold, let player B play any set.

Now it is easy to see that if player B plays according to this strategy, then he will win the

game. �
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3. The small case

Here we prove Main Theorem A under the assumption that a consequence of smallness holds,

namely that the conclusion of Fact 1.1 (4) holds. This result is superseded by Theorem 4.12 in

the next section, and the reader may skip it if desired.

Assume that T is a complete theory in a countable language L and that C is a monster model

for T .

Claim 3.1. Suppose that A is a countable set and that {σi | i < ω} is a set of automorphisms of C.

Then there is a countable model N ⊇ A such that σi ↾ N is an automorphism of N for all i < ω.

Proof. Let M0 be some model containing A, and for n > 0, let Mn be a countable model containing
⋃

j∈Z,i<ω σ
(j)
i (Mn−1). Let N =

⋃

n<ω Mn. �

Definition 3.2. Call a countable model M of T nice if the following conditions hold:

(1) For every pair of finite tuples a, b ∈ Mk, if a ≡k
L b then there is a Lascar strong automor-

phism σ of M (i.e., σ ∈ Aut fL (C) ∩ Aut (M)) that maps a to b. Moreover, σ has minimal

bound (see Fact 1.17 (2)) among all automorphisms in Aut fL (C) that map a to b.

(2) For every finite tuple a ∈ Mk, and every n < ω, if there are c1, c2 ∈ C
k such that

c1 ≡k
L a ≡k

L c2 and dk (c1, c2) > n, then there are such c1, c2 in Mk.

(3) For all finite tuples a, b ∈ Mk and a′ ∈ Mk′

and every n < ω, if there is some b′ such that

dk+k′ (a a a′, b a b′) ≤ n, then there is some such b′ ∈ Mk′

.

Lemma 3.3. Nice models exist. Moreover, for every countable set A, there is a nice model M

that contains it.

Proof. Let M0 be any countable model containing A. Recursively choose Mn+1 to satisfy (1)–(3)

relative to Mn (using Claim 3.1) and set M =
⋃

n<ω Mn. �

Fix a countable ordinal α and a pseudo Gδ set Y . Assume that:

Assumption A. (1) α is infinite.

(2) The Lascar strong type of every finite sub-tuple of a tuple from Y is d-bounded.

Remark 3.4. By Fact 1.1 (4), if T is small, then for finite tuples, ≡KP = ≡L, so this assumption

is satisfied when α is infinite if T is small, and Corollary 1.46 is trivial for finite α (given Fact 1.1

(1)).

Theorem 3.5. Main Theorem A holds under Assumption A.

Namely, suppose α and Y are as above and for some ā ∈ Y , [ā]≡α
L

is not not d-bounded. Then

≡α
L ↾ Y is non-smooth.
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Proof. Choose a nice model M (by Lemma 3.3) that contains ā.

Let x = p = tp (ā/M). We shall show that corollary 2.3 applies with Y there being YM (see

Proposition 1.41).

Suppose U is some open set containing p, and N is some number. In general, U has the form

[ϕ] for some ϕ ∈ Lα (M). But in our case, since M |= ϕ (ā), we may replace U with a smaller

open neighborhood of p defined by a formula of the form x = c, where x is the tuple of first k

variables and c = ā ↾ k.

Let B be a bound on the diameter of [c]≡k
L

. Since the class of ā is not of bounded diameter, by

compactness there must be some finite extension of c to a longer sub-tuple c a c′ = ā ↾ (k + k′)

such that the ≡k+k′

L -class of c a c′ has diameter greater than 2N + 4B.

There are two tuples f1 a f ′
1 and f2 a f ′

2 in C and [c a c′]
≡k+k′

L

such that dk+k′ (f1 a f ′
1, f2 a f ′

2) >

2N + 2B. Since M is nice, we may assume that these tuples are in M .

By choice of B, niceness of M and Remark 1.18, there are c′′ and c′′′ in M such that

dk+k′ (f1 a f ′
1, c a c′′) , dk+k′ (f2 a f ′

2, c a c′′′) ≤ 2B.

So dk+k′ (c a c′′, c a c′′′) > 2N . It follows that for one of c′′, c′′′, say c′′, dk+k′ (c a c′, c a c′′) > N

(but c a c′ ≡k+k′

L c a c′′).

Let σ be a Lascar strong automorphism of M that maps c a c′ to c a c′′. Since σ fixes c,

q = σ∗ (p) ∈ U . But q is realized by a tuple that contains c a c′′, and hence dα (q, p) > N . �

4. The countable case

Assume that α is a countable ordinal, T is a complete theory in a countable language L and C

is a monster model for T .

Definition 4.1. For a formula α (x, a) over a tuple a and an automorphism σ, σ (α) = α (x, σ (a)).

Definition 4.2. Suppose C ⊆ C
α is an ≡α

L-class. A formula ϕ ∈ Lα (C) is said to be C-generic

if finitely many translates of it under Aut fL (C) cover C. The formula ϕ is said to be C-weakly

generic if there is a non-C-generic formula ψ ∈ Lα (C) such that ϕ ∨ ψ is C-generic. A partial

p ⊆ Lα (C) is said to be C-generic (C-weakly generic) if all its formulas are.

Claim 4.3. The formulas which are not C-weakly generic form an ideal.

Proof. Suppose ϕ1, ϕ2 are not C-weakly generic and we have to show that ϕ1 ∨ ϕ2 is also not

C-weakly generic. If not, there is some non-C-generic ψ such that ϕ1 ∨ ϕ2 ∨ ψ is C-generic. But

ϕ2 ∨ ψ is not C-generic (since ϕ2 is not C-weakly generic), so we get a contradiction. �

By ϕ ⊢C ψ we mean that for every a ∈ C, if C |= ϕ (a) then C |= ψ (a).
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Remark 4.4. If ϕ ⊢C ψ and σ ∈ Aut fL (C) then σ (ϕ) ⊢C σ (ψ), so if ϕ is (weakly) generic, then

so is ψ.

Definition 4.5. Suppose p is a weakly generic (partial) type over C. Suppose furthermore that

p is closed under conjunctions. Say that it is C-proper if there is a non-C-generic formula ψ such

that for all ϕ ∈ p, ϕ ∨ ψ is C-generic. In general, p is C-proper when its closure under finite

conjunctions is.

Fix an ≡α
L-class C. When we write “(weakly) generic” and “proper”, we mean “C-(weakly)

generic” and “C-proper”.

Example 4.6. If p is generic, then it is proper.

An easy and well known combinatorial lemma is the following:

Lemma 4.7. If (P,<) is a directed order, k < ω and f : P → k is some function, then there is a

cofinal f -homogeneous set P0 ⊆ P : there is some i < k such that f−1 (i) is cofinal.

Proof. Suppose not. So for each i < k, the f−1 (i) is not cofinal, for some pi ∈ P , for no q ≥ pi,

f (q) = i. Let p be ≥ pi for every i < k. Then p ≥ pf(p) — contradiction. �

Lemma 4.8. Suppose p ⊆ Lα (C) is a partial proper type as witnessed by ψ. Suppose that
∨

i<n ϕi∨

ψ′ covers C and that ψ′ ∨ ψ is non-generic. Then for some i < n, p ∪ {ϕi} is proper.

Proof. We may assume that p is closed under conjunctions. For each formula ζ ∈ p, by assumption

we have:

ζ ∨ ψ ⊢C

∨

i<n

(ϕi ∧ ζ) ∨ ψ′ ∨ ψ.

So by Remark 4.4, the right hand side is generic.

For each ζ ∈ p and k < n, let ζk =
∨

k≤i<n (ϕi ∧ ζ) ∨ ψ′ ∨ ψ. Let kζ < n be maximal such

that ζk is generic (must exist since ζ0 is generic), so ζk+1 is non-generic. By Lemma 4.7, for some

k < n, the set {ζ |kζ = k } is cofinal in the order ζ1 > ζ2 ⇔ ζ1 ⊢ ζ2. Fix some χ ∈ p such that

kχ = k. We will show that p ∪ {ϕk} is proper, as witnessed by χk+1.

Suppose ζ ∈ p. Let ζ′ = ζ ∧ χ, and ζ′′ ⊢ ζ′ be such that kζ′′ = k. Then (ζ′′ ∧ ϕk) ∨ ζ′′
k+1

is generic. Since ζ′′ ∧ ϕk ⊢ ζ ∧ ϕk and ζ′′
k+1 ⊢ χk+1, (ζ ∧ ϕk) ∨ χk+1 is also generic and we are

done. �

Lemma 4.9. If p ⊆ Lα (C) is a partial proper type, then for every formula ϕ ∈ Lα (C), either

p ∪ {ϕ} is proper or p ∪ {¬ϕ} is proper.

Proof. Apply Lemma 4.8 with n = 2, ϕ0 = ϕ, ϕ1 = ¬ϕ and ψ′ = ⊥ (i.e., ∀x (x 6= x)).

Note that if we do not care about properness but only about weak genericity, then this follows

directly from Claim 4.3. �
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Proposition 4.10. Suppose that p ⊆ Lα (C) is a partial proper type, and ϕ ∈ p. Then there are

σ0, . . . σn−1 ∈ Aut fL (C) such that for every σ ∈ Aut fL (C), there exists some i < n such that

p ∪ {σ (σi (ϕ))} is proper.

Proof. Since p is proper, there is some non-generic formula ψ (x) that witnesses it. In particular,

there is some n < ω and some σ0, . . . , σn−1 ∈ Aut fL (C) such that
∨

i<n σi (ϕ ∨ ψ) covers C.

Suppose that σ ∈ Aut fL (C). Then σ
(
∨

i<n σi (ϕ ∨ ψ)
)

=
∨

i<n σ (σi (ϕ ∨ ψ)) also covers C.

Since ψ is non-generic, ψ′ =
∨

j<n σ (σj (ψ)) is also non-generic and so is ψ′ ∨ ψ.

Now we can apply Lemma Lemma 4.8. �

Proposition 4.11. Let a ∈ C. Consider the partial type q (x, y) = dα (x, y) ≤ 1. Then q (x, a) ⊆

Lα (a) is generic and hence proper.

Proof. Suppose ϕ (x, a) is a formula in q (x, a). Suppose ϕ is non-generic. This means that for every

n Lascar strong conjugates a0, . . . , an−1 of a, there is some a′ ∈ C (so another Lascar conjugate of

a) such that ¬ϕ (a′, ai) holds for all i < n. Thus we can construct an infinite sequence 〈ai | i < ω 〉

of Lascar conjugates of a such that for every i < ω, ¬ϕ (ai, aj) holds for all j < i.

By Fact 1.10 (1), there is an indiscernible sequence 〈bi | i < ω 〉 such that for all j < i < ω,

¬ϕ (bi, bj) holds. But this is a contradiction because by definition dα (b1, b0) ≤ 1. �

Theorem 4.12. Main Theorem A holds:

Suppose T is a complete countable first-order theory, α a countable ordinal, and suppose Y is

a pseudo Gδ subset of C
α which is closed under ≡α

L. If for some a ∈ Y , [a]≡α
L

is not d-bounded,

then ≡α
L ↾ Y is non-smooth.

Proof. Let C = [a]≡α
L

. For what follows when we write proper, we mean C-proper.

We want to apply Corollary 2.3 with Y there being YM (See Proposition 1.41) for some countable

model M . Hence we will construct a pair (M,p) such that M is a countable model of T and

x = p ∈ YM satisfies the condition in Corollary 2.3. Translating, this means that for every formula

ϕ ∈ p, and every N < ω, there exists some Lascar strong automorphism σ such that σ (M) = M ,

ϕ ∈ σ (p) and dα (σ (p) , p) > N .

Let q (x) = dα (x, a) ≤ 1 (as in Proposition 4.11). We construct a sequence 〈σi, pi,Mi | i < ω 〉

such that:

(1) Mi is a finite set for all i < ω.

(2) Mi ⊆ Mi+1 and pi ⊆ pi+1 for all i < ω.

(3) For all i < ω, pi is a finite type over Mi such that pi ∪ q is proper.

(4) For all i < ω, σi is a Lascar strong automorphism.

(5) For every i < ω and formula of ϕ ∈ L1 (Mi), if ϕ is not empty then for some i < j < ω

there is some c ∈ Mj such that ϕ (c) holds.
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(6) For every i < ω and n < ω there exists some i < j < ω such that Mj contains
⋃

−n<l<n,i′<i σ
(l)
i′ (Mi).

(7) For every i < ω and formula ϕ ∈ Lα (Mi), there is some i < j < ω such that pj contains

either ϕ or ¬ϕ.

(8) For every i < ω, N < ω and ϕ ∈ pi there are some i < j < j′ < ω such that dα (σj (a) , a) >

N and σ−1
j (ϕ) ∈ pj′ .

If we succeed, then let M =
⋃

Mi, p =
⋃

pi. M is a model by (5), and p ∈ S (M) and even

belongs to YM by (7) and (3).

(3), (6) and (8) imply that (M,p) satisfy the required condition: for every formula ϕ (x) ∈ p

(i.e., p ∈ [ϕ]) and N < ω, there is some σj as in (8). By (3), dα (c, a) ≤ 3 for any c |= p (because

there exists some c′ |= p ∪ q, and dα (c, c′) ≤ 2). So dα (c, σj (a)) > N − 3. By (6) σj (M) = M ,

and so dα

(

p, σ∗
j (p)

)

is well defined and > N−6 (as for any c |= σ∗
j (p), dα (c, σj (a)) ≤ 3). Finally,

ϕ ∈ σ∗
j (p).

The construction:

Let M0 and p0 be ∅. Note that condition (3) holds by Proposition 4.11.

Now we partition the work so that can satisfy all conditions. In each stage we take care of one

of (5)–(8).

(5) and (6) are easy (just add some elements to Mi). (7) can be achieved by Lemma 4.9.

For (8) we need some argument. So suppose we are in stage i + 1 of the construction and we

deal with (8), i.e., we are given N < ω and ϕ ∈ pi. By Proposition 4.10, there are τ0, . . . τn−1 ∈

Aut fL (C) such that for every σ ∈ Aut fL (C), there exists some j < n such that q∪pi ∪{σ (τj (ϕ))}

is proper. There is some bound k on τj for all j < n. Let σ ∈ Aut fL (C) be such that

dα (a, σ (a)) > N + k. By the triangle inequality, dα (a, σ (τj (a))) > N for all j < n. For

some j < n, q ∪ pi ∪ {σ (τj (ϕ))} is proper, so let σi+1 = (σ ◦ τj)
−1

(note that dα (a, (σ ◦ τj) (a)) =

dα

(

a, (σ ◦ τj)−1 (a)
)

) and pi+1 = pi ∪ {σ (τj (ϕ))} and continue. �

5. The general case

Here we adapt our techniques to the case where the language is not necessarily countable.

Theorem 5.1. Main theorem B holds:

Suppose T is a complete first-order theory, α a small ordinal. Suppose Y ⊆ C
α is closed under

≡α
L and for some a ∈ Y , [a]≡α

L

is not d-bounded. Suppose Y is pseudo strong Choquet. Then there

is a model M of size |T | + |α| and a function φ : 2ω → P (YM ) such that for every y, z ∈ 2ω:

• φ (y) is a non-empty closed Gδ subset of YM .

• If z E0 y then there is a some γ ∈ Γ such that γ · φ (z) = φ (y).

• If ∼z E0 y then (φ (y) × φ (z)) ∩ ≡α,M
L = ∅.
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In particular, |Y/≡α
L| ≥ 2ℵ0 .

Proof. The idea is to simultaneously construct a countable language L′, a countable model M ′ , a

countable sub-tuple of the first α variables, an L′-type over M ′ in these variables and a countable

group of Lascar strong automorphisms so that we can apply Corollary 2.6. Eventually, x will be

any completion of the L′-type over M ′ to a complete L-type over M .

So we will need a more elaborate argument than the one used in Theorem 4.12 that will also

use the proof of Lemma 2.7 (but not the lemma itself). That is, we try to construct the winning

strategy along with the model and language.

Let C = [a]≡α
L

. For what follows when we write proper, we mean C-proper. Fix a countable

set S of Lascar strong automorphisms that witness that C is not d-bounded, i.e., such that for all

N > 0, there is some σ ∈ S such that dα (a, σ (a)) > N .

Let M be a model of T of size |T | + |α| that contains a such that every σ ∈ S fixes M setwise

and for every generic formula over M , there are Lascar strong automorphisms that witness it

which fix M setwise. Such a model can be constructed as in Claim 3.1. Let Γ be the group of

Lascar strong automorphisms that fix M setwise. Let St be a strategy for player B that witnesses

that YM is strong Choquet.

We construct:

• A countable sub-language L′ ⊆ L.

• A countable model M ′ ≺ M ↾ L′.

• A countable sub-tuple x′ of the first α variables. For notational simplicity we will assume

that x′ is the first β variables for a countable ordinal β.

• A complete L′-type p over M0 in x′ which is consistent with the type q (x) = dα (x, a) ≤ 1.

• A countable subgroup Σ ⊆ Γ of automorphism that fix M ′ and M setwise.

• A countable set Q of complete types in Sα (M) contained in YM .

Such that:

(1) For every formula ϕ ∈ p and natural number N , there is an automorphism σ ∈ Σ such

that σ−1 (ϕ) ∈ p and d′
β (σ∗ (p) , p) > N where d′ is the Lascar metric when restricted to

L′.

(2) For every σ0, . . . , σn ∈ Σ, r0, . . . , rn−1 ∈ Q and every sequence of L′
β (M ′) formulas

〈(ϕi, ψi) | i < n 〉 and a formula ϕn such that:

(a) ϕi+1 ⊢ ψi ⊢ ϕi for all i < n.

(b) ψi ∈ σ∗
i (p) (in other words, σ∗

i (p) is in the open set [ψi]).

(c) ri is a complete extension of {ϕi} consistent with σ∗
i (q).

(d) ϕn ∈ σ∗
n (p).
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(e) For each i < n, ψi is such that [ψi] ∩ YM is a basic open subset of player B’s move

according to St in the strong Choquet game where player A plays ϕi and ri.

There is a type rn ∈ Q containing ϕn and a formula ψn in σ∗
n (p) ∩ rn contained in ϕn

which is a subset of player B’s move according to St in the strong Choquet game described

in (e) where in the n’th move player A chooses ϕn and rn.

For the construction we repeat the proof of Theorem 4.12 inside M . As there, we let q = d (x, a) ≤

1, and note that it is proper. The differences are:

⋆ We choose our automorphisms from Γ (this is no problem, since they all come from wit-

nesses of genericity of certain formulas over M composed with an element from S by the

proof of 4.10).

⋆ We have to take care of d′ instead of d. So in (8) there we increase the language L′ so

that not only dα (σj (a) , a) > N is true in L, but it also true in L′. Similarly add some

variables to the tuple of variables we construct so that this remains true when restricted

to these variables.

⋆ We add a step to the construction that makes sure that the set of automorphisms is a

group.

⋆ For (2), we add a step to the construction. We have to take care of every choice of

σ0, . . . , σn ∈ Σ, r0, . . . , rn−1, a formula ϕn and a sequence of L′
β (M ′) formulas 〈(ϕi, ψi) | i < n 〉

from the language and model constructed thus far that satisfy (a)–(e) above. We may as-

sume that ϕn is the conjunction of σn applied to the current finite partial type we have.

For every complete extension r ∈ Sα (M) of {ϕn} consistent with σ∗
n (q), there is some

open set r ∈ Vr ⊆ [ϕn] ∩ YM that player B plays according to St in the strong Choquet

game described in (e) where in the n’th move player A chooses ϕn and r. Let ψr be a

formula in Lα (M) that contains r (i.e., ψr ∈ r), ψr ⊢ ϕn and [ψr] ∩ YM is contained in

Vr. It follows that {ϕn} ∪ σ∗
n (q) ⊢

∨

ψr. By compactness and by Lemma 4.9 for some r,

σ∗
n (q) ∪ {ϕn, ψr} is proper. So we may add σ−1

n (ψr) to our partial type. Also we add the

symbols appearing in ψr to the language and the variables appearing in it to the tuple of

variables. Finally, add r to Q.

When the construction is done, it is easy to see that letting x be any completion of the complete

L′
β (M ′) type constructed p, it satisfies all the demands of Corollary 2.6. For instance, we need to

check that with the topology induced on YM by L′, M ′, and β, Y is strong Choquet over Σ · x.

The point is that if player A chooses some basic open set [ϕ] containing σ∗ (x) for some σ ∈ Σ,

then by construction there is some formula ψ in σ∗ (p) (so [ψ] contains σ∗ (x)) that is contained in

[ϕ] and some type r0 ∈ Q such that ψ is contained in player B’s response to ([ϕ] , r0). So player B

will now choose [ψ] ∩ YM . So we simulate a game in YM in which player A chooses types from Q,
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and player B responds by choosing a basic open subset of what St says. Since St was a winning

strategy, the intersection must be nonempty. �
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