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ABSTRACT

Given a graphing G of a countable Borel equivalence relation on
a Polish space, we show that if there is a Borel way of select-
ing a non-empty closed set of countably many ends from each
G -component, then there is a Borel way of selecting an end or
line from each G -component. Our method yields also Glimm-
Effros style dichotomies which characterize the circumstances un-
der which: (1) there is a Borel way of selecting a point or end
from each G -component, and (2) there is a Borel way of selecting
a point, end, or line from each G -component.

1. Introduction
A topological space X is Polish if it is separable and completely metrizable. A
Borel equivalence relation E on X is countable if all of its classes are countable.
The descriptive set-theoretic study of such equivalence relations has blossomed
over the last several years (see, for example, Jackson-Kechris-Louveau [2]). A
Borel graph G ⊆ X×X is a graphing of E if its connected components coincide
with the equivalence classes of E.

A ray through G is an injective sequence α ∈ XN such that

∀n ∈ N ((α(n), α(n+ 1)) ∈ G ).
∗The first author was supported in part by NSF Grant DMS-0140503.
†The second author was supported in part by NSF VIGRE Grant DMS-0502315.
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2 G. HJORTH AND B.D. MILLER

We use [G ]∞ to denote the standard Borel space of all such rays. A graph T is a
forest (or acyclic) if its connected components are trees. Although these trees
are unrooted, we can nevertheless recover their branches as equivalence classes
of the associated tail equivalence relation ET on [T ]∞, given by

αET β ⇔ ∃i, j ∈ N∀k ∈ N (α(i+ k) = β(j + k)).

Generalizing this to graphs, we obtain the relation EG of end equivalence.
Two rays α, β through G |[x]E are end equivalent if for every finite set S ⊆ [x]E ,
there is a path from α to β through the graph GŜ = {(y, z) ∈ G |[x]E : y, z /∈ S} on
[x]E . Equivalently, α, β are end equivalent if there is an infinite family {γn}n∈N
of pairwise vertex disjoint paths from α to β. An end of G is an equivalence
class of EG .
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Figure 1: End-equivalent rays and the “infinite ladder” of paths between them.

In Miller [5], we characterized the equivalence relations which admit graphings
for which there is a Borel way of selecting a given (finite) number of ends from
each connected component. Here we characterize exactly when a given number
of ends can be so chosen.

As the focus of Miller [5] was primarily on graphings whose components possess
only finitely many ends, the topology on the space of ends did not come into play.
Here it will be essential. The topology on the space of ends of G |[x]E is that
generated by the sets of the form

N (α, S) = {β ∈ [G |[x]E ]∞ : ∃n ∈ N ∀m ≥ n (α(m), β(m) are GŜ-connected)},

where S ∈ [G |[x]E ]<∞ and α ∈ [G |[x]E ]∞. It is straightforward to check that
this induces a zero-dimensional Polish topology on the ends of G |[x]E . When
G |[x]E is locally finite, it is even compact (we shall never make this assumption,
however).

In §2, we describe a general method of building “combinatorially simple” Borel
forests from a collection of data (T, V, s0, s1, . . .) which we call an arboreal
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blueprint. Here (T, V ) is a finite tree and the sequence (s0, s1, . . .) encodes
a way of recursively pasting together copies of (T, V ) so as to obtain increasingly
fine approximations to a Borel forest T , which has the property that there is no
Borel way of selecting a point or non-empty closed proper subset of ends from
each component.

In §3, we introduce a notion of directability for graphings, which extends the
corresponding notion for treeings (see §4 of Miller [5]). We show that a graphing
is directable exactly when there is a Borel way of choosing a point or end from
each component, and give a similar characterization of the circumstances under
which there is a Borel way of choosing a point, end, or line from each component.

In §4, we introduce tail-to-end embeddings of forests T into graphs G which,
in particular, induce injections from the tail equivalence classes of T into the
end equivalence classes of G . We then show that tail-to-end embeddings behave
nicely with respect to end selection.

In §5, we introduce a parameterized version of tail-to-end embedding, and
describe the circumstances under which a finite graph can be so embedded into
a graphing of a countable Borel equivalence relation.

In §6, we describe our main construction which, given an arboreal blueprint
(T, V, s0, s1, . . .) with associated Borel forest T , provides a way of building a
tail-to-end embedding of T from a parameterized embedding of T .

In §7, we prove our main results. An arboreal blueprint (T, V, s0, s1, . . .) is
linear if T is linear. Abusing notation slightly, we use L0 to denote the Borel
forest associated with any linear arboreal blueprint, and we use T0 to denote the
Borel forest associated with any non-linear arboreal blueprint. We show first the
following two dichotomies:

Theorem A: Suppose that G is a graphing of a countable Borel equivalence re-
lation on a Polish space. Then exactly one of the following holds:

1. There is a Borel way of selecting a point or end from each G -component.

2. There is a continuous tail-to-end embedding of L0 into G .

Theorem B: Suppose that G is a graphing of a countable Borel equivalence re-
lation on a Polish space. Then exactly one of the following holds:

1. There is a Borel way of selecting a point, end, or line from each G -component.

2. There is a continuous tail-to-end embedding of T0 into G .

The results of Miller [5] can be used to show that if there is a Borel way of
selecting a non-empty set of finitely many ends from each G -component, then
there is a Borel way of selecting an end or line from each G -component. Note
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that this conclusion is blatantly false if we merely ask that there is a Borel way
of selecting a non-empty set of countably many ends from each G -component.
We close by proving the appropriate topological generalization:

Theorem C: Suppose that X is a Polish space, E is a countable Borel equiv-
alence relation, G is a graphing of E, and there is a Borel way of selecting a
non-empty closed set of countably many ends from each G -component. Then
there is a Borel way of selecting an end or line from each G -component.

2. Examples
Here we describe a way of associating with each finite tree T a “combinatorially
simple” Borel forest T with the property that there is no Borel way of selecting
a point or non-empty closed proper subset of ends from each T -component.

Throughout the paper, it will be convenient to identify elements of (finite
or infinite) products X0 × X1 × · · · with the corresponding strings of the form
x(0)x(1) . . ., where x(i) ∈ Xi.

Suppose that T is a tree with finite vertex set V . The boundary of T is

∂T = {v ∈ V : v has at most one T -neighbor}.

For each v0 ∈ ∂T , the v0-extension of T is the tree Tv0 on V× 2 given by

(v1i1, v2i2) ∈ Tv0 ⇔ ((v1, v2) ∈ T and i1 = i2) or (v0 = v1 = v2 and i1 6= i2).

We also refer to Tv0 as a one-step extension of T .
An arboreal blueprint is a tuple (T, V, s0, s1, . . .), where V is a finite set of

cardinality at least 2, T is a tree on V , sn ∈ ∂T× 2n, and:

1. ∀m < n (sm * sn).

2. ∀s ∈ ∂T× 2<N ∃n ∈ N (s ⊆ sn or sn ⊆ s).

Associated with each such blueprint is a family of trees Tn on V×2n, which should
be viewed as increasingly accurate approximations to a Borel forest T on V×2N.
The tree T0 is simply T , and Tn+1 is defined recursively by Tn+1 = (Tn)sn .

Letting Fn denote the equivalence relation on V× 2N which is given by

xFny ⇔ ∀m > n (x(m) = y(m)),

we then define T on V× 2N by

T =
⋃
n∈N
{(x, y) ∈ V× 2N : xFny and (x|(n+ 1), y|(n+ 1)) ∈ Tn},
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where x|(n+ 1) = x(0)x(1) . . . x(n) and y|(n+ 1) = y(0)y(1) . . . y(n). Condition
(1) ensures that the each point of ∂T× 2N has at most two T -neighbors, and
condition (2) ensures that the generic point of ∂T× 2N has at least two.

Despite the slightest of conflicts with the usual notation, we use E0 to denote
the equivalence relation on V× 2N given by

E0 =
⋃
n∈N

Fn = {(x, y) ∈ V× 2N : ∃n ∈ N∀m > n (x(m) = y(m))}.

A treeing of an equivalence relation E is a graphing of E by a Borel forest.

Proposition 2.1: T is a treeing of E0.

Proof: It is clear that T is a graphing of a subequivalence relation of E0. To see
that T is a graphing of E0, suppose that xE0y, and fix n ∈ N such that xFny.
As x|(n+ 1) and y|(n+ 1) are Tn-connected, it follows from the definition of T

that x and y are T -connected.
It remains to check that T has no cycles. We must show that if k ≥ 2 and

x0, x1, . . . , xk is an injective T -path, then (x0, xk) 6∈ T . Fix n ∈ N sufficiently
large that x0Fnx1Fn · · ·Fnxk. Then x0|(n + 1), x1|(n + 1), . . . , xk|(n + 1) is an
injective Tn-path. As Tn is a tree, it follows that (x0|(n + 1), xk|(n + 1)) 6∈ Tn,
thus (x0, xk) 6∈ T .

Suppose that X is a Polish space, E is a countable Borel equivalence relation
on X, and G is a graphing of E. We use t to denote disjoint union. A Borel
way of selecting a point or closed proper subset of ends from each G -
component is a Borel set B ⊆ X t [G ]∞ such that for each C ∈ X/E, the
intersection of B with C t [G |C]∞ consists of either a single point of C or a
non-empty closed EG -invariant proper subset of [G |C]∞.

Proposition 2.2: There is no Borel way of selecting a point or closed proper

subset of ends from each T -component.

Proof: Suppose, towards a contradiction, that B ⊆ (V× 2N) t [T ]∞ is a Borel
set which consists of a point or non-empty ET -invariant closed proper subset of
ends from each T -component. We draw out the desired contradiction by showing
that V× 2N is the union of three meager sets. The first of these is given by

B0 = {x ∈ V× 2N : B selects a point from [x]E0}.

Given an equivalence relation E on X, the E-saturation of B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.

Note that B0 = [B ∩ (V× 2N)]E0 .
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Lemma 2.3: B0 is meager.

Proof: Define B = B ∩ (V× 2N) and suppose, towards a contradiction, that B0

is non-meager. As E0-saturation preserves meagerness, it follows that B is also
non-meager. Given s ∈ V× 2<N, we will use Ns to denote the set of x ∈ V× 2N

such that s ⊆ x. As B is Borel, thus Baire measurable, it follows that there
exists s ∈ V× 2<N such that B is comeager in Ns. Then the set

C = (V× 2N) \ [Ns \B]E0

is comeager, thus non-empty. As Ns ∩ C ⊆ B ∩ C and Ns intersects every E0-
class infinitely often, this contradicts the fact that B contains only one point
from each equivalence class of E0|B0.

The second set is given by

B1 = {x ∈ V× 2N : B selects exactly one end from T |[x]E0}
= {x ∈ (V× 2N) \B0 : ∀α, β ∈ B (xE0αE0β ⇒ αET β)},

where the notation xE0αE0β indicates that α and β are rays through T |[x]E0 .

Lemma 2.4: B1 is meager.

Proof: Suppose, towards a contradiction, that B1 is non-meager. As B1 is E0-
invariant and Π1

1, thus Baire measurable, it follows that B1 is comeager. Fix a
comeager E0-invariant Borel set B ⊆ B1, and define f : B → B by letting f(x)
be the unique T -neighbor of x which lies along a ray in B that originates at
x. Then graph(f) is Σ1

1, thus f is Borel. Note also that T |B = graph(f |B) ∪
graph(f−1|B).

The graph metric associated with T is given by

dT (x, y) =

®
n if there is an injective T -path from x to y of length n,
∞ if x, y are not T -connected.

Sublemma 2.5: ∀x, y ∈ B (dT (x, y) ≥ dT (f(x), f(y))).

Proof: Suppose that dT (x, y) = n, and let z0, z1, . . . , zn be the injective T -path
from x to y. If f(z0) = z1, then it is clear that dT (f(x), f(y)) ≤ n. Otherwise, the
obvious induction shows that ∀i < n (f(zi+1) = zi), thus dT (f(x), f(y)) ≤ n.

Note that each x ∈ B ∩ (∂T× 2N) has a unique T -neighbor y ∈ B such that
x(0) 6= y(0). As the points of ∂T × 2N each have at most two T -neighbors, it
follows that the set A = {x ∈ B ∩ (∂T× 2N) : x(0) 6= [f(x)](0)} is a complete
section for E0|B (i.e., B = [A]E0|B), thus non-meager. Putting

Av,w = {x ∈ B : x(0) = v and [f(x)](0) = w},
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it follows that we can find v ∈ ∂T and w 6= v in V such that Av,w is non-meager.
Fix s ∈ 2<N such that Av,w is comeager in Nvs. Then the set

C = B \ [Nvs \Av,w]E0

is comeager and Nvs ∩ C ⊆ Av,w ∩ C. Put k = |s|, and find t ∈ ∂Tk such that
there is a Tk-path of the form ws, vs, . . . , t. As t ∈ ∂Tk, there exists n ∈ N such
that t ⊆ sn. It follows that there exists u ∈ 2n−k and a Tn+1-path of the form

wsu0, vsu0, . . . , sn0, sn1, . . . , vsu1, wsu1.

Fix x ∈ 2N such that vsu0x ∈ C, and observe that

dT (vsu0x, vsu1x) < dT (wsu0x,wsu1x) = dT (f(vsu0x), f(vsu1x)),

which contradicts Sublemma 2.5.

The final set is given by

B2 = {x ∈ V× 2N : B selects at least two ends from T |[x]E0}
= {x ∈ V× 2N : ∃α, β ∈ B (xE0αE0β and (α, β) /∈ ET )}.

It now only remains to check the following:

Lemma 2.6: B2 is meager.

Proof: We say that z is T -between x and y if the injective T -path from x to
y goes through z, and we say that B ⊆ X is T -convex if

∀x, y ∈ B ∀z ∈ X (z is T -between x and y ⇒ z ∈ B).

Suppose, towards a contradiction, that B2 is non-meager, and define B ⊆ B2 by

B = {x ∈ B2 : ∃α, β ∈ B (α(0) = β(0) = x and α(1) 6= β(1))} .

It is clear that B is T -convex. After throwing out an E0-invariant meager Borel
set, we can assume that both B and B2 are Borel. As B is a complete section for
E0|B2, it follows that B is non-meager. As B selects a proper closed subset of
ends from each T -component, it follows that B misses a point of every E0-class,
thus B is not comeager, so there exist s, t ∈ 2<N such that B is comeager in
Ns and meager in Nt. By extending the longer of the two, we may assume that
|s| = |t|. Set C = B \ ([Ns \B]E0 ∪ [Nt ∩B]E0), noting that

Ns ∩ C ⊆ B ∩ C and B ∩ C ∩Nt = ∅. (†)
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Put k = |s| − 1 = |t| − 1 and find u ∈ ∂Tk such that t is Tk-between s and u. As
u ∈ ∂Tk, there exists n ∈ N such that u ⊆ sn. It then follows that there exists
s′, t′ ∈ 2n−k and a Tn+1-path of the form

ss′0, . . . , tt′0, . . . , sn0, sn1, . . . , tt′1, . . . ss′1.

Fix x ∈ 2N such that ss′0x ∈ C, and observe that tt′0x is T -between ss′0x and
ss′1x, thus tt′0x ∈ B ∩ C ∩Nt, which is the desired contradiction with (†).

3. Directability
Here we introduce a notion of directability for graphings which characterizes the
ability to select, in a Borel fashion, a point or end from each component. We
similarly characterize the ability to select, in a Borel fashion, a point, end, or line
from each component.

We use [G ]<∞ to denote the standard Borel space of finite G -connected subsets
of X. For each S ∈ [G ]<∞, we use

GŜ = {(x, y) ∈ G : x, y ∈ [S]E \ S}

to denote the graph on [S]E which is obtained from G |[S]E by removing every
edge that touches an element of S, and we use EŜ to denote the equivalence
relation on [S]E whose classes coincide with the connected components of GŜ .

Let [G ]→ denote the standard Borel space of pairs of the form (S,C), where C
is a connected component of GŜ . Intuitively, we think of each pair (S,C) ∈ [G ]→

as indicating a preference that points of S should “flow towards C.” We say
that (S,C), (T,D) ∈ [G ]→ are compatible if either S and T lie in different E-
classes or C ∩ D 6= ∅, and we say that a set Φ ⊆ [G ]→ is directed if all pairs
(S,C), (T,D) ∈ Φ are compatible. This easily implies that Φ is the graph of a
partial function. From this point forward, we will identify such sets with the
corresponding partial function. We say that S ⊆ [G ]<∞ is directable if there
is a directed Borel set Φ ⊆ [G ]→ such that dom(Φ) = S , and G is directable if
[G ]<∞ is directable. This generalizes the notion of directability for forests from
§4 of Miller [5]:

Proposition 3.1: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, and T is a treeing of E. Then the following are

equivalent:

1. There is a directed Borel set Φ ⊆ [T ]→ such that dom(Φ) = [T ]<∞.

2. There is a Borel function f : X → X such that T = graph(f)∪graph(f−1).
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Proof: To see (1) ⇒ (2), suppose that Φ ⊆ [T ]→ is a directed Borel set of full
domain, and define f : X → X by

f(x) = the unique element of ({x} ∪Tx) ∩ Φ({x}).

To see that T = graph(f)∪ graph(f−1), simply observe that if (x, y) ∈ T , then
the fact that Φ({x})∩Φ({y}) 6= ∅ that y ∈ Φ({x}) or x ∈ Φ({y}), thus f(x) = y

or f(y) = x.
To see (2) ⇒ (1), suppose that f : X → X is a Borel function such that

T = graph(f) ∪ graph(f−1), and note that if S ⊆ [x]E , then the forward or-
bit x, f(x), . . . eventually settles into a single connected component C of TŜ .
Moreover, this connected component is independent of the choice of x, since
for any y ∈ [x]E , the sequences x, f(x), . . . and y, f(y), . . . are tail-equivalent.
Set Φ(S) = C. To see that Φ is directed, simple note that for all x ∈ X and
S, T ∈ [G |[x]E ]<∞, there exists n ∈ N sufficiently large that fn(x) ∈ Φ(S)∩Φ(T ),
thus Φ(S) ∩ Φ(T ) 6= ∅.

The following criterion for directability will be useful in the upcoming sections:

Proposition 3.2: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, G is a graphing of E, and there are countably many

directed Borel sets whose domains cover [G ]<∞. Then G is directable.

Proof: The main observation is the following:

Lemma 3.3: Suppose that Φ1,Φ2 ⊆ [G ]→ are directed Borel sets. Then there is

an E-invariant Borel set B ⊆ X and a directed Borel set Φ ⊆ [G |B]→ such that

E|(X \B) is smooth, Φ1|B ⊆ Φ, and dom(Φ2|B) ⊆ dom(Φ).

Proof: Let Ψ denote the set of all pairs (S2, C2) ∈ Φ2 which are compatible with
every element of Φ1. Clearly the set Φ1 ∪ Ψ is directed. We say that a pair
(S2, C2) ∈ Φ2 is good if there are (S1, C1), (T1, D1) ∈ Φ1, (T2, D2) ∈ Φ2, and
S, T ∈ [G ]<∞ with S1 ∪ S2 ⊆ S, T1 ∪ T2 ⊆ T , S ∩ T = C1 ∩ C2 = D1 ∩D2 = ∅,
and S2 ⊆ D2. While this implies that S2 6∈ dom(Ψ), it ensures that D1 ∩ S2 ⊆
D1 ∩D2 = ∅, so that every point of D1 is EŜ2

-related to T1, thus D1 ⊆ [T1]EŜ2
.

It follows that we can safely change the component associated with S2 from C2

to [T1]EŜ2
.

By the Lusin-Novikov uniformization theorem (see, for example, §18 of Kechris
[3]), there is a Borel function (S2, C2) 7→ ((S1, C1), (T1, D1), (T2, D2), S, T ) which
assigns witnesses to good pairs. Let Ψ′ denote the corresponding set of pairs
of the form (S2, [T1]EŜ2

). Clearly the set Φ1 ∪ Ψ ∪ Ψ′ is directed. Put S =
dom(Φ2) \ (dom(Ψ) ∪ dom(Ψ′)). It only remains to check that the restriction of
E to the set A =

⋃
S is smooth.
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By Proposition 7.3 of Kechris-Miller [4], there is a Borel complete section
D ⊆ A for E|A and a finite Borel equivalence relation F ⊆ E onD such that every
F -class is G -connected and contains incompatible pairs (S1, C1) ∈ Φ1, (S2, C2) ∈
Φ2, where (S2, C2) is not good. It then follows from the directedness of Φ2 that
every (E|A)-class contains exactly one F -class, thus E|A is smooth, and the
lemma follows.

Now fix countably many directed sets Φ0,Φ1, . . . whose domains cover [G ]<∞,
and repeatedly apply the lemma to find an E-invariant Borel set B ⊆ X such that
E|(X \B) is smooth, as well as Borel sets Ψ0 ⊆ Ψ1 ⊆ · · · such that Ψ =

⋃
n∈N Ψn

is directed and dom(Φn|B) ⊆ dom(Ψn). As every graphing of a smooth countable
Borel equivalence relation is trivially directable, the proposition follows.

Let I denote the σ-ideal of directable Borel subsets of [G ]<∞. A Borel way of
selecting a point or end from each G -component is a Borel set B ⊆ X t [G ]∞

such that for each C ∈ X/E, the intersection of B with C t [G |C]∞ consists of
either a single point of C or a single equivalence class of EG |C .

Proposition 3.4: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, and G is a graphing of E. Then the following are

equivalent:

1. [G ]<∞ ∈ I.

2. There is a Borel way of selecting a point or end from each G -component.

Proof: To see (1) ⇒ (2), fix a directed Borel set Φ ⊆ [G ]→ of full domain. As
the set {x ∈ X : x ∈ Φ({x})} is a Borel partial transversal of E, we can assume
that Φ({x}) never includes x. A ray α through G |[x]E is compatible with Φ if

∀S ∈ [G |[x]E ]<∞ ∃n ∈ N ∀m ≥ n (α(m) ∈ Φ(S)).

It is clear that the set B of rays compatible with Φ is Borel and EG -invariant, and
a simple induction shows that there is a ray through every connected component
of G which is compatible with Φ. As any two such rays in the same E-class
are necessarily end equivalent, it follows that B selects an end from each G -
component.

To see (2)⇒ (1), fix a Borel set B ⊆ X t [G ]∞ which consists of either a point
or end from each G -component. As E|[B ∩X]E is smooth, we can assume that
B ⊆ [G ]∞. For each S ∈ [G ]<∞, let BŜ denote the set of rays in B through
[S]E \ S, and set

Φ(S) = {x ∈ X : ∀α ∈ BŜ (xEŜα(0))}.
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Then Φ(S) = {x ∈ X : ∃α ∈ BŜ (xEŜα(0))}, thus Φ is both Π1
1 and Σ1

1, and
hence Borel. Moreover, it is clear that if S, T ∈ [G ]<∞ lie in the same E-class,
then Φ(S) ∩ Φ(T ) contains a ray in B, and is therefore non-empty. It follows
that Φ is directed, thus G is directable.

We say that a set S ⊆ [G ]<∞ is non-linear if there are pairwise disjoint
sets S ∈ [G ]<∞ and S1, S2, S3 ⊆ [S]E in S such that [S1]EŜ , [S2]EŜ , [S3]EŜ are
pairwise disjoint. We use J to denote the family of subsets of [G ]<∞ which are
contained in the union of a directable Borel set and a linear Borel set. A Borel
way of selecting a point, end, or line from each G -component is a Borel set
B ⊆ X t [G ]∞ such that for each equivalence class C of E, the intersection of B

with C t [G |C]∞ consists of either a single point of C, a single equivalence class
of EG |C , or points xn ∈ C, for n ∈ Z, such that (xm, xn) ∈ G ⇔ |m− n| = 1.

Proposition 3.5: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, and G is a graphing of E. Then the following are

equivalent:

1. [G ]<∞ ∈J .

2. There is a Borel way of selecting a point, end, or line from each G -component.

Proof: To see (1) ⇒ (2), suppose that [G ]<∞ is contained in the union of a
directable Borel set S1 ⊆ [G ]<∞ and a linear Borel set S2 ⊆ [G ]<∞. By Sub-
lemma 5.4 of Miller [5], there are Borel sets S ′n such that each S ′n is pairwise
disjoint and S2 =

⋃
n∈N S ′n. Given C ∈ X/E, S ∈ [G |C]<∞, and α ∈ [G |C]∞,

let C(α, S) denote the GŜ-component such that α(i) ∈ C(α, S), for i sufficiently
large. We say that α is inseparable from S ′n if

∀S ∈ [G |C]<∞ (C(α, S) ∩
⋃

S ′n 6= ∅).

Let Bn denote the set of rays which are inseparable from S ′n, and set

Bn = {x ∈ X : Bn ∩ [G |[x]E ]∞ 6= ∅}.

It follows from the linearity of S ′n that Bn contains at most 2 ends from each
equivalence class of E, thus Bn is Borel and Theorems 2.1 and 5.1 of Miller
[5] imply that there is a Borel way of selecting a point, end, or line from each
component of G |[Bn]E . It then follows from Proposition 3.4 that there is a Borel
way of selecting a point, end, or line from each G -component.

To see (2) ⇒ (1), it is enough to show that if B ⊆ [G ]<∞ selects one or two
ends from each G -component, then [G ]<∞ ∈ J . For each i ∈ {1, 2}, let Si

be the set of S ∈ [G ]<∞ such that there are exactly i equivalence classes of EŜ
of the form C(α, S), where α ∈ B. Proposition 6.1 of Miller [5] ensures that
Si is Borel, and it is easily verified that S1 is directable and S2 is linear, thus
[G ]<∞ ∈J .
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4. Tail-to-end embeddings
Here we introduce the notion of tail-to-end embedding and show that it behaves
nicely with respect to end selection.

Suppose that E is a countable Borel equivalence relation on X and G is a
graphing of E. We use E to denote the equivalence relation on [G ]<∞ given by

SE T ⇔ ∃x ∈ X (S, T ⊆ [x]E).

Given a Borel set S ⊆ [G ]<∞, the induced graph on S is the graphing of
E |S which consists of the pairs (S, T ) of distinct elements of S for which there
is a G -path from S to T which avoids the rest of S .

Now suppose that T is a Borel forest on Y . A tail-to-end embedding of
T into G is a Borel injection π : Y → [G ]<∞ such that S = π(Y ) is pairwise
disjoint and

∀y1, y2 ∈ Y ((y1, y2) ∈ T ⇔ (π(y1), π(y2)) ∈ GS ).

For κ ≤ ℵ0, a Borel way of selecting a point or non-empty closed set of
≤ κ ends from each G -component is a Borel set B ⊆ X t [G ]∞ such that for
each C ∈ X/E, the intersection of B with C t [G |C]∞ consists of either a point
of C or a non-empty EG -invariant closed set of ≤ κ ends.

Proposition 4.1: Suppose that X and Y are Polish spaces, E and F are count-

able Borel equivalence relations on X and Y , G is a graphing of E, T is a treeing

of F , there is a Borel way of selecting a point or non-empty closed set of ≤ κ

ends from each G -component, and T tail-to-end embeds into G . Then there is

a Borel way of selecting a point or non-empty closed set of ≤ κ ends from each

T -component.

Proof: Fix a Borel set B ⊆ X t [G ]∞ which selects a point or non-empty EG -
invariant closed set of ≤ κ ends from each G -component, as well as a tail-to-end
embedding π : Y → [G ]<∞ of T into G with range S = π(Y ). Set Z = {y ∈ Y :
|[y]E | ≥ 2}. As π is an embedding of F |Z into E , we can assume that B ⊆ [G ]∞.
It will also be convenient to assume that S is an E -complete section.

Let BS denote the set of rays in B which are inseparable from S . Then
BS selects an EG -invariant closed set of ends from each G -component, and the
Lusin-Novikov uniformization theorem ensures that BS is Borel. Set

A = {x ∈ X : BS ∩ [G |[x]E ]∞ 6= ∅}.

Lemma 4.2: A is Borel.
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Proof: By Proposition 6.1 of Miller [5], there is a Borel EG -complete section
A ⊆ [G ]∞ such that EG |A is countable. Noting that

A = {x ∈ X : A ∩BS ∩ [G |[x]E ]∞ 6= ∅},

the lemma follows from the fact that images of Borel sets under countable-to-one
Borel functions are themselves Borel (see, for example, §18 of Kechris [3]).

Next, we deal with the complement of the set B = π−1([G |A]<∞):

Lemma 4.3: F |(Y \B) is smooth.

Proof: As π is an embedding of F |Z into E , it is enough to show that E|(X \A)
is smooth. Let S ′ denote the set of S′ ⊆ X \ A in S for which there exists
α ∈ B which goes through S′ but avoids the rest of S .

Sublemma 4.4: S ′ is Borel.

Proof: By Proposition 6.1 of Miller [5], there is a Borel EG -complete section
A ⊆ [G ]∞ such that EG |A is countable. We can clearly assume that A is closed
under tail-equivalence. It follows that S ′ is the set of S′ ∈ S for which there is
a ray α ∈ A ∩B which goes through S′ but avoids the rest of

⋃
S . As images

of Borel sets under countable-to-one Borel functions are Borel, so too is S ′.

By Proposition 2.1 of Miller [5], it is enough to show that no ray of G |(X \A)
goes through infinitely many points of

⋃
S ′. Suppose, towards a contradiction,

that α ∈ [G |(X \ A)]∞ goes through infinitely many points of
⋃

S ′. Of course,
this implies that α is inseparable from S . Fix distinct Sn ∈ S ′ and αn ∈ B

such that α and αn go through Sn, and αn avoids the rest of S .

Sublemma 4.5: For all n ∈ N, there is at most one m 6= n such that αm and αn
have a point in common.

Proof: Suppose, towards a contradiction, that there exist ` < m < n such that
any two of αl, αm, αn have a point in common. Then there are G -paths between
any two of S`, Sm, Sn which avoid the rest of S , thus S`, Sm, Sn form a 3-cycle
in GS , so π−1(S`), π−1(Sm), π−1(Sn) form a 3-cycle in T , which contradicts the
fact that T is a forest.

It now follows that for all S ∈ [G ]<∞, there exists n ∈ N such that Sn and αn
avoid S, thus α is in the closure of the ends selected by B, so α ∈ BS , which
contradicts the definition of A.

It only remains to show that there is a Borel way of selecting ≤ κ ends from
each component of T |B. We say that a ray α ∈ [T ]∞ induces a ray β ∈ [G ]∞

if β is inseparable from the set {π(α(n))}n∈N.



14 G. HJORTH AND B.D. MILLER

Lemma 4.6: Every ray of T induces a ray of G .

Proof: Set Sn = π(α(n)), fix G -paths γn,n+1 from Sn to Sn+1 of minimal length,
and let γn+1 be an injective G -path through Sn+1 from the terminal point of
γn,n+1 to the initial point of γn+1,n+2. As T is a treeing and π is a tail-to-end
embedding, it follows that Sn and Sn+2 lie in distinct components of GŜn+1

, thus
γ0,1γ1γ1,2γ2 . . . is a ray through G , and it is clearly induced by T .

Let A ⊆ [T ]∞ denote the set of rays of T which induce rays of G in BS .
Then Proposition 6.1 of Miller [5] ensures that A is a Borel ET -invariant set
which selects a non-empty closed set of ≤ κ ends from each component of T |B.

5. Parameterized embeddings
Here we discuss a parameterized notion of tail-to-end embedding.

We begin by fixing, once and for all, a variety of objects which will be of
use throughout the rest of the paper. By Theorem 1 of Feldman-Moore [1],
there is a countable group Γ of Borel automorphisms of [G ]<∞ such that E =⋃
γ∈Γ graph(γ). Given a finite set ∆ ⊆ Γ and δ ∈ ∆, we say that disjoint E -

related sets S, S′ ∈ [G ]<∞ are (∆, δ)-linkable if every path from ∆ · S to ∆ · S′
goes through δ ·S and δ ·S′. We use I∆ to denote the σ-ideal generated by Borel
sets S ⊆ [G ]<∞ such that δ(S ) ∈ I, for some δ ∈ ∆.

Suppose now that (T, V ) is a finite tree. A parameterized embedding of T
into G is a triple (∆, π,S ), where ∆ ⊆ Γ, π : V → ∆ is bijective, S ⊆ [G ]<∞

is an Iπ(∂T )-positive Borel set, and for every S ∈ S , the map v 7→ π(v) · S is a
tail-to-end embedding.

Proposition 5.1: Suppose that there is no Borel way of selecting a point or

end from each G -component. Then there is a parameterized embedding of the

tree on two points into G .

Proof: For each γ ∈ Γ, set ∆γ = {1Γ, γ} and Sγ = {S ∈ [G ]<∞ : S ∩ γ · S = ∅}.

Lemma 5.2: There exists γ ∈ Γ such that Sγ 6∈ I∆γ .

Proof: Suppose, towards a contradiction, that each Sγ is I∆γ
-null. Then there

are Borel sets S ′γ ⊆ Sγ such that

∀γ ∈ Γ (S ′γ , γ(Sγ \S ′γ) ∈ I).

Set S = [G ]<∞ \
⋃
γ∈Γ S ′γ ∪ γ(Sγ \ S ′γ). Note that for all S ∈ [G ]<∞ and

γ ∈ Γ, we have that either S ∈ S ′γ , γ · S ∈ γ(Sγ \S ′γ), or S ∩ γ · S 6= ∅, thus
no pair of E -related elements of S are disjoint. It follows from Proposition 7.3
of Kechris-Miller [4] that E |S is smooth, thus S ∈ I, so [G ]<∞ ∈ I, which
contradicts Proposition 3.4.
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Now fix γ ∈ Γ such that Sγ 6∈ I∆γ
, let T be the tree on V = ∆γ , and observe

that (∆γ , id,Sγ) is a parameterized embedding of T into G .

A tree T on V is non-linear if some point of V has at least three T -neighbors.

Proposition 5.3: Suppose that there is no Borel way of selecting a point, end,

or line from each G -component. Then there is a parameterized embedding of the

non-linear tree on four points into G .

Proof: For each γ1, γ2, γ3 ∈ Γ, put ∆γ1,γ2,γ3 = {1Γ, γ1, γ2, γ3} and ∂∆γ1,γ2,γ3 =
{γ1, γ2, γ3}, and let Sγ1,γ2,γ3 consist of those S ∈ [G ]<∞ for which S, γ1 · S, γ2 ·
S, γ3 · S are pairwise disjoint and the sets γ1 · S, γ2 · S, γ3 · S lie in distinct GŜ-
components.

Lemma 5.4: There exist γ1, γ2, γ3 ∈ Γ such that Sγ1,γ2,γ3 6∈ I∂∆γ1,γ2,γ3
.

Proof: Suppose, towards a contradiction, that each Sγ1,γ2,γ3 is I∂∆γ1,γ2,γ3
-null.

Then there are Borel sets Sγ1,γ2,γ3,δ, for γ1, γ2, γ3 ∈ Γ and δ ∈ ∂∆γ1,γ2,γ3 , such
that for all γ1, γ2, γ3 ∈ Γ, the following conditions are satisfied:

1. Sγ1,γ2,γ3 =
⋃
δ∈∂∆γ1,γ2,γ3

Sγ1,γ2,γ3,δ.

2. ∀δ ∈ ∂∆γ1,γ2,γ3 (δ(Sγ1,γ2,γ3,δ) ∈ I).

Set S = [G ]<∞\
⋃
γ1,γ2,γ3∈Γ,δ∈∂∆γ1,γ2,γ3

δ(Sγ1,γ2,γ3,δ). As in the proof of Lemma
5.2, the set S is linear, thus [G ]<∞ ∈J , which contradicts Proposition 3.5.

Now fix γ1, γ2, γ3 ∈ Γ such that Sγ1,γ2,γ3 6∈ I∆γ1,γ2,γ3
, let T be the non-linear

tree on V = ∆γ1,γ2,γ3 centered at 1Γ, and note that (∆γ1,γ2,γ3 , id,Sγ1,γ2,γ3) is a
parameterized embedding of T into G .

Next, we use a similar argument to show that parameterized embeddings can
always be extended to parameterized embeddings of larger trees. Given a one-
step extension T ′ of T , we say that a parameterized embedding (∆′, π′,S ′) of
T ′ into G extends (∆, π,S ) if there exists γ ∈ Γ such that

∆′ = ∆ ∪∆γ and π′(wi) = π(w)γi and S ′ ⊆ S ∩ γ−1(S ).

In this case, we also say that (∆′, π′,S ′) is a γ-extension of (∆, π,S ).
We say that a zero-dimensional Polish topology τ on [G ]<∞ is good if it is

compatible with the Borel structure which [G ]<∞ inherits from X<N, the group
Γ acts on [G ]<∞ by τ -homeomorphisms, and each of the sets

S∆,δ,γ = {S ∈ [G ]<∞ : S, γ · S are (∆, δ)-linkable}

is τ -clopen, where ∆ ⊆ Γ is finite, δ ∈ ∆, and γ ∈ Γ. We say that a parameterized
embedding (∆, π,S ) is τ-continuous if the set S is τ -clopen.



16 G. HJORTH AND B.D. MILLER

Proposition 5.5: Suppose that τ is good and T is a finite tree with one-step

extension T ′. Then every τ -continuous parameterized embedding of T into G

extends to a τ -continuous parameterized embedding of T ′ into G .

Proof: Suppose that (∆, π,S ) is a τ -continuous parameterized embedding of T
into G . Let V denote the vertex set of T , and fix v ∈ V such that T ′ is the
v-extension of T . For each γ ∈ Γ, set ∆γ = ∆ ∪ ∆γ, ∂∆γ = π(∂T ) ∪ π(∂T )γ,
and Sγ = S ∩ γ−1(S ) ∩S∆,π(v),γ .

Lemma 5.6: There exists γ ∈ Γ such that Sγ is I∂∆γ
-positive.

Proof: Suppose, towards a contradiction, that there are Borel sets S ′γ ⊆ Sγ with

∀γ ∈ Γ (S ′γ , γ(Sγ \S ′γ) ∈ Iπ(∂T )).

Sublemma 5.7: The set S ′ = S \
⋃
γ∈Γ S ′γ ∪ γ(Sγ \S ′γ) is Iπ(v)-null.

Proof: By Sublemma 5.4 of Miller [5], there are Borel sets Sn ⊆ [G ]<∞ such that
each Sn is pairwise disjoint and S ′ =

⋃
n∈N Sn. For each n ∈ N and S ∈ Sn, let

Φn(π(v)·S) be the G’π(v)·S
-component which contains δ ·S, for some (equivalently,

all) δ ∈ ∆\{π(v)}. It follows from the definition of S ′ that Φn ⊆ [G ]→ is directed,
thus Proposition 3.4 implies that π(v) ·S ′ =

⋃
n∈N dom(Φn) is directable, and

the sublemma follows.

It now follows that S ∈ Iπ(∂T ), the desired contradiction.

Now fix γ ∈ Γ such that Sγ is I∂∆γ
-positive. Setting

∆′ = ∆γ and π′(wi) = π(w)γi and S ′ = Sγ ,

it follows that (∆′, π′,S ′) is the desired extension of (∆, π,S ).

Next, we use Proposition 5.5 to build parameterized embeddings of finite trees.

Proposition 5.8: Suppose that there is no Borel way of selecting a point or end

from each G -component. Then every finite linear tree admits a parameterized

embedding into G .

Proof: As every finite linear tree embeds into a finite linear tree of cardinality
2n+1, it is enough to prove the proposition for trees of this latter type. As all such
trees are obtained via n one-step extensions of the tree on two points, this special
case of the proposition therefore follows from Proposition 5.1 and n applications
of Proposition 5.5.
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Proposition 5.9: Suppose that there is no Borel way of selecting a point, end,

or line from each G -component. Then every finite tree admits a parameterized

embedding into G .

Proof: Given a finite tree (T, V ) and a set W ⊆ V , the induced graph on W is
the set TW of all pairs (w1, w2) ∈W×W such that w1 6= w2 and no point of W
is strictly in-between w1 and w2. As every finite tree is isomorphic to an induced
graph associated with a tree obtained through finitely many one-step extensions
of the non-linear four point tree, the proposition follows from Proposition 5.3 and
finitely many applications of Proposition 5.5.

6. Building tail-to-end embeddings
Here we give the connection between parameterized and tail-to-end embeddings:

Proposition 6.1: Suppose that (T, V, s0, s1, . . .) is an arboreal blueprint and

there is a parameterized embedding of T into G . Then there is a tail-to-end

embedding of T into G .

Proof: Fix a parameterized embedding (∆0, π0,S0) of T into G , as well as an
increasing sequence Γ0 ⊆ Γ1 ⊆ · · · of symmetric finite sets whose union is Γ. As
in §2, we use Tn to denote the tree on V× 2n associated with (T, V, s0, s1, . . .).
Fix a good topology τ on [G ]<∞ with respect to which (∆0, π0,S0) is continuous
(the existence of such a topology follows, for example, from §13 of Kechris [3]).
Fix also a countable clopen τ -basis B.

For each v ∈ V , set δv = π0(v). After replacing S0 by its intersection with an
appropriate element of B, we can assume that

∀S ∈ S0 ∀γ ∈ Γ0 ∀v, w ∈ V (δ−1
w γδv · S 6= S ⇒ δ−1

w γδv · S 6∈ S0).

We will recursively find clopen subsets S1 ⊇ S2 ⊇ · · · of S0 and elements
γ1, γ2, . . . of Γ. Along the way, we will associate with each n ≥ 1 the set

∆n = {δs : s ∈ V× 2n},

where δs ∈ Γ is given by

δs = δs(0)γ
s(1)
1 γ

s(2)
2 · · · γs(n)

n .

We define also πn : V× 2n → Γ by πn(s) = δs. All of this will be done in such a
fashion that, for all n ∈ N, the following conditions are satisfied:

1. (∆n, πn,Sn) is a parameterized embedding of Tn into G .

2. If n > 0, then ∀s, t ∈ V× 2n−1 ∀γ ∈ Γn−1 (γδs(Sn) ∩ δtγn(Sn) = ∅).
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3. ∀S ∈ Sn ∀s, t ∈ V× 2n ∀γ ∈ Γn (δ−1
t γδs · S 6= S ⇒ δ−1

t γδs · S 6∈ Sn).

4. ∀s ∈ V× 2n (diam(δs(Sn)) ≤ 1/n).

Granting that we have found Si and γi, for 1 ≤ i ≤ n, which satisfy (1)− (4),
we must describe how to find γn+1 and Sn+1. By Proposition 5.5, there exists
γn+1 ∈ Γ for which there is a γn+1-extension (∆, π,S ) of (∆n, πn,Sn). As
γn+1(S ) ⊆ Sn, condition (3) ensures that, for each S ∈ S , we have that

∀s, t ∈ V× 2n ∀γ ∈ Γn (δ−1
t γδs · S 6= γn+1 · S).

It follows that there is a neighborhood U ∈ B of S such that

(a) ∀s, t ∈ V× 2n ∀γ ∈ Γn (γδs(U ) ∩ δtγn+1(U ) = ∅).

By further refining U ∈ B, we can ensure also that the following conditions
hold:

(b) ∀S′ ∈ U ∀s, t ∈ V× 2n+1 ∀γ ∈ Γn+1 (δ−1
t γδs · S′ 6= S′ ⇒ δ−1

t γδs · S′ 6∈ U ).

(c) ∀s ∈ V× 2n+1 (diam(δs(U )) ≤ 1/(n+ 1)).

It then follows that there exists U ∈ B such that S ∩ U 6∈ Iπ(∂Tn+1). Set
Sn+1 = S ∩ U , and observe that (∆n+1, πn+1,Sn+1) is a parameterized em-
bedding of Tn into G . This completes the description of γn+1 and Sn+1.

We are now ready to define the embedding. For each n ∈ N and s ∈ V× 2n,
set Ss = δs(Sn), and define π : V× 2N → [G ]<∞ by

π(x) = the unique element of
⋂
n∈N

Sx|n.

Conditions (2) and (4) easily imply that π is a continuous injection.

Lemma 6.2: Suppose that (x, y) /∈ Fn+1. Then ∀γ ∈ Γn (γ · π(x) 6= π(y)).

Proof: Fix m > n such that x(m) 6= y(m). By reversing the roles of x, y if
necessary, we can assume that x(m) = 0 and y(m) = 1. Suppose, towards a
contradiction, that there exists γ ∈ Γn with γ · π(x) = π(y), and define Sx, Sy ∈
Sm by

Sx = δ−1
x|m · π(x) and Sy = γ−1

m δ−1
y|m · π(y).

It follows that
π(y) = γδx|m · Sx = δy|mγm · Sy,

which contradicts the fact that γδx|m(Sm) ∩ δy|mγm(Sm) = ∅.

Corollary 6.3: Suppose that (x, y) 6∈ E0. Then (π(x), π(y)) 6∈ E.
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Next, we note that the construction of π ensures that there is a simple rela-
tionship between the images of E0-related elements of V× 2N:

Lemma 6.4: Suppose that xFny. Then δ−1
x|(n+1) · π(x) = δ−1

y|(n+1) · π(y).

Proof: Simply observe that

{δy|(n+1)δ
−1
x|(n+1) · π(x)} = δy|(n+1)δ

−1
x|(n+1)

Ñ ⋂
m≥n

Sx|(m+1)

é
=

⋂
m≥n

δy|(n+1)δ
−1
x|(n+1)(Sx|(m+1))

=
⋂
m≥n

Sy|(m+1)

= {π(y)},

thus δ−1
x|(n+1) · π(x) = δ−1

y|(n+1) · π(y).

Corollary 6.5: π is an embedding of E0 into E .

It still remains to check that

(x, y) ∈ T ⇔ (π(x), π(y)) ∈ GS ,

for all x, y ∈ V×2N. By Corollary 6.5, we can assume that xE0y, thus π(x)E π(y).
Fix a GS -path π(x0), π(x1), . . . , π(xk) from π(x) to π(y) of minimal length, and
find n ∈ N sufficiently large that x0Fnx1Fn · · ·Fnxk. As (∆n, πn,Sn) is a pa-
rameterized embedding of Tn into G , it follows that

(x, y) ∈ T ⇔ (x|(n+ 1), y|(n+ 1)) ∈ Tn
⇔ k = 1

⇔ (π(x), π(y)) ∈ GS ,

which completes the proof of the proposition.

7. The main results
Here we combine the results of the previous sections to obtain our dichotomies:

Theorem 7.1: Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X, G is a graphing of E, and (T, V, s0, s1, . . .) is a linear arboreal

blueprint. Then exactly one of the following holds:

1. There is a Borel way of selecting a point or end from each G -component.
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2. There is a tail-to-end embedding of T into G .

Proof: To see that (1) and (2) are mutually exclusive suppose, towards a con-
tradiction, that there is a Borel way of selecting a point or end from each G -
component, and there is a tail-to-end embedding of T into G . Proposition 4.1
then ensures that there is a Borel way of selecting a point or end from each
T -component, which contradicts Proposition 2.2.

It remains to check that ¬(1) ⇒ (2). Suppose that there is no Borel way of
selecting a point or end from each G -component. It then follows from Proposition
5.8 that there is a parameterized embedding of T into G , thus Proposition 6.1
ensures that there is a tail-to-end embedding of T into G .

Theorem 7.2: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, G is a graphing of E, and (T, V, s0, s1, . . .) is a non-linear

arboreal blueprint. Then exactly one of the following holds:

1. There is a Borel way of selecting a point, end, or line from each G -component.

2. There is a tail-to-end embedding of T into G .

Proof: To see that (1) and (2) are mutually exclusive suppose, towards a con-
tradiction, that there is a Borel way of selecting a point, end, or line from each
G -component, and there is a tail-to-end embedding of T into G . Proposition 4.1
then ensures that there is a Borel way of selecting a point, end, or line from each
T -component, which contradicts Proposition 2.2.

It remains to check that ¬(1) ⇒ (2). Suppose that there is no Borel way
of selecting a point, end, or line from each G -component. It then follows from
Proposition 5.9 that there is a parameterized embedding of T into G , thus Propo-
sition 6.1 ensures that there is a tail-to-end embedding of T into G .

As a corollary, we now have the following:

Theorem 7.3: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation, G is a graphing of E, and there is a Borel way of selecting a

non-empty closed set of countably many ends from each G -component. Then

there is a Borel way of selecting an end or line from each G -component.

Proof: Suppose, towards a contradiction, that there is no Borel way of selecting
an end or line from each G -component. As every G -component has an end, it
follows that there is no Borel way of selecting a point, end, or line from each G -
component. Fix a non-linear arboreal blueprint (T, V, s0, s1, . . .). Then Theorem
7.2 ensures that there is a tail-to-end embedding of T into G , and Theorem 4.1
gives a Borel way of choosing a point or non-empty closed set of countably many
ends from each T -component, which contradicts Proposition 2.2.
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