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Abstract. Given a Polish space X , a countable Borel equivalence relation E on X , and a
Borel cocycle ρ : E → (0,∞), we characterize the circumstances under which there is
a suitably non-trivial σ-finite measure µ on X such that ρ(φ−1(x), x) = [d(φ∗µ)/dµ](x)
µ-almost everywhere, for every Borel injection φ whose graph is contained in E.

1. Introduction
A topological space is Polish if it is separable and admits a complete metric. A topological
group is Polish if its topology is Polish. An equivalence relation is finite if all of its
equivalence classes are finite, and countable if all of its equivalence classes are countable.
By a measure on a Polish space, we shall always mean a measure defined on its Borel
subsets which is not identically zero. A measure is atomless if every Borel set of positive
measure contains a Borel set of strictly smaller positive measure. Measures µ and ν are
equivalent, or µ ∼ ν, if they have the same null sets. Given a measure µ on X and a Borel
function φ : X → Y , let φ∗µ denote the measure on Y given by φ∗µ(B) = µ(φ−1(B)).

Suppose that X is a Polish space, E is a countable Borel equivalence relation on X , G
is a Polish group, µ is a measure on X , and ρ : E → G is Borel. Let JEK denote the set
of all Borel injections φ : A → B, where A,B ⊆ X are Borel and graph(φ) ⊆ E. We
say that µ is E-quasi-invariant if φ∗µ ∼ µ, for all φ ∈ JEK. We say that ρ is a cocycle if
ρ(x, z) = ρ(x, y)ρ(y, z), for all xEyEz. In the special case that G is the group (0,∞) of
positive real numbers under multiplication, we say that µ is ρ-invariant if

φ∗µ(B) =
∫
B

ρ(φ−1(x), x) dµ(x),

for all φ ∈ JEK and Borel sets B ⊆ rng(φ). When ρ ≡ 1, we say that µ is E-invariant.
These notions typically arise in a slightly different guise in the context of group actions.

The orbit equivalence relation associated with an action of a countable group Γ by Borel
automorphisms of X is given by xEXΓ y ⇔ ∃γ ∈ Γ (γ · x = y). It is easy to see that if
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2 B.D. Miller

γ∗µ ∼ µ, for all γ ∈ Γ, then µ is EXΓ -quasi-invariant, and similarly, if ρ : EXΓ → (0,∞)
is a Borel cocycle such that

γ∗µ(B) =
∫
B

ρ(γ−1 · x, x) dµ(x),

for all γ ∈ Γ and Borel sets B ⊆ X , then µ is ρ-invariant.
Theorem 1 of [1] and the Radon-Nikodym Theorem (see, for example, Theorem 6.10

of [5]) easily imply that if µ is E-quasi-invariant and σ-finite, then there is a Borel cocycle
ρ : E → (0,∞) such that µ is ρ-invariant, and moreover, this cocycle is unique modulo µ-
null sets. Here we investigate the conditions under which we can go in the other direction.
That is, given a Borel cocycle ρ : E → (0,∞), we characterize the circumstances under
which there is a suitably non-trivial, ρ-invariant σ-finite measure on X . The problem of
finding such a characterization was posed originally in [6].

Before getting to our main results, we will review the well known answer to the special
case of our question for E-invariant measures. First, however, we need to lay out some
terminology. The E-class of x is given by [x]E = {y ∈ X : xEy}. A set B ⊆ X is a
partial transversal of E if it intersects every E-class in at most one point. We say that E
is smooth if X is the union of countably many Borel partial transversals. The E-saturation
of B is given by [B]E = {x ∈ X : ∃y ∈ B (xEy)}, and we say that B is E-invariant if
B = [B]E . We say that µ is E-ergodic if every E-invariant Borel set is µ-null or µ-conull.

It is not difficult to show that there is always an E-ergodic, ρ-invariant σ-finite measure
on X , and if X is uncountable, then there is always an atomless, ρ-invariant σ-finite
measure on X . Although the main result of [9] is stated in terms of quasi-invariant
measures for Borel automorphisms, a straightforward modification of the argument gives:

THEOREM 1 (SHELAH-WEISS) Suppose that X is a Polish space and E is a countable
Borel equivalence relation on X . Then exactly one of the following holds:
1. E is smooth;
2. There is an atomless, E-ergodic, E-invariant σ-finite measure on X .

In order to characterize the existence of measures beyond the E-invariant case, we
must first generalize the notion of smoothness. Given a set U ⊆ G and a Borel cocycle
ρ : E → G, we say that a set B ⊆ X is (ρ, U)-discrete if ρ(x, y) ∈ U ⇒ x = y, for all
(x, y) ∈ E|B. We say that B is ρ-discrete if there is an open neighborhood U of 1G such
that B is (ρ, U)-discrete, and we say that ρ is σ-discrete if X is the union of countably
many ρ-discrete Borel sets. It is not difficult to see that if ρ ≡ 1G, then a set is ρ-discrete
if and only if it is a partial transversal of E, so ρ is σ-discrete if and only if E is smooth,
thus the following fact generalizes Theorem 1:

THEOREM 2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is σ-discrete;
2. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X .

Much as in [9], we obtain Theorem 2 as a corollary of a descriptive set-theoretic Glimm-
Effros style dichotomy theorem. Using this theorem, we also obtain:
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The existence of ρ-invariant σ-finite measures 3

THEOREM 3. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X;
2. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X which is

equivalent to an atomless, E-ergodic, E-invariant σ-finite measure on X;
3. There is a ρ-invariant σ-finite measure on X which concentrates off of Borel partial

transversals of E;
4. There is a ρ-invariant σ-finite measure on X which concentrates off of ρ-discrete

Borel sets;
5. There is a family of continuum-many atomless, E-ergodic, ρ-invariant σ-finite

measures on X with pairwise disjoint supports;
6. There is a finer Polish topology τ on X such that for every τ -comeager set C ⊆ X ,

there is an atomless, E-ergodic, ρ-invariant σ-finite measure concentrating on C.

It is worth noting that while the analogs of conditions (1), (3), and (4) for probability
measures are equivalent, the analogs of conditions (2) and (5) are strictly stronger, and the
analog of condition (6) never holds (see Theorem 13.1 of [3]).

We say that a setB ⊆ X is globally Baire if for every Polish space Y and Borel function
π : Y → X , the set π−1(B) has the property of Baire. It is well known that every σ(Σ1

1)
set is globally Baire, and under strong set-theoretic hypotheses, the class of globally Baire
sets contains much more (see, for example, Theorem 38.17 of [2]). In fact, it is consistent
with ZF+DC that every subset of a Polish space is globally Baire (see [7]). Again using our
descriptive set-theoretic Glimm-Effros style dichotomy theorem, we obtain the following
alternative characterization of σ-discrete Borel cocycles:

THEOREM 4. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a locally compact Polish group, and ρ : E → G is a Borel cocycle.
Then the following are equivalent:
1. X is the union of countably many ρ-discrete Borel sets;
2. X is the union of countably many ρ-discrete globally Baire sets.

We say that an equivalence relation E is hyperfinite if there are finite Borel equivalence
relations F0 ⊆ F1 ⊆ · · · such that E =

⋃
n∈N Fn. As a corollary of Theorem 2, we also

obtain the following characterization of hyperfiniteness:

THEOREM 5. Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X . Then exactly one of the following holds:
1. E is hyperfinite;
2. For every Borel cocycle ρ : E → (0,∞), there is an atomless, E-ergodic, ρ-

invariant σ-finite measure on X .

The organization of the paper is as follows. In §2, we discuss some basic facts
concerning equivalence relations, cocycles, and measures. In §3, we prove our descriptive
set-theoretic Glimm-Effros style dichotomy theorem, Theorem 4, and a descriptive set-
theoretic analog of Theorem 5. In §4, we establish Theorems 2, 3, and 5.
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4 B.D. Miller

2. Preliminaries
The following fact appeared originally as Theorem 1 of [1]:

PROPOSITION 2.1 (FELDMAN-MOORE) Suppose that X is a Polish space and E is a
countable Borel equivalence relation on X . Then there is a countable group Γ of Borel
automorphisms of X such that E = EXΓ .

Proof. Suppose that φ is an injection of a subset of X into X . The orbit equivalence
relation associated with φ is given by

xEXφ y ⇔ ∃n ∈ Z (φn(x) = y),

and the orbit of a point x under φ is given by [x]φ = {φn(x) : n ∈ Z and x ∈ dom(φn)}.
Let [E] denote the group of all Borel automorphisms of X in JEK.

LEMMA 2.2. For all φ ∈ JEK, there exists T ∈ [E] such that EXT = EXφ .

Proof. We define T |[x]φ by examining the sets Dx = [x]φ \ dom(φ) and Rx = [x]φ \
rng(φ). If both Dx and Rx are empty, then we set T |[x]φ = φ|[x]φ. If only Dx is empty,
then there is a unique point y ∈ Rx, and we define T |[x]φ by

T (w) =


φ2(n+1)(y) if w = φ2n(y),
φ2n+1(y) if w = φ2(n+1)+1(y),

y if w = φ(y).

If only Rx is empty, then there is a unique point z ∈ Dx, and we define T |[x]φ by

T (w) =


φ−2(n+1)(z) if w = φ−2n(z),
φ−(2n+1)(z) if w = φ−(2(n+1)+1)(z),

z if w = φ−1(z).

If neither Dx nor Rx is empty, then there are unique points y ∈ Rx and z ∈ Dx, and we
define T |[x]φ by

T (w) =
{

y if w = z,

φ(w) otherwise.

It is straightforward to check that T is as desired. 2

By the Lusin-Novikov uniformization theorem (see, for example, Theorem 18.10 of
[2]), there are Borel functions φm : X → X such that E =

⋃
m∈N graph(φm). As each

of these functions is necessarily countable-to-one, there are Borel sets Bmn ⊆ X such that
φm|Bmn is injective and X =

⋃
n∈N Bmn (see, for example, Exercise 18.15 of [2]). By

Lemma 2.2, there are Borel automorphisms Tmn ∈ [E] such that EXTmn
= EXφm|Bmn

, and
the group generated by these automorphisms is clearly as desired. 2

A directed graph on X is an irreflexive set G ⊆ X ×X . We say that G has finite out-
degree if the set Gx = {y ∈ X : (x, y) ∈ G} is finite, for each x ∈ X . A coloring of G
is a function c : X → Y such that c(x1) 6= c(x2), for all (x1, x2) ∈ G. When Y is Polish
and c is Borel, we say that c is a Borel coloring of G. The Borel chromatic number of G
is given by χB(G) = min{|c(X)| : c is a Borel coloring of G}. The following fact is a
straightforward consequence of the directed analogs of the arguments of §4 of [4]:
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The existence of ρ-invariant σ-finite measures 5

PROPOSITION 2.3 (KECHRIS-SOLECKI-TODORČEVIĆ) Suppose that X is a Polish
space and G is a Borel directed graph on X with finite out-degree. Then χB(G) ≤ ℵ0.

Proof. Fix a countable sequence 〈Un〉n∈N of Borel subsets of X which is closed under
finite intersection and separates points, in the sense that for all distinct x, y ∈ X , there
exists n ∈ N such that x ∈ Un and y /∈ Un. For each n ∈ N, define Bn ⊆ X by

Bn = {x ∈ Un : Gx ∩ Un = ∅}.

Then G ∩ (Bn × Bn) = ∅, the Lusin-Novikov uniformization theorem implies that Bn is
Borel, and our assumption that G has finite out-degree ensures that X =

⋃
n∈N Bn, thus

the function c(x) = min{n ∈ N : x ∈ Bn} is a Borel coloring of G. 2

We say that a set B ⊆ X is almost (ρ, U)-discrete if for each x ∈ B, there are only
finitely many y ∈ [x]E|B such that ρ(x, y) ∈ U .

PROPOSITION 2.4. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a Polish group, ρ : E → G is a Borel cocycle, U ⊆ G is Borel, and
B ⊆ X is an almost (ρ, U)-discrete Borel set. Then B is the union of countably many
(ρ, U)-discrete Borel sets.

Proof. Let G denote the directed graph on X given by

G = {(x, y) ∈ E|B : x 6= y and ρ(x, y) ∈ U}.

By Proposition 2.3, there is a Borel coloring c : X → N of G. Then each of the sets
Bn = B ∩ c−1(n) is (ρ, U)-discrete, and B =

⋃
n∈N Bn. 2

Remark. In the special case that ρ ≡ 1G, Proposition 2.4 implies that if B ⊆ X is a Borel
set which intersects every E-class in a finite set, then E|B is smooth.

We say that a set B ⊆ X is almost ρ-discrete if there is an open neighborhood U of 1G
such that B is almost (ρ, U)-discrete.

PROPOSITION 2.5. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a Polish group, ρ : E → G is a Borel cocycle, K ⊆ G is compact, and
B ⊆ X is almost ρ-discrete. Then B is almost (ρ,K)-discrete.

Proof. Suppose, towards a contradiction, that there exists x ∈ B for which there are
infinitely many y ∈ [x]E|B such that ρ(x, y) ∈ K. Fix an open neighborhood U of 1G
such that B is almost (ρ, U)-discrete. By the continuity of inversion and multiplication,
there is a non-empty open set V ⊆ G such that V −1V ⊆ U . The compactness of
K ensures that it can be covered by finitely many left translates of V , thus there exist
g ∈ G and an infinite set S ⊆ [x]E|B such that ρ(x, y) ∈ gV , for all y ∈ S. Then
ρ(y, z) = ρ(y, x)ρ(x, z) ∈ (gV )−1gV = V −1V ⊆ U , for all y, z ∈ S, which contradicts
our assumption that B is almost (ρ, U)-discrete. 2

We say that a set B ⊆ X is E-complete if it intersects every E-class.

PROPOSITION 2.6. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a Polish group, ρ : E → G is a Borel cocycle, and U is an open
neighborhood of 1G with compact closure. Then the following are equivalent:
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6 B.D. Miller

1. ρ is σ-discrete;
2. There is an E-complete, (ρ, U)-discrete Borel set.

Proof. To see (1) ⇒ (2), note that if ρ is σ-discrete, then Proposition 2.5 implies that
there is a cover ofX by countably many almost (ρ, U)-discrete Borel sets, and Proposition
2.4 then ensures that there is a cover 〈An〉n∈N of X by (ρ, U)-discrete Borel sets. Put
Bn = An \

⋃
m<n[Am]E , and observe that the set B =

⋃
n∈N Bn is as desired.

To see (2) ⇒ (1), it is enough to show that if φ ∈ JEK and B ⊆ dom(φ) is a (ρ, U)-
discrete Borel set, then φ(B) can be covered with countably many ρ-discrete Borel sets (by
Proposition 2.1). Towards this end, fix a basis 〈Un〉n∈N for G, let S = {(m,n) ∈ N× N :
U−1
n UmUn ⊆ U}, and set Bn = {φ(x) : x ∈ B and ρ(φ(x), x) ∈ Un}, for each n ∈ N.

LEMMA 2.7. For each (m,n) ∈ S, the set Bn is (ρ, Um)-discrete.

Proof. Simply observe that if φ(x), φ(y) ∈ Bn and ρ(φ(x), φ(y)) ∈ Um, then

ρ(x, y) = ρ(x, φ(x))ρ(φ(x), φ(y))ρ(φ(y), y) ∈ U−1
n UmUn ⊆ U,

so x = y, thus φ(x) = φ(y). 2

Observe now that for each x ∈ B, the continuity of inversion and multiplication
ensures that there are open neighborhoods Um of 1G and Un of ρ(φ(x), x) such that
U−1
n UmUn ⊆ U , so (m,n) ∈ S and φ(x) ∈ Bn, thus φ(B) ⊆

⋃
(m,n)∈S Bn. 2

Remark. A transversal is an E-complete partial transversal. In the special case that
ρ ≡ 1G, Proposition 2.6 implies that E is smooth if and only if E has a Borel transversal.

We say that a set B ⊆ X is ρ-bounded if ρ(E|B) is compact.

PROPOSITION 2.8. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a Polish group, ρ : E → G is a Borel cocycle, and B ⊆ X is
ρ-bounded and ρ-discrete. Then B intersects every E-class in a finite set.

Proof. Proposition 2.5 ensures that B is almost (ρ, ρ(E|B))-discrete, which immediately
implies that B intersects every E-class in a finite set. 2

The standard example of a non-smooth equivalence relation is E0 on 2N, given by

αE0β ⇔ ∃n ∈ N∀m ≥ n (α(m) = β(m)).

PROPOSITION 2.9. Suppose that B ⊆ 2N has the property of Baire and intersects each
E0-class in a finite set. Then B is meager.

Proof. Let 2<N =
⋃
n∈N 2n, where 2n denotes the set of sequences of zeros and ones

of length n. For each s ∈ 2<N, let Ns = {α ∈ 2N : s ⊆ α}. Suppose, towards a
contradiction, that B is non-meager, and fix n ∈ N such that the set Bn = {α ∈ B :
|[α]E0|B | < 2n} is non-meager. As Bn has the property of Baire, localization (see, for
example, Proposition 8.26 of [2]) yields s ∈ 2<N such that Bn ∩ Ns is comeager in Ns.
Fix a transitive permutation τ of 2n, and define π : Ns → Ns by π(stα) = sτ(t)α. Then
πi(Bn ∩Ns) is comeager inNs, for all i < 2n. Fix α ∈

⋂
i<2n πi(Bn ∩Ns), and observe

that |[α]E0|B | = |[α]E0|Bn
| ≥ 2n, a contradiction. 2
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The existence of ρ-invariant σ-finite measures 7

A metric space X is Polish if it is complete and separable. A metric d on X is an
ultrametric if d(x, z) ≤ max(d(x, y), d(y, z)), for all x, y, z ∈ X . An example is the
usual metric d on 2N, given by d(α, β) = 1/(n + 1), where α, β ∈ 2N are distinct and
n ∈ N is least such that α(n) 6= β(n). Let B(x, ε) = {y ∈ X : d(x, y) < ε}. We will
need the following analog of the Lebesgue density theorem for Polish ultrametric spaces:

PROPOSITION 2.10. Suppose that X is a Polish ultrametric space, µ is a probability
measure on X , and B ⊆ X is Borel. Then

lim
ε→0

µ(B ∩ B(x, ε))
µ(B(x, ε))

= 1,

for µ-almost every x ∈ B.

Proof. By subtracting a µ-null open set from B, we can assume that no point of B is
contained in a µ-null open set. It is easily verified that for 0 < δ < 1, the set

Bδ = {x ∈ B : lim inf
ε→0

µ(B ∩ B(x, ε))/µ(B(x, ε)) < 1− δ}

is Borel. Suppose, towards a contradiction, that there exists 0 < δ < 1 such that
µ(Bδ) > 0. Fix a compact set K ⊆ Bδ of positive µ-measure and an open set U ⊇ K

such that µ(K)/µ(U) > 1− δ (see, for example, Theorem 17.11 of [2]). For each x ∈ K,
fix εx > 0 such that B(x, εx) ⊆ U and µ(B ∩ B(x, εx))/µ(B(x, εx)) < 1 − δ. Since
K is compact, there exist x1, . . . , xn ∈ K such that K ⊆

⋃
1≤i≤n B(xi, εxi). As X is

an ultrametric space, by thinning out x1, . . . , xn we can ensure that the sets B(xi, εxi
)

partition their union V =
⋃

1≤i≤n B(xi, εxi
). Then

µ(B ∩ V ) =
∑

1≤i≤n

µ(B ∩ B(xi, εxi
))

< (1− δ)
∑

1≤i≤n

µ(B(xi, εxi
))

= (1− δ)µ(V ),

thus 1− δ < µ(K)/µ(U) ≤ µ(B ∩ V )/µ(V ) < 1− δ, the desired contradiction. 2

As a corollary, we obtain the following well-known fact:

PROPOSITION 2.11. The usual (1/2, 1/2) product measure µ on 2N is E0-ergodic.

Proof. Suppose that B ⊆ 2N is an E0-invariant Borel set of positive µ-measure. Given
ε > 0, Proposition 2.10 ensures that there exist n ∈ N and s ∈ 2n such that
µ(B ∩ Ns)/µ(Ns) ≥ 1 − ε. Then µ(B ∩ Nt)/µ(Nt) ≥ 1 − ε, for all t ∈ 2n, thus
µ(B) ≥ 1− ε. As ε > 0 was arbitrary, it follows that µ(B) = 1. 2

The facts we have mentioned thus far will be used in §3 to transform the usual (1/2, 1/2)
product measure on 2N into an atomless, (E|B)-ergodic, (E|B)-invariant σ-finite measure
on a ρ-bounded Borel set B ⊆ X . We next discuss some facts which will be used in §4 to
turn this into an atomless, E-ergodic, ρ-invariant σ-finite measure on X .
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8 B.D. Miller

PROPOSITION 2.12. Suppose thatX is a Polish space,E is a countable Borel equivalence
relation on X , and B ⊆ X is an E-complete Borel set. Then every (E|B)-invariant σ-
finite measure µ on B has a unique extension to an E-invariant σ-finite measure on X .

Proof. By Proposition 2.1, there is a group Γ = {γn}n∈N of Borel automorphisms of X
such that E = EXΓ . For each n ∈ N, define Bn = γn(B)\

⋃
m<n γm(B), and let ν denote

the σ-finite extension of µ given by

ν(A) =
∑
n∈N

(γn)∗µ(A ∩Bn).

If φ ∈ JEK and A ⊆ rng(φ), then (γ−1
m ◦ φ−1 ◦ γn)|γ−1

n (φ(Bm) ∩Bn) ∈ JE|BK, so

ν(A) =
∑
n∈N

µ(γ−1
n (A ∩Bn))

=
∑
m,n∈N

µ(γ−1
n (A ∩ φ(Bm) ∩Bn))

=
∑
m,n∈N

µ(γ−1
m ◦ φ−1(A ∩ φ(Bm) ∩Bn))

=
∑
m∈N

µ(γ−1
m (φ−1(A) ∩Bm))

= ν(φ−1(A)),

thus ν is E-invariant, and it is clear that ν is the only E-invariant extension of µ. 2

We say that ρ : E → G is a Borel coboundary if there is a Borel function w : X → G

such that ρ(x, y) = w(x)w(y)−1, for all xEy.

PROPOSITION 2.13. Suppose thatX is a Polish space,E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel coboundary, and µ is an E-invariant σ-finite
measure on X . Then there is a ρ-invariant σ-finite measure ν ∼ µ.

Proof. Fix a Borel function w : X → (0,∞) such that ρ(x, y) = w(x)/w(y), for all xEy,
define a σ-finite measure ν ∼ µ by setting

ν(B) =
∫
B

w(x) dµ(x),

and observe that if φ ∈ JEK and B ⊆ rng(φ), then

ν(φ−1(B)) =
∫
φ−1(B)

w(x) dµ(x)

=
∫
B

w(φ−1(x)) dµ(x)

=
∫
B

ρ(φ−1(x), x)w(x) dµ(x)

=
∫
B

ρ(φ−1(x), x) dν(x),

thus ν is ρ-invariant. 2
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The existence of ρ-invariant σ-finite measures 9

PROPOSITION 2.14. Suppose thatX is a Polish space,E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an E-complete, ρ-bounded Borel set B ⊆ X;
2. ρ is a Borel coboundary.

Proof. To see (1) ⇒ (2), suppose that B ⊆ X is an E-complete, ρ-bounded Borel set,
and define w : X → (0,∞) by

w(x) = sup{ρ(x, y) : y ∈ B ∩ [x]E}.

Given xEy and 0 < ε < min(w(x), w(y)), fix z ∈ B ∩ [x]E such that ρ(x, z) ≥ w(x)− ε
and ρ(y, z) ≥ w(y)− ε, and observe that

w(x)− ε
w(y)

≤ ρ(x, z)
ρ(y, z)

≤ w(x)
w(y)− ε

,

so ρ(x, y) = ρ(x, z)/ρ(y, z) = w(x)/w(y), thus ρ is a Borel coboundary.
To see (2) ⇒ (1), suppose that w : X → (0,∞) is a Borel function such that

ρ(x, y) = w(x)/w(y), for all xEy, fix an enumeration 〈kn〉n∈N of Z, define

Bn = w−1([2kn , 2kn+1)) \
⋃
m<n

[w−1([2km , 2km+1))]E ,

and observe that B =
⋃
n∈N Bn is an E-complete, ρ-bounded Borel set. 2

We close this section with circumstances under which certain sets are necessarily null:

PROPOSITION 2.15. Suppose thatX is a Polish space,E is a countable Borel equivalence
relation on X , µ is an atomless, E-ergodic measure on X , and B ⊆ X is a Borel partial
transversal of E. Then B is µ-null.

Proof. Simply observe that if µ(B) > 0, then there is a Borel set A ⊆ B such that
0 < µ(A) < µ(B), and it follows that [A]E and [B \A]E are disjoint Borel sets of positive
µ-measure, which contradicts the E-ergodicity of µ. 2

PROPOSITION 2.16. Suppose thatX is a Polish space,E is a countable Borel equivalence
relation on X , ρ : E → (0,∞) is a Borel cocycle, µ is a ρ-invariant σ-finite measure on
X which concentrates off of Borel partial transversals of E, and B ⊆ X is a ρ-discrete
Borel set. Then B is µ-null.

Proof. Suppose, towards a contradiction, that µ(B) > 0. By thinning out B, we can
assume that µ(B) <∞. Define φ ∈ JE|BK by

φ(x) = y ⇔ ρ(x, y) < 1 and ∀z ∈ [x]E|B (ρ(x, z) < 1⇒ ρ(y, z) ≤ 1).

By throwing out a Borel set on which E is smooth, we can assume that φ ∈ [E|B], so

µ(B) = µ(φ(B)) =
∫
B

ρ(φ(x), x) dµ(x) > µ(B),

the desired contradiction. 2
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3. A descriptive set-theoretic characterization of σ-discrete cocycles
An embedding of E0 into E is an injection π : 2N → X such that αE0β ⇔ π(α)Eπ(β),
for all α, β ∈ 2N. We say that π is (ρ, U)-bounded if ρ(E|π(2N)) ⊆ U .

THEOREM 3.1. Suppose that X is a Polish space, E is a countable Borel equivalence
relation onX ,G is a Polish group, U is an open neighborhood of 1G with compact closure,
and ρ : E → G is a Borel cocycle. Then exactly one of the following holds:
1. ρ is σ-discrete;
2. There is a (ρ, U)-bounded continuous embedding of E0 into E.

Proof. To see that conditions (1) and (2) are mutually exclusive, simply observe that if
〈Bn〉n∈N is a sequence of ρ-discrete Borel sets which cover X and π : 2N → X is a
(ρ, U)-bounded Borel embedding of E0 into E, then π(2N) is a ρ-bounded Borel set (see,
for example, Theorem 15.1 of [2]), so Proposition 2.8 implies that for each n ∈ N, the
set Bn ∩ π(2N) intersects each E-class in a finite set. Then An = π−1(Bn ∩ π(2N)) is a
Borel set which intersects each E0-class in a finite set, and since 〈An〉n∈N covers 2N, this
contradicts Proposition 2.9.

It remains to show ¬(1) ⇒ (2). Suppose that (1) fails, or equivalently, that X is not in
the σ-ideal I generated by the ρ-discrete Borel subsets of X . By Proposition 2.1, there is
a countable group Γ of Borel automorphisms of X such that E = EXΓ . Fix an increasing
sequence of finite, symmetric sets Γn ⊆ Γ containing 1Γ such that Γ =

⋃
n∈N Γn.

LEMMA 3.2. There is a sequence 〈Un〉n∈N of open neighborhoods of 1G such that
(U0 · · ·Un)(U0 · · ·Un)−1 ⊆ U , for all n ∈ N.

Proof. Set U−1 = U and recursively appeal to the continuity of inversion and
multiplication to obtain a sequence of open, symmetric neighborhoods Un of 1G such
that (Un)3 ⊆ Un−1. A straightforward induction shows that 〈Un〉n∈N is as desired. 2

By standard change of topology results (see, for example, §13 of [2]), there is a zero-
dimensional Polish topology on X , finer than the given one but generating the same
Borel sets, with respect to which Γ acts by homeomorphisms and each map of the form
ργ(x) = ρ(γ · x, x) is continuous. If π : 2N → X is continuous with respect to this
new topology, then it is continuous with respect to the original topology, so from this point
forward we work only with the new topology and a fixed compatible, complete metric.

We will recursively find clopen sets Xn ⊆ X and group elements γn ∈ Γ. From these,
we define group elements γs, for s ∈ 2<N, by setting γ∅ = 1Γ and γs = γ

s(0)
0 · · · γs(n)

n ,
for s ∈ 2n+1. We will ensure that for all n ∈ N, the following conditions are satisfied:
(a) Xn 6∈ I;
(b) ργn(Xn+1) ⊆ Un;
(c) Xn+1 ∪ γn(Xn+1) ⊆ Xn;
(d) ∀s, t ∈ 2n∀γ ∈ Γn (γn(Xn+1) ∩ γ−1

t γγs(Xn+1) = ∅);
(e) ∀u ∈ 2n+1 (diam(γu(Xn+1)) ≤ 1/(n+ 1)).
We begin by setting X0 = X . Now suppose that we have found 〈Xi〉i≤n and 〈γi〉i<n
which satisfy conditions (a) – (e). For each δ ∈ Γ, define Vδ ⊆ X by

Vδ = {x ∈ Xn ∩ δ−1(Xn) ∩ ρ−1
δ (Un) : ∀s, t ∈ 2n∀γ ∈ Γn (δ · x 6= γ−1

t γγs · x)}.
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LEMMA 3.3. There exists δ ∈ Γ such that Vδ 6∈ I.

Proof. Set C = Xn \
⋃
δ∈Γ Vδ , and observe that if x, y ∈ C and ρ(x, y) ∈ Un, then there

exists δ ∈ Γ such that x = δ · y, and the fact that y /∈ Vδ ensures that there exist s, t ∈ 2n

and γ ∈ Γn such that δ · y = γ−1
t γγs · y, so y = γ−1

s γ−1γt · x, thus C is almost (ρ, Un)-
discrete. Proposition 2.4 then implies that C ∈ I, thus the set Xn \C =

⋃
δ∈Γ Vδ is not in

I, and the lemma follows. 2

By Lemma 3.3, there exists γn ∈ Γ such that Vγn
/∈ I. As Vγn

is open, it is the union
of countably many clopen sets Wk ⊆ Vγn

such that γn(Wk) ∩ γ−1
t γγs(Wk) = ∅ and

diam(γu(Wk)) ≤ 1/(n + 1), for all s, t ∈ 2n, γ ∈ Γn, and u ∈ 2n+1. Fix k such that
Wk 6∈ I, and put Xn+1 = Wk. This completes the recursive construction.

For each α ∈ 2N, condition (c) implies that the sequence 〈γα|n(Xn)〉n∈N is decreasing,
and condition (e) ensures that the diameter of the sets along this sequence is vanishing. As
a consequence, we obtain a function π : 2N → X by setting

π(α) = the unique element of
⋂
n∈N

γα|n(Xn).

Condition (d) implies that π is injective, and condition (e) ensures that π is continuous.
To see that αE0β ⇒ π(α)Eπ(β), it is enough to check the following:

LEMMA 3.4. Suppose that k ∈ N, s ∈ 2k, and α ∈ 2N. Then π(sα) = γs · π(0kα).

Proof. Simply observe that

{π(sα)} =
⋂
n∈N

γ(sα)|n(Xn)

=
⋂
n∈N

γsγ0k(α|n)(Xk+n)

= γs

( ⋂
n∈N

γ0k(α|n)(Xk+n)
)

= γs

( ⋂
n∈N

γ(0kα)|n(Xn)
)

= γs({π(0kα)}),

thus π(sα) = γs · π(0kα). 2

To see that (α, β) 6∈ E0 ⇒ (π(α), π(β)) 6∈ E, it is enough to check the following:

LEMMA 3.5. Suppose that α(n) 6= β(n). Then ∀γ ∈ Γn (γ · π(α) 6= π(β)).

Proof. By reversing the roles of α and β if necessary, we can assume that α(n) = 0.
Suppose, towards a contradiction, that there exists γ ∈ Γn such that γ · π(α) = π(β). Set
s = α|n and t = β|n, and put x = γ−1

s ·π(α) and y = γ−1
n γ−1

t ·π(β). Then x, y ∈ Xn+1

and γn · y = γ−1
t γγs · x, which contradicts condition (d). 2

It only remains to check that π is (ρ, U)-bounded. Towards this end, suppose that
αE0β and fix n ∈ N such that ∀m > n (α(m) = β(m)). Set s = α(0) . . . α(n) and
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12 B.D. Miller

t = β(0) . . . β(n), noting that γ−1
s · π(α) = γ−1

t · π(β), by Lemma 3.4. Then

ρ(π(α), γ−1
s · π(α)) =

∏
i<n

ρ(γ−1
s|i · π(α), γ−1

s|(i+1) · π(α)) ∈
∏
i<n

Ui

and

ρ(π(β), γ−1
t · π(β)) =

∏
i<n

ρ(γ−1
t|i · π(β), γ−1

t|(i+1) · π(β)) ∈
∏
i<n

Ui,

by condition (b), thus ρ(π(α), π(β)) = ρ(π(α), γ−1
s · π(α))ρ(γ−1

t · π(β), π(β)) ∈ U . 2

THEOREM 3.6. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , G is a locally compact Polish group, and ρ : E → G is a Borel cocycle.
Then the following are equivalent:
1. X is the union of countably many ρ-discrete Borel sets;
2. X is the union of countably many ρ-discrete globally Baire sets.

Proof. It is clear that (1) ⇒ (2). To see (2) ⇒ (1) suppose, towards a contradiction, that
there is a sequence 〈Bn〉n∈N of ρ-discrete globally Baire sets which cover X , but ρ is not
σ-discrete. Fix an open neighborhood U of 1G with compact closure. By Theorem 3.1,
there is a (ρ, U)-bounded continuous embedding π : 2N → X of E0 into E. Then π(2N) is
a ρ-bounded Borel set, so Proposition 2.8 implies that for each n ∈ N, the set Bn ∩ π(2N)
intersects each E-class in a finite set. As Bn ∩ π(2N) is globally Baire, it follows that the
set An = π−1(Bn ∩ π(2N)) has the property of Baire and intersects each E0-class in a
finite set. Since 〈An〉n∈N covers 2N, this contradicts Proposition 2.9. 2

Remark. A similar argument gives the universally measurable analog of Theorem 3.6.

THEOREM 3.7. Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X . Then the following are equivalent:
1. E is hyperfinite;
2. There is a σ-discrete Borel cocycle ρ : E → (0,∞).

Proof. It is easily verified that ifE is smooth, thenE is hyperfinite and every Borel cocycle
from E to a Polish group is σ-discrete.

To see (1) ⇒ (2), suppose that E is hyperfinite. By throwing out an E-invariant Borel
set on which E is smooth, we can assume that every E-class is infinite. By a result of
[8] and [10] (see also Theorem 6.6 of [3]), there exists T ∈ [E] such that E = EXT . Let
ρ : E → (0,∞) be the Borel cocycle given by ρ(Tn(x), x) = 2n, and observe that X is
(ρ, (1/2, 2))-discrete, thus ρ is σ-discrete.

To see (2) ⇒ (1), suppose that ρ : E → (0,∞) is a σ-discrete Borel cocycle, and
fix a cover 〈Bn〉n∈N of X by ρ-discrete Borel sets. It is enough to show that E|Bn is
hyperfinite, for each n ∈ N. Towards this end, define φn ∈ JE|BnK by

φn(x) = y ⇔ ρ(x, y) < 1 and ∀z ∈ [x]E|Bn
(ρ(x, z) < 1⇒ ρ(y, z) ≤ 1).

By throwing out an (E|Bn)-invariant Borel set on which E|Bn is smooth, we can assume
that φn is a Borel automorphism of Bn such that EBn

φ = E|Bn, thus the previously
mentioned result of [8] and [10] implies that E|Bn is hyperfinite. 2
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4. Characterizations of the existence of non-trivial σ-finite measures
We begin this section with the proof of our main theorem:

THEOREM 4.1. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then exactly one of the following
holds:
1. ρ is σ-discrete;
2. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X .

Proof. Propositions 2.15 and 2.16 immediately imply that (1) and (2) are mutually
exclusive. To see ¬(1) ⇒ (2), suppose that ρ is not σ-discrete, and appeal to Theorem
3.1 to obtain a (ρ, (1/2, 2))-bounded embedding π of E0 into E. Set B = π(2N), and
note that we can push the usual (1/2, 1/2) product measure on 2N through π to obtain an
(E|B)-invariant probability measure µ on B. Proposition 2.12 implies that µ extends to
an E-invariant σ-finite measure ν which concentrates on [B]E , Proposition 2.14 implies
that ρ|(E|[B]E) is a Borel coboundary, and Proposition 2.13 then ensures that there is a
ρ-invariant σ-finite measure ξ ∼ ν. As µ is atomless and (E|B)-ergodic (by Proposition
2.11), it follows that ξ is atomless and E-ergodic. 2

Next we establish various equivalents of the existence of non-trivial measures:

THEOREM 4.2. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X;
2. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X which is

equivalent to an atomless, E-ergodic, E-invariant σ-finite measure on X .

Proof. It is enough to establish (1)⇒ (2). By Theorem 4.1, it is sufficient to show that if
ρ is not σ-discrete, then (2) holds, and this follows from the proof of Theorem 4.1. 2

THEOREM 4.3. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X;
2. There is a ρ-invariant σ-finite measure on X which concentrates off of Borel partial

transversals of E;
3. There is a ρ-invariant σ-finite measure on X which concentrates off of ρ-discrete

Borel sets.

Proof. Proposition 2.15 gives (1) ⇒ (2), and Proposition 2.16 gives (2) ⇒ (3). To see
(3) ⇒ (1), observe that if there is a measure on X which concentrates off of ρ-discrete
Borel sets, then ρ is not σ-discrete, thus Theorem 4.1 ensures that (1) holds. 2

THEOREM 4.4. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X;
2. There is a family of continuum-many atomless, E-ergodic, ρ-invariant σ-finite

measures on X with pairwise disjoint supports.
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14 B.D. Miller

Proof. It is enough to show (1)⇒ (2). Towards this end, suppose that (1) holds. Theorem
4.1 implies that ρ is not σ-discrete, and Theorem 3.1 ensures that there is a (ρ, (1/2, 2))-
bounded continuous embedding π of E0 into E.

LEMMA 4.5. There is a sequence 〈πα〉α∈2N of embeddings of E0 into E0 such that

∀α, β ∈ 2N (α 6= β ⇒ [πα(2N)]E0 ∩ [πβ(2N)]E0 = ∅).

Proof. The functions πα(γ) = (α|0)γ(0)(α|1)γ(1) . . . are clearly as desired. 2

For each α ∈ 2N, the proof of Theorem 4.1 yields an atomless, E-ergodic, ρ-invariant
σ-finite measure µα which concentrates on [π ◦ πα(2N)]E . 2

THEOREM 4.6. Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , and ρ : E → (0,∞) is a Borel cocycle. Then the following are equivalent:
1. There is an atomless, E-ergodic, ρ-invariant σ-finite measure on X;
2. There is a finer Polish topology τ on X such that for every τ -comeager set C ⊆ X ,

there is an atomless, E-ergodic, ρ-invariant σ-finite measure concentrating on C.

Proof. It is enough to show (1) ⇒ (2). Towards this end, suppose that (1) holds.
Theorem 4.1 then implies that X is not ρ-discrete, and Theorem 3.1 ensures that there
is a (ρ, (1/2, 2))-bounded continuous embedding π of E0 into E. Let τ1 denote the push-
forward of the usual topology on 2N through π. By standard change of topology results,
there is a Polish topology τ2 on X \π(2N) such that the topology τ generated by τ1 and τ2
is Polish and finer than the given Polish topology on X (and therefore generates the same
Borel sets). It remains to check that if C ⊆ X is τ -comeager, then there is an atomless,
E-ergodic, ρ-invariant σ-finite measure concentrating on C. Clearly we can assume that C
is Borel, and by Theorem 4.1, it is enough to show that ρ|(E|C) is not σ-discrete. Suppose,
towards a contradiction, that 〈Bn〉n∈N is a sequence of ρ-discrete Borel sets which cover
C. As π(2N) is ρ-bounded, Proposition 2.8 implies that for each n ∈ N, the setBn∩π(2N)
intersects each E-class in a finite set. Then An = π−1(Bn ∩ π(2N)) is a Borel set which
intersects each E0-class in a finite set, and since π−1(C) is comeager and 〈An〉n∈N covers
π−1(C), this contradicts Proposition 2.9. 2

We close with our promised characterization of hyperfiniteness:

THEOREM 4.7. Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X . Then exactly one of the following holds:
1. E is hyperfinite;
2. For every Borel cocycle ρ : E → (0,∞), there is an atomless, E-ergodic, ρ-

invariant σ-finite measure on X .

Proof. This is a straightforward consequence of Theorems 3.7 and 4.1. 2
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