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ABSTRACT

Given a countable Borel equivalence relation E on a Polish space,
we show: (1) E admits an endless graphing if and only if E is
smooth, (2) E admits a locally finite single-ended graphing if and
only if E is aperiodic, (3) E admits a graphing for which there is a
Borel way of selecting two ends from each component if and only
if E is hyperfinite, and (4) E admits a graphing for which there
is a Borel way of selecting a finite set of at least three ends from
each component if and only if E is smooth.

1. Introduction
A topological space X is Polish if it is separable and completely metrizable. A
Borel equivalence relation E on X is countable if all of its classes are countable.
The descriptive set-theoretic study of such equivalence relations has blossomed
over the last several years (see, for example, Jackson-Kechris-Louveau [6]). A
Borel graph G on X is a graphing of E if its connected components coincide
with the equivalence classes of E. Here we study certain properties of graphings
that yield information about their underlying equivalence relations.

A ray through G is an injective sequence α ∈ XN such that

∀n ∈ N ((α(n), α(n+ 1)) ∈ G ).

We use [G ]∞ to denote the standard Borel space of all such rays. A graph T is a
forest (or acyclic) if its connected components are trees. Although these trees
are unrooted, we can nevertheless recover their branches as equivalence classes
of the associated tail equivalence relation ET on [G ]∞, given by

αET β ⇔ ∃i, j ∈ N∀k ∈ N (α(i+ k) = β(j + k)).
∗The author was supported in part by NSF VIGRE Grant DMS-0502315.
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Generalizing this to graphs, we obtain the relation EG of end equivalence. Two
rays α, β through G are end equivalent if for every finite set S ⊆ X, there is a
path from α to β through the graph G |(X \ S). Equivalently, the rays α, β are
end equivalent if there is an infinite family {γn}n∈N of pairwise vertex disjoint
paths from α to β. An end of G is an equivalence class of EG .
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Figure 1: End-equivalent rays and the “infinite ladder” of paths between them.

Our goal here is to explore the connection between countable Borel equivalence
relations and the ends of their graphings. In particular, we wish to understand
the relationship between the structure of a countable Borel equivalence relation
and the ability to select, in a Borel fashion, a given number of ends from each
component of one of its graphings.

It should be noted that questions similar to those we study here have been
studied in the measure-theoretic setting, e.g., in Adams [1], Blanc [2], Jackson-
Kechris-Louveau [6], and Paulin [13]. Although our primary motivation is de-
scriptive, all of our results imply their measure-theoretic counterparts.

In §2, we consider endless graphings, i.e., those which have no rays. Recall
that E is smooth if there are countably many E-invariant Borel sets Bn ⊆ X

such that
∀x, y ∈ X (xEy ⇔ ∀n ∈ N (x ∈ Bn ⇔ y ∈ Bn)).

Theorem A: Every Borel equivalence relation on a Polish space that admits an
endless graphing is smooth.

This can be viewed as a generalization of Theorem 4.20 of K lopotowski-Nadkarni-
Sarbadhikari-Srivastava [10], and can be used to affirmatively answer their Ques-
tion 4.21 (although this question deals only with the case that E is countable).

In §3, we make a brief detour to discuss the problem of finding spanning sub-
treeings of graphings, which comes up in connection with the arguments of §2.
Although we certainly do not offer a general solution to this problem, we do
show:
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Theorem B (Kechris-Miller): For n ∈ N, every locally countable Borel graph
on a Polish space admits a spanning Borel subgraph with no cycles of length ≤ n.

In §4, we turn our attention to graphings whose connected components each
have but one end. Such graphings are termed single ended. Recall that an
equivalence relation E is aperiodic if each of its equivalence classes is infinite.

Theorem C: Every aperiodic countable Borel equivalence relation on a Polish
space admits a locally finite single-ended graphing.

In §5, we consider graphings with the property that there is a Borel way of
selecting exactly two ends from each connected component. Recall that an equiv-
alence relation E is hyperfinite if it is the union of finite Borel equivalence re-
lations F0 ⊆ F1 ⊆ · · · ⊆ E. The following fact generalizes a theorem of Paulin
[13], which itself generalizes a theorem of Adams [1]:

Theorem D: Suppose that X is a Polish space, E is a countable Borel equiva-
lence relation on X, G is a graphing of E, and there is a Borel way of selecting
two ends from each G -component. Then E is hyperfinite.

In §6, we turn our attention to the selection of a finite number of ends, gener-
alizing a result of Blanc [2] which strengthens a result of Paulin [13]:

Theorem E: Suppose that X is a Polish space, E is a countable Borel equiva-
lence relation on X, G is a graphing of E, and there is a Borel way of selecting
a finite set of at least three ends from each G -component. Then E is smooth.

2. Endless graphings
As connected components of endless locally finite graphs are finite, only finite
Borel equivalence relations admit endless locally finite graphings. The follow-
ing theorem implies that only smooth Borel equivalence relations admit endless
graphings:

Theorem 2.1: Suppose that X is a Polish space, E is a Borel equivalence rela-

tion onX, G is a graphing of E, andB ⊆ X is a Borel subset ofX which intersects

every ray through G in only finitely many points. Then E|B is smooth.

Proof: Suppose, towards a contradiction, that E|B is non-smooth.

Lemma 2.2: There is a Borel set Y ⊆ X such that E|Y is a non-smooth hyper-

finite equivalence relation, G |Y is a graphing of E|Y , and B ∩ Y intersects every

equivalence class of E|Y .
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Proof: As usual, we use E0 to denote the equivalence relation on 2N given by

xE0y ⇔ ∃n ∈ N ∀m ≥ n (x(m) = y(m)).

A reduction of E0 into E is an injection π : 2N → X such that

∀x, y ∈ 2N (xE0y ⇔ π(x)Eπ(y)).

As E is non-smooth, Theorem 1.1 of Harrington-Kechris-Louveau [4] ensures that
there is a continuous reduction π of E0 into E|B.

We use [G ]<∞ to denote the standard Borel space of G -connected finite subsets
of X. Let R denote the set of pairs (x, 〈Sk〉k∈N) ∈ 2N × ([G ]<∞)N such that:

1. ∀k ∈ N (π(x) ∈ Sk).

2. ∀y ∈ [x]E0 ∃k ∈ N (π(y) ∈ Sk).

It is clear that R is Borel, so the Jankov-von Neumann uniformization theorem
(see, for example, §18 of Kechris [7]) ensures the existence of a σ(Σ1

1)-measurable
function S : 2N → ([G ]<∞)N whose graph is contained in R. Let µ denote the
usual product measure on 2N.

Sublemma 2.3: There is a µ-conull Borel set A ⊆ 2N such that S|A is Borel.

Proof: Fix sets S0,S1, . . . generating the algebra of Borel subsets of ([G ]<∞)N,
and for each n ∈ N, fix Borel sets An ⊆ S−1(Sn) ⊆ Bn such that µ(Bn\An) = 0.
Now define A ⊆ 2N by

A = 2N \

(⋃
n∈N

Bn \An

)
,

noting that A is µ-conull. As (S|A)−1(Sn) = S−1(Sn) ∩A = An ∩A, it follows
that S|A is Borel.

As images of Borel sets under countable-to-one Borel functions are themselves
Borel (see, for example, §18 of Kechris [7]), it follows that the set

Y = {x ∈ X : ∃y ∈ A∃k ∈ N (x ∈ Sk(y))}

is Borel, and it is clear that G |Y is a graphing of E|Y . As the restriction of E0

to any µ-conull Borel set is non-smooth, it follows that E|(B ∩Y ) is non-smooth
and hyperfinite, thus so too is E|Y .

It is therefore enough to draw out a contradiction under the assumption that
E is hyperfinite. A treeing of E is a graphing of E which is a forest.
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Lemma 2.4: Suppose that X is a Polish space, E is a hyperfinite equivalence

relation on X, and G is a graphing of E. Then G admits a spanning subtreeing.

Proof: Fix an increasing sequence F0 ⊆ F1 ⊆ · · · ⊆ E of finite Borel equivalence
relations such that F0 = ∆(X) and E =

⋃
n∈N Fn. Recursively find a decreasing

sequence G = G0 ⊇ G1 ⊇ · · · of Borel graphs such that:

1. ∀n ∈ N ∀x ∈ X (Gn|[x]Fn is a tree).

2. ∀n ∈ N (Fn ∩ (Gn \ Gn+1) = ∅).

Condition (1) ensures that the graph T =
⋂
n∈N Gn is a forest, and condition

(2) ensures that the injective T -path between any two E-equivalent points x, y
stabilizes at the first stage n for which xFny, thus T is a treeing of E.

It is therefore enough to draw out a contradiction under the additional assump-
tion that T = G is a treeing of E. We say that (x0, x1) ∈ T points towards
A ⊆ X if there is an injective T -path x0, x1, . . . , xn such that xn ∈ A. Put
B0 = B, set

Bα+1 = {x ∈ Bα : ∃y, z ∈ Tx (y 6= z and (x, y), (x, z) both point towards Bα)},

where Tx = {y ∈ X : (x, y) ∈ T }, and define Bλ =
⋂
α<λBα at limit ordinals.

Let TREE denote the set of trees on N, and let WF ⊆ TREE denote the set
of endless trees on N. A betweenness-preserving embedding of T ∈ TREE into
T is a map π : N→ X such that

∀`,m, n ∈ N
(
` is T -between m,n⇔ π(`) is T -between π(m), π(n)

)
.

We write T � T to denote the existence of a betweenness-preserving embedding
of T into T . As T is Borel, the set

A = {T ∈ TREE : T � T }

is Σ1
1. By the boundedness theorem for WF (see, for example, Theorem 31.2 of

Kechris [7], but note that our notation is somewhat different), there exists α < ω1

such that every T ∈ A is of rank less than α. Now, a simple induction shows
that if Bβ 6= ∅, then A contains a tree of rank β, and it follows that Bα = ∅.

For each equivalence class [x]E of E, let α[x]E ≤ α be the least ordinal for
which Bα[x]E

∩ [x]E = ∅. As no ray through T intersects infinitely many points
of B, it follows that α[x]E is not a limit ordinal. Let β[x]E be the predecessor of
α[x]E , and observe that the definition of Bα ensures that

∀x ∈ X (1 ≤ |Bβ[x]E
∩ [x]E | ≤ 2),

from which it easily follows that E|B is smooth, the desired contradiction.
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Remark 2.5: A transversal is a set B ⊆ X which intersects every equivalence
class of E in a single point. Every Borel equivalence relation which admits a
Borel transversal is smooth. Although the converse is false, it does hold for
countable Borel equivalence relations. It follows that the countable Borel equiva-
lence relations which admit endless graphings are exactly those which have Borel
transversals.

Remark 2.6: An equivalence relation E is treeable if it admits a treeing. By a
result of Hjorth [5] (see also Miller [11]), a treeable equivalence relation is smooth
exactly when it admits a Borel transversal. Thus, the treeable Borel equivalence
relations which admit endless graphings are exactly those which are smooth.

Remark 2.7: Theorem 2.1 can be viewed as a generalization of Theorem 4.20
of K lopotowski-Nadkarni-Sarbadhikari-Srivastava [10], and yields an affirmative
answer to their Question 4.21, which essentially asks if the equivalence rela-
tion induced by an endless locally countable Borel bipartite graph is necessarily
smooth.

3. Spanning subtreeings
The following question arises from Lemma 2.4:

Question 3.1: Under what circumstances does a graphing of a countable Borel
equivalence relation admit a spanning subtreeing?

It is easily seen that there are graphings which do not admit spanning subtree-
ings, as there are non-treeable countable Borel equivalence relations, yet every
such equivalence relation admits a graphing. Although Question 3.1 remains
open, we do know that if the proper cycles of G are of bounded length, then G

has a spanning subtreeing. More generally, we have:

Theorem 3.2 (Kechris-Miller): Suppose that X is a Polish space, E is a

countable Borel equivalence relation on X, and n ∈ N. Then every graphing of

E admits a spanning subgraphing which has no cycles of length ≤ n.

Proof: Given a Borel graph G on X, set

[G ]≤n = {S ∈ [G ]<∞ : |S| ≤ n}.

The intersection graph induced by G is the graph G on [G ]<∞ given by

(S, T ) ∈ G⇔ (S 6= T and S ∩ T 6= ∅).

A κ-coloring of a graph G on V is a function c : V → C such that

∀v, w ∈ V ((v, w) ∈ G⇒ c(v) 6= c(w)),
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where C is of cardinality κ. When V and C are Polish and c : V → C is Borel,
we call such a map a Borel κ-coloring. The Borel chromatic number of G
is the least κ for which G admits a Borel κ-coloring. The degree of v ∈ V is
degG(v) = |Gv|, and G is said to be bounded if supv∈V degG(v) is finite.

Lemma 3.3: Suppose that X is a Polish space, G is a bounded Borel graph on

X, G is the corresponding intersection graph, and n ∈ N. Then G|[G ]≤n has

finite Borel chromatic number.

Proof: As G is bounded, so too is G|[G ]≤n, thus Proposition 4.6 of Kechris-
Solecki-Todorcevic [9] ensures that G|[G ]≤n has finite Borel chromatic number.

We can now verify a strengthening of the bounded case of the proposition:

Lemma 3.4: Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a bounded graphing of E, n ∈ N, and H ⊆ G is a Borel graph

with no cycles of length ≤ n. Then there is a spanning Borel graph H ⊆H ′ ⊆ G

which has no cycles of length ≤ n.

Proof: Fix a Borel coloring c : [G ]≤n → {0, 1, . . . , k − 1} of G|[G ]≤n. We will
recursively define a decreasing sequence of spanning subgraphs Gi ⊆ G , for i ≤ k,
beginning with G0 = G . Given Gi, define Ci ⊆ [Gi]≤n by

Ci = {S ∈ [Gi]≤n : c(S) = i},

and fix a Borel map S 7→ GS which assigns to each S ∈ Ci a finite graph
GS ⊆ (Gi \H )|S such that (Gi \GS)|S is connected and has no cycles of length
≤ n. Define

Gi+1 = Gi \
⋃
S∈Ci

GS ,

noting that H ⊆ Gi+1 ⊆ G and Gi+1 is a spanning subgraph of Gi.
It follows that H ′ = Gk is a spanning subgraph of G which contains H . Now

suppose, towards a contradiction, that there is a cycle of length ≤ n in H ′. Then
there exists a finite set S ∈ [H ′]≤n which contains such a cycle. Put i = c(S),
and note that S ∈ [Gi]≤n, thus GS was defined at stage i. It follows that

H ′|S = (H ′ ∩GS)|S ⊆ (Gi \GS)|S,

which contradicts the fact that the latter set has no cycles of length ≤ n.

Now suppose that G is a graphing of E. By Feldman-Moore [3], G is the union
of the graphs of countably many Borel involutions. As a consequence, there is
an increasing sequence of bounded Borel graphs G0 ⊆ G1 ⊆ · · · whose union is
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G . Put H0 = ∅, and given a graph Hk ⊆ Gk with no cycles of length ≤ n, apply
Lemma 3.4 to find a spanning Borel subgraph Hk+1 ⊆ Gk, with no cycles of
length ≤ n, which contains Hk.

It now follows that H =
⋃
k∈N Hk is a spanning subgraph of G that contains

no cycles of length ≤ n.

4. Single-ended graphings
Here we verify that the existence of a locally finite single-ended graphing says
little about the equivalence relation in question:

Theorem 4.1: Suppose that X is a Polish space and E is an aperiodic countable

Borel equivalence relation on X. Then E admits a locally finite single-ended

graphing.

Proof: We will obtain the theorem as a corollary of the following fact:

Lemma 4.2: There is a partition of X into Borel sets B0, B1, . . . and 2-to-1 Borel

surjections fn : Bn → Bn+1 whose graphs are contained in E.

Proof: As the lemma is a triviality when E is smooth, we can remove E-invariant
Borel sets on which E is smooth at countably many stages of the construction.

We begin by associating with each Borel set B ⊆ X an involution i ∈ [E]
whose support is B, off of an E-invariant Borel set on which E is smooth. By
Theorem 1 of Feldman-Moore [3], there are Borel involutions ik : X → X such
that

E =
⋃
k∈N

graph(ik).

Put i(0)B = ∅, recursively define partial functions i(k+1)
B by

i
(k+1)
B (x) =


i
(k)
B (x) if x ∈ dom(i(k)B ),
ik(x) if x 6= ik(x) and x, ik(x) ∈ B \ dom(i(k)B ), and

undefined otherwise,

and define iB : X → X by

iB(x) =

®
i
(k)
B (x) if x ∈ dom(i(k)B ),
x if x 6∈

⋃
k∈N dom(i(k)B ).

Noting that B \
⋃
k∈N dom(i(k)B ) is a partial transversal of E, it follows that iB

is an involution with support B, off of an E-invariant Borel set on which E is
smooth.
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Now we proceed to the main construction. Fix a Borel linear ordering ≤ of X.
We will recursively construct Borel sets An+1, Bn ⊆ X such that

∀n ∈ N (An+1 is the disjoint union of the sets Bn+1 and An+2 = iAn+1(Bn+1)).

After throwing out an E-invariant Borel set on which E is smooth, we can assume
that X = supp(iX). We begin by setting

B0 = {x ∈ X : x < iX(x)} and A1 = {x ∈ X : x > iX(x)}.

Now suppose we have found Am+1, Bm ⊆ X, for m ≤ n, as well as fm : Bm →
Bm+1, for m < n. By throwing out an E-invariant Borel set on which E is
smooth, we can assume that An+1 = supp(iAn+1). Now set

Bn+1 = {x ∈ X : x < iAn+1(x)} and An+2 = {x ∈ X : x > iAn+1(x)},

and define fn : Bn → Bn+1 by

fn(x) =

®
iAn(x) if iAn(x) ∈ Bn+1,

iAn+1 ◦ iAn(x) otherwise.

Clearly fn is 2-to-1.

Sublemma 4.3: The set A = X \
⋃
n∈N Bn is a partial transversal of E.

Proof: Suppose, towards a contradiction, that A is not a partial transversal, and
let k be the least natural number for which there are distinct y, z ∈ A such
that ik(y) = z. Then there exists n ∈ N such that all of the points of the
form ij(y), ij(z) distinct from y, z, for j < k, lie in B0 ∪ B1 ∪ · · · ∪ Bn. Then
iAn+1(y) = z, thus one of y, z lies in Bn+1, the desired contradiction.

It follows that, after throwing out one more E-invariant Borel set on which E
is smooth, the sets B0, B1, . . . and functions f0, f1, . . . are as desired.

We now proceed to the proof of the theorem. Fix Borel sets B0, B1, . . . and
functions fn : Bn → Bn+1 as in Lemma 4.2. By Theorem 3.12 of Jackson-Kechris-
Louveau [6] (which is due also to Gaboriau), there are locally finite graphings Gn
of E|Bn. Set f =

⋃
n∈N fn, and define G on X by

G = graph(f±1) ∪
⋃
n∈N

Gn.

It is clear that G is locally finite, so it only remains to verify that for any equiva-
lence class C of E, any two rays α, β through G |C are end equivalent. Associated
with each S ∈ [G |C]<∞ is the graph GŜ = G |(C \ S). We must show that α, β
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are GŜ-connected. Note that the set S′ =
⋃
n∈N f

−n(S) is finite. It follows that
there exists n ∈ N such that α(n), β(n) 6∈ S′, and there exists m ∈ N such that

∀` ≥ m (S′ ∩B` = ∅).

Fix ` ≥ m sufficiently large that α(n), β(n) ∈
⋃
k<`Bk, and find iterates x, y ∈ B`

of α(n), β(n) under f . Then α, x, y, β are GŜ-connected.

Remark 4.4: Although not every countable Borel equivalence relation admits
a bounded graphing, the above argument can be used to show that every aperi-
odic countable Borel equivalence relation which admits a bounded graphing also
admits a bounded single-ended graphing.

As noted by Adams [1], the situation is much different for single-ended treeings.
We say that a treeing T of E is directable if there is a Borel f : X → X such
that T = graph(f±1). That is, E agrees with the tail equivalence relation
associated with f , given by

xEt(f)y ⇔ ∃m,n ∈ N (fm(x) = fn(y)).

It follows from §1 of Jackson-Kechris-Louveau [6] that Et(f) is hyperfinite.

Proposition 4.5: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, T is a treeing of E, and there is an ET -invariant Borel

set B ⊆ [T ]∞ which selects a single end out of every connected component of

T . Then T is directable, thus E is hyperfinite.

Proof: Let f(x) be the unique T -neighbor of x which is the initial point of a ray
in B that avoids x. Then graph(f) is Σ1

1, thus f is Borel. As T = graph(f±1),
the proposition follows.

Remark 4.6: There are treeings of hyperfinite equivalence relations for which
there is no Borel way of choosing one end. For instance, Adams (unpublished)
and others have pointed out that there are undirectable Borel forests of lines.
However, there is essentially only one undirectable Borel forest of lines, in the
sense that any two such forests are equivalent up to a natural analog of Nadkarni’s
[12] descriptive notion of Kakutani equivalence.

5. Selecting two ends
In this section, we describe those equivalence relations that admit graphings for
which there is a Borel way of selecting exactly two ends from each component:
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Theorem 5.1: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, G is a graphing of E, and there is a Borel way of selecting

two ends from each G -component. Then there is a Borel E-complete section

B ⊆ X and a graphing L ⊆ G |B of E|B whose components are lines, and E is

hyperfinite.

Proof: Fix a Borel set B ⊆ [G ]∞ which selects two ends from each G -component.
For each C ∈ X/E and S ∈ [G |C]<∞, set BŜ = B ∩ [GŜ ]∞ and define

Φ = {S ∈ [G ]<∞ : ∃α, β ∈ BŜ (α, β are not GŜ-connected)}.

It is clear that Φ is Σ1
1.

PP
PP

PPi

������)
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α

α′

����S
γ

��
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PPPPPPq

γβ

β

β′

rr r r rr

Figure 2: If α, β are GŜ-connected, then so too are α′, β′.

Lemma 5.2: Suppose that S ∈ Φ and α, β ∈ BŜ are end inequivalent. Then

there is no path from α to β through GŜ .

Proof: Suppose, towards a contradiction, that there is a GŜ-path γ from α to β.
Fix rays α′ ∈ [α]EG and β′ ∈ [β]EG through GŜ which are not GŜ-connected, let
γα be a GŜ-path from α′ to α whose terminal point is the initial point of γ, and
let γβ be a GŜ-path from β to β′ whose initial point is the terminal point of γ (see
Figure 2). Then γαγγβ is a GŜ-path from α′ to β′, the desired contradiction.

It follows that S ∈ Φ ⇔ ∀α, β ∈ BŜ (αEG β or α, β are not GŜ-connected),
thus Φ is Π1

1, and therefore Borel.

Lemma 5.3: There is a maximal pairwise disjoint Borel set Ψ ⊆ Φ.

Proof: As in §3, we define G on [G ]<∞ by

(S, T ) ∈ G⇔ S 6= T and S ∩ T 6= ∅.

Sublemma 5.4: There is a Borel coloring c : [G ]<∞ → N of G.
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Proof: Fix an increasing sequence of bounded Borel graphs Gn ⊆ G such that
G =

⋃
n∈N Gn. By Lemma 3.3, there are Borel colorings cn : [Gn]≤n → N of

G|[Gn]≤n. Fix a bijection 〈·, ·〉 : N2 → N and define c : [G ]<∞ → N by

c(S) = 〈n(S), cn(S)(S)〉 ,

where n(S) ∈ N is least such that S ∈ [Gn]≤n. Clearly c is a coloring of G.

Now fix a Borel coloring c : [G ]<∞ → N of G. Put Ψ0 = ∅, and define

Ψn+1 = Ψn ∪ {S ∈ Φ : c(S) = n and ∀T ∈ Ψn (S ∩ T = ∅)}.

It is straightforward to check that the set Ψ =
⋃
n∈N Ψn is as desired.

Now fix a maximal pairwise disjoint Borel set Ψ ⊆ Φ, define E on Ψ by

SE T ⇔ ∃x ∈ X (S ∪ T ⊆ [x]E),

and let T be the set of pairs (S, T ) ∈ E , with S 6= T , such that there is G -path
from a point of S to a point of T which avoids all other points of

⋃
Ψ.

Lemma 5.5: T is a treeing of E whose vertices each have at most two neighbors.

Proof: For each C ∈ X/E, set TC = T|C and ΨC = {S ∈ Ψ : S ⊆ C}. We must
show that each TC is a tree whose vertices have at most two neighbors.

� r
γα

α ����S
����T
γ

-r
γβ

βr r r

Figure 3: If T is not GŜ-connected to α or β, it cannot disconnect them.

The following sublemma implies that for each S ∈ ΨC , every T-neighbor of S
lies in one of the two connected components of GŜ which contains a ray in BŜ :

Sublemma 5.6: Suppose that S, T ∈ ΨC and S 6= T . Then T is GŜ-connected

to a ray in BŜ .
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Proof: Suppose, towards a contradiction, that T is not GŜ-connected to a ray in
BŜ . Fix end-inequivalent rays α, β ∈ BŜ , let γα be a G -path of minimal length
from α to S, let γβ be a G -path of minimal length from S to β, and let γ be a
G -path from the terminal point of γα to the initial point of γβ (see Figure 3).
Then γαγγβ is a GT̂ -path from α to β, contradicting Lemma 5.2.

The following sublemma implies that each element of ΨC has at most two
TC-neighbors:

Sublemma 5.7: Suppose that S, T, U ∈ ΨC are distinct and T is GŜ-connected

to U . Then exactly one of the following holds:

1. Every path from S to T goes through U .

2. Every path from S to U goes through T .

Proof: Fix end-inequivalent rays α, β ∈ BŜ which avoid T ∪ U . Sublemma 5.6
ensures that, after reversing the roles of α, β if necessary, we can assume that T
and U are both GŜ-connected to β.

� r
γS,α

α ����S
γS

γT,S

����T

����U
γT γβ,T r - βr r
r r

Figure 4: If γT,S avoids U , then α, β are GÛ -connected.

Fix a path γβ,T of minimal length from β to T ∪ U . By reversing the roles of
T and U if necessary, we can assume that γβ,T avoids U . Now suppose, towards
a contradiction, that there is a G -path from T to S which avoids U . Fix such
a path γT,S of minimal length, let γT be a G -path through T from the terminal
point of γβ,T to the initial point of γT,S , and let γS,α be a G -path of minimal
length from the terminal point of γT,S to the initial point of α (see Figure 4).
Then γβ,T γT γT,SγS,α is a GÛ -path from β to α, which contradicts Lemma 5.2.

It easily follows that TC is connected and acyclic, and the lemma follows.



14 B.D. MILLER

Now define A = {x ∈ X : ∀S ∈ Ψ[x]E (S has two T -neighbors)}. It follows
from the Lusin-Novikov uniformization theorem that A is Borel.

Lemma 5.8: There is a Borel complete section B ⊆ X \ A for E|(X \ A) and a

Borel graphing L ⊆ G |(X \A) of E|B whose connected components are lines.

Proof: For each E-class C ⊆ X \A, the set of elements of ΨC which have exactly
one T-neighbor is either of cardinality 1 or 2. It follows that E|(X \A) is smooth,
from which the lemma easily follows.

Lemma 5.9: There is a Borel complete section B ⊆ A for E|B and a Borel

graphing L ⊆ G |A of E|B whose connected components are lines.

Proof: Fix a Borel function which associates with each pair (S, T ) ∈ T|A a G -
path γS,T of minimal length connecting S, T , such that γS,T = γT,S . Fix also a
Borel function which associates with each S ∈ ΨC a G -path γS through S whose
terminal points agree with those of γS,T , γS,U , where T,U are the T-neighbors of
G. It is clear that the forest L which consists of all edges of paths of the form
γS , γS,T , for (S, T ) ∈ T|A, is as desired.

It follows that there is a Borel E-complete section B ⊆ X and a graphing
L ⊆ G |B of E|B whose connected components are lines. This then implies that
E|B is hyperfinite (see, for example, Remark 6.8 of Kechris-Miller [8]).

Remark 5.10: Lemma 3.19 of Jackson-Kechris-Louveau [6], which itself builds
on an argument of Adams [1], provides a measure-theoretic partial converse for
Theorem 5.1. It implies that if µ is a probability measure on X, E is hyperfinite,
and T is a treeing of E, then there is a µ-measurable way of selecting one or two
ends from each connected component of T . In fact, this is true for graphings as
well, as can be easily seen via Lemma 2.4.

Remark 5.11: There are treeings T of hyperfinite equivalence relations for
which it is impossible to select one or two ends from each connected compo-
nent of T . However, there is essentially only one example, in the sense that
any two such forests are equivalent up to a natural analog of Nadkarni’s [12]
descriptive notion of Kakutani equivalence.

6. Selecting finitely many ends
Here we consider Borel graphs for which there is a Borel way of selecting a finite
set of at least three ends from each component. We note first the following
general fact, which is of interest in its own right:



ENDS OF GRAPHED EQUIVALENCE RELATIONS, I 15

Proposition 6.1: Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, and G is a graphing of E. Then there is a Borel

EG -complete section A ⊆ [G ]∞ such that EG |A is countable.

Proof: Given S ∈ [G ]<∞ and α ∈ [G ]∞ which lie in the same E-class, we say
that α eventually settles into a connected component C of GŜ if

∃n ∈ N∀m ≥ n (α(m) ∈ C).

We use C(α, S) to denote this connected component.
By repeated use of the Lusin-Novikov uniformization theorem, we can find

Borel functions Sn : X → [G ]<∞ such that

∅ = S0(x) ⊆ S1(x) ⊆ · · · and [x]E =
⋃
n∈N

Sn(x),

for all x ∈ X. Given x ∈ X and α ∈ [G |[x]E ]∞, let γ(x,α)
0 be the one-point path

at x, and given γ
(x,α)
n , let γ(x,α)

n+1 be a G -path of minimal length which begins at
the terminal point of the previous path, ends in C(α, Sn+1(x)), and avoids Sn(x).
By again making repeated use of the Lusin-Novikov uniformization theorem, we
can ensure that the maps (x, α) 7→ γ

(x,α)
n are Borel, thus so too is the map

(x, α) 7→ βx,α = γ
(x,α)
0 γ

(x,α)
1 . . . .

As βx,α ∈ [α]EG and αEGα
′ ⇒ βx,α = βx,α′ , it follows that the set

A = {α ∈ [G ]∞ : α = βα(0),α}

is as desired.

We are now ready for the main result of this section:

Theorem 6.2: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, G is a graphing of E, and B ⊆ [G ]∞ is an EG -invariant

Borel set which selects a finite set of at least three ends from each G -component.

Then E is smooth.

Proof: Fix a Borel A ⊆ [G ]∞ as in Proposition 6.1, and define Φ ⊆ [G ]<∞ by

S ∈ Φ⇔ ∀α, β ∈ A ∩B ∩ [G |[S]E ]∞ (αEG β or C(α, S) 6= C(β, S)).

As each set of the form A ∩ [G |[S]E ]∞ is countable, it follows that Φ is Borel. By
Lemma 5.3, there is a maximal pairwise disjoint Borel set Ψ ⊆ Φ. Note that the
maximality of Ψ ensures that for each x ∈ X, there exists S ∈ [G |[x]E ]<∞ ∩ Ψ.
Moreover, since Ψ is pairwise disjoint and B contains at least three ends from the
G -component of x, it follows that there is exactly one such S, so E is smooth.
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