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ISOMORPHISM OF BOREL FULL GROUPS
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(Communicated by Julia Knight)

Abstract. Suppose that G and H are Polish groups which act in a Borel fash-
ion on Polish spaces X and Y . Let EX

G and EY
H denote the corresponding or-

bit equivalence relations, and [G] and [H] the corresponding Borel full groups.

Modulo the obvious counterexamples, we show that [G] ∼= [H]⇔ EX
G
∼=B EY

H .

1. Introduction

Suppose that a Polish group G acts in a Borel fashion on a Polish space X. The
orbit equivalence relation induced by the action of G on X is given by

x1E
X
G x2 ⇔ ∃g ∈ G (g · x1 = x2).

The (Borel) full group associated with the action of G on X is the group [G] of
Borel automorphisms f : X → X such that ∀x ∈ X (xEX

G f(x)).
Suppose that E and F are (not necessarily Borel) equivalence relations on Polish

spaces X and Y . An isomorphism of E and F is a bijection π : X → Y such that

∀x1, x2 ∈ X (x1Ex2 ⇔ π(x1)Fπ(x2)).

We say that E and F are Borel isomorphic, or E ∼=B F , if there is a Borel isomor-
phism of E and F . Here we establish the connection between Borel isomorphism
of orbit equivalence relations and algebraic isomorphism of their full groups:

Theorem 1.1. Suppose that G and H are Polish groups which act in a Borel
fashion on Polish spaces X and Y , and the following conditions hold:

(1) The actions of G and H have the same number of singleton orbits.
(2) If the actions of G and H both have infinitely many doubleton orbits, then

they have the same number of doubleton orbits.

Then [G] ∼= [H] ⇔ EX
G
∼=B EY

H .

2. Implementing isomorphisms via point maps

Here we describe how to build isomorphisms of the aperiodic parts of equivalence
relations which implement a given algebraic isomorphism of their full groups.
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Suppose that E is a (not necessarily Borel) equivalence relation on a Polish space
X. The full group of E is the group [E] of all Borel automorphisms g : X → X
such that ∀x ∈ X (xEg · x). The aperiodic part of E is given by

Aper(E) = {x ∈ X : |[x]E | = ∞}.

Proposition 2.1. Suppose that E and F are (not necessarily Borel) equivalence
relations on Polish spaces X and Y and π : [E] → [F ] is an algebraic isomorphism.
Then there is a bijection ϕ : Aper(E) → Aper(F ) such that

∀g ∈ [E] (π(g)|Aper(F ) = ϕ ◦ (g|Aper(E)) ◦ ϕ−1).

In particular, ϕ is a (not necessarily Borel) isomorphism of E|Aper(E), F |Aper(F ).

Proof. The support of g ∈ [E] is given by supp(g) = {x ∈ X : g · x 6= x}, and g is
a transposition if its support is of cardinality 2. We use idX to denote the trivial
automorphism of X. The order of g ∈ [E] is given by

|g| =
{

n if n ≥ 1 is least such that gn = idX ,
∞ if ∀n ≥ 1 (gn 6= idX).

Let Pern(E) = {x ∈ X : |[x]E | = n} and Per≥n(E) = {x ∈ X : |[x]E | ≥ n}.

Lemma 2.2. Suppose that g ∈ [E] is of order 2. Then the following are equivalent:
(1) g|Aper(E) is a transposition and ∀n ≥ 3 (g|Pern(E) = idPern(E)).
(2) The following conditions are satisfied:

(a) If h is a conjugate of g, then |gh| ≤ 3.
(b) If 1 ≤ n ≤ 3, then there is a conjugate h of g such that |gh| = n.
(c) There are infinitely many distinct conjugates of g.

Proof. It is enough to show (2) ⇒ (1). We prove first a pair of sublemmas:

Sublemma 2.3. ∀x ∈ X (|supp(g|[x]E)| < ℵ0).

Proof. Suppose, towards a contradiction, that there exists S ⊆ [x]E such that

g|S = · · · (x−2 x−1)(x0 x1)(x2 x3) · · · ,

where the xn are pairwise distinct. Fix a conjugate h of g such that

h|S = · · · (x−3 x−2)(x−1 x0)(x1 x2) · · · ,

and note that
gh|S = (· · · x2 x0 x−2 · · · )(· · · x−1 x1 · · · ),

thus |gh| = ∞, which contradicts (a). �

Sublemma 2.4. There exists x ∈ Aper(E) such that supp(g) ⊆ Per2(E) ∪ [x]E.

Proof. First suppose, towards a contradiction, that

supp(g) ⊆ Per≤4(E) and ∀x ∈ Per4(E) (|supp(g) ∩ [x]E | 6= 2).(†)

Note that supp(g) cannot intersect both Per3(E) and Per4(E), as we could then
find a conjugate h of g such that |gh| ≥ 6, which contradicts (a). It then follows
that supp(g) cannot intersect Per4(E), since then there would be no conjugate h
of g such that |gh| = 3, which contradicts (b). It similarly follows that supp(g)
cannot intersect Per3(E), since then there would be no conjugate h of g such that
|gh| = 2, which again contradicts (b). It now follows that, for every conjugate h of
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g, the product gh is trivial, and this final contradiction with (b) implies that (†)
fails, thus there exists x ∈ Per≥4(E) ∩ supp(g) such that

|[x]E | = 4 ⇒ |supp(g|[x]E)| = 2.

Now suppose, towards a contradiction, that there exists y ∈ Per≥3(E)∩ supp(g)
which is not E-equivalent to x. If |[y]E | = 3, then there is a conjugate h of g
such that |gh|[x]E | = 2 and |gh|[y]E | = 3, thus |gh| ≥ 6, which contradicts (a). If
|[y]E | ≥ 4, then there is a conjugate h of g such that |gh|[x]E | = 3 and |gh|[y]E | = 2,
thus |gh| ≥ 6, which again contradicts (a), thus supp(g) ⊆ Per2(E) ∪ [x]E , and
condition (c) then ensures that x ∈ Aper(E). �

Fix x ∈ Aper(E) such that supp(g) ⊆ Per2(E) ∪ [x]E , find pairwise distinct
points x0, x1, . . . , x2n−1 ∈ [x]E such that

g|[x]E = (x0 x1)(x2 x3) · · · (x2n−2 x2n−1),

fix x2n ∈ [x]E \ {xi}i<2n, and find a conjugate h of g such that

h|[x]E = (x1 x2)(x3 x4) · · · (x2n−1 x2n).

Then gh|[x]E is a cycle of order 2n + 1, thus n = 1, and the lemma follows. �

We say that g ∈ [E] is a near transposition if it satisfies the equivalent conditions
of Lemma 2.2. Note that g is a near transposition ⇔ π(g) is a near transposition.

We say that a family T of near transpositions is good if |T | ≥ 4 and T is maximal
with the property that ∀g, h ∈ T (g 6= h ⇒ gh 6= hg). For each E-invariant set
B ⊆ X, the restriction of T to B is given by

T |B = {(g|B) ∪ idX\B : g ∈ T }.
If T is good, then so too is T |Per≥3(E), so the map T 7→ T |Per≥3(E) associates
with each good family of near transpositions a good family of transpositions. For
each x ∈ Aper(E), the good family of transpositions centered at x is given by

Tx = {(x y) : y ∈ [x]E \ {x}}.

Lemma 2.5. Suppose that T is a good family of near transpositions. Then there
exists x ∈ Aper(E) such that T |Per≥3(E) = Tx.

Proof. Set T ′ = T |Per≥3(E), and fix distinct transpositions (x y), (x z) ∈ T ′.
Note that (y z) 6∈ T ′, since the set {(x y), (y z), (x z)} does not extend to a good
family. Also observe that if w /∈ {x, y, z}, then (y w), (z w) are not in T ′, since
they commute with (x z), (x y). Thus, the only possible elements of T ′ are those
of the form (x w), where w ∈ [x]E \ {x}, and it follows that T ′ = Tx. �

For each good family T of near transpositions, let x(T ) be the unique element
of Aper(E) such that Tx(T ) = T |Per≥3(E), and define

T1 ∼ T2 ⇔ x(T1) = x(T2).

Lemma 2.6. T1 ∼ T2 ⇔ ∀g1 ∈ T1 ∃!g2 ∈ T2 (g1g2 = g2g1).

Proof. To see (⇒), note that if g1 ∈ T1 and g1|Per≥3(E) = (x y), then the unique
g2 ∈ T2 such that g2|Per≥3(E) = (x y) is also the unique element of T2 which
commutes with g1.

To see T1 6∼ T2 ⇒ ∃g1 ∈ T1 (¬∃!g2 ∈ T2 (g1g2 = g2g1)), note that if T1 6∼ T2, then
x(T1) 6= x(T2), in which case we can easily find an element of T1 which commutes
with infinitely many elements of T2. �
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Now let ϕ : Aper(E) → Aper(F ) be the unique map such that

∀x ∈ Aper(E) (π(Tx) ∼ Tϕ(x)),

and suppose that x, y ∈ Aper(E) are E-equivalent. As (x y) is the unique element
of Tx ∩ Ty, it follows that π[(x y)] is the unique element of π(Tx) ∩ π(Ty), thus

π[(x y)]|Per≥3(E) = (ϕ(x) ϕ(y)).

For each g ∈ [E], we now have that

π(g)[{ϕ(x), ϕ(y)}] = π(g)[supp[(ϕ(x) ϕ(y))]]
= Per≥3(F ) ∩ π(g)[supp(π[(x y)])]

= Per≥3(F ) ∩ supp(π(g) ◦ π[(x y)] ◦ π(g)−1)

= Per≥3(F ) ∩ supp(π(g ◦ (x y) ◦ g−1))
= Per≥3(F ) ∩ supp(π[(g · x g · y)])
= {ϕ(g · x), ϕ(g · y)},

and it follows that π(g) · ϕ(x) = ϕ(g · x), which completes the proof. �

3. Orbit equivalence relations

Here we describe a technical condition under which the map ϕ of Proposition
2.1 is automatically Borel. We then use this to draw out our main theorem regard-
ing the connection between Borel isomorphism of orbit equivalence relations and
algebraic isomorphism of their full groups.

Suppose that E is a (not necessarily Borel) equivalence relation on a Polish space
X. We say that E is countable if each of its equivalence classes are countable, and
E is good if it admits a countable Borel subequivalence relation F ⊆ E such that

∀x ∈ X (|[x]E | ≥ 3 ⇒ |[x]F | ≥ 3).

Our interest in such equivalence relations stems from the following connection be-
tween their full groups and the underlying σ-algebra of Borel sets:

Proposition 3.1. Suppose that E is an equivalence relation on a Polish space X.
Then the following are equivalent:

(1) E is good.
(2) The σ-algebra generated by A = {supp(g) : g ∈ [E]} contains every set of

the form A ∩B, where A = Per≥3(E) and B ⊆ X is Borel.

Proof. To see (1) ⇒ (2), fix a countable Borel equivalence relation F ⊆ E with

∀x ∈ X (|[x]E | ≥ 3 ⇒ |[x]F | ≥ 3),

and suppose that B ⊆ X is Borel. As A = Per≥3(F ) and the latter set is Borel,
we can write A ∩ B = B1 ∪ B2, where B1 is a Borel set which intersects every
equivalence class of F in at most one point, and B2 is a Borel set which intersects
every equivalence class of F in an even or infinite number of points. It is not difficult
to find involutions g1, g2 ∈ [F ] such that B1 = supp(g1)∩supp(g2), and Proposition
7.4 of Kechris-Miller [2] ensures the existence of an involution g ∈ [F ] such that
supp(g) = B2. As B ⊆ X was arbitrary, condition (2) follows.

To see (2) ⇒ (1), suppose that the σ-algebra generated by A contains every
Borel set of the form A ∩ B, with B ⊆ X Borel, fix a countable family of Borel
automorphisms g0, g1, . . . in [E] such that the corresponding family of Borel sets
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An = supp(gn) separates points of A, let G be the group generated by these auto-
morphisms, and define B ⊆ X by

B = {x ∈ X : |[x]EX
G
| ≤ 2}.

Note that if x ∈ A ∩ B, then |[x]EX
G
| = 1, since otherwise there exists y 6= x in

[x]EX
G

, and we can then find g ∈ G such that exactly one of x, y lie in supp(g), thus
{x, y, g · x, g · y} ⊆ [x]EX

G
consists of 3 points. It follows that

A ∩B = {x ∈ A : ∀g ∈ G (x 6∈ supp(g))},

and therefore A ∩ B consists of at most one point. If A ∩ B = ∅, we set F = EX
G .

If A ∩B = {x}, we fix y ∈ [x]E \ {x} and define

x1Fx2 ⇔ x1E
X
G x2 or x1, x2 ∈ {x} ∪ [y]EX

G
.

In either case, we have that |[x]E | ≥ 3 ⇒ |[x]F | ≥ 3, hence E is good. �

Next, we have our main technical result:

Theorem 3.2. Suppose that E and F are good equivalence relations on Polish
spaces X and Y and π : [E] → [F ] is an algebraic isomorphism. Then there is a
Borel isomorphism ϕ of E|Aper(E) and F |Aper(F ) such that

∀g ∈ [E] (π(g)|Aper(F ) = ϕ ◦ (g|Aper(E)) ◦ ϕ−1).

Proof. By Proposition 2.1 there is a bijection ϕ : Aper(E) → Aper(F ) such that

∀g ∈ [E] (π(g)|Aper(F ) = ϕ ◦ (g|Aper(E)) ◦ ϕ−1).

Now, for each g ∈ [E], we have that

ϕ(supp(g) ∩Aper(E)) = ϕ(supp(g|Aper(E)))
= supp(ϕ ◦ (g|Aper(E)) ◦ ϕ−1)
= supp(π(g)|Aper(F ))
= supp(π(g)) ∩Aper(F ).

As E and F are good, the sets Per≥3(E) and Per≥3(F ) are Borel, and Proposition
3.1 ensures that the Borel subsets of Per≥3(E) are generated by the sets of the form
supp(g), where g ∈ [E]. Similarly, the Borel subsets of Per≥3(F ) are generated by
the sets of the form supp(g), where g ∈ [F ], and it easily follows that ϕ is a Borel
isomorphism of E|Aper(E) and F |Aper(F ). �

We say that an equivalence relation E is very good if there is a countable Borel
subequivalence relation F ⊆ E such that

∀x ∈ X ∀n ∈ N (|[x]E | ≥ n ⇒ |[x]F | ≥ n).

Theorem 3.3. Suppose that E and F are very good equivalence relations on Polish
spaces X and Y , and the following conditions hold:

(1) E and F have the same number of singleton equivalence classes.
(2) If E and F both have infinitely many doubleton equivalence classes, then

they have the same number of doubleton equivalence classes.
Then [E] ∼= [F ] ⇔ E ∼=B F .
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Proof. It is enough to show (⇒). In light of Theorem 3.2, it only remains to show
that for all n ≥ 1, the equivalence relations E|Pern(E) and F |Pern(F ) are Borel
isomorphic. As E and F are very good, it follows that the sets Pern(E) and Pern(F )
are Borel, so it is enough to show that |Pern(E)| = |Pern(F )|. Condition (1) ensures
that this is the case when n = 1.

For n = 2, note that the normal subgroups of [E] of cardinality 2 are exactly
those of the form {1, g}, where supp(g) ⊆ Per2(E). Letting κ denote the number
of such subgroups, it follows that

κ = min(2ℵ0 , 2|Per2(E)|) = min(2ℵ0 , 2|Per2(F )|),

and condition (2) then ensures that |Per2(E)| = |Per2(F )|.
For n = 4, note that the minimal normal subgroups of [E] of cardinality 4 are

exactly those of the form

N = {idX , (x1 x2)(x3 x4), (x1 x3)(x2 x4), (x1 x4)(x2 x3)},
where x1, x2, x3, x4 make up a single equivalence class of E. Letting κ denote the
number of such subgroups, it follows that κ = |Per4(E)| = |Per4(F )|.

For the remaining n, the minimal normal subgroups of [E] which are isomorphic
to An, the alternating group on n elements, are exactly those of the form

N = {g ∈ [E] : supp(g) ⊆ [x]E and g is of even cycle type},
where x ∈ Pern(E). Letting κ denote the number of such subgroups, it follows that
κ = |Pern(E)| = |Pern(F )|. �

Theorem 1.1 is now a consequence of the following fact:

Proposition 3.4. Suppose that G is a Polish group which acts in a Borel fashion
on a Polish space X. Then EX

G is very good.

Proof. By Theorem 2.6.6 of Becker-Kechris [1], we can assume that the action of
G on X is continuous. Fix a countable dense subgroup H ≤ G, and note that if
g1 · x, g2 · x, . . . , gn · x are distinct then, by choosing hi sufficiently close to gi, we
can ensure that h1 · x, h2 · x, . . . , hn · x are also distinct, thus the countable Borel
equivalence relation F = EX

H witnesses that EX
G is very good. �
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