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Abstract. We simultaneously generalize Silver’s perfect set theorem for co-analytic

equivalence relations and Harrington-Marker-Shelah’s Dilworth-style perfect set the-

orem for Borel quasi-orders, establish the analogous theorem at the next definable

cardinal, and give further generalizations under weaker definability conditions.

A quasi-order is a reflexive transitive binary relation. Associated
with every such relation R on a set X are the equivalence relation
x ≡R y ⇐⇒ (x R y and y R x) and the incomparability relation
x ⊥R y ⇐⇒ (¬x R y and ¬y R x). We say that a set Y ⊆ X
is an R-antichain if R � Y is the diagonal on Y , and an R-chain if
⊥R � Y is empty. We say that a subset of a topological space X is
Borel if it is in the σ-algebra generated by the open sets, analytic
if it is a continuous image of a closed subset of NN, co-analytic if
its complement is analytic, and ℵ0-universally Baire if its pre-image
under every continuous function φ : 2N → X has the Baire property.

In §1, we simultanously generalize the main result of [Sil80] and
[HMS88, Theorem 5.1]:

Theorem 1. Suppose that X is a Hausdorff space and R is an ℵ0-
universally Baire quasi-order on X for which ⊥R is analytic. Then
exactly one of the following holds:

1. The space X is a union of countably-many Borel R-chains.
2. There is a continuous injection of 2N into an R-antichain.

Our proof uses only Baire category arguments and the G0 dichotomy
(see [KST99, Theorem 6.3]), which itself has a classical proof (see
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[Mil12]). An interesting wrinkle is that, while such arguments typi-
cally utilize just one application of the G0 dichotomy, ours requires
infinitely many.

A homomorphism from a binary relation R on X to a binary re-
lation S on Y is a function φ : X → Y such that (φ × φ)(R) ⊆ S,
and a reduction of R to S is a homomorphism from R to S that
is also a homomorphism from ∼R to ∼S. A Borel equivalence re-
lation E on an analytic Hausdorff space X is smooth if there is a
Borel-measurable reduction of E to equality on 2N, and an analytic
set A ⊆ X is E-smooth if E � A is smooth. In §2, we establish the
analog of [HMS88, Theorem 5.1] at the next Borel cardinal:

Theorem 2. Suppose that X is an analytic Hausdorff space and
R is an ℵ0-universally Baire quasi-order on X for which ≡R is Borel.
Then exactly one of the following holds:

1. There is a smooth Borel superequivalence relation of ≡R whose
equivalence classes are R-chains.

2. There is an ≡R-non-smooth compact set whose quotient by ≡R
is an (R/≡R)-antichain.

Our proof uses only Baire category arguments and the E0 dichotomy
(see [HKL90, Theorem 1.1]), which itself has a classical proof (see
[Mil12]), and reveals that the theorem holds for the simple reason
that its two alternatives are equivalent to those of the E0 dichotomy
(for ≡R).

Although dichotomy results such as Theorems 1 and 2 are typically
stated for Polish spaces, we instead work with Hausdorff spaces,
as this reflects the natural generality in which our arguments go
through. It is well known, however, that the special cases of such
theorems for NN yield their generalizations to analytic Hausdorff
spaces (and, in most cases, to Hausdorff spaces). This is because
the structure involved can be pulled back to NN through a witness
to analyticity, where the special case of the dichotomy can be ap-
plied, and the witness to the theorem pushed forward to the original
space. In the simpler case of the dichotomy, the latter will not nec-
essarily be Borel, but Lusin’s separation theorem (see, for example,
[Kec95, Theorem 14.7], noting that the same argument goes through
in Hausdorff spaces) can be used to turn it into a Borel witness.

A subset of a topological space is κ-Borel if it is in the κ-complete
algebra generated by the open sets, κ-Souslin if it is a continuous
image of a closed subset of κN, co-κ-Souslin if its complement is
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κ-Souslin, and bi-κ-Souslin if it is both κ-Souslin and co-κ-Souslin.
An embedding is an injective reduction. We adopt the convention
that κ < ∞ for every aleph κ, and we use add(M) to denote the
least aleph κ for which there is a sequence (Mα)α<κ of meager sub-
sets of 2N whose union is not meager, or ∞ if no such aleph exists.
When κ < add(M), we say that a κ+-Borel equivalence relation E
on an analytic Hausdorff space X is smooth if there is a κ+-Bor-
el-measurable reduction of E to equality on 2κ, and an analytic set
A ⊆ X is E-smooth if E � A is κ-smooth. In §3, we note that our
arguments can be combined with those of [Kan97] and [Mil12] to ob-
tain the following generalizations of Theorems 1 and 2, in the spirit
of [HSh82]:

Theorem 3. Suppose that κ < add(M) is an aleph, X is an an-
alytic Hausdorff space, and R is an ℵ0-universally-Baire quasi-order
on X for which ⊥R is κ-Souslin. Then exactly one of the following
holds:

1. The space X is a union of κ-many κ+-Borel R-chains.
2. There is a continuous injection of 2N into an R-antichain.

Theorem 4. Suppose that κ < add(M) is an aleph, X is an an-
alytic Hausdorff space, and R is an ℵ0-universally-Baire quasi-order
on X for which ≡R is bi-κ-Souslin. Then exactly one of the following
holds:

1. There is a smooth κ+-Borel superequivalence relation of ≡R
whose equivalence classes are R-chains.

2. There is an ≡R-non-smooth compact set whose quotient by ≡R
is an (R/≡R)-antichain.

A subset of an analytic Hausdorff space is Σ˜ 1
1 if it is analytic, Π˜ 1

n

if its complement is Σ˜ 1
n, Σ˜ 1

n+1 if it is a continuous image of a Π˜ 1
n

set, and ∆˜ 1
n if it is both Π˜ 1

n and Σ˜ 1
n. Let δ˜ 1

n denote the supremum
of the lengths of all ∆˜ 1

n pre-wellorderings of NN. When AD holds,
we say that a ∆˜ 1

2n+1 equivalence relation E on an analytic Haus-
dorff space X is smooth if there exists κ < δ˜ 1

2n+1 for which there
is a ∆˜ 1

2n+1-measurable reduction of E to equality on 2κ, and an
analytic set A ⊆ X is E-smooth if E � A is smooth. Taking the
known structure theory of the projective sets as a black box, we
note that our arguments also provide classical proofs of the relevant
special cases of Theorems 3 and 4 necessary to obtain the following
generalizations of Theorems 1 and 2, in the spirit of [HSa79]:
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Theorem 5 (AD). Suppose that n ∈ N, X is an analytic Haus-
dorff space, and R is a quasi-order on X for which ⊥R is Σ˜ 1

2n+1.
Then exactly one of the following holds:

1. The space X is a union of (< δ˜ 1
2n+1)-many ∆˜ 1

2n+1 R-chains.
2. There is a continuous injection of 2N into an R-antichain.

Theorem 6 (AD). Suppose that n ∈ N, X is an analytic Haus-
dorff space, and R is a quasi-order on X for which ≡R is ∆˜ 1

2n+1.
Then exactly one of the following holds:

1. There is a smooth ∆˜ 1
2n+1 superequivalence relation of ≡R whose

equivalence classes are R-chains.
2. There is an ≡R-non-smooth compact set whose quotient by ≡R

is an (R/≡R)-antichain.

We work in ZF + DC throughout the paper.

§1. Perfect antichains. For each discrete set D and sequence
s ∈ D<N, we use Ns to denote the basic open set consisting of
all extensions of s in DN. We use the notation ∀∗x ∈ X P (x)
to indicate that {x ∈ X | ¬P (x)} is meager, and ∃∗x ∈ X P (x)
to indicate that {x ∈ X | P (x)} is non-meager. Following stan-
dard convention, we use E0 to denote the equivalence relation on
2N given by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m). Fix
sequences sn ∈ 2n such that ∀s ∈ 2<N∃n ∈ N s v sn, and de-
fine G0 =

⋃
n∈N{(sn a (i) a c, sn a (1− i) a c) | c ∈ 2N and i < 2}.

While our proof of the characterization of the existence of a contin-
uous injection of 2N into an antichain requires infinitely-many ap-
plications of the G0 dichotomy, we need only one to establish the
following:

Theorem 7. Suppose that X is a Hausdorff space, R is an ℵ0-
universally Baire quasi-order on X for which ⊥R is analytic, and X
is not a union of countably-many Borel R-chains. Then there are
compact sets Ki ⊆ X that are not unions of countably-many Borel
R-chains such that

∏
i<2Ki ⊆ ⊥R.

Proof. As ⊥R is analytic and X is not a union of countably-
many Borel R-chains, the G0 dichotomy yields a continuous homo-
morphism φ : 2N → X from G0 to ⊥R. As the set R0 = (φ×φ)−1(R)
has the Baire property, so too does ⊥R0 .

Lemma 8. The relation ⊥R0 is non-meager.
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Proof. Suppose, towards a contradiction, that ⊥R0 is meager,
and fix non-empty open sets Ui ⊆ 2N for which R0 is comeager in∏

i<2 Ui (see, for example, [Kec95, Proposition 8.26]). The Kuratow-
ski-Ulam theorem (see, for example, [Kec95, Theorem 8.41]) ensures
that the sets C0 = {c ∈ 2N | ∃∗d ∈ U0 c R0 d} and C1 = {d ∈
2N | ∀∗c ∈ U0 c R0 d} have comeager union, and [Kec95, Theorem
16.1] and the Kuratowski-Ulam theorem imply that they have the
Baire property. The Kuratowski-Ulam theorem also ensures that C0

is non-meager, since otherwise ∀∗c, d ∈ U0 (¬c R0 d and d R0 c), and
C1 is non-meager. As the E0-saturation of every non-meager set with
the Baire property is comeager (see, for example, [Kec95, Theorem
8.47]), there are comeagerly-many c ∈ 2N for which the sets Ci∩ [c]E0

are each non-empty and together cover [c]E0 . As a straightforward
induction reveals that E0 is the equivalence relation generated by
G0, it follows that (

∏
i<2Ci) ∩ G0 6= ∅, contradicting the fact that∏

i<2Ci ⊆ R0.

Lemma 9. There are continuous homomorphisms φi : 2N → 2N

from G0 to itself for which
∏

i<2 φi(2
N) ⊆ ⊥R0.

Proof. By Lemma 8, there are non-empty open sets Ui ⊆ 2N and
dense open sets Vn ⊆

∏
i<2 Ui such that

⋂
n∈N Vn ⊆ ⊥R0 . Recursively

construct ui,n ∈ 2<N and ki,n ∈ N such that
∏

i<2Nφi,n(ti) ⊆ Vn for all

t0, t1 ∈ 2n and φi,n(sn) = ski,n for all i < 2, where φi,n : 2n → 2<N is
given by φi,n(t) = ui,0 a

⊕
m<n(t(m)) a ui,m+1. Then the functions

φi : 2N → 2N given by φi(c) =
⋃
n∈N φi,n(c � n) are as desired.

It only remains to observe that if the functions φi are as in Lemma
9, then the sets Ki = (φ ◦ φi)(2N) are as desired.

We now establish our characterization of the existence of a contin-
uous injection of 2N into an antichain:

Proof of Theorem 1. Conditions (1) and (2) are clearly mu-
tually exclusive. To see ¬(1) =⇒ (2), note that if condition (1)
fails, then projX(⊥R) is not a union of countably-many Borel (R �
projX(⊥R))-chains, fix a continuous surjection φ : NN → projX(⊥R),
and recursively appeal to Theorem 7 to obtain functions ψn : 2n →
Nn and sequences (Fs)s∈2n of closed subsets of projX(⊥R) with the
following properties:

1. ∀s ∈ 2n Fs is not a countable union of Borel (R � Fs)-chains.
2. ∀s ∈ 2n Fs ⊆ φ(Nψn(s)).
3. ∀s ∈ 2n Fsa(0) ∪ Fsa(1) ⊆ Fs.
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4. ∀s ∈ 2n Fsa(0) × Fsa(1) ⊆ ⊥R.
5. ∀i < 2∀s ∈ 2n ψn(s) v ψn+1(s a (i)).

Define ψ : 2N → NN by ψ(c) =
⋃
n∈N ψn(c � n), as well as π = φ ◦ ψ,

noting that π(c) ∈
⋂
n∈N Fc�n for all c ∈ 2N. To see that π is the

desired injection, observe that if c, d ∈ 2N are distinct, then there
is a maximal natural number n ∈ N for which c � n = d � n,
so the fact that π(c) ∈ Fsa(c(n)) and π(d) ∈ Fsa(d(n)) ensures that
π(c) ⊥R π(d).

§2. Non-smooth antichains. We now establish our characteri-
zation of the existence of a non-smooth compact set whose quotient
is an antichain:

Proof of Theorem 2. To see that conditions (1) and (2) are
mutually exclusive, note that if E is a Borel superequivalence relation
of ≡R whose classes are R-chains, and A ⊆ X is a set whose quotient
by ≡R is an (R/≡R)-antichain, then ≡R � A = E � A. When A is
analytic, it follows that if E is smooth, then so too is ≡R � A.

To see ¬(1) =⇒ (2), note that if (1) fails, then ≡R is non-smooth,
so the E0 dichotomy yields a continuous embedding φ : 2N → X of
E0 into ≡R. As the set R0 = (φ × φ)−1(R) has the Baire property,
so too does ⊥R0 .

Lemma 10. The relation ⊥R0 is comeager.

Proof. If there exist n ∈ N and s, t ∈ 2n for which R0 is comeager
in Ns ×Nt, then the fact that E0 ⊆ R0 ensures that R0 is comeager
in Ns′ ×Nt′ for all s′, t′ ∈ 2n, and therefore comeager, thus so too is
≡R0 , contradicting the fact that the latter set is E0.

Lemma 11. There is a continuous embedding ψ : 2N → 2N of E0

into itself that is also a homomorphism from ∼E0 to ⊥R0.

Proof. By Lemma 10, there are dense open sets Un ⊆ 2N × 2N

such that
⋂
n∈N Un ⊆ ⊥R0 . We can clearly assume that these sets are

decreasing and disjoint from the diagonal. Recursively construct
ui,n ∈ 2<N such that |u0,n| = |u1,n| and

∏
i<2Nψn+1(tia(i)) ⊆ Un

for all t0, t1 ∈ 2n, where ψn+1 : 2n+1 → 2<N is given by ψn+1(t) =⊕
m≤n(t(m)) a ut(m),m. Then the map ψ : 2N → 2N given by ψ(c) =⋃
n∈N ψn(c � n) is as desired.

It only remains to observe that if the function ψ is as in Lemma
11, then the set (φ ◦ ψ)(2N) is as desired.
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§3. Generalizations. Kanovei has generalized the G0 dichotomy
to κ-Souslin graphs on analytic Hausdorff spaces (see [Kan97]), and
the ideas underlying his arguments yield an analogous generalization
of the (G0,H0) dichotomy, which, in turn, can be used to obtain an
analogous generalization of the E0 dichotomy to bi-κ-Souslin equiv-
alence relations on analytic Hausdorff spaces (see [Mil12]). By using
these facts in lieu of the usual dichotomies in our proofs of Theorems
1 and 2, we obtain proofs of Theorems 3 and 4.

If AD holds and n ∈ N, then a subset of an analytic Hausdorff space
is ∆˜ 1

2n+1 if and only if it is δ˜ 1
2n+1-Borel (see [Mar70, Mos71]), and

there is a cardinal κ˜ 1
2n+1 for which δ˜ 1

2n+1 = (κ˜ 1
2n+1)+ (see [Kec74])

and a subset of an analytic Hausdorff space is Σ˜ 1
2n+1 if and only if it

is κ˜ 1
2n+1-Souslin (see, for example, [Jac08, Theorem 2.21]). It follows

that continuous images of δ˜ 1
2n+1-Borel sets are κ˜ 1

2n+1-Souslin, a fact
which alone ensures that the classical proofs of the G0 and E0 di-
chotomies yield the special cases of the Kanovei-style generalizations
thereof at κ˜ 1

2n+1. By using these in lieu of the usual dichotomies in
our proofs of Theorems 1 and 2, we obtain proofs of the Kanovei-style
strengthenings of Theorems 3 and 4 at κ˜ 1

2n+1. As AD also ensures that
every subset of a topological space is ℵ0-universally Baire (see, for
example, [Kec95, Theorem 38.17]), Theorems 5 and 6 easily follow.
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