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Abstract. We give classical proofs, strengthenings, and general-
izations of Lecomte’s characterizations of analytic ω-dimensional
hypergraphs with countable Borel chromatic number.

1. Introduction

An ω-dimensional (directed) hypergraph on a set X is a family G ⊆
ωX of non-constant sequences. A (Y -)coloring of such a hypergraph is
a function c : X → Y which sends sequences in G to non-constant se-
quences in ωY . More generally, a homomorphism from an ω-dimension-
al hypergraph G on X to an ω-dimensional hypergraph H on Y is a
function ϕ : X → Y which sends sequences in G to sequences in H.

In [4], Kechris-Solecki-Todorcevic isolated an acyclic D2(Σ
0
1) graph

on ω2 that is minimal among all analytic graphs which do not have
Borel ω-colorings. In [5], Lecomte proved that an analogous ω-dimen-
sional hypergraph is minimal among all analytic ω-dimensional hyper-
graphs which do not have Borel ω-colorings.

Here we give a classical proof of a strengthening of Lecomte’s result.
This allows us to provide new insight into the curious fact that the
notion of minimality appearing in the ω-dimensional case is weaker
than that appearing in the Kechris-Solecki-Todorcevic theorem. We
also give generalizations of Lecomte’s result to κ-Souslin graphs.

We work in ZF except where stated otherwise.

2. Preliminaries

A topological space is analytic if it is the continuous image of a closed
subset of ωω. Given a set R ⊆

∏
i∈I Xi, we say that a sequence (Ai)i∈I

is R-discrete if Ai ⊆ Xi for all i ∈ I and
∏

i∈I Ai is disjoint from R.

Proposition 1. Suppose that (Xi)i∈I is a countable sequence of Haus-
dorff spaces, R ⊆

∏
i∈I Xi is analytic, and (Ai)i∈I is an R-discrete

sequence of analytic sets. Then there exist a Borel set S ⊆
∏

i∈I Xi

and an S-discrete sequence (Bi)i∈I of Borel sets such that R ⊆ S and
Ai ⊆ Bi for all i ∈ I.
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Proof. This is a straightforward generalization of the Novikov separa-
tion theorem (see, for example, Theorem 28.5 of [3]).

The restriction of G to a set A ⊆ X is given by G � A = G ∩ ωA.
We say that a set A ⊆ X is G-discrete if G � A = ∅.

Proposition 2. Suppose that X is a Hausdorff space, G is an analytic
ω-dimensional hypergraph on X, and A ⊆ X is a G-discrete analytic
set. Then there is a G-discrete Borel set B ⊆ X such that A ⊆ B.

Proof. By Proposition 1, there is aG-discrete sequence (Bn)n∈ω of Borel
sets such that A ⊆ Bn for all n ∈ ω. Clearly the set B =

⋂
n∈ω Bn is

as desired.

For each set I ⊆ <ωω, let GI denote the ω-dimensional hypergraph
on ωω given by GI = {(saiax)i∈ω | s ∈ I and x ∈ ωω}. We say that a
set I ⊆ <ωω is dense if ∀s ∈ <ωω∃t ∈ I (s v t).

Proposition 3. Suppose that A ⊆ ωω is a non-meager set with the
Baire property and I ⊆ <ωω is dense. Then A is not GI-discrete.

Proof. Fix s ∈ <ωω such that A is comeager in Ns, fix t ∈ I such
that s v t, and fix x ∈ ωω such that taiax ∈ A for all i ∈ ω. As
(taiax)i∈ω ∈ GI , it follows that A is not GI-discrete.

Fix sequences sn ∈ nω for which the set I = {sn | n ∈ ω} is dense,
and define G0(ω) = GI .

3. Dichotomy theorems

The primary dichotomy in [5] concerns the existence of continuous
homomorphisms from G0(ω) � X0 to G, where X0 denotes the dense
Gδ set of sequences x ∈ ωω such that sn

a0 v x for infinitely many
n ∈ ω. We will establish the analogous result concerning the existence
of continuous homomorphisms from G0(ω) � Xz to G, where z ∈ ωω is
strictly increasing and Xz denotes the dense Gδ set of sequences x ∈ ωω
such that x � n ∈ nz(n) for infinitely many n ∈ ω.

Note that if z(n+ 1) > maxi∈n sn(i) for all n ∈ ω, then X0 ⊆ Xz, so
the inclusion map is a continuous homomorphism from G0(ω) � X0 to
G0(ω) � Xz. The following fact therefore yields the original result:

Theorem 4. Suppose that X is a Hausdorff space and G is an ana-
lytic ω-dimensional hypergraph on X. Then for all strictly increasing
sequences z ∈ ωω, exactly one of the following holds:

(1) There is a Borel ω-coloring of G.
(2) There is a continuous homomorphism from G0(ω) � Xz to G.
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Proof. To see that (1) and (2) are mutually exclusive suppose, towards
a contradiction, that c : X → ω is a Borel coloring of G, C ⊆ ωω is
a dense Gδ set, and ϕ : C → X is a Baire measurable homomorphism
from G0(ω) � C to G. Then the function c0 = c◦ϕ is Baire measurable,
so there exists n ∈ ω such that c−1

0 ({n}) is a non-meager set with the
Baire property. As c0 is a coloring of G0(ω) � C, it follows that c−1

0 ({n})
is also G0(ω)-discrete, which contradicts Proposition 3.

It remains to show that at least one of (1) and (2) holds. We can
clearly assume that G is non-empty, in which case there are continuous
surjections ϕG : ωω → G and ϕX : ωω → dom(G), where

dom(G) = {x ∈ X | ∃n ∈ ω∃y ∈ G (x = y(n))}.

Suppose that n ∈ ω. A global (n-)approximation is a pair of the form
p = ((upm)m∈n+1, (v

p
m)m∈n+1), where upm : mz(m)→ mω and vpm : <mz(m)

→ mω for all m ∈ n+ 1, which satisfies the following conditions:

(a) ∀l ∈ m ∈ n+ 1∀s ∈ lz(l)∀t ∈ mz(m) (s v t =⇒ upl (s) v upm(t)).
(b) ∀l ∈ m ∈ n+ 1∀s ∈ <lz(l)∀t ∈ <mz(m)

((s v t and m− l = |t| − |s|) =⇒ vpl (s) v vpm(t)).

Fix an enumeration (pk)k∈ω of the set of all global approximations.
An extension of a global m-approximation p is a global n-approxima-

tion q such that upl = uql and vpl = vql for all l ∈ m + 1. In the special
case that n = m+ 1, we say that q is a one-step extension of p.

A local (n-)approximation is a pair of the form l = (f l, gl), where
f l : nω → ωω and gl : <nω → ωω, with the property that

∀k ∈ n∀t ∈ n−(k+1)ω (ϕG ◦ gl(t) = (ϕX ◦ f l(skaiat))i∈ω).

We say that l is compatible with a global n-approximation p if the
following conditions are satisfied:

(i) ∀m ∈ n+ 1∀s ∈ mz(m)∀t ∈ nω (s v t =⇒ upm(s) v f l(t)).
(ii) ∀m ∈ n+ 1∀s ∈ <mz(m)∀t ∈ <nω

((s v t and n−m = |t| − |s|) =⇒ vpm(s) v gl(t)).

We say that l is compatible with a set Y ⊆ X if ϕX ◦ f l[nω] ⊆ Y .
Suppose now that Y ⊆ X is a Borel set, α is a countable ordinal, and

c : X\Y → ω ·α is a Borel coloring of G � (X\Y ). Associated with each
global n-approximation p is the set L(p, Y ) of local n-approximations
which are compatible with both p and Y , as well as the set

A(p, Y ) = {ϕX ◦ f l(sn) | l ∈ L(p, Y )}.

We say that p is Y -terminal if L(q, Y ) = ∅ for all one-step extensions
q of p. Let T (Y ) denote the set of Y -terminal global approximations.
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Lemma 5. Suppose that p is a global approximation and A(p, Y ) is
not G-discrete. Then p is not Y -terminal.

Proof of lemma. Fix n ∈ ω such that p is a global n-approximation, as
well as local n-approximations li ∈ Ln(p, Y ) with (ϕX ◦f li(sn))i∈ω ∈ G.
Then there exists x ∈ ωω for which ϕG(x) = (ϕX ◦ f li(sn))i∈ω. Let l
denote the local (n + 1)-approximation given by f l(sai) = f li(s) for
i ∈ ω and s ∈ nω, gl(∅) = x, and gl(tai) = gli(t) for i ∈ ω and t ∈ <nω.
As l is compatible with a one-step extension of p, it follows that p is
not Y -terminal.

Proposition 2 and Lemma 5 ensure that for each Y -terminal global
approximation p, there is a G-discrete Borel set B(p, Y ) ⊆ X such that
A(p, Y ) ⊆ B(p, Y ). Define Y ′ ⊆ Y by

Y ′ = Y \
⋃
{B(p, Y ) | p ∈ T (Y )}.

For each y ∈ Y \ Y ′, set

k(y) = min{k ∈ ω | pk ∈ T (Y ) and y ∈ B(pk, Y )},

and define an extension c′ : X \ Y ′ → ω · (α + 1) of c : X \ Y → ω · α
by setting c′(y) = ω · α + k(y) for y ∈ Y \ Y ′.

Lemma 6. The function c′ is a coloring of G � (X \ Y ′).

Proof of lemma. Suppose, towards a contradiction, that there exist β ∈
ω · (α+ 1) and (xi)i∈ω ∈ G � (X \Y ′) such that c′(xi) = β for all i ∈ ω.
Then there exists k ∈ ω with β = ω · α + k, in which case pk is Y -
terminal and (xi)i∈ω ∈ G � B(pk, Y ), the desired contradiction.

Lemma 7. Suppose that p is a global approximation whose one-step
extensions are all Y -terminal. Then p is Y ′-terminal.

Proof of lemma. For each one-step extension q of p, the sets A(q, Y )
and Y ′ are disjoint, so L(q, Y ′) = ∅, thus p is Y ′-terminal.

Recursively define Borel sets Yα ⊆ X and Borel colorings cα : X \
Yα → ω · α of G � (X \ Yα) for all countable ordinals α by setting

(Yα, cα) =


(X, ∅) if α = 0,

(Y ′β, c
′
β) if α = β + 1, and

(
⋂
β∈α Yβ, limβ→α cβ) if α is a limit ordinal.

As there are only countably many global approximations and the se-
quence (T (Yα))α∈ω1 is increasing, there is a countable ordinal α with
the property that T (Yα) = T (Yα+1).
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If the unique global 0-approximation p0 is Yα-terminal, then the fact
that A(p0, Yα) = dom(G) ∩ Yα ensures that cα extends to a Borel (ω ·
α + 1)-coloring of G, thus there is a Borel ω-coloring of G.

Otherwise, by repeatedly applying Lemma 7 we obtain one-step ex-
tensions pn+1 of pn for all n ∈ ω, none of which are Yα-terminal. For
each k ∈ ω, let Xz,k denote the dense Gδ set of sequences x ∈ ωω with
x � n ∈ nz(k + n+ 1) for infinitely many n ∈ ω. Define continuous
functions ψX : Xz → ωω and ψk : Xz,k → ωω for k ∈ ω by

ψX(x) = lim
n→ω

up
n

n (x � n) and ψk(x) = lim
n→ω

vp
k+n+1

k+n+1 (x � n),

where the limits are taken over all n ∈ ω for which the maps are defined.
To see that ϕX ◦ ψX is a homomorphism from G0(ω) � Xz to G,

it is enough to show that ϕG ◦ ψk(x) = (ϕX ◦ ψX(sk
aiax))i∈ω for all

k ∈ ω and x ∈ Xz,k. By the continuity of ϕG and ϕX , it is enough
to show that for every open neighborhood U of ψk(x) and every open
neighborhood V of (ψX(sk

aiax))i∈ω, there exists (y, (yi)i∈ω) ∈ U × V
with ϕG(y) = (ϕX(yi))i∈ω. Towards this end, fix m ∈ ω and an open
set W ⊆ m(ωω) such that (ψX(sk

aiax))i∈m ∈ W and W × ω(ωω) ⊆ V .
Then there exists n ∈ ω such that sk

aia(x � n) ∈ k+n+1z(k + n+ 1) for
all i ∈ m, Nψk(x)�(k+n+1) ⊆ U , and

∏
i∈mNψX(skaiax)�(k+n+1) ⊆ W . Fix

a local approximation l ∈ L(pk+n+1, Yα). Then the points y = gl(x � n)
and yi = f l(sk

aia(x � n)) for i ∈ ω are as desired.

The following fact implies Lecomte’s result that G0(ω) � Xz cannot
be replaced with G0(ω) in the statement of Theorem 4:

Proposition 8. Suppose that z ∈ ωω is strictly increasing. Then there
is no continuous homomorphism from G0(ω) to G0(ω) � Xz.

Proof. We say that a set P ⊆ ωω is a prism if there is a co-infinite set
I ⊆ ω and a sequence y ∈ Iω such that P = {x ∈ ωω | y = x � I}.

Lemma 9 (Lecomte). Suppose that ϕ : ωω → ωω is a continuous ho-
momorphism from G0(ω) to G0(ω). Then ϕ[ωω] contains a prism.

Proof of lemma. This follows from the proof of Theorem 3 of [5].

By Lemma 9, it is enough to show that no prism P is contained in Xz.
Towards this end, fix I ⊆ ω and y ∈ Iω with P = {x ∈ ωω | y = x � I},
let (ik)k∈ω denote the strictly increasing enumeration of ω\I, and define
x ∈ P by setting x(ik) = z(ik+1) for k ∈ ω. Then x � n /∈ nz(n) for all
n ∈ ω \ (i0 + 1), so x /∈ Xz, thus P 6⊆ Xz.

As originally noted by Lecomte, there is nevertheless a weak version
of Theorem 4 in which G0(ω) � Xz can be replaced with G0(ω):
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Theorem 10 (Lecomte). Work in ZFC. Suppose that X is a Hausdorff
space and G is an analytic ω-dimensional hypergraph on X. Then
exactly one of the following holds:

(1) There is a Borel ω-coloring of G.
(2) There is a Baire measurable homomorphism from G0(ω) to G.

Proof. The proof that (1) and (2) of Theorem 4 are mutually exclusive
works just as well here. To see that ¬(1) =⇒ (2), let E0(ω) denote the
equivalence relation on ωω given by

xE0(ω)y ⇐⇒ ∃m ∈ ω∀n ∈ ω \m (x(n) = y(n)).

Recall that a set is invariant with respect to an equivalence relation
if it can be expressed as the union of equivalence classes. Note that
the range of every sequence in G0(ω) is contained in a single equiv-
alence class of E0(ω). In particular, it follows that we can construct
partial homomorphisms from G0(ω) to G by pasting together partial
homomorphisms defined on disjoint E0(ω)-invariant subsets of ωω.

Fix a strictly increasing sequence z ∈ ωω, and appeal to Theorem 4
to obtain a continuous homomorphism ϕz : Xz → X from G0(ω) � Xz

to G. For each equivalence class C of E0(ω), fix a strictly increasing
sequence zC ∈ ωω with C ⊆ XzC , and appeal to Theorem 4 to obtain
a continuous homomorphism ϕC : XzC → X from G0(ω) � XzC to G.

As Xz is E0(ω)-invariant, we obtain a homomorphism ϕ : ωω → X
from G0(ω) to G by setting ϕ(x) = ϕz(x) for x ∈ Xz and ϕ(x) = ϕC(x)
for x /∈ Xz, where C denotes the E0(ω)-class of x.

To see that ϕ is Baire measurable, observe that if U ⊆ X is open,
then ϕ−1

z (U) = ϕ−1(U) ∩ Xz. As the former set is Borel and Xz is
comeager, it follows that ϕ−1(U) has the Baire property.

Theorem 4, Proposition 8, and Theorem 10 lead to the following:

Question 11 (Lecomte). Can the homomorphism in part (2) of Theo-
rem 10 be taken to be Borel? Equivalently, is there a Borel homomor-
phism from G0(ω) to G0(ω) � Xz for every (equivalently, some) strictly
increasing sequence z ∈ ωω?

In light of Theorem 10, perhaps the most natural attempt at pro-
ducing a negative answer to Question 11 is to find a Polish topology τ
on ωω, compatible with the underlying Borel structure of ωω, for which
there is no τ -Baire measurable homomorphism from G0(ω) to G. Sim-
ilarly, one could look for a σ-finite measure µ on ωω for which there is
no µ-measurable homomorphism from G0(ω) to G.



ANALYTIC HYPERGRAPHS 7

Theorem 4 immediately implies that neither strategy can succeed.
Simply choose a strictly increasing sequence z ∈ ωω such that Xz is
µ-conull and τ -comeager, and proceed as in the proof of Theorem 10.

We can consistently obtain an even stronger result. Recall that a
subset of a Polish spaceX is universally measurable if it is µ-measurable
for every Borel probability measure µ on X, and a function ϕ : X → Y
is universally measurable if ϕ−1(U) is universally measurable for every
open set U ⊆ Y . Similarly, a subset of a Polish space X is ω-universally
Baire if its pre-image under every continuous function ψ : ωω → X has
the Baire property, and a function ϕ : X → Y is ω-universally Baire
measurable if ϕ−1(U) is ω-universally Baire for every open set U ⊆ Y .

Theorem 12. Work in ZFC + add(null) = c. Suppose that X is a
Hausdorff space and G is an analytic ω-dimensional hypergraph on X.
Then exactly one of the following holds:

(1) There is a Borel ω-coloring of G.
(2) There is a homomorphism from G0(ω) to G which is universally

measurable and ω-universally Baire measurable.

Proof. By Theorem 10, it is enough to show that ¬(1) =⇒ (2). Towards
this end, fix enumerations (µα)α∈c of the set of all Borel probability
measures on ωω, (ψα)α∈c of the set of all continuous functions from ωω
to ωω, and (xα)α∈c of ωω.

For each α ∈ c, fix a strictly increasing sequence zα ∈ ωω such that
Xzα is µα-conull, ψ−1

α (Xzα) is comeager, and xα ∈ Xzα , and appeal to
Theorem 4 to obtain a continuous homomorphism ϕα : Xzα → X from
G0(ω) � Xzα to G.

As each of the sets Xzα is E0(ω)-invariant, we obtain a homomor-
phism ϕ : ωω → X from G0(ω) to G by setting ϕ(x) = ϕα(x) for all
α ∈ c and x ∈ Xzα \

⋃
β∈αXzβ .

To see that ϕ is universally measurable, suppose that µ is a Borel
probability measure on ωω, fix α ∈ c with µ = µα, and observe that
if U ⊆ X, then ϕ−1(U) ∩ Xzα =

⋃
β∈α+1(ϕ

−1
zβ

(U) \
⋃
γ∈βXzγ ) ∩ Xzα .

In particular, if U is open, then our assumption that add(null) = c
ensures that the latter set is µ-measurable. AsXzα is µ-conull, it follows
that ϕ−1(U) is µ-measurable.

Similarly, to see that ϕ is ω-universally Baire measurable, suppose
that ψ : ωω → ωω is continuous, fix α ∈ c with ψ = ψα, and observe
that if U ⊆ X, then (ϕ ◦ ψ)−1(U) ∩ ψ−1(Xzα) can be expressed as⋃

β∈α+1

(
(ϕzβ ◦ ψ)−1(U) \

⋃
γ∈β

ψ−1(Xzγ )

)
∩ ψ−1(Xzα).
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By a result of Bartoszynski [1], our assumption that add(null) = c
ensures that add(meager) = c. In particular, if U is open, then the
latter set has the Baire property. As ψ−1(Xzα) is comeager, it follows
that (ϕ ◦ ψ)−1(U) has the Baire property.

We close by noting generalizations of Lecomte’s results to broader
classes of definable sets. Suppose that κ is an aleph. A topological
space is κ-Souslin if it is the continuous image of a closed subset of ωκ.
By removing our use of Proposition 1 from the proof of Theorem 4 and
replacing ω with κ as appropriate, we obtain the following:

Theorem 13. Suppose that κ is an aleph, X is a Hausdorff space, and
G is a κ-Souslin ω-dimensional hypergraph on X. Then for all strictly
increasing sequences z ∈ ωω, at least one of the following holds:

(1) There is a κ-coloring of G.
(2) There is a continuous homomorphism from G0(ω) � Xz to G.

By employing techniques of Kanovei [2], we can do even better:

Theorem 14. Suppose that κ is an aleph, X is a Hausdorff space, and
G is a κ-Souslin ω-dimensional hypergraph on X. Then for all strictly
increasing sequences z ∈ ωω, at least one of the following holds:

(1) There is a κ+-Borel κ-coloring of G.
(2) There is a continuous homomorphism from G0(ω) � Xz to G.

Question 15. Is there a classical proof of Theorem 14?
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