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Abstract. Given a Polish space X , a countable Borel equivalence relation E on X , and
a Borel cocycle ρ : E → (0,∞), we characterize the circumstances under which there
is a probability measure µ on X such that ρ(φ−1(x), x) = [d(φ∗µ)/dµ](x) µ-almost
everywhere, for every Borel injection φ whose graph is contained in E.

1. Introduction
A topological space is Polish if it is separable and admits a complete metric. An
equivalence relation is finite if all of its equivalence classes are finite, and countable if all
of its equivalence classes are countable. By a measure on a Polish space, we shall always
mean a measure defined on its Borel subsets which is not identically zero. A measure
is atomless if every Borel set of positive measure contains a Borel set of strictly smaller
positive measure. Measures µ and ν are equivalent, or µ ∼ ν, if they have the same null
sets. Given a measure µ on X and a Borel function φ : X → Y , let φ∗µ denote the
measure on Y given by φ∗µ(B) = µ(φ−1(B)).

Suppose that X is a Polish space, E is a countable Borel equivalence relation on X ,
µ is a measure on X , and ρ : E → (0,∞) is Borel. Let JEK denote the set of all
Borel injections φ : A → B, where A,B ⊆ X are Borel and graph(φ) ⊆ E. We say
that µ is E-quasi-invariant if φ∗µ ∼ µ, for all φ ∈ JEK. We say that ρ is a cocycle if
ρ(x, z) = ρ(x, y)ρ(y, z), for all xEyEz. We say that µ is ρ-invariant if

φ∗µ(B) =
∫
B

ρ(φ−1(x), x) dµ(x),

for all φ ∈ JEK and Borel sets B ⊆ rng(φ). When ρ ≡ 1, we say that µ is E-invariant.
These notions typically arise in a slightly different guise in the context of group actions.

The orbit equivalence relation associated with an action of a countable group Γ by Borel
automorphisms of X is given by xEXΓ y ⇔ ∃γ ∈ Γ (γ · x = y). It is easy to see that if
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γ∗µ ∼ µ, for all γ ∈ Γ, then µ is EXΓ -quasi-invariant, and similarly, if ρ : EXΓ → (0,∞)
is a Borel cocycle such that

γ∗µ(B) =
∫
B

ρ(γ−1 · x, x) dµ(x),

for all γ ∈ Γ and Borel sets B ⊆ X , then µ is ρ-invariant.
Our goal here is to characterize the circumstances under which there is a ρ-invariant

probability measure on X . Before getting to our main results, we will review the well
known answer to the special case of our question for E-invariant measures. First, however,
we need to lay out some terminology. TheE-class of x is given by [x]E = {y ∈ X : xEy}.
A setB ⊆ X is a partial transversal ofE if it intersects everyE-class in at most one point.
We say that E is smooth if X is the union of countably many Borel partial transversals.
The E-saturation of B is given by [B]E = {x ∈ X : ∃y ∈ B (xEy)}, and we say that B
is E-invariant if B = [B]E . We say that µ is E-ergodic if every E-invariant Borel set is
µ-null or µ-conull.

A compression of E is a function φ ∈ JEK such that dom(φ) = X and rng(φ) misses
a point of every E-class. We say that E is compressible if there is a compression of E.
Although the main result of [6] is stated only for Borel automorphisms, the argument can
be easily modified so as to obtain the following:

THEOREM 1 (NADKARNI) Suppose that X is a Polish space and E is a countable Borel
equivalence relation on X . Then exactly one of the following holds:
1. E is compressible;
2. There is an E-invariant probability measure on X .

In order to characterize the existence of probability measures beyond the E-invariant
case, we must first generalize the notion of compressibility. Given a function φ : X → R,
an E-class C, a set S ⊆ C, and a point x ∈ C, define

IS(φ) =

∑
y∈S φ(y)ρ(y, x)∑
y∈S ρ(y, x)

.

We leave IS(φ) undefined in case this ratio is of the form 0/0 or ±∞/∞. The fact that ρ
is a cocycle ensures that IS(φ) does not depend on the choice of x ∈ C. Intuitively, the
quantity IS(φ) represents the best guess at the integral of φ with respect to a ρ-invariant
probability measure on X , given only φ|S. For each set B ⊆ X , let µS(B) = IS(χB).
Given an increasing sequence 〈Fk〉k∈N of finite Borel equivalence relations on X , let
µx(B) = limk→∞ µ[x]Fk

(B). We leave µx(B) undefined if this limit does not exist.
We say that an E-invariant Borel set B ⊆ X is ρ-compressible of type I if there is an

increasing sequence 〈Fk〉k∈N of finite Borel subequivalence relations of E and a partition
〈Bn〉n∈N of B into Borel sets such that (1) µ[x]Fk

(Bn) converges uniformly to µx(Bn),
for all n ∈ N, and (2)

∑
n∈N µx(Bn) < 1, for all x ∈ B. Let [E] denote the group of

all Borel automorphisms of X in JEK. We say that an E-invariant Borel set B ⊆ X is ρ-
compressible of type II if there is a smooth Borel subequivalence relation F of E, a Borel
set A ⊆ B, and T ∈ [E] such that

∑
y∈T (A)∩[x]F

ρ(y, x) <
∑
y∈T (A∩[x]F ) ρ(y, x), for all

x ∈ B. We say that a set is ρ-compressible if it is contained in the union of countably many
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18 B.D. Miller

Borel sets which are ρ-compressible of types I or II, and we say that ρ is compressible if
X is ρ-compressible. It is not difficult to see that if ρ ≡ 1, then E is compressible if and
only if ρ is compressible (see the remark following the proof of Proposition 6.3), thus the
following fact generalizes Theorem 1:

THEOREM 2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is compressible;
2. There is a ρ-invariant probability measure on X .

Theorem 2 still leaves something to be desired, however, as it is natural to look for
a characterization that is closer to the usual notion of compressibility. We say that a
function φ ∈ JEK is ρ-invariant if ρ(φ(x), x) = 1, for all x ∈ dom(φ). Perhaps the
most natural attempt at generalizing the notion of compressibility is to replace it with
ρ-invariant compressibility. Unfortunately, this is far too restrictive, as there are Borel
cocycles ρ : E → (0,∞) for which there are neither ρ-invariant probability measures
on X nor non-trivial ρ-invariant elements of JEK. In order to alleviate this problem, we
consider an enlarged version of JEK which necessarily contains a plethora of functions
which satisfy a natural analog of ρ-invariance.

The fuzzy domain and range of a function φ = (φd, φr) : X ×X → [0, 1] × [0, 1] are
the functions fdom(φ), frng(φ) : X → [0,∞] given by

[fdom(φ)](x) =
∑
y∈X

φd(x, y) and [frng(φ)](y) =
∑
x∈X

φr(x, y).

We say that φ is a fuzzy partial injection if fdom(φ), frng(φ) ≤ 1. Intuitively, we think of
φ as sending a fraction of x of size φd(x, y) to a fraction of y of size φr(x, y). The fuzzy
analog of JEK is the set of all Borel fuzzy partial injections φ = (φd, φr) with the property
that supp(φd), supp(φr) ⊆ E. We say that φ is ρ-invariant if φr(x, y) = φd(x, y)ρ(x, y),
for all xEy, and we use JρK to denote the set of all ρ-invariant fuzzy partial injections in
the fuzzy analog of JEK. A fuzzy compression of ρ is a fuzzy partial injection φ ∈ JρK such
that fdom(φ) ≡ 1 and frng(φ) is not identically 1 on any E-class. We say that ρ is fuzzily
compressible if there is a fuzzy compression of ρ.

THEOREM 3. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is fuzzily compressible;
2. There is a ρ-invariant probability measure on X .

The organization of the paper is as follows. In §2, we discuss some basic facts
concerning equivalence relations, cocycles, and measures. In §3, we review the
construction of measures from finitely additive measures. In §4, we prove Theorem 2.
In §5, we obtain a version of Theorem 2 which characterizes the existence of suitably non-
trivial, ρ-invariant probability measures, as well as a new proof of Ditzen’s quasi-invariant
ergodic decomposition theorem (see [1]). In §6, we prove Theorem 3.
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2. Preliminaries
Associated with each Borel cocycle ρ : E → (0,∞) is a way of thinking of each E-class
as a single mass which has been divided into countably many pieces. When xEy, we think
of ρ(x, y) as the ratio of the mass of x to that of y. For each set S ⊆ [x]E , we use

|S|x =
∑
y∈S

ρ(y, x)

to denote the quantity which intuitively represents the mass of S relative to that of x.
Although |S|x depends on x, whether |S|x is finite does not. We say that S is ρ-finite if

|S|x is finite, for all x ∈ S, and we say that S is ρ-infinite otherwise. We say that ρ is finite
if everyE-class is ρ-finite, and we say that ρ is aperiodic if everyE-class is ρ-infinite. The
aperiodic part of ρ is given by Aper(ρ) = {x ∈ X : |[x]E |x = ∞}. We say that a set is
ρ-negligible if it is null with respect to every ρ-invariant probability measure on X .

PROPOSITION 2.1. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle.
1. If ρ is finite, then E is smooth.
2. If E is smooth, then the aperiodic part of ρ is ρ-negligible.

Proof. To see (1), note that if ρ is finite, then for each n ∈ N, the set

Bn = {x ∈ X : ∀y ∈ [x]E (ρ(x, y) ≥ 1/n)}

intersects each E-class in a finite set. Then X =
⋃
n∈N Bn and the Lusin-Novikov

uniformization theorem (see, for example, Theorem 18.10 of [4]) implies that each Bn
is Borel, thus Proposition 2.4 of [5] (and the remark thereafter) ensures that E is smooth.

To see (2), it is enough to show that if B ⊆ Aper(ρ) is a Borel partial transversal of E
and µ is a ρ-invariant probability measure on X , then µ(B) = 0. By Theorem 1 of [2] (see
also Proposition 2.1 of [5]), there is a group Γ = {γn}n∈N of Borel automorphisms of X
such that E = EXΓ . Fix an enumeration 〈Sk〉k∈N of the family [N]<N of finite subsets of
N, and recursively define kn : B → N by letting kn(x) ∈ N be least such that:
1. |{γi · x}i∈Skn(x) |x ≥ 1;
2. ∀i, j ∈ Skn(x) (γi · x = γj · x⇒ i = j);
3. ∀m < n∀i ∈ Skm(x)∀j ∈ Skn(x) (γi · x 6= γj · x).
Let Bn =

⋃
k∈N

⋃
i∈Sk

γi(k−1
n (k)), and observe that

µ(Bn) =
∑
k∈N

∑
i∈Sk

µ(γi(k−1
n (k)))

=
∑
k∈N

∑
i∈Sk

∫
k−1

n (k)

ρ(γi · x, x) dµ(x)

=
∑
k∈N

∫
k−1

n (k)

|{γi · x}i∈Sk
|x dµ(x)

≥
∑
k∈N

µ(k−1
n (k))

= µ(B).

As 〈Bn〉n∈N is a pairwise disjoint sequence of Borel sets, it follows that µ(B) = 0. 2
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20 B.D. Miller

Recall from [5] that a set B ⊆ X is E-complete if it intersects every E-class, and a
transversal is an E-complete partial transversal.

PROPOSITION 2.2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, µ is a ρ-invariant probability measure
on X , B ⊆ X is a Borel transversal of E, and φ : X → [0,∞] is Borel. Then∫

φ(x) dµ(x) =
∫
B

I[x]E (φ)|[x]E |x dµ(x).

Proof. Fix a group Γ = {γn}n∈N of Borel automorphisms of X such that E = EXΓ , set
Bn = γn(B) \

⋃
m<n γm(B), and observe that∫

φ(x) dµ(x) =
∑
n∈N

∫
Bn

φ(x) dµ(x)

=
∑
n∈N

∫
γ−1

n (Bn)

φ(γn · x)ρ(γn · x, x) dµ(x)

=
∑
n∈N

∫
χγ−1

n (Bn)(x)φ(γn · x)ρ(γn · x, x) dµ(x)

=
∫ ∑

n∈N
χBn

(γn · x)φ(γn · x)ρ(γn · x, x) dµ(x)

=
∫
B

∑
y∈[x]E

φ(y)ρ(y, x) dµ(x)

=
∫
B

I[x]E (φ)|[x]E |x dµ(x),

which completes the proof of the proposition. 2

PROPOSITION 2.3. Suppose that X is a Polish space, E is a smooth countable Borel
equivalence relation on X , ρ : E → (0,∞) is a Borel cocycle, µ is a ρ-invariant
probability measure on X , and φ : X → [0,∞] is Borel. Then∫

φ(x) dµ(x) =
∫
I[x]E (φ) dµ(x).

Proof. By Proposition 2.6 of [5] (and the remark thereafter), there is a Borel transversal
B ⊆ X of E. Proposition 2.1 ensures that after throwing out an E-invariant, µ-null Borel
set, we can assume that ρ is finite. Define ψ : X → [0,∞] by ψ(x) = I[x]E (φ), noting
that I[x]E (φ) = I[x]E (ψ), for all x ∈ X . Two applications of Proposition 2.2 ensure that∫

φ(x) dµ(x) =
∫
B

I[x]E (φ)|[x]E |x dµ(x)

=
∫
B

I[x]E (ψ)|[x]E |x dµ(x)

=
∫
ψ(x) dµ(x)

=
∫
I[x]E (φ) dµ(x),

which completes the proof of the proposition. 2
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While the following fact can also be obtained as a corollary of the Hurewicz ergodic
theorem (see, for example, Exercise 3.8.3 of [7]), we are now in position to give an
elementary proof:

PROPOSITION 2.4. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, µ is a ρ-invariant probability measure
onX , 〈Fk〉k∈N is an increasing sequence of finite Borel subequivalence relations ofE, and
B ⊆ X is Borel. Then µx(B) exists µ-almost everywhere and µ(B) =

∫
µx(B) dµ(x).

Proof. First, we will show that µ(B) ≥
∫

lim supk→∞ µ[x]Fk
(B) dµ(x). Given ε > 0,

choose n ∈ N sufficiently large that the set

A = {x ∈ X : ∃m ≤ n (µ[x]Fm
(B) ≥ lim sup

k→∞
µ[x]Fk

(B)− ε)}

is of µ-measure at least 1− ε. For each x ∈ A, fix n(x) ≤ n largest such that

µ[x]Fn(x)
(B) ≥ lim sup

k→∞
µ[x]Fk

(B)− ε,

and define an equivalence relation F ⊆ Fn on A by setting

xFy ⇔ xFn(x)y.

Proposition 2.3 ensures that

µ(B) ≥
∫
A

µ[x]F (B) dµ(x)

≥
∫
A

lim sup
k→∞

µ[x]Fk
(B)− ε dµ(x)

≥
∫

lim sup
k→∞

µ[x]Fk
(B) dµ(x)− 2ε.

As ε > 0 was arbitrary, it follows that µ(B) ≥
∫

lim supk→∞ µ[x]Fk
(B) dµ(x).

A similar argument shows that µ(B) ≤
∫

lim infk→∞ µ[x]Fk
(B) dµ(x), thus

µ(B) =
∫

lim inf
k→∞

µ[x]Fk
(B) dµ(x) =

∫
lim sup
k→∞

µ[x]Fk
(B) dµ(x),

and the proposition follows. 2

We next check that compressible cocycles do not admit invariant probability measures:

PROPOSITION 2.5. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, and B ⊆ X is an E-invariant Borel set
which is ρ-compressible of type I. Then B is ρ-negligible.

Proof. Fix an increasing sequence 〈Fk〉k∈N of finite Borel subequivalence relations of E
and a partition 〈Bn〉n∈N of B into Borel sets such that

∑
n∈N µx(Bn) < 1, for all x ∈ B.
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22 B.D. Miller

If µ is a ρ-invariant probability measure on X , then Proposition 2.4 ensures that

µ(B) =
∑
n∈N

µ(Bn)

=
∑
n∈N

∫
µx(Bn) dµ(x)

=
∫
B

∑
n∈N

µx(Bn) dµ(x),

thus µ(B) = 0. 2

Let [E]<N =
⋃
n∈N[E]n, where [E]n denotes the family of sets S ⊆ X of cardinality

n such that ∀x, y ∈ S (xEy). It is not difficult to see that [E]n carries a Polish topology
with respect to which a set B ⊆ [E]n is Borel if and only if {(x1, . . . , xn) ∈ Xn :
{x1, . . . , xn} ∈ B} is a Borel subset of Xn. Similarly, the set [E]<N carries a Polish
topology with respect to which a subset of [E]n is Borel if and only if it is Borel when
viewed as a subset of [E]n. Let Ẽ denote the equivalence relation on [E]<N given by

SẼT ⇔ [S]E = [T ]E .

Note that if SẼT and C = [S]E = [T ]E , then |S|x/|T |x is independent of the choice of
x ∈ C. We therefore obtain a cocycle ρ̃ : Ẽ → (0,∞) by setting

ρ̃(S, T ) = |S|x/|T |x,

for x ∈ C. It should be noted that an E-invariant Borel set B ⊆ X is ρ-compressible of
type II if and only if there is a smooth Borel subequivalence relation F of E, a Borel set
A ⊆ B, and T ∈ [E] such that ρ̃(T (A) ∩ [x]F , T (A ∩ [x]F )) < 1, for all x ∈ B.

PROPOSITION 2.6. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, and B ⊆ X is an E-invariant Borel set
which is ρ-compressible of type II. Then B is ρ-negligible.

Proof. Fix a smooth Borel subequivalence relation F of E, a Borel set A ⊆ B, and
T ∈ [E] such that ρ̃(T (A)∩[x]F , T (A∩[x]F )) < 1, for all x ∈ B. Define φ : X → [0,∞]
by φ(x) = χA(x)ρ(T (x), x), and observe that if µ is a ρ-invariant probability measure,
then Proposition 2.3 implies that

µ(T (A)) =
∫
A

ρ(T (x), x) dµ(x)

=
∫
B

I[x]F (φ) dµ(x)

=
∫
B

∑
y∈[x]F

χA(y)ρ(T (y), y)ρ(y, x)∑
y∈[x]F

ρ(y, x)
dµ(x)

=
∫
B

∑
y∈A∩[x]F

ρ(T (y), x)∑
y∈[x]F

ρ(y, x)
dµ(x)

=
∫
B

ρ̃(T (A ∩ [x]F ), [x]F ) dµ(x),
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and one more application of Proposition 2.3 ensures that

µ(T (A)) =
∫
B

µ[x]F (T (A)) dµ(x)

=
∫
B

∑
y∈T (A)∩[x]F

ρ(y, x)∑
y∈[x]F

ρ(y, x)
dµ(x)

=
∫
B

ρ̃(T (A) ∩ [x]F , [x]F ) dµ(x)

=
∫
B

ρ̃(T (A) ∩ [x]F , T (A ∩ [x]F ))ρ̃(T (A ∩ [x]F ), [x]F ) dµ(x).

As ρ̃(T (A) ∩ [x]F , T (A ∩ [x]F )) < 1, for all x ∈ B, it follows that µ(B) = 0. 2

We close this section with two cases in which ρ-compressibility can be easily inferred:

PROPOSITION 2.7. Suppose that X is a Polish space, E is a smooth countable Borel
equivalence relation on X , and ρ : E → (0,∞) is an aperiodic Borel cocycle. Then X is
ρ-compressible of type I.

Proof. Fix an enumeration 〈Sk〉k∈N of [N]<N \ {∅}, a Borel transversal B ⊆ X of E, and
a group Γ = {γn}n∈N of Borel automorphisms of X such that E = EXΓ , and recursively
define kn : B → N by letting kn(x) ∈ N be least such that:
1. γn · x ∈

⋃
m≤n{γi · x}i∈Skm (x);

2. ∀m < n (ρ̃({γi · x}i∈Skn(x) , {γi · x}i∈Skm(x)) ≥ 1);
3. ∀i, j ∈ Skn(x) (γi · x = γj · x⇒ i = j);
4. ∀m < n∀i ∈ Skm(x)∀j ∈ Skn(x) (γi · x 6= γj · x).
Let Bn =

⋃
k∈N

⋃
i∈Sk

γi(k−1
n (k)), and define Fk on X by setting

xFky ⇔ x = y or
(
xEy and x, y ∈

⋃
n≤k

Bn

)
.

Then µ[x]Fk
(Bn) ≤ 1/(k − n+ 1), for all k ≥ n, thus X is ρ-compressible of type I. 2

Recall from [5] that a set B ⊆ X is ρ-discrete if there is an open neighborhood U of 1
such that ρ(x, y) ∈ U ⇒ x = y, for all (x, y) ∈ E|B, and ρ is σ-discrete if X is the union
of countably many ρ-discrete Borel sets.

PROPOSITION 2.8. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is an aperiodic, σ-discrete Borel cocycle. Then ρ is
compressible.

Proof. Fix a cover 〈An〉n∈N of X by ρ-discrete Borel sets. Define φn ∈ JE|AnK by

φn(x) = y ⇔ ρ(x, y) < 1 and ∀z ∈ [x]E|An
(ρ(x, z) < 1⇒ ρ(y, z) ≤ 1).

By throwing out an E-invariant Borel set on which E is smooth (as Proposition 2.7 allows
us to do), we can assume that φn is a Borel automorphism of An. Set Bn = [An]E .

By the Lusin-Novikov uniformization theorem, there is a Borel function ψn : Bn → An
which fixes the points of An and whose graph is contained in E. Define Fn on Bn by
setting xFny ⇔ ψn(x) = ψn(y), and let Tn be the Borel automorphism ofX which agrees
with φn onAn and fixes the points ofX \An. Then ρ̃(Tn(An)∩ [x]Fn

, Tn(An∩ [x]Fn
)) <

1, for all x ∈ Bn, so Bn is ρ-compressible of type II. 2

Prepared using etds.cls



24 B.D. Miller

3. The construction of measures from finitely additive measures
Let P(X) denote the family of all subsets of X . We say that a set U ⊆ P(X) is
an algebra if it is closed under complements, intersections, and unions. We say that
a function µ : U → [0,∞] is a finitely additive measure if (1) µ(∅) = 0, and (2)
µ(A ∪ B) = µ(A) + µ(B), for all disjoint sets A,B ∈ U . When µ(X) = 1, we say
that µ is a finitely additive probability measure. We say that a function µ : P(X)→ [0,∞]
is an outer measure if (1) µ(∅) = 0, (2) A ⊆ B ⇒ µ(A) ≤ µ(B), for all A,B ⊆ X , and
(3) µ(

⋃
n∈N Bn) ≤

∑
n∈N µ(Bn), for all B0, B1, . . . ⊆ X .

Given an algebra U ⊆ P(X) and a finitely additive measure µ : U → [0,∞], define
µ∗ : P(X)→ [0,∞] by

µ∗(B) = inf
V⊆U covers B

∑
V ∈V

µ(V ).

PROPOSITION 3.1. Suppose that U ⊆ P(X) is an algebra and µ : U → [0,∞] is a
finitely additive measure. Then µ∗ is an outer measure.

Proof. It is clear that µ∗(∅) ≤ µ(∅) = 0, and if A ⊆ B ⊆ X , then every cover of B is
a cover of A, thus µ∗(A) ≤ µ∗(B). Given B0, B1, . . . ⊆ X , set B =

⋃
n∈N Bn, and for

ε > 0, fix a cover Un ⊆ U of Bn such that
∑
U∈Un

µ(U) ≤ µ∗(Bn) + ε/2n+1, for all
n ∈ N. Then

⋃
n∈N Un covers B, thus

µ∗(B) ≤
∑
n∈N

∑
U∈Un

µ(U)

≤
∑
n∈N

µ∗(Bn) + ε/2n+1

= ε+
∑
n∈N

µ∗(Bn).

As ε > 0 was arbitrary, it follows that µ∗(B) ≤
∑
n∈N µ

∗(Bn). 2

PROPOSITION 3.2. Suppose that U ⊆ P(X) is an algebra, µ : U → [0,∞] is a finitely
additive measure, and B is the σ-algebra generated by U . Then µ∗|B is a measure.

Proof. By Proposition 3.1 and results of Carathéodory (see, for example, Theorems 11.B
and 11.C of [3]), it is enough to show that µ∗(B∩U)+µ∗(B \U) ≤ µ∗(B), for all U ∈ U
and B ⊆ X . Towards this end, suppose that U ∈ U and B ⊆ X , and given ε > 0, fix a
cover V ⊆ U of B such that

∑
V ∈V µ(V ) ≤ µ∗(B) + ε. Then

µ∗(B ∩ U) + µ∗(B \ U) ≤
∑
V ∈V

µ(V ∩ U) +
∑
V ∈V

µ(V \ U) ≤ µ∗(B) + ε.

As ε > 0 was arbitrary, it follows that µ∗(B ∩ U) + µ∗(B \ U) ≤ µ∗(B). 2

A metric space is Polish if it is complete and separable. Given a Polish metric space
X and an algebra U ⊆ P(X), we say that a finitely additive measure µ : U → [0,∞] is
decomposable if for every U ∈ U and ε > 0 there is a sequence 〈Un〉 ∈ UN of subsets of
U of diameter at most ε with the property that µ(U) = limn→∞ µ(

⋃
m≤n Um).
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PROPOSITION 3.3. Suppose that X is a Polish metric space, U is an algebra of clopen
subsets of X , and µ : U → [0,∞] is a decomposable finitely additive probability measure.
Then µ = µ∗|U .

Proof. Suppose, towards a contradiction, that there exists U ∈ U such that µ∗(U) < µ(U),
and fix ε > 0 such that µ∗(U) < µ(U)− ε. Decomposability ensures that for each n ∈ N,
there exist kn ∈ N and a sequence 〈Unk〉 ∈ Ukn of subsets of U of diameter at most
1/(n+1) such that µ(U) ≤ µ(

⋃
k<kn

Unk)+ε/2n+1. Then the setK =
⋂
n∈N

⋃
k<kn

Unk
is compact (see, for example, Proposition 4.2 of [4]). As K ⊆ U , there is a finite cover
V ⊆ U of K such that

∑
V ∈V µ(V ) ≤ µ(U)− ε.

LEMMA 3.4. There exists N ∈ N such that
⋂
n<N

⋃
k<kn

Unk ⊆
⋃
V .

Proof. Simply note that if
⋂
n<N

⋃
k<kN

Unk \
⋃
V 6= ∅, for each N ∈ N, then there are

natural numbers ln < kn such that
⋂
n<N Unln \

⋃
V 6= ∅, in which case the unique point

of
⋂
n∈N Unln is in K \

⋃
V , which contradicts the fact that V covers K. 2

It now follows that µ(U) − ε < µ(
⋂
n<N

⋃
k<kn

Unk) ≤
∑
V ∈V µ(V ) ≤ µ(U) − ε,

which is the desired contradiction. 2

Let Cb(X) denote the space of bounded continuous functions φ : X → R. We say
that a linear space Φ ⊆ Cb(X) contains a set U ⊆ P(X) if 1U ∈ Φ, for all U ∈ U . A
mean on Φ is a positive linear functional I : Φ → R such that I(1) = 1. We say that I
is decomposable if Φ contains an algebra of sets U which is a basis for X , and the finitely
additive probability measure µ : U → [0, 1] given by µ(U) = I(1U ) is decomposable.
Associated with each decomposable mean I on Φ is the mean I∗ on Cb(X) given by

I∗(φ) =
∫
φ dµ∗.

Proposition 3.3 ensures that I∗ does not depend on the choice of U .

PROPOSITION 3.5. Suppose that X is a Polish metric space, Φ is a linear subspace of
Cb(X), and I is a decomposable mean on Φ. Then I = I∗|Φ.

Proof. Fix an algebra U contained in Φ such that the finitely additive measure µ : U →
[0, 1] given by µ(U) = I(1U ) is decomposable. Given φ ∈ Φ and ε > 0, fix a partition
V ⊆ U of X and a function ψ : V → R such that ψ(V ) < φ(x) < ψ(V ) + ε, for all
V ∈ V and x ∈ V , as well as a finite setW ⊆ V such that

∑
W∈W µ(W ) ≥ 1 − ε. Set

W ′ = X \
⋃
W and b = supx∈X |φ(x)|. Proposition 3.3 ensures that

I(φ) ≤ I
(
b1W ′ +

∑
W∈W

(ψ(W ) + ε)1W
)

= I∗
(
b1W ′ +

∑
W∈W

(ψ(W ) + ε)1W
)

≤ bε+ ε+ I∗
( ∑
W∈W

ψ(W )1W
)

≤ bε+ ε+ bε+ I∗(φ).

As ε > 0 was arbitrary, it follows that I(φ) ≤ I∗(φ). A similar argument shows that
I(φ) ≥ I∗(φ), and the proposition follows. 2
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4. A characterization of the existence of ρ-invariant probability measures
A graph on X is an irreflexive, symmetric set G ⊆ X ×X . A coloring of G is a function
c : X → Y such that c(x1) 6= c(x2), for all (x1, x2) ∈ G. When Y is Polish and c is
Borel, we say that c is a Borel coloring of G. The Borel chromatic number of G is given by
χB(G) = min{|c(X)| : c is a Borel coloring of G}.

Let GE = {(S, T ) ∈ [E]<N× [E]<N : S 6= T and S ∩ T 6= ∅}. It is not hard to see that
χB(GE |[E]2) ≤ ℵ0 means exactly that E is the union of the graphs of countably many
Borel involutions. The latter fact is a simple corollary (and consequence of the proof of)
Theorem 1 of [2]. Strengthening this, we have the following:

PROPOSITION 4.1. Suppose that X is a Polish space and E is a countable Borel
equivalence relation on X . Then χB(GE) ≤ ℵ0.

Proof. Fix a Borel linear ordering ≤ of X , as well as Borel involutions In : X → X

such that E =
⋃
n∈N graph(In). For each S ∈ [E]<N, let 〈xSi 〉i<|S| denote the ≤-

increasing enumeration of S, and let c(S) denote the lexicographically least sequence
〈kij〉i,j<|S| of natural numbers such that Ikij

(xSi ) = xSj , for all i, j < |S|. Suppose,
towards a contradiction, that c is not a coloring. Fix (S, T ) ∈ GE such that c(S) = c(T ) =
〈kij〉i,j<|S|, put n = |S| = |T |, and fix i, j < n such that xSi = xTj . Then

i < j ⇔ xSi < xSj

⇔ xSi < Ikij
(xSi )

⇔ xTj < Ikij (xTj )

⇔ xTj < xTi

⇔ j < i,

so i = j, thus xSi = xTi . It follows that xSm = Ikim
(xSi ) = Ikim

(xTi ) = xTm, for allm < n,
thus S = T , which contradicts our assumption that (S, T ) ∈ GE . 2

A set Φ ⊆ [E]<N is pairwise disjoint if S 6= T ⇒ S ∩ T = ∅, for all S, T ∈ Φ.

PROPOSITION 4.2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and Φ ⊆ [E]<N is Borel. Then there is a maximal pairwise disjoint Borel
subset of Φ.

Proof. Fix a Borel coloring c : [E]<N → N of GE , set Ψ0 = ∅, and recursively define

Ψn+1 = Ψn ∪ {S ∈ Φ : c(S) = n and ∀T ∈ Ψn (S ∩ T = ∅)}.

A straightforward induction shows that each of the sets Ψn is pairwise disjoint and Borel
(by the Lusin-Novikov uniformization theorem), thus so too is the set Ψ =

⋃
n∈N Ψn. To

see that Ψ is a maximal pairwise disjoint subset of Φ, simply observe that if S ∈ Φ \ Ψ,
then S ∈ Φ \Ψc(S)+1, so there exists T ∈ Ψc(S) such that S ∩ T 6= ∅. 2

Given a Borel function φ : X → R and ε > 0, we say that a finite Borel subequivalence
relation F of E is (φ, ε)-approximating if |I[x]F (φ) − I[y]F (φ)| ≤ ε, for all xEy. It
is important to note that if F is (φ, ε)-approximating, then so too is every finite Borel
subequivalence relation of E which contains F .
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PROPOSITION 4.3. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, φ : X → R is Borel, ε > 0, and
F ⊆ E is a (φ, ε)-approximating finite Borel equivalence relation. Then there is a finite
Borel subequivalence relation F ′ of E containing F and an E-invariant Borel set B ⊆ X
such that F ′|(X \B) is (φ|(X \B), 3ε/4)-approximating and ρ|(E|B) is σ-discrete.

Proof. For each E-class C, set IC(φ) = (infx∈C I[x]F (φ) + supx∈C I[x]F (φ))/2 and let
Φ denote the family of all F -invariant sets S ∈ [E]<N such that |IS(φ)− I[S]E (φ)| ≤ ε/4.
By Proposition 4.2, there is a maximal pairwise disjoint Borel set Ψ ⊆ Φ. Set

xF ′y ⇔ xFy or ∃S ∈ Ψ (x, y ∈ S),

and defineB = {x ∈ X : ∃y, z ∈ [x]E (|I[y]F ′
(φ)−I[z]F ′ (φ)| > 3ε/4)}. Then F ′|(X\B)

is (φ|(X \B), 3ε/4)-approximating andB isE-invariant and Borel (by the Lusin-Novikov
uniformization theorem), so it only remains to prove that ρ|(E|B) is σ-discrete.

Suppose, towards a contradiction, that ρ|(E|B) is not σ-discrete. Fix a Borel transversal
A of F |B, and define ρ′ : E|A→ (0,∞) by ρ′(x, y) = ρ̃([x]F , [y]F ).

LEMMA 4.4. ρ′ is not σ-discrete.

Proof. Suppose, towards a contradiction, that there is a cover 〈An〉n∈N of A by ρ′-discrete
Borel sets. For each n ∈ N, define Bn = {x ∈ B : ∀y ∈ [x]F (ρ̃([x]F , {y}) ≤ n)}.
Recall from [5] that a set C ⊆ X is almost ρ-discrete if there is an open neighborhood U
of 1 such that for each x ∈ C, there are only finitely many y ∈ [x]E|C with ρ(x, y) ∈ U .

SUBLEMMA 4.5. Each set of the form [Am]F ∩Bn is almost ρ-discrete.

Proof. Suppose that x, y ∈ [Am]F ∩ Bn are E-related and fix x′ ∈ Am ∩ [x]F and
y′ ∈ Am ∩ [y]F . As ρ(x, y) = ρ̃({x}, [x]F )ρ′(x′, y′)ρ̃([y]F , {y}), it follows that

(1/n)ρ′(x′, y′) ≤ ρ(x, y) ≤ nρ′(x′, y′),
so the ρ′-discreteness of Am implies that [Am]F ∩Bn is almost ρ-discrete. 2

AsB =
⋃
m,n∈N[Am]F ∩Bn, Proposition 2.4 of [5] ensures that ρ|(E|B) is σ-discrete,

the desired contradiction. 2

Now define (E|B)-complete Borel sets Y = {y ∈ A : I[y]F ′
(φ) < I[y]E (φ)− ε/4} and

Z = {z ∈ A : I[z]F ′ (φ) > I[z]E (φ) + ε/4}, noting that Y and Z are disjoint from
⋃

Ψ,
thus F |(Y ∪ Z) = F ′|(Y ∪ Z).

LEMMA 4.6. There exist x ∈ A, y ∈ Y ∩ [x]E , and z ∈ Z∩ [x]E with the property that for
every open neighborhood U of 1, there are infinitely many y′ ∈ Y ∩ [x]E and z′ ∈ Z∩ [x]E
such that ρ′(y′, y), ρ′(z′, z) ∈ U .

Proof. For each Borel set C ⊆ A and open neighborhood U of 1, define CU ⊆ C by

CU = {x ∈ C : |{x′ ∈ [x]E|C : ρ′(x′, x) ∈ U}| <∞}.
The Lusin-Novikov uniformization theorem implies that CU is Borel, and Propositions 2.4
and 2.5 of [5] ensure that CU is the union of countably many (ρ′, (1/2, 2))-discrete Borel
sets. Letting Cn = C(1−1/n,1+1/n), it follows from Proposition 2.6 of [5] that the set
D =

⋃
n>0[Yn]E ∪ [Zn]E is the union of countably many ρ′-discrete Borel sets, thus there

exists x ∈ A \D, and it is clear that any y ∈ Y ∩ [x]E and z ∈ Z ∩ [x]E are as desired. 2
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Choose m,n ∈ N such that 1/2 < (m/n) ρ′(y, z) < 2, as well as δ > 0 such that

1
2
<
m(1− δ)|[y]F |x
n(1 + δ)|[z]F |x

,
m(1 + δ)|[y]F |x
n(1− δ)|[z]F |x

< 2,

and fix pairwise distinct points yi ∈ Y ∩ [x]E and zj ∈ Z ∩ [x]E such that 1 − δ <

ρ′(yi, y), ρ′(zj , z) < 1 + δ, for all i < m and j < n. Set Y ′ =
⋃
i<m[yi]F and

Z ′ =
⋃
j<n[zj ]F , and note that

m(1− δ)|[y]F |x < |Y ′|x < m(1 + δ)|[y]F |x

and

n(1− δ)|[z]F |x < |Z ′|x < n(1 + δ)|[z]F |x,

thus
m(1− δ)|[y]F |x
n(1 + δ)|[z]F |x

<
|Y ′|x
|Z ′|x

<
m(1 + δ)|[y]F |x
n(1− δ)|[z]F |x

.

As the middle quantity is by definition ρ̃(Y ′, Z ′), it follows that ρ̃(Y ′, Z ′), ρ̃(Z ′, Y ′) < 2,
so ρ̃(Y ′ ∪ Z ′, Y ′), ρ̃(Y ′ ∪ Z ′, Z ′) < 3. Observe now that

IY ′∪Z′(φ) =

∑
y′∈Y ′ φ(y′)ρ(y′, x) +

∑
z′∈Z′ φ(z′)ρ(z′, x)∑

w′∈Y ′∪Z′ ρ(w′, x)

=
(∑

y′∈Y ′ φ(y′)ρ(y′, x)∑
y′∈Y ′ ρ(y′, x)

)( ∑
y′∈Y ′ ρ(y′, x)∑

w′∈Y ′∪Z′ ρ(w′, x)

)
+(∑

z′∈Z′ φ(z′)ρ(z′, x)∑
z′∈Z′ ρ(z′, x)

)( ∑
z′∈Z′ ρ(z′, x)∑

w′∈Y ′∪Z′ ρ(w′, x)

)
= IY ′(φ)ρ̃(Y ′, Y ′ ∪ Z ′) + IZ′(φ)ρ̃(Z ′, Y ′ ∪ Z ′).

It follows that

IY ′∪Z′(φ) = ρ̃(Y ′, Y ′ ∪ Z ′)IY ′(φ) + ρ̃(Z ′, Y ′ ∪ Z ′)IZ′(φ)

< (1/3)IY ′(φ) + (2/3)IZ′(φ)

< (1/3)(I[x]E (φ)− ε/4) + (2/3)(I[x]E (φ) + ε/2)

= I[x]E (φ) + ε/4,

and similarly IY ′∪Z′(φ) > I[x]E (φ) − ε/4, thus |IY ′∪Z′(φ) − I[x]E (φ)| < ε/4, which
contradicts the maximality of Ψ. 2

We are now ready to prove our main theorem:

THEOREM 4.7. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is compressible;
2. There is a ρ-invariant probability measure on X .
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Proof. Propositions 2.5 and 2.6 yield (1) ⇒ ¬(2), so it is enough to show ¬(1) ⇒ (2).
Towards this end, suppose that ρ is not compressible. If there is a ρ-finite E-class C,
then there is a unique ρ-invariant probability measure which concentrates on C, so we can
assume that ρ is aperiodic.

Fix a countable group Γ of Borel automorphisms of X such that E = EXΓ . For each
γ ∈ Γ, define ργ : X → (0,∞) by ργ(x) = ρ(γ · x, x). By standard change of topology
results (see, for example, §13 of [4]), we can assume that there is a countable, Γ-invariant
algebra U of subsets of X which is a basis and contains every set of the form ρ−1

γ (I),
where γ ∈ Γ and I ⊆ (0,∞) is an open interval with rational endpoints. From this point
forward, we work only with this topology and a fixed compatible, complete metric. Fix
an enumeration 〈φn〉n∈N of the bounded functions of the form ργ1U , where γ ∈ Γ and
U ∈ U , and let Φ denote the linear subspace of Cb(X) spanned by 〈φn〉n∈N.

We will now construct an increasing sequence 〈Fk〉k∈N of finite Borel subequivalence
relations of E. We begin by setting F0 = ∆(X). Given Fk, by applying Proposition 4.3
finitely many times and throwing out the corresponding E-invariant, ρ-discrete Borel sets
(as Proposition 2.8 allows us to do), we obtain a finite Borel subequivalence relation Fk+1

of E containing Fk which is (φn, 1/k)-approximating, for all n ≤ k.
For each x ∈ X , define Ix : Φ→ R by Ix(φ) = limk→∞ I[x]Fk

(φ). Then Ix is a mean
on Φ, and the function µx : U → [0, 1] given by µx(U) = Ix(1U ) is a finitely additive
probability measure. Propositions 3.1 and 3.2 ensure that µ∗x is a measure.

For each U ∈ U and n ∈ N, fix a partition 〈Un〉 ∈ UN of U into sets of diameter less
than 1/(n+ 1). Then the E-invariant Borel set

AU,n =
{
x ∈ X : µx(U) 6= lim

n→∞
µx

( ⋃
m<n

Um

)}
is ρ-compressible of type I. By throwing out every set of this form, we can assume that
each µx is decomposable. Proposition 3.5 then implies that Ix = I∗x |Φ, for all x ∈ X . In
particular, it follows that each µ∗x is a probability measure.

For n ∈ N, γ ∈ Γ, and U ∈ U such that ργ |U is bounded, the E-invariant Borel set

Bγ,U,n = {x ∈ X : ∀y ∈ [x]E (ρ̃(γ(U) ∩ [y]Fn
, γ(U ∩ [y]Fn

)) > 1)}
is ρ-compressible of type II, as is the E-invariant Borel set

Cγ,U,n = {x ∈ X : ∀y ∈ [x]E (ρ̃(γ(U) ∩ [y]Fn
, γ(U ∩ [y]Fn

)) < 1)}.
We will complete the proof of the theorem by showing that if x is not in the union of the
sets of this form, then µ∗x is ρ-invariant. Suppose, towards a contradiction, that there exist
γ ∈ Γ and a Borel set B ⊆ X such that

µ∗x(γ(B)) 6=
∫
B

ρ(γ · y, y) dµ∗x(y).

We can clearly assume that B = U , for some U ∈ U (see, for example, Theorem 17.10 of
[4]), and we can also assume that ργ |U is bounded, thus µx(γ(U)) 6= Ix(ργ1U ).

If µx(γ(U)) > Ix(ργ1U ), then there exists n ∈ N such that µ[y]Fn
(γ(U)) >

I[y]Fn
(ργ1U ), for all y ∈ [x]E , and it follows that x ∈ Bγ,U,n, a contradiction. Similarly, if

µx(γ(U)) < Ix(ργ1U ), then there exists n ∈ N such that µ[y]Fn
(γ(U)) < I[y]Fn

(ργ1U ),
for all y ∈ [x]E , and it follows that x ∈ Cγ,U,n, a contradiction. 2
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5. A characterization of the existence of non-trivial, ρ-invariant probability measures
In the spirit of [5], we now characterize the circumstances under which there is a suitably
non-trivial, ρ-invariant probability measure on X:

THEOREM 5.1. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is an aperiodic Borel cocycle. Then the following are
equivalent:
1. There is a ρ-invariant probability measure on X;
2. There is an atomless, ρ-invariant probability measure on X;
3. There is an E-ergodic, ρ-invariant probability measure on X;
4. There is an atomless, E-ergodic, ρ-invariant probability measure on X;
5. There is a ρ-invariant probability measure on X which concentrates off of Borel

partial transversals of E;
6. There is a ρ-invariant probability measure on X which concentrates off of ρ-discrete

Borel sets.

Proof. The aperiodicity of ρ ensures that every ρ-invariant probability measure is atomless,
thus (1) ⇔ (2) and (3) ⇔ (4). Proposition 2.15 of [5] gives (4) ⇒ (5), Proposition 2.16
of [5] gives (5) ⇒ (6), and (6) ⇒ (1) is trivial, so it only remains to prove (1) ⇒ (3).
By Theorem 4.7, it is sufficient to show that if ρ is not compressible, then there is an E-
ergodic, ρ-invariant probability measure on X . Fix Γ, 〈ργ〉γ∈Γ, U , 〈φn〉n∈N, and Φ as in
the proof of Theorem 4.7, as well as an enumeration 〈In〉n∈N of the set of subintervals of
(0,∞) with rational endpoints.

We will again construct an increasing sequence 〈Fk〉k∈N of finite Borel subequivalence
relations of E. This time, we will simultaneously construct Polish topologies τk on X ,
bases Uk for (X, τk), and sequences 〈φkn〉n∈N which span a linear subspace of Cb(X, τk)
containing Uk. We begin by setting F0 = ∆(X), U0 = U , and φ0n = φn. We also let τ0
denote the topology discussed in the proof of Theorem 4.7. Given (Fk, τk,Uk, 〈φkn〉n∈N),
we can again apply Proposition 4.3 finitely many times so as to obtain a finite Borel
subequivalence relation F ′k of E containing Fk which is (φij , 1/k)-approximating, for
all i, j ≤ k (of course, we must again remove finitely many E-invariant, ρ-discrete Borel
sets, as Proposition 2.8 allows us to do). This time, however, we shall approximate more
sets. For i, j,m, n ≤ k, define

Xijmn = {x ∈ X : ∀y ∈ [x]E (I[y]Fm
(φij) ∈ In)}.

By applying Proposition 4.3 finitely many times and again throwing out the corresponding
E-invariant, ρ-discrete Borel sets, we obtain a finite Borel subequivalence relation Fk+1

of E containing F ′k which is (1Xijmn , 1/k)-approximating, for all i, j,m, n ≤ k. Fix
a Polish topology τk+1 on X containing τk for which there is a countable, Γ-invariant
algebra Uk+1 of sets which is a basis for (X, τk+1) and contains each of the sets Xijmn,
for i, j,m, n ≤ k. Fix an enumeration 〈φ(k+1)n〉n∈N of the bounded functions of the form
ργ1U , where γ ∈ Γ and U ∈ Uk+1.

As in the proof of Theorem 4.7, by throwing out countably many E-invariant, ρ-
compressible Borel sets, we can assume that each of the corresponding means Ix is
decomposable, and each of the maps µ∗x is a ρ-invariant probability measure on X . Define
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an equivalence relation F on X containing E by setting

xFy ⇔ µ∗x = µ∗y

⇔ ∀U ∈ U (µx(U) = µy(U))

⇔ ¬∃i, j,m, nx, ny ∈ N (Inx ∩ Iny = ∅ and x ∈ Xijmnx and y ∈ Xijmny ).

As Xijmny is E-invariant, Proposition 3.3 ensures that if Inx ∩ Iny = ∅ and x ∈ Xijmnx ,
then µ∗x(Xijmny

) = µx(Xijmny
) = 0. Letting

Sx = {(i, j,m, ny) ∈ N× N× N× N : ∃nx ∈ N (Inx
∩ Iny

= ∅ and x ∈ Xijmnx
)},

it follows that µ∗x([x]F ) ≥ 1−
∑

(i,j,m,ny)∈Sx
µ∗x(Xijmny ) = 1.

It remains to check that µ∗x is E-ergodic. Towards this end, suppose that C ⊆ X is an
E-invariant Borel set of positive µ∗x-measure. Given 0 < ε < µ∗x(C), fix a set U ∈ U such
that µ∗x(U) > ε and µ∗x(U \ C) ≤ ε2 (see, for example, Theorem 17.10 of [4]), and put

D = {y ∈ [x]F : µy(C), µy(U \ C) exist and µy(U \ C) ≤ ε}.

Proposition 2.4 ensures that µy(C), µy(U \ C) exist µ∗x-almost everywhere and

ε2 ≥ µ∗x(U \ C) ≥
∫

[x]F \D
µy(U \ C) dµ∗x(y) ≥ ε(1− µ∗x(D)),

thus µ∗x(D) ≥ 1− ε. Observe now that if y ∈ D, then

µy(C) = µy(U)− µy(U \ C) = µ∗x(U)− µy(U \ C) > 0,

so C ∩ [y]E 6= ∅, thus y ∈ C. As y ∈ D was arbitrary, it follows that D ⊆ C, hence
µ∗x(C) ≥ µ∗x(D) ≥ 1− ε. As 0 < ε < µ∗x(C) was arbitrary, it follows that µ∗x(C) = 1. 2

Let P (X) denote the standard Borel space of all probability measures on X (see, for
example, §17 of [4]). The idea behind the above proof can be used to give a new proof of:

THEOREM 5.2 (DITZEN) Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X , and ρ : E → (0,∞) is an incompressible Borel cocycle.
Then there is a Borel function π : X → P (X) such that:
1. Each of the measures π(x) is E-ergodic and ρ-invariant;
2. µ({x ∈ X : π(x) = µ}) = 1, for every E-ergodic, ρ-invariant µ ∈ P (X);
3. µ =

∫
π dµ, for every ρ-invariant µ ∈ P (X).

Proof. We will assume that ρ is aperiodic, as it is clear how to proceed when ρ is finite.
Let π(x) = µ∗x, where µx is defined as in the proof of Theorem 5.1. Clearly we can
ignore the ρ-negligible set on which there are no ρ-invariant probability measures, so that
(1) holds. Note that if µ is ρ-invariant, then for each U ∈ U , Proposition 2.4 implies
that µ(U) =

∫
µx(U) dµ(x) =

∫
µ∗x(U) dµ(x), and (3) follows. To see (2), note that if

µ is E-ergodic and ρ-invariant, then for each U ∈ U , the function µx(U) is constant µ-
almost everywhere. Proposition 2.4 then implies that µ∗x(U) = µx(U) = µ(U) µ-almost
everywhere. As U is countable, it follows that µ({x ∈ X : π(x) = µ}) = 1. 2
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6. A fuzzy characterization of the existence of ρ-invariant probability measures
A fuzzy Borel set is a Borel function b : X → [0, 1]. A fuzzy ρ-injection of a into b is a
fuzzy partial injection φ ∈ JρK such that fdom(φ) = a and frng(φ) ≤ b.

PROPOSITION 6.1. Suppose that X is a Polish space, E is a smooth countable Borel
equivalence relation on X , ρ : E → (0,∞) is a Borel cocycle, and a, b are fuzzy Borel
sets with I[x]E (a) ≤ I[x]E (b), for all x ∈ X . Then there is a fuzzy ρ-injection of a into b.

Proof. This is a straightforward consequence of the smoothness of E. 2

The following two facts imply that compressible cocycles are fuzzily compressible:

PROPOSITION 6.2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, and B ⊆ X is an E-invariant Borel set
which is ρ-compressible of type I. Then ρ|(E|B) is fuzzily compressible.

Proof. Fix an increasing sequence 〈Fk〉k∈N of finite Borel subequivalence relations of E
and a partition 〈Bn〉n∈N ofB into Borel sets such that (1) µ[x]Fk

(Bn) converges uniformly
to µx(Bn), for each n ∈ N, and (2)

∑
n∈N µx(Bn) < 1, for all x ∈ B. For each

x ∈ B, fix n(x) ∈ N least such that
∑
n≥n(x) µx(Bn) ≤ limn→∞ µx(

⋃
m>nBm), set

B′n = {x ∈ X : x ∈ Bn+n(x)}, and define B′ =
⋃
n∈N B

′
n. For each n ∈ N, fix

kn(x) ∈ N least such that∑
m≤n

µ[y]Fkn(x)
(B′m) ≤ µ[y]Fkn(x)

( ⋃
m>n

B′m

)
,

for all y ∈ [x]E , noting that 〈kn(x)〉n≥n(x) is non-decreasing. Define equivalence relations
F ′n on B by setting xF ′ny ⇔ xFkn(x)y, noting that 〈F ′n〉n∈N is an increasing sequence of
finite Borel subequivalence relation of E and 〈B′n〉n∈N is a partition of B′ such that∑

m≤n

µ[y]F ′n
(B′m) ≤ µ[y]F ′n

( ⋃
m>n

B′m

)
,

for all n ∈ N, x ∈ B, and y ∈ [x]E . Set ρn = ρ|F ′n.
We will now recursively define fuzzy ρn-injections φn of 1B′n into

∑
m>n 1B′m .

Suppose that we have already defined 〈φm〉m<n. Then for all x ∈ B,

I[x]F ′n
(1B′n) ≤ I[x]F ′n

( ∑
m>n

1B′m −
∑
m<n

1B′m
)

= I[x]F ′n

( ∑
m>n

1B′m −
∑
m<n

frng(φm)
)
,

thus Proposition 6.1 ensures that there is a fuzzy ρn-injection φn of 1B′n into
∑
m>n 1B′m−∑

m<n frng(φm). This completes the recursive construction. Clearly φ =
∑
n∈N φn is a

fuzzy compression of ρ|(E|B′), thus ρ|(E|B) is fuzzily compressible. 2

PROPOSITION 6.3. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, and B ⊆ X is an E-invariant Borel set
which is ρ-compressible of type II. Then ρ|(E|B) is fuzzily compressible.

Proof. Fix a smooth Borel subequivalence relation F of E, a Borel set A ⊆ B, and
T ∈ [E] such that

∑
y∈T (A)∩[x]F

ρ(y, x) <
∑
y∈T (A∩[x]F ) ρ(y, x), for all x ∈ B. The

smoothness of F easily implies that there is a fuzzy compression φ of ρ|(E|B) such that
supp(φd(x, ·)) ⊆ T ([x]F ), for all x ∈ X . 2
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Remark. In the special case that ρ ≡ 1, it is not difficult to see that if E is compressible,
then X is ρ-compressible of types I and II, and the idea behind the proofs of Propositions
6.2 and 6.3 can be used to show that if ρ is compressible, then E is compressible. Together
with Theorem 4.7, this gives a new proof of Nadkarni’s Theorem [6].

Next, we show that fuzzy compressibility rules out ρ-invariant probability measures:

PROPOSITION 6.4. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a fuzzily compressible Borel cocycle. Then there is
no ρ-invariant probability measure on X .

Proof. Suppose, towards a contradiction, that µ is a ρ-invariant probability measure on
X , and fix a fuzzy compression φ of ρ and Borel involutions In : X → X such that
E =

⋃
n∈N graph(In). Set Bn = {x ∈ X : ∀m < n (In(x) 6= Im(x))}, and observe that∫

[frng(φ)](y) dµ(y) =
∫ ∑

x∈[y]E

φd(x, y)ρ(x, y) dµ(y)

=
∫ ∑

n∈N
1Bn

(y)φd(In(y), y)ρ(In(y), y) dµ(y)

=
∑
n∈N

∫
Bn

φd(In(y), y)ρ(In(y), y) dµ(y)

=
∑
n∈N

∫
Bn

φd(x, In(x)) dµ(x)

=
∫ ∑

n∈N
1Bn

(x)φd(x, In(x)) dµ(x)

=
∫ ∑

y∈[x]E

φd(x, y) dµ(x)

=
∫

[fdom(ρ)](x) dµ(x).

As fdom(φ) ≡ 1, it follows that [frng(φ)](x) = 1, for µ-almost every x ∈ X . As frng(φ)
is not identically 1 on any E-class, this contradicts the fact that µ is E-quasi-invariant. 2

We are now ready for our final theorem:

THEOREM 6.5. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is fuzzily compressible;
2. There is a ρ-invariant probability measure on X.

Proof. This follows from Theorem 4.7 and Propositions 6.2, 6.3, and 6.4. 2
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