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Abstract

Full groups, classification, and equivalence relations

by

Benjamin David Miller

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Alexander Kechris, Co-Chair

Professor John Steel, Co-Chair

In Chapter I, we study algebraic properties of full groups of automorphisms of σ-

complete Boolean algebras. We consider problems of writing automorphisms as com-

positions of periodic automorphisms and commutators (generalizing work of Fathi [34]

and Ryzhikov [69]), as well as problems concerning the connection between normal

subgroups of a full group and ideals on the underlying algebra, in the process giving

a new proof (joint with David Fremlin) of Shortt’s [73] characterization of the nor-

mal subgroups of the group of Borel automorphisms of an uncountable Polish space,

as well as a characterization of the normal subgroups of full groups of countable

Borel equivalence relations which are closed in the uniform topology of Bezuglyi-

Dooley-Kwiatkowski [9]. We also characterize the existence of an E-invariant Borel

probability measure in terms of a purely algebraic property of [E].

The results of Chapter II include classifications of Borel automorphisms and Borel

forests of lines up to the descriptive analog of Kakutani equivalence, along with

applications to the study of Borel marriage problems, generalizing and strengthen-

ing results of Shelah-Weiss [72], Dougherty-Jackson-Kechris [24], and K lopotowski-

Nadkarni-Sarbadhikari-Srivastava [58]. We also study the sorts of full groups on

quotients of the form X/E for which the results of Chapter I do not apply. Actions of

such groups satisfy a measureless ergodicity property which we exploit to obtain var-

ious classification and rigidity results. In particular, we obtain descriptive analogs of
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some results of Connes-Krieger [19] and Feldman-Sutherland-Zimmer [37], answering

a question of Bezuglyi.

In Chapter III, we study some descriptive properties of quasi-invariant measures.

We prove a general selection theorem, and use this to show a descriptive set-theoretic

strengthening of an analog of the Hurewicz ergodic theorem which holds for all

countable Borel equivalence relations. This then leads to new proofs of Ditzen’s

quasi-invariant ergodic decomposition theorem [23] and Nadkarni’s [62] characteri-

zation of the existence of an E-invariant probability measure, and also gives rise to

a quasi-invariant version of Nadkarni’s theorem, as well as a version for countable-

to-one Borel functions. We close chapter III with results on graphings of countable

Borel equivalence relations, strengthening theorems of Adams [1] and Paulin [65].

Professor Alexander Kechris
Dissertation Committee Co-Chair

Professor John Steel
Dissertation Committee Co-Chair
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Preface

The work presented here is a part of the descriptive set-theoretic study of countable

Borel equivalence relations. At the heart of our explorations is a desire to better

understand the descriptive core of various notions which originate in ergodic theory.

We have grouped our results into three separate chapters, loosely based on the fla-

vor of the arguments involved. Although each chapter is preceded by an in-depth

introduction, we will now provide a brief overview of all three.

Suppose that E is a countable Borel equivalence relation on a Polish space X.

The full group of E is the group [E] of all Borel automorphisms f : X → X such that

xEf(x), for all x ∈ X. Early work of Dye [27] in the measure-theoretic context has

made clear a very strong connection between equivalence relations and the algebraic

structure of their full groups, and since then these groups have been the subject

of much study within ergodic theory (see Connes-Krieger [19], Feldman-Sutherland-

Zimmer [37], and Bezuglyi-Golodets [11]) and topological dynamics (see Giordano-

Putnam-Skau [42] and Bezuglyi-Golodets [14]).

In Chapter I, we study algebraic properties of full groups of automorphisms. The

results here are quite general, and we spend the vast majority of the chapter work-

ing with full groups of automorphisms of σ-complete Boolean algebras, rather than

restricting ourselves to Polish spaces. The main observation which yields this gener-

ality is that there is a simple property, held by many automorphisms of such algebras,

that is sufficient to push through various ideas from the study of orbit equivalence

to this general setting. We consider problems of writing automorphisms as compo-

sitions of periodic automorphisms and commutators (generalizing work of Fathi [34]

and Ryzhikov [69]), as well as problems concerning the connection between normal

subgroups of a full group and ideals on the underlying algebra, in the process giving

a new proof of Shortt’s [73] characterization of the normal subgroups of the group of

Borel automorphisms of an uncountable Polish space, as well as a version of Bezuglyi-

Golodets’s characterization of the uniformly closed normal subgroups of full groups of

automorphisms of the Lebesgue measure algebra which holds in the uniform topology

of Bezuglyi-Dooley-Kwiatkowski [9] on the group of Borel automorphisms of a Polish
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space. We also provide a characterization of the existence of an E-invariant Borel

probability measure in terms of a purely algebraic property of [E].

The common thread underlying the results of Chapter II is the observation that

certain arguments of Dougherty-Jackson-Kechris [24], Harrington-Kechris-Louveau

[44], and Shelah-Weiss [72] are sufficiently general so as to allow characterizations

of various descriptive set-theoretic objects. Our results here include classifications

of Borel automorphisms and Borel forests of lines up to the descriptive analog of

Kakutani equivalence, along with applications to the study of Borel marriage prob-

lems, generalizing and strengthening results of Shelah-Weiss [72], Dougherty-Jackson-

Kechris [24], and K lopotowski-Nadkarni-Sarbadhikari-Srivastava [58]. We also spend

some time studying the sorts of full groups on quotients of the form X/E for which

the results of Chapter I do not apply. The automorphisms of such groups satisfy

a measureless ergodicity property which we exploit to obtain various classification

and rigidity results. In particular, we obtain descriptive analogs of some results of

Connes-Krieger [19] and Feldman-Sutherland-Zimmer [37], answering a question of

Bezuglyi.

Suppose that µ is a probability measure on the Borel subsets of X. Then µ is

E-invariant if every element of [E] is measure-preserving, and µ is E-quasi-invariant

if every element of [E] is non-singular. The study of measured equivalence relations

has played an important role in ergodic theory for a long time. Measures also turn

out to be very important tools from the descriptive set-theoretic viewpoint. Notable

here are papers of Feldman-Moore [36] and Weiss [79] which, in addition to being of

great interest in their own right, have helped to bring closer the measure-theoretic

and set-theoretic points of view.

In Chapter III, we study the descriptive properties of quasi-invariant measures.

The main tool underlying our work here is a general selection theorem which allows

us to build finite Borel subequivalence relations which are maximal with respect

to whatever local property we desire. Using nothing more than this and our bare

hands, we prove a descriptive set-theoretic strengthening of an analog of the Hurewicz

ergodic theorem which holds for all countable Borel equivalence relations. This then

leads to new proofs of Ditzen’s quasi-invariant ergodic decomposition theorem [23]
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and Nadkarni’s [62] characterization of the existence of an E-invariant probability

measure, and also gives rise to a quasi-invariant version of Nadkarni’s theorem, as

well as a version for countable-to-one Borel functions.

Associated with a Borel graph G on X is an equivalence relation EG on X,

xEG y ⇔ ∃x = x0, x1, . . . , xn = y ∀i < n ((xi, xi+1) ∈ G ).

We say that G is a graphing of E if E = EG . A great deal of work has been done to

understand the connection between graph-theoretic properties of G and the structure

of the induced equivalence relation EG , both in the contexts of ergodic theory and

descriptive set theory (see Connes-Feldman-Weiss [18], Adams [1], Paulin [65], and

Jackson-Kechris-Louveau [48]). We close chapter III by using our selection theorem

to provide a variety of results on graphings of countable Borel equivalence relations,

strengthening theorems of Adams [1] and Paulin [65].
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Chapter 1

Full Groups

1 Introduction

Suppose X is a Polish space and E is a countable Borel equivalence relation on

X. The full group of E is the group [E] of Borel automorphisms f : X → X such

that

∀x ∈ X (xEf(x)).

In this chapter, we study various algebraic properties of full groups, as well as their

connection to properties of the underlying equivalence relation E.

One natural way that countable Borel equivalence relations arise is via group

actions. Given a countable group Γ which acts on X by Borel automorphisms, the

orbit equivalence relation of Γ is given by

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

The full group of Γ, denoted by [Γ], is simply the full group of EX
Γ . Note that [Γ] can

be expressed entirely in terms of the action of Γ, as the group of Borel automorphisms

f : X → X for which there is a partition of X into Borel sets Bγ such that

∀γ ∈ Γ (f |Bγ = γ|Bγ).

Note that this definition generalizes to group actions on arbitrary Boolean algebras.
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One advantage of working within full groups is that the resulting facts are often im-

mediately applicable to other settings. For instance, if Γ acts by measure-preserving,

non-singular, or category-preserving transformations, then so too does every element

of [Γ], as X can be decomposed into countably many pieces where its action agrees

with the action of elements of Γ. So if we were to prove, for example, that every

Borel automorphism is the composition of three Borel involutions from its full group,

then we would automatically obtain the analogous theorems for measure-preserving,

non-singular, and category-preserving transformations.

The techniques we use are applicable far beyond these settings, however. Suppose

that A is a σ-complete Boolean algebra and π is an automorphism of A. Although

our results do not go through for all such automorphisms, it should be noted that

we essentially require only one additional property. We term an element a ∈ A a

π-discrete section if a · π(a) = O. The basic underlying assumption that is essential

to our techniques is that all of the automorphisms with which we deal admit maximal

discrete sections. The main observation underlying our results is that with maximal

discrete sections at our disposal, we can push through many ideas from the study of

orbit equivalence to this general setting.

Examples of automorphisms which admit maximal discrete sections include all

automorphisms of the Borel subsets of a Polish space X (which can be naturally

identified with the Borel automorphisms of X), as well as all automorphisms of any

complete Boolean algebra. As a consequence, all of our results apply in these two

contexts. Moreover, the inexistence of maximal discrete sections is often sufficient to

prove strong negations of theorems which hold true for automorphisms which admit

maximal discrete sections.

Although our work throughout this chapter is done in the context of σ-complete

Boolean algebras, there is another point of view (recently pointed out to me by John

Steel) which more accurately reflects what we do. Suppose that A is a σ-complete

Boolean algebra and π is an automorphism of A whose powers admits maximal dis-

crete sections, and we wish to prove some algebraic fact about the full group [π]. For

concreteness, let us again suppose that we wish to show that π is the composition

of three involutions in [π]. As it turns out, this can be accomplished by proving
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that every transitive permutation σ of a countable set X is the composition of three

involutions of X which are definable in a certain restricted language. The signature

for this language consists of a function symbol, as well as a unary relation symbol

for each n ∈ N, the former to be thought of as representing the action of π and the

latter representing maximal πn-discrete sections. In order to obtain the desired result

about π we must, in an Lω1ω-definable manner, build three involutions of X whose

composition is σ. That is, we must be able to sculpt definitions of the involutions

we desire out of nothing more than our function and relation symbols, existential

and universal quantification, and conjunctions and disjunctions of countable length.

We can then interpret the resulting three definitions in the L-structure determined

by π and maximal discrete sections for each of its powers, and we will obtain the

involutions in [π] which we require.

Most of the results of this chapter can be viewed in this way. That is, we are

given the problem of checking some algebraic fact about a full group, so we devise a

language which is simultaneously sophisticated enough to check the property while

weak enough to be interpreted via objects which we can build from the full group.

One more comment about the general structure of this chapter is in order. When

deciding upon the language to use in presenting our results, we were faced with a real

quandary. To what extent should we substitute readability for generality? In this

particular case, the question became one of trading our intuition about purely atomic

Boolean algebras for the ability to prove things about all complete Boolean algebras

and beyond. Well, this isn’t entirely true, in that we could have used Stone spaces to

at least recover some of our intuition about the purely atomic case. This too seems

problematic, however, as our primary interest is in the algebra of Borel subsets of a

Polish space, and it seems rather ridiculous to prove any of the facts in which we are

interested for this algebra via its Stone space.

In the end, we have decided to simply prove things in their utmost generality on σ-

complete Boolean algebras, for the most part without making any references to Stone

spaces. The end result is, unfortunately, that the proofs have come out looking a bit

more difficult than they really are, particularly outside of the purely atomic case. For

this reason, the reader is strongly encouraged to rely heavily upon his intuition for
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purely atomic algebras while reading our results. In retrospect, it would have been

better to take up the viewpoint suggested by Steel, proving facts about permutation

groups in certain restricted languages, and then separately establishing the transfer

theorems necessary to push the results to the sorts of algebras we desire. Alas, time

is short, and such refinements will have to wait for another day.

In §2, we take up a somewhat detailed exploration of maximal discrete sections.

We provide several criteria for the existence of maximal discrete sections, and show

that automorphisms of complete Boolean algebras and standard Borel spaces always

admit such sections. We also show that the existence of a maximal π-discrete section

is a natural generalization of the existence of a support for π, in that it is equivalent to

the corresponding autohomeomorphism bπ of the Stone space having clopen support.

We close §2 by using maximal discrete section to give a simple proof of a general form

of Rokhlin’s Lemma which holds for arbitrary finitely additive probability measures

on arbitrary Boolean algebras.

In §3, we introduce the full group [π] of an automorphism π and describe var-

ious notions which originate in the study of orbit equivalence, such as recurrence,

smoothness, and complete sections, with an emphasis on their connection to maximal

discrete sections. We close with a general characterization of smoothness in Baire

spaces.

We spend most of §4-§7 studying the circumstances under which an automorphism

of a σ-complete Boolean algebra can be written as the composition of automorphisms

of prescribed periods from its full group. Our explorations into such questions orig-

inate in a series of discussions with David Fremlin in the fall of 2003, while we were

both visiting the Fields Institute. David had shown that every automorphism of a

complete Boolean algebra is the composition of eight involutions, and asked if this

number could be brought down to three. In §5, we answer this question positively by

showing the following:

Theorem. Suppose that A is a σ-complete Boolean algebra, π is an automorphism of

A, and every power of π admits a maximal discrete section. Then π is the composition

of three involutions from its full group.
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It should be noted that it was David who first pointed out the fact that our

arguments, originally intended only for Borel automorphisms of Polish spaces, go

through for arbitrary complete Boolean algebras. It should also be noted that, shortly

after our success with this problem, David received an email from Peter Biryukov,

who pointed out that Ryzhikov [70] had already shown that every automorphism of

a complete Boolean algebra is the composition of three involutions. Although his

argument is quite different than the one we shall provide, it is worth noting that he

too made essential use of maximal discrete sections.

In §4, we characterize the circumstances under which an automorphism is the

composition of two involutions from its full group, and we show that the existence

of maximal discrete sections is necessary to write an aperiodic automorphism as a

composition of periodic automorphisms of its full group. We also briefly discuss

the problem of finding Borel automorphisms which are not the composition of two

involutions.

In §6, we extend the notion of full group from a single automorphism to a group

of automorphisms. Many of the results of §3 go through in this more general setting

in a straightforward manner. New here is a notion of aperiodicity which makes sense

outside of the purely atomic setting. This notion is quite nice in that it is a natural

way of generalizing aperiodicity which seems to capture all of our intuition from the

purely atomic case. In particular, we show that if we restrict our attention to actions

by automorphisms that admit maximal discrete sections, then the aperiodic actions

of Γ are exactly those with the property that for all n ≥ 1, there is a partition of

unity into n pieces and an automorphism in [Γ] of exact period n which induces a

permutation of these pieces.

In §7, we combine ideas of Ryzhikov [69] with our methods to show the following:

Theorem. Suppose A is a σ-complete Boolean algebra, π is an aperiodic automor-

phism of A, n0 ≥ 3, and n1 ≥ 2. Then the following are equivalent:

1. There exist π0, π1 ∈ [π] of strict period n0, n1 such that π = π0 ◦ π1.

2. The powers of π admits maximal discrete sections.
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As part of our proof, we give a general version of Alpern’s [3] multiple Rokhlin

tower theorem. Using similar methods, we also show that every aperiodic automor-

phism is a commutator within its full group. Using this, we show the following:

Theorem. Suppose that A is a κ-complete Boolean algebra, G is a κ-full group of

automorphisms of A which admit maximal discrete sections, and G has a subgroup of

cardinality strictly less than κ which acts aperiodically. Then every element of G is

a commutator.

These facts generalize and strengthen results of Fathi [33] and Ryzhikov [69]. We

close §7 by showing that the existence of a subgroup of cardinality less than κ which

acts aperiodically is equivalent to the presence of an aperiodic automorphism in G.

In §8, we study an interesting property which has recently been investigated in

the context of infinite permutation groups by Bergman [7], and in the context of

more general automorphism groups by Droste-Göbel [25] and Droste-Holland [26].

We actually study two variants of Bergman’s original notion:

1. G is weakly Bergman if for every increasing, exhaustive sequence Γn ↗ G of

subsets of G, there exists k, n ∈ N such that Γkn = G.

2. G is strongly k-Bergman if for every increasing, exhaustive sequence Γn ↗ G of

subsets of G, there exists n ∈ N such that Γkn = G. G is strongly Bergman if it

strongly k-Bergman, for some k ∈ N.

Both of these properties are quite strong. For instance, even weakly Bergman groups

have the property that all of their left-invariant metrics are bounded. We show that

the weak Bergman property is shared by every κ-full group of automorphisms of a

κ-complete Boolean algebra which admit a maximal discrete section that contains an

aperiodic subgroup of cardinality less than κ. We also show that strong Bergmanocity

is often ruled out by the existence of invariant probability measures, and ensured

by the presence of paradoxical decompositions. This leads to a characterization of

the existence of an invariant probability measures for countable Borel equivalence

relations in terms of a purely algebraic property of their full group:
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Theorem. Suppose E is an aperiodic countable Borel equivalence relation on a Polish

space. Then [E] has the weak Bergman property and the following are equivalent:

1. E does not admit an invariant Borel probability measure.

2. [E] is strongly Bergman.

3. [E] is strongly 16-Bergman.

In §9, we give a new proof, joint with David Fremlin, of Shortt’s characterization

of the normal subgroups of the group of Borel automorphisms of a Polish space X. We

actually give a technical strengthening of this result, by showing that if f : X → X is

a Borel automorphism with uncountable support, then every Borel automorphism of

X is a composition of four conjugates of f±1. Getting back to our general setting, we

then use ideas of Fremlin [39] to draw a connection between the normal subgroups of

an aperiodic full group and ideals on the underlying σ-algebra.

In §10, we make use of this connection. We begin by defining a weak notion of

closure for sequences of automorphisms, and characterize the normal subgroups of

full groups which satisfy this property. Using this, we obtain a new proof of the

characterization of closed normal subgroups of full groups due to Bezuglyi-Golodets

[11]. We close the section with an analog of their result which holds for the group of

Borel automorphisms of a Polish space X, when equipped with the uniform topology

of Bezuglyi-Dooley-Kwiatkowski [9], which is generated by the sets of the form

U (ϕ, µ0, . . . , µn, ε) = {ψ : ∀i ≤ n (µi(supp(ϕ ◦ ψ−1)) < ε)},

where ϕ, ψ are Borel automorphisms of X, µ0, . . . , µn are probability measures on X,

and ε > 0. We show the following:

Theorem. Suppose that G is a σ-full group of Borel automorphisms of a Polish

space, and G contains a countable aperiodic subgroup. Then the uniformly closed

normal subgroups of G are exactly those of the form

N = {π ∈ G : supp(π) ∈ NULLM},

where M is a G-invariant set of probability measures on X.
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2 Maximal discrete sections

In this section, we will introduce the many of the concepts which will be important

throughout Chapter I. Central here is the notion of a maximal discrete section for

an automorphism. We show that such sections can always be found in many of the

σ-complete Boolean algebras which appear in descriptive set theory and measure

theory. We also give an alternate characterization of their existence in terms of the

Stone space of the algebra in question. As an application, we show an analog of

Rokhlin’s Lemma which holds for an arbitrary probability measure on an arbitrary

Boolean algebra.

Although we work with automorphisms of general σ-complete Boolean algebras,

it will be useful to keep several important examples in mind. The complete Boolean

algebras in which we are particularly interested include the algebra of Lebesgue mea-

surable subsets of the reals modulo null sets, as well as the algebra of Baire measurable

subsets of a perfect Polish space modulo meager sets. The main incomplete Boolean

algebra in which we are interested is the algebra of Borel subsets of an uncountable

Polish space X. We are also interested in the various subalgebras obtained by fixing

a countable Borel equivalence relation E on X, and restricting our attention to those

Borel subsets of X which are E-invariant.

Suppose that A is a Boolean algebra. We will use Aut(A) to denote the automor-

phism group of A, and

Aa = {b ∈ A : b ≤ a}

to denote the principal ideal induced by a ∈ A. An automorphism π has a support ifX¦
a ∈ A : π|Aa = id

©
exists, in which case the support of π is the complement of this sum.

An element a ∈ A is a π-discrete section, or simply π-discrete, if a · π(a) = O.

Note that when A is purely atomic, every automorphism of A determines a graph G

on the atoms of A, in which two atoms are neighbors exactly when π carries one to the

other. Note that the connected components of this graph are simply the orbits of the
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atoms of A under π, and that a ∈ A is π-discrete exactly when no two G -neighbors

are below a.

Proposition 2.1. Suppose A is a Boolean algebra, π ∈ Aut(A), and a ∈ A. Then

a is π-discrete ⇔ a is π−1-discrete ⇔ ∀n ∈ Z (πn(a) is π-discrete).

Proof. As a · π−1(a) = π−1(a · π(a)), it follows that

a is π-discrete ⇔ a is π−1-discrete.

As πn(a) · πn+1(a) = πn(a · π(a)), it follows that if a is π-discrete, then

∀n ∈ Z (πn(a) is π-discrete),

which completes the proof of the proposition. a

Discrete sections provide a convenient alternative description of supports:

Proposition 2.2. Suppose A is a Boolean algebra, a ∈ A, and π ∈ Aut(A). Then

π|Aa 6= id ⇔ ∃O < b ≤ a (b is π-discrete).

Proof. To see (⇐), simply note that if b > O is π-discrete, then π(b) 6= b. To

see (⇒), fix O < b ≤ a such that π(b) 6= b, and note that at least one of π(b)− b and

b− π(b) is non-zero, and both are clearly π-discrete. As

b− π−1(b) = π−1(π(b)− b),

it follows that b− π−1(b) or b− π(b) is a non-zero, π-discrete element of Aa. a

Corollary 2.3. Suppose A is a Boolean algebra and π ∈ Aut(A). Then

π has a support ⇔
X¦

a ∈ A : a is π-discrete
©

exists,

in which case the support of π is this sum.
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Proof. Simply observe that by Proposition 2.2, if one ofX¦
a ∈ A : π|Aa = id

©
,
X¦

a ∈ A : a is π-discrete
©

exists, then the other is dense in its complement. a

Remark 2.4. An element a ∈ A is π-invariant if π(a) = a. Note that if π has a

support, then supp(π) is π-invariant. Also note that if π has a support, then so too

does π−1 and supp(π) = supp(π−1).

Remark 2.5. A maximal π-discrete section is a π-discrete section which is not strictly

below any other π-discrete section. Note that for all a ∈ A,

a is maximal π-discrete ⇔ supp(π)− a = π−1(a) + π(a).

Maximal discrete sections will prove to be an important tool throughout this

chapter, playing a role similar to that of Rokhlin’s Lemma in ergodic theory. Recall

that a Boolean algebra is complete if every subset of A has a least upper bound.

Proposition 2.6. Every automorphism of a complete Boolean algebra admits a max-

imal discrete section.

Proof. Suppose A is a complete Boolean algebra and π ∈ Aut(A). Let 〈aξ〉 be

an increasing sequence of π-discrete sections which is of maximal length, and observe

that a =
P
ξ aξ is a maximal π-discrete section. a

Suppose that κ ≥ ω1. The Boolean algebra A is κ-complete if every subset of A

of cardinality strictly less than κ has a least upper bound. Also, A is σ-complete if

it is ω1-complete. Suppose A ⊆ A. We will use A + to denote the non-zero elements

of A . A set B ⊆ A is dense in A if

∀a ∈ A + ∃b ∈ B+ (b ≤ a).

Elements a, b ∈ A are disjoint if a · b = O, and compatible if a · b > O. A set B ⊆ A

is predense if every a ∈ A is compatible with some b ∈ B.
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Proposition 2.7. Suppose that A is a κ-complete Boolean algebra and π ∈ Aut(A).

Then the following are equivalent:

1. There is a maximal π-discrete section.

2. π has a support and it is the sum of three π-discrete sections.

3. π has a support and it is the sum of fewer than κ sections which are π-discrete.

4. The set of π-discrete sections has a predense subset of cardinality < κ.

Proof. To see (1) ⇒ (2), note that if a is a maximal π-discrete section, then

supp(π) = π−1(a) + a+ π(a),

by Remark 2.5. Of course (2) ⇒ (3) ⇒ (4) is trivial. To see (4) ⇒ (1), fix an

enumeration 〈aξ〉ξ<λ of a predense subset of the set of π-discrete sections, where

λ < κ. We will inductively paste together pieces of the aξ’s, at stage ξ adding the

largest piece of aξ that is possible, without destroying the discreteness of the element

of A that we have built thus far. Put b0 = O, and recursively define

bξ+1 = bξ + (aξ − (π−1(bξ) + π(bξ))),

setting bξ =
P
ζ<ξ bζ at limit ordinals. Noting that

bξ+1 · π(bξ+1) ≤ (bξ + (aξ − π(bξ))) · (π(bξ) + (π(aξ)− bξ))

≤ bξ · π(bξ) + aξ · π(aξ),

it follows from the obvious induction that b = bλ is π-discrete. Suppose, towards a

contradiction, that there is a π-discrete section c > b. Then there exists ξ < λ with

aξ · (c− b) 6= O, and it follows from the definition of bξ+1 thatO < aξ · (c− b) ≤ π−1(bξ) + π(bξ),

thus c · (π−1(c) + π(c)) 6= O, contradicting the assumption that c is π-discrete. a

Remark 2.8. It is worth noting that our proof of (4) ⇒ (1) above shows the stronger

fact that every π-discrete section sits below a maximal π-discrete section.
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An antichain is a pairwise disjoint subset of A. A Boolean algebra A satisfies the

κ-chain condition if every antichain of A is of cardinality strictly less than κ. Also,

A satisfies the countable chain condition if it satisfies the ω1-chain condition. It is

easy to see that if A is κ-complete and satisfies the κ-chain condition, then every

automorphism of A admits a maximal discrete section, for these two assumptions

ensure that A is complete.

Example 2.9. Suppose that µ is a σ-finite measure on a set X. Then the corre-

sponding measure algebra Aµ satisfies the countable chain condition and is therefore

complete. On the other hand, the algebra of Borel subsets of a Polish space is a

σ-complete Boolean algebra which neither satisfies the countable chain condition nor

is ω2-complete.

Fortunately, the κ-chain condition has a natural weakening which does not imply

completeness, but still ensures the existence of maximal discrete sections. A set

A ⊆ A is a separating family for A if there is a dense set B ⊆ A such that A

separates all disjoint pairs of elements of B, i.e.,

∀b, b′ ∈ B
�
b · b′ = O⇒ ∃a ∈ A (b ≤ a and b′ ≤ 1− a)

�
.

A Boolean algebra A is purely atomic if its atoms are dense. In this case,

A is a separating family for A ⇔ A is a separating family for the atoms of A.

Example 2.10. Suppose that A ⊆ P(2κ) is any Boolean algebra which contains the

sets of the form

Xα = {x ∈ 2κ : xα = 0},

for α < κ. Then A admits a separating family of cardinality κ.

Although unnecessary for our purposes, it is worth noting that any algebra which

admits a separating family of cardinality strictly less than κ necessarily satisfies the

2<κ-chain condition.

Proposition 2.11. Suppose that A is a κ-complete Boolean algebra that admits a

separating family of cardinality strictly less than κ. Then every automorphism of A

admits a maximal discrete section.
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Figure 1.1: An element a′ ∈ A such that O < π(c) ≤ a · (a′ − π(a′)).

Proof. Fix a separating family A ⊆ A of cardinality strictly less than κ, along

with the corresponding dense set B ⊆ A, and suppose π ∈ Aut(A). Of course we

may expand A so as to ensure that it is an algebra which is closed under π±1. To see

that π admits a maximal discrete section, it follows from Proposition 2.7 that it is

enough to check {a− π(a) : a ∈ A } is weakly dense in the set of π-discrete sections,

or equivalently, that

∀a ∈ A+
�
a is π-discrete ⇒ ∃a′ ∈ A (a · (a′ − π(a′)) 6= O)

�
. (†)

Suppose that a ∈ A+ is π-discrete, fix non-zero elements b, c ∈ B such that b ≤ a

and c ≤ π−1(b), and find a′ ∈ A which separates b from c. Then π(c) ≤ a′ − π(a′),

and (†) follows. a

The following fact is a special case of Lemma 4.1 of Kechris-Solecki-Todorcevic

[56], whose proof is the source of the arguments provided thus far:

Proposition 2.12 (Kechris-Solecki-Todorcevic). Every automorphism of the al-

gebra of Borel subsets of a Polish space admits a maximal discrete section.

Proof. This follows from the fact that Polish topologies are separable and Haus-

dorff, the observation that any basis for a Hausdorff topology separates points, and

Proposition 2.11. a

Although Proposition 2.11 establishes the existence of maximal discrete sections

for all automorphisms of most of the algebras in which we are interested, we will

continue to work in a general setting in which their existence is not guaranteed. One
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reason for this is our desire to establish the abstract fact that the existence of these

sections alone is sufficient to derive many algebraic properties. Moreover, we obtain

dichotomy results because of the strength of the inexistence of such sections. A more

concrete reason is that one of the sorts of algebras in which we are interested has

automorphisms which do not admit maximal discrete sections:

Example 2.13. Suppose C = 2N is Cantor space, and define E0 on C by

xE0y ⇔ ∀∞n ∈ N (xn = yn),

where “∀∞” is shorthand for “for all but finitely many.” Letting s : C → C be the

unilateral shift ,

s(x0x1 . . .) = x1x2 . . . ,

it is easily verified that s induces an aperiodic automorphism of the algebra BE0 of

E0-invariant Borel subsets of C . It is also easily verified that any discrete section

for s is meager, and therefore cannot be maximal! It is worth noting that there are

few such automorphisms. Modulo the open question of whether all Z ∗ Z-orderable

equivalence relations are hyperfinite, the methods of §6-§8 of Chapter II suffice to

establish that the least n > 0 for which there is no maximal π<n-discrete section is

a complete invariant for conjugacy of aperiodic automorphisms of BE0 with Borel

graphs, when such an n exists.

It will frequently be useful to have an analog of maximal discrete sections for finite

collections of automorphisms. For ∆ ⊆ Aut(A), an element a ∈ A is ∆-discrete if

∀γ, δ ∈ ∆
�
γ 6= δ ⇒ (δ · a) · (γ · a) = O�,

or equivalently, if

∀γ, δ ∈ ∆
�
γ 6= δ ⇒ δ · a is γδ−1-discrete

�
.

Note that π-discreteness and {1, π}-discreteness are equivalent. More generally,

a is π≤n-discrete ⇔ ∀1 ≤ i ≤ n
�
a · πi(a) = O�,

where π≤n is shorthand for the set of automorphisms of the form πi, with 0 ≤ i ≤ n.

The natural generalization of Remark 2.5 goes through here:
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Proposition 2.14. Suppose A is a Boolean algebra, π ∈ Aut(A), a ∈ A, and n > 0.

Then

a is maximal π<n-discrete ⇔
Y

0<i<n

supp(πi)− a =
X

0<|i|<n
πi(a).

Proof. It is straightforward to check that

a is π<n-discrete ⇔
X

0<|i|<n
πi(a) ≤

Y
0<i<n

supp(πi)− a.

It is also clear that if equality holds on the right-hand side, then a is maximal π<n-

discrete. So it only remains to check that if the inequality is strict, then a is not

maximal π<n-discrete.

To see this, find a π<n-discrete section b which is disjoint fromX
|i|<n

πi(a).

It follows that for all 0 < i < n,

(a+ b) · πi(a+ b) = a · πi(a) + a · πi(b) + b · πi(a) + b · πi(b)

= O+O+ πi(π−i(a) · b) +O
= O,

thus a+ b is a π<n-discrete section which is properly above a. a

Next, we establish the existence of maximal ∆-discrete sections:

Proposition 2.15. Suppose A is a Boolean algebra, a ∈ A, ∆ ⊆ Aut(A) is finite, and

every element of ∆∆−1 admits a maximal discrete section. Then there is a maximal

∆-discrete element of Aa.

Proof. We will find a finite family of ∆-discrete elements of Aa whose sum is above

every ∆-discrete element of Aa. We will then gradually paste these pieces together,

at a given stage adding as much as possible without destroying ∆-discreteness. We

will then show that the resulting element of A is maximal ∆-discrete.
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Fix an enumeration 〈(γi, δi)〉i<n of the pairs of distinct elements of ∆. By Propo-

sition 2.7, there are γiδ
−1
i -discrete sections ai0, a

i
1, a

i
2 ∈ A such that

∀i < n
�
ai0 + ai1 + ai2 = supp(γiδ

−1
i )

�
.

Let sj be an enumeration of {0, 1, 2}n, and for each j < 3n, set

aj = a ·
Y
i<n

δ−1
i · aisj(i).

As δ · aj is γδ−1-discrete whenever γ 6= δ, it follows that aj is ∆-discrete. Moreover,

b is ∆-discrete ⇒ ∀i < n
�
δi · b is γiδ

−1
i -discrete

�
⇒ ∀i < n

�
δi · b ≤ ai0 + ai1 + ai2

�
⇒ ∀i < n

�
b ≤ δ−1

i · (ai0 + ai1 + ai2)
�

⇒ b ≤
Y
i<n

δ−1
i · (ai0 + ai1 + ai2),

thus every ∆-discrete section in Aa is below
P
j<3n aj.

Set b0 = O and recursively define

bj+1 = bj +
�
aj −

X
γ 6=δ

γ−1δ · bj
�
,

for j ≤ 3n. Noting that for γ 6= δ,

(γ · bj+1) · (δ · bj+1) =
�
γ · bj + γ ·

�
aj −

X
γ 6=δ

γ−1δ · bj
��

·�
δ · bj + δ ·

�
aj −

X
δ 6=γ

δ−1γ · bj
��

≤ (γ · bj + (γ · aj − δ · bj)) · (δ · bj + (δ · aj − γ · bj))

≤ (γ · bj) · (δ · bj) + (γ · bj) · (δ · aj − γ · bj) +

(γ · aj − δ · bj) · (δ · bj) + (γ · aj − δ · bj) · (δ · aj − γ · bj)

≤ (γ · bj) · (δ · bj) + (γ · aj) · (δ · aj),

it follows from the obvious induction that b = b3n is ∆-discrete. Suppose, towards a

contradiction, that there is a ∆-discrete section c > b in Aa. Then c − b is non-zero
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and ∆-discrete, so there exists j < 3n such that aj · (c− b) 6= O. It follows from the

definition of bj+1 that O < aj · (c− b) ≤
X
γ 6=δ

γ−1δ · bj,

thus there exists distinct γ, δ ∈ ∆ such that

(γ · (c− b)) · (δ · b) 6= O,
so (γ · c) · (δ · c) 6= O, which contradicts the assumption that c is ∆-discrete. a

Remark 2.16. A (λκ)+-complete Boolean algebra A is (κ, λ)-distributive if for every

sequence 〈aξ,η〉ξ<κ,η<λ of elements of A,Y
ξ<κ

X
η<λ

aξη =
X
f∈λκ

Y
ξ<λ

aξf(ξ).

It is straightforward to check that when A is (κ, 2)-distributive, the assumption that

∆ is finite in Proposition 2.15 can be weakened to |∆| ≤ κ.

It should be noted, however, that such a generalization fails for the algebra of

Borel subsets of a Polish space, even when ∆ is countably infinite. In the language of

§3, this is a simple consequence of the fact that non-smooth automorphisms of this

algebra do not admit maximal partial transversals.

Next, we will describe a sense in which the existence of a maximal discrete section

for an automorphism can be viewed as a natural strengthening of the existence of a

support. We will use ÒA to denote the Stone space of all ultrafilters on A, endowed

with the topology generated by the basic clopen sets of the formba = {U ∈ ÒA : a ∈ U},

where a ∈ A. We will denote the autohomeomorphism of ÒA corresponding to π bybπ(U) = {π−1(a) : a ∈ U}.

The reader is encouraged to look to Fremlin [39] or Bonnet-Monk [16] for background

information on Stone spaces. The support of bπ is

supp(bπ) = {U ∈ ÒA : π(U) 6= U},
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or equivalently, the support of the automorphism of P(ÒA) induced by bπ. A set X ⊆ ÒA
is bπ-discrete if it is discrete with respect to the automorphism of P(ÒA) induced bybπ. The existence of a maximal π-discrete section has a natural description in terms

of the Stone space:

Proposition 2.17. Suppose that A is a Boolean algebra and π ∈ Aut(A). Then the

following are equivalent:

1. There is a maximal π-discrete element of A.

2. π has a support and Ùsupp(π) = supp(bπ).

3. bπ has clopen support.

4. There is a clopen maximal bπ-discrete subset of ÒA.

Proof. To see (1) ⇒ (2), suppose a is maximal π-discrete and note that b =

π−1(a) + a+ π(a) is the support of π, as in the proof of Proposition 2.7. Asba ∩ bπ−1(ba) = Øa · π(a) = cO = ∅,

it follows that bb = bπ−1(ba) ∪ ba ∪ bπ(ba) ⊆ supp(bπ).

Noting that π|A1−b = id thus bπ|(ÒA \ bb) = id, it follows that supp(bπ) = bb = Ùsupp(π).

Of course (2) ⇒ (3) is trivial. To see (3) ⇒ (4), note that since ÒA is zero-

dimensional and bπ is continuous, each element of supp(bπ) is contained in a bπ-discrete

clopen set. As supp(bπ) is compact, it follows that there are bπ-discrete clopen sets

U0, . . . ,Un whose union is supp(bπ). The existence of a clopen maximal bπ-discrete

subset of ÒA now follows from applying Proposition 2.7 to the clopen algebra of ÒA.

To see (4) ⇒ (1), let ba ⊆ ÒA be a clopen maximal bπ-discrete set. Then Øa · π(a) =ba ∩ bπ−1(ba) = ∅, thus a · π(a) = O, and it follows that a is π-discrete. Now suppose,

towards a contradiction, that there exists b > a with b · π(b) = O. Then ba ( bb andbb ∩ bπ−1(bb) = Øb · π(b) = cO = ∅,

contradicting the fact that ba is maximal bπ-discrete. a
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We have already mentioned that maximal discrete sections will play a role similar

to that of Rokhlin’s Lemma within ergodic theory. We will close this section by using

maximal discrete sections to give a simple proof of a general version of Rokhlin’s

Lemma, which neither assumes the invariance of the measure under π nor places

restrictions on the Boolean algebra in question. The automorphism π is fixed-point

free if supp(π) = 1, and the automorphism π is aperiodic if

∀n ∈ Z
�
n 6= 0 ⇒ πn is fixed-point free

�
.

The autohomeomorphism bπ is aperiodic if the induced automorphism of P(ÒA) is

aperiodic, or equivalently, if no element of ÒA is fixed by a non-zero iterate of π. Note

that if every iterate of π admits a maximal discrete section, then Proposition 2.17

ensures that

π is aperiodic ⇔ bπ is aperiodic.

Theorem 2.18. Suppose A is a Boolean algebra, µ is a finitely additive probability

measure on A, π ∈ Aut(A), and bπ is aperiodic. Then for every n ∈ N and ε > 0,

there is a maximal π<n-discrete section a ∈ A such that µ (
P
i<n π

i(a)) > 1− ε.

Proof. We will find a maximal π<k-discrete section d ∈ A, for some k ∈ N
sufficiently large, such that d + π−1(d) + · · ·+ π−(n−1)(d) carries very little measure.

We will then partition d into finitely many pieces dij such that

πin+j(dij) ≤ d and π(dij), . . . , π
in+j−1(dij) are disjoint from d.

The desired section will be the sum of the sections of the form πkn(dij), for k < i.

The assumption that bπ is aperiodic ensures that each power of bπ has support ÒA.

In particular, it follows that each power of bπ has clopen support, thus each power

of π admits a maximal discrete section, by Proposition 2.17. Fix a natural number

m > 1/ε and observe that by Proposition 2.15, there is a maximal π<mn-discrete

section b ∈ A. As the aperiodicity of bπ implies that each non-zero power of π is

fixed-point free, it follows from Proposition 2.14 that1− b =
Y

0<i<n

supp(πi)− b =
X

0<|i|<2mn

πi(b),
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Figure 1.2: The construction of a Rokhlin section from a π<mn-discrete section.

thus
P
i<2mn−1 π

i(b) = 1. Set c =
P
i<n π

−i(b) and observe that 〈π`n(c)〉`<m is pair-

wise disjoint, thus µ(π`n(c)) < ε for some ` < m. Put d = π`n(b),

di = d · π−i(d)−
X

0<j<i

π−j(d),

and dij = din+j, and define

a =
X§

πkn(dij) : k < i and j < n
ª
.

Note that this is a finite sum, since dij = O for all but finitely many values of i, j.

As d is π<mn-discrete, it easily follows that a is π<n-discrete. Noting thatX
k<2n−1

πk(a) = 1,
it follows that a is maximal π<n-discrete. It only remains to note that1− π`n(c) ≤

X
i<n

πi(a),

thus µ (
P
i<n π

i(a)) > 1− ε. a

The use of bπ in the statement of Theorem 2.18 is necessary:

Example 2.19. Suppose that κ is an infinite cardinal and let Aκ be the κ-complete

Boolean algebra which is generated by the singletons contained in κ. Define a map

µ : Aκ → {0, 1} by

µ(S) =

8<: 0 if |S| < κ,

1 otherwise,



21

noting that µ is a κ-additive probability measure on Aκ. Clearly Aκ admits aperiodic

automorphisms. However, no automorphism of Aκ admits a discrete section of positive

measure, thus the conclusion of Theorem 2.18 must fail. To see that this does not

contradict Theorem 2.18, simply note that the autohomeomorphism corresponding to

any automorphism of Aκ is never fixed-point free, and therefore cannot be aperiodic.

3 The full group of an automorphism

In this section, we introduce the full group of an automorphism of a Boolean

algebra, and describe several notions with origins in the study of orbit equivalence.

In the process, we see several connections between the maximal discrete sections

of §2 and these new notions. We close the section with a general characterization

of smoothness for the orbit equivalence relations associated with countable groups

which act on a Baire space by homeomorphisms.

Suppose that A is a σ-complete Boolean algebra. Given pairwise disjoint sequences

〈ai〉i∈I and 〈bi〉i∈I of elements of A and isomorphisms πi : Aai → Abi , such that I is

countable and X
i∈I

ai =
X
i∈I

bi,

we will use

π =
Y
i∈I
ai

πi−→ bi

to denote the automorphism whose support is contained in
P
i∈I ai and which satisfies

∀i ∈ I (π|Aai = πi).

Similarly, given natural numbers ji, a pairwise disjoint sequence 〈aij〉i∈I,j≤ji of ele-

ments of A, and isomorphisms πij : Aaij → Aaij+1
, we will use the cycle notation

π =
Y
i∈I

(ai0
πi0−→ ai1

πi1−→ · · ·
πiji−1−−−→ aiji)

to denote the automorphism with support below
P
i∈I,j≤ji aij and which satisfies

∀i ∈ I∀j < ji (π|Aaij = πij) and ∀i ∈ I (π|Aaiji
= π−1

i0 ◦ π−1
i1 ◦ · · · ◦ π−1

iji−1).
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Note that this notation makes sense even when the aij’s are not disjoint, as long as

the corresponding isomorphisms agree on their intersections.

Now suppose that A is a Boolean algebra. Associated with each π ∈ Aut(A) is

the full group [π] of automorphisms of A of the form

ϕ =
Y
n∈Z

an
πn−→ πn(an),

where 〈an〉n∈Z and 〈πn(an)〉n∈Z are both partitions of unity. Note that this makes

sense even when A is not σ-complete!

Such groups often arise in practice when A is an algebra of subsets of some set X.

In this case, [π] is simply the group of all automorphisms ϕ ∈ Aut(A) such that

∀x ∈ X ∃n ∈ Z (ϕ(x) = πn(x)),

where ϕ, π have been identified with the corresponding permutations of X.

a0

...

an

...

-id

-π
n

a0

...

πn(an)

...

Figure 1.3: An element of the full group of π.

Proposition 3.1. Suppose that A is a σ-complete Boolean algebra and every power

of π admits a maximal discrete section. Then every element of [π] admits a maximal

discrete section.

Proof. Suppose that ϕ ∈ [π]. By Proposition 2.7, it is enough to find countably

many ϕ-discrete sections whose sum is supp(ϕ). Fix a partition of unity 〈an〉n∈Z such

that

ϕ =
Y
n∈Z

an
πn−→ πn(an),
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fix maximal πn-discrete sections bn ∈ A, and observe that

supp(ϕ) =
X
n∈Z

an · supp(πn) ≤
X

m,n∈Z
an · πm(bn).

Now for each m,n ∈ Z,

(an · πm(bn)) · ϕ(an · πm(bn)) = an · πm(bn) · πn(an) · πm+n(bn)

≤ πm(bn · πn(bn))

= O,
thus an · πm(bn) is ϕ-discrete. a

The π-saturation of a ∈ A is [a]π =
P
n∈Z π

n(a), and a is a π-complete section if

[a]π = 1. When A is purely atomic, a complete section is a section which contains

at least one point of the orbit of each atom. Many of the arguments to come can

be modified so as to use π-discrete complete sections instead of maximal π-discrete

sections. The following fact shows that yields no greater generality:

Proposition 3.2. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A),

n ∈ Z, and there is a πn-discrete, π-complete section. Then πn admits a maximal

discrete section.

Proof. Suppose a ∈ A is a πn-discrete, π-complete section, and note that each

iterate πk(a) of a is πn-discrete and
P
k∈N π

k(a) = 1. It now follows from Proposition

2.7 that πn admits a maximal discrete section. a

Corollary 3.3. Suppose A is a σ-complete Boolean algebra, π ∈ Aut(A), and for

each n ∈ N there is a πn-discrete, π-complete section. Then every element of [π]

admits a maximal discrete section.

Proof. This follows directly from Propositions 3.1 and 3.2. a

A partial π-transversal is an element a ∈ A such that

∀n ∈ N
�
πn|Aa·πn(a) = id

�
.
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When A is purely atomic, a partial transversal is a section which contains at most

one point of the orbit of each atom. A π-transversal is a partial π-transversal which

is also a π-complete section. An automorphism π is smooth if it admits a transversal.

Proposition 3.4. Suppose that A is a σ-complete Boolean algebra and π ∈ Aut(A) is

smooth. Then every element of [π] is smooth, and therefore admits a maximal discrete

section.

Proof. To see that every ϕ ∈ [π] is smooth, fix a π-transversal a0 ∈ A, and note

that each an = πn(a0) is also a π-transversal. It follows that each is a partial ϕ-

transversal. We will paste them together into a full transversal. Fix an enumeration

kn of Z, set b0 = O, recursively define

bn+1 = bn +

 
akn −

X
m<n

[bm]ϕ

!
,

and set b =
P
n∈N bn.

To see that every smooth automorphism ϕ admits a maximal discrete section, fix

a ϕ-transversal a ∈ A. Now note that ϕ has support b = [a − π(a)]ϕ and a is a

ϕ-discrete complete section for ϕ|Ab, and apply Proposition 3.2. a

The automorphism π is periodic if ∀a > O∃O < b ≤ a∃n > 0 (πn|Ab = id).

Proposition 3.5. Suppose A is a σ-complete Boolean algebra and π ∈ Aut(A) is

periodic. Then π is smooth ⇔ ∀ϕ ∈ [π] (ϕ admits a maximal discrete section).

Proof. Of course, (⇒) follows from Proposition 3.4. To see (⇐), note that each

πn has a support, by Proposition 2.7. An automorphism ϕ is of exact period n if

ϕn = id and ∀0 < i < n (πi is fixed-point free).

For each n > 0, the exact period n part of π is

an =
Y

0<i<n

supp(πi)− supp(πn).

Note that each an is π-invariant. Also, observe that the periodicity of π ensures that

these sections form a partition of unity. Let bn be a maximal π<n-discrete section,
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and note that an · bn is a transversal of π|Aan . It follows thatX
n>0

an · bn

is a π-transversal. a

An element a ∈ A is doubly π-recurrent if a ≤ P
n>0 π

n(a) and a ≤ P
n>0 π

−n(a).

Proposition 3.6. Suppose that A is a σ-complete Boolean algebra, a ∈ A, and π ∈
Aut(A). Then there is a π-invariant b ∈ A such that π|Ab is smooth and a − b is

doubly recurrent for π|A1−b.

Proof. The element b is the π-saturation of the sum of the leftmost piece of a,

` = a−
X
n>0

πn(a),

and the rightmost piece of a,

r = a−
X
n>0

π−n(a).

Clearly, `+ (r − [`]π) is a transversal of π|Ab, and a− b is doubly recurrent. a

A much stronger fact holds in complete Boolean algebras:

Proposition 3.7. Suppose that A is a complete Boolean algebra and π ∈ Aut(A).

Then there is a π-invariant a ∈ A such that π|Aa is smooth and every element of

A1−a is doubly π-recurrent.

Proof. Fix a maximal collection of partial π-transversals aξ with pairwise disjoint

saturations, and put a =
P
ξ[aξ]π. Clearly

P
ξ aξ is a transversal for π|Aa. It follows

from maximality that there is no non-zero π-transversal in A1−a, and it follows from

this and Proposition 3.6 that every element of A1−a is doubly recurrent. a

Remark 3.8. On the other hand, no non-smooth automorphism of a purely atomic

algebra can satisfy Proposition 3.7. This is because any candidate for such a b can

be enlarged by adding the saturation of an atom of A.
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Next we will give a characterization of smoothness, in a certain setting, which

will hopefully provide some intuition for this notion (and will certainly simplify our

work in the examples to come). A Baire space is a topological space in which the

intersection of countable many dense open sets is dense. Suppose Γ is a group which

acts on X by homeomorphisms. Then the orbit equivalence relation associated with

the action is given by

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

The orbit of a point is its EX
Γ -class. A complete section for EX

Γ for EX
Γ is a set B ⊆ X

which intersects every class of EX
Γ , a partial transversal for EX

Γ is a set B ⊆ X

which intersects every class of EX
Γ in at most one point, and a transversal of EX

Γ is a

complete section which is also a partial transversal. We will use “∀∗” to denote, “for

comeagerly many.”

Proposition 3.9. Suppose that X is a Baire space and Γ is a countable group which

acts on X by homeomorphisms. The following are equivalent:

1. EX
Γ admits a Baire measurable transversal.

2. ∀∗x ∈ X
�
x belongs to an open partial transversal of EX

Γ

�
.

If X is a complete metric space, then these are equivalent to:

3. ∀∗x ∈ X
�
x is not a limit point of [x]Γ

�
.

If Γ acts by isometries, then these are equivalent to:

4. ∀∗x ∈ X
�
[x]Γ is closed

�
.

Proof. To see (1) ⇒ (2), suppose B is a Baire measurable transversal of EX
Γ .

To see that comeagerly many points belongs to an open partial transversal of EX
Γ , it

clearly suffices to check that every non-empty open set U contains a non-empty open

partial transversal of EX
Γ . As X =

S
γ∈Γ γ · B, it follows that by replacing B with

its image under an element of Γ, we may assume that B is non-meager in U , thus
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comeager in some non-empty open set V ⊆ U . We claim that V must be a partial

transversal of EX
Γ . For if not, then there exists γ ∈ Γ such that

W = (V ∩ γ−1 · V ) ∩ supp(γ)

is non-empty. But then γ · (W ∩ B) is a non-meager subset of V which is disjoint

from B, contradicting the fact that B is comeager in V .

To see (2) ⇒ (1), suppose that comeagerly many points are contained in an open

partial transversal of EX
Γ , and let U be a maximal open partial transversal of EX

Γ .

To see that EX
Γ admits a Baire measurable transversal, it clearly suffices to check that

[U ]Γ is dense. If this is not the case, then there is a non-empty open set V ⊆ X\[U ]Γ.

Fix x ∈ V which is contained in a non-empty open partial transversal W of EX
Γ , and

observe that U ∪ (V ∩ W ) is an open partial transversal of EX
Γ , contradicting the

maximality of U .

Clearly (2) ⇒ (3). To see that (3) ⇒ (2) when X is a complete metric space, it

suffices to check that if there are non-meagerly many points which are not contained

in an open transversal of EX
Γ , then there are non-meagerly many points which are

limit points of their orbit. Fix a non-empty open set U such that

∀∗x ∈ U (x is not contained in an open partial transversal of EX
Γ ),

and note that U does not contain an open partial transversal. For each n > 0, put

Un =
[
γ∈Γ

{x ∈ X : 0 < d(x, γ · x) < 1/n}

= {x ∈ X : ∃y ∈ [x]Γ (0 < d(x, y) < 1/n)},

noting that each Un is open. It suffices to check that each Un is dense in U , for then

G =
T
n>0 Un is a Gδ set which is dense in U , all of whose elements are limit points of

their orbits. If Un is not dense, then there is a non-empty open set V ⊆ U \Un, and

any open subset of V of diameter < 1/n is clearly a partial transversal, contradicting

the fact that U does not contain any open partial transversals.

To see (4) ⇒ (3), it is enough to observe that if [x]Γ is closed, then x is not a limit

point of [x]Γ. Suppose, towards a contradiction, that x is a limit point of [x]Γ. Then
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every point of [x]Γ is a limit point of [x]Γ, since Γ acts by homeomorphisms. As no

perfect set is countable, this contradicts the fact that Γ is countable.

It remains to check that (3) ⇒ (4) when X is a complete metric space and the

elements of Γ are isometries. It is enough to show that if [x]Γ is not closed, then

x is a limit point of [x]Γ. Noting that for all ε > 0 there exist γ, δ ∈ Γ such that

0 < d(γ ·x, δ ·x) < ε, or equivalently, 0 < d(x, γ−1δ ·x) < ε, it follows that x is a limit

point of [x]Γ. a

Corollary 3.10. Suppose that X is a Baire space with a non-Baire measurable subset

and Γ is a countable group of homeomorphisms with a dense orbit. Then EX
Γ has no

Baire measurable transversal.

Proof. Since there is a dense EX
Γ -class, the only non-empty open partial transver-

sals are the open singletons. Put U = {x ∈ X : {x} is open}. Clearly U is open

and Γ-invariant. Suppose, towards a contradiction, that EX
Γ has a Baire measurable

transversal. Then comeagerly many points are contained in open partial transversals

of EX
Γ , thus U is dense. It follows that every set Y ⊆ X is the union of a meager set

Y \U and an open set Y ∩U and is therefore Baire measurable, contradicting the

fact that X has a subset which is not Baire measurable. a

Remark 3.11. Even when X is an uncountable Polish space, the existence of a non-

Baire measurable subset of X is not automatic. For example, the set X = 2≤N when

equipped with the metric

d(x, y) =

8<: 1/2n if n is least such that xn 6= yn,

0 if x = y,

forms a Polish space whose subsets are all Baire measurable. In general, a Polish space

X has a non-Baire measurable subset exactly when it is generically uncountable, that

is, when no countable subset of X is comeager.



29

4 Compositions of two involutions

Armed with the results of §2 and §3, we are now ready to begin our study of the

circumstances under which an automorphism can be written as a product of periodic

automorphisms from its full group. We begin by showing that an automorphism

is a composition of two involutions from its full group exactly when it is smooth.

We then show that if an aperiodic automorphism can be written as a product of

periodic automorphisms from its full group, then every element of its full group admits

maximal discrete sections. We close the section with a discussion of the problem of

finding automorphisms of σ-complete Boolean algebras which are not the composition

of a pair of involutions. We give a general setting in which an automorphism of a

rooted set-theoretic tree is such a composition, and we also show that any isometry of

a Polish metric space is a composition of two Borel involutions. Finally, we describe

how Bratteli-Vershik diagrams naturally lead to the Chacón automorphism, which del

Junco [20] has shown is not the composition of two measure-preserving involutions.

Suppose that A is a Boolean algebra. An automorphism π ∈ Aut(A) is an invo-

lution if π2 = id, and automorphisms ϕ, ψ ∈ Aut(A) are conjugate if there is another

automorphism π ∈ Aut(A) such that π ◦ ϕ = ψ ◦ π.

Proposition 4.1. Suppose that A is a σ-complete Boolean algebra and π is an auto-

morphism of A. Then the following are equivalent:

1. π is smooth.

2. π is the composition of two involutions from its full group.

3. π is conjugate to its inverse via an element of its full group.

Proof. To see (1) ⇒ (2), suppose a0 ∈ A is a π-transversal and put an = πn(a0).

The fact that a0 is a π-transversal ensures that πm−n|Aam·an = id. In particular, it

follows that π−2m|Aam·an = π−2n|Aam·an , so that, using our cycle notation,

ι0 =
Y
n≥0

(an
π−2n

−−−→ a−n) and ι1 =
Y
n≥0

(an
π−2n−1

−−−−→ a−n−1)
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are involutions from [π]. It only remains to note that

ι0 ◦ ι1 =
Y
n≥0

(an
π−2n

−−−→ a−n) ◦
Y
n≥0

(an
π−2n−1

−−−−→ a−n−1)

=
Y
n≥0

(an
π2n+2◦π−2n−1

−−−−−−−−→ an+1)

=
Y
n≥0

(an
π−→ an+1)

= π.

ι0

ι1

· · · · · ·���������������������
a−3 a−2 a−1 a0 a1 a2 a3

Figure 1.4: The action of ι0, ι1 on A.

To see (2) ⇒ (3), suppose that π = ι0 ◦ ι1 and ι0 ∈ [π], and observe that

ι0 ◦ π = ι0 ◦ ι0 ◦ ι1

= ι1

= ι1 ◦ ι0 ◦ ι0

= π−1 ◦ ι0.

ϕ

ϕ−1◦π

· · · · · ·���������������������
a0
−3 a0

−2 a0
−1 a0

0 a0
1 a0

2 a0
3

ϕ−1◦π

ϕ

· · · · · ·���������������������
a1
3 a1

2 a1
1 a1

0
a1
−1 a1

−2 a1
−3

Figure 1.5: The action of ϕ on A.

To see (3) ⇒ (1), suppose π is conjugate to its inverse via ϕ ∈ [π], fix akn with

ϕ =
Y

n∈Z,0≤k≤1

(akn
π2n+k

−−−→ π2n+k(akn)),
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and note that for all n ∈ Z, k ∈ {0, 1}, and a ≤ akn,

ϕ ◦ π(a) = π−1 ◦ ϕ(a)

= π−1 ◦ π2n+k(a)

= π2(n−1)+k ◦ π(a),

thus ϕ|Aπ(akn) = π2(n−1)+k|Aπ(akn). It follows that π(akn) ≤ akn−1, and since π is an

automorphism, it must be the case that π(akn) = akn−1. It then follows that

a = a0
0 + a1

0

is a partial π-transversal. To see that a is a π-complete section and therefore a π-

transversal, it only remains to note that for each a ∈ A+, there exists k ∈ {0, 1} and

n ∈ N with a · akn 6= O, thus πn(a) · ak0 = πn(a · akn) 6= O. a

Remark 4.2. We have recently realized that this argument is identical to that behind

the proof of Lemma 2.5 of Truss [76], although he was working in a somewhat different

context.

It follows from Propositions 3.4 and 4.1 that if π is the composition of two involu-

tions from its full group, then every element of [π] admits a maximal discrete section.

For aperiodic automorphisms, this is a special case of a more general fact:

Proposition 4.3. Suppose that A is a σ-complete Boolean algebra and π is an ape-

riodic automorphism of A which is the composition of periodic automorphisms from

its full group. Then every element of [π] admits a maximal discrete section.

Proof. A permutation τ of Z is of bounded period if there exists n > 0 such that

πn = id, a permutation τ of Z is of bounded displacement if

sup
n∈Z

|τ(n)− n| <∞,

and the average displacement of a permutation τ of Z is

d(τ) = lim
n→∞

1

2n+ 1

X
|k|≤n

τ(k)− k.

At the heart of our proof is the following simple fact about the successor on Z:
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Lemma 4.4. The successor on Z is not the composition of permutations of bounded

periods and bounded displacements.

Proof. Clearly the successor has average displacement 1. We will simply show

that the average displacement of a composition of permutations of bounded periods

and bounded displacements is 0.

Suppose that τ0, . . . , τm is a collection of permutations of bounded period N and

bounded displacement d. Note that for each k, n ∈ N with |k| ≤ n − dN , the entire

τi-orbit of k is contained in [−n, n]. As the sum of the displacements over a finite

orbit is 0, it follows that

|d(τi)| = lim
n→∞

1

2n+ 1

������ X|k|≤n τi(k)− k

������
= lim

n→∞

1

2n+ 1

������ X
|k|≤n−dN

τi(k)− k +
X

n−dN<|k|≤n
τi(k)− k

������
≤ lim

n→∞

2d2N

2n+ 1
,

thus d(τi) = 0.

Setting τm+1 = id and noting that

τi+1 ◦ · · · ◦ τm+1([−n, n]) ⊆ [−n−md, n+md],
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it follows that

|d(τ0 ◦ · · · ◦ τm)| = lim
n→∞

1

2n+ 1

������ X|k|≤n τ0 ◦ · · · ◦ τm(k)− k

������
= lim

n→∞

1

2n+ 1

������ X
|k|≤n,i≤m

τi ◦ · · · ◦ τm(k)− τi+1 ◦ · · · ◦ τm+1(k)

������
= lim

n→∞

1

2n+ 1

������ X
k∈τi+1◦···◦τm+1([−n,n]),i≤m

τi(k)− k

������
≤ lim

n→∞

1

2n+ 1

������ X
k∈[−n−md,n+md],i≤m

τi(k)− k

������
≤ lim

n→∞

1

2n+ 1

�
2md(m+ 1)d+

������ X
|k|≤n,i≤m

τi(k)− k

�������
≤ lim

n→∞

1

2n+ 1

������ X
|k|≤n,i≤m

τi(k)− k

������
= |d(τ0)|+ · · ·+ |d(τm)|

= 0,

It follows that the composition of the τi’s is not the successor. a

Now we return to the task of seeing that each element of [π] admits a maximal

discrete section. By Corollary 3.3, it is enough to show that for each n > 0, there is

a πn-discrete, π-complete section. For this, it is clearly enough to show that there is

a collection of finitely many πn-discrete sections whose sum is a π-complete section.

Suppose that πi ∈ [π] are periodic and π = π0 ◦ · · · πm. Fix a
(i)
` , b

(i)
` with

πi =
Ỳ
∈Z
a

(i)
`

π`−→ π`(a
(i)
` ) and π−1

i =
Ỳ
∈Z
b
(i)
`

π`−→ π`(b
(i)
` ),

and for s, t : {0, . . .m} × {0, . . . , n− 1} → Z, let ast ∈ A be maximal such that

∀i ≤ m ∀j < n
�
πi|Aπj(ast) = πs(i,j)|Aπj(ast) and π−1

i |Aπj(ast) = πt(i,j)|Aπj(ast)

�
.

That is, set

ast =
Y

i≤m,j<n
π−j(a

(i)
s(i,j)) ·

Y
i≤m,j<n

π−j(b
(i)
t(i,j)).
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Clearly, the set of such sections is predense, thus
P
s,t ast = 1. We claim that

A = {ast − πn(ast)}s,t:{0,...m}×{0,...,n−1}→Z

is the desired family of πn-discrete sections whose sum is a π-complete section.

Suppose, towards a contradiction, that a = 1− [
P

A ]Γ is non-zero. Note that

a · ast ≤ πn(ast),

thus a · ast = πn(a · ast). Letting l%n denote the remainder when l is divided by n, it

follows that for all i ≤ m, ` ∈ Z, and s, t : {0, . . .m} × {0, . . . , n− 1} → Z,

πi|Aπ`(a·ast) = πs(i,`%n)|Aπ`(a·ast) and π−1
i |Aπ`(a·ast) = πt(i,`%n)|Aπ`(a·ast).

Fix s, t : {0, . . . ,m}×{0, . . . , n− 1} → Z such that b = a · ast is non-zero, and for

each i ≤ m, define τi : Z → Z by

τi(`) = `+ s(i, `%n).

We will show that each τi is a permutation of Z of bounded period and displacement

and such that τ0 ◦ · · · ◦ τm is the successor function on Z, which contradicts Lemma

4.4.

Lemma 4.5. Each τi is injective.

Proof. Suppose, towards a contradiction, that there exists `0, `1 ∈ Z such that

τ(`0) = τ(`1), and fix c ≤ b such that π`0(c) · π`1(c) = O. Noting that for all ` ∈ Z,

πi(π
`(c)) = πτi(`)−` ◦ π`(c) = πτi(`)(c),

it follows that πi(π
`0(c)) = πi(π

`1(c)), the desired contradiction. a

Lemma 4.6. Each τi is surjective.

Proof. We must show that each ` ∈ Z is in the range of τ . Noting that

π−1|Aπ`(b) = πt(i,`)|Aπ`(b),
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it follows that

π|Aπt(i,`)+`(b) = π−t(i,`)|Aπt(i,`)+`(b).

As π|Aπt(i,`)+`(b) = πs(i,(t(i,`)+`)%n)|Aπt(i,`)+`(b), it follows that

s(i, (t(i, `) + `)%n) = −t(i, `),

thus

τi(t(i, `) + `) = (t(i, `) + `)− s(i, (t(i, `) + `)%n)

= (t(i, `) + `)− t(i, `)

= `.

It follows that τi is surjective. a

Lemma 4.7. Each τi is of bounded period and bounded displacement.

Proof. It is clear that τi is of bounded displacement maxj<n |s(i, j)|. To see that

τi is of bounded period, recursively define di : Z×N → Z by putting di(`, 0) = 0 and

di(`, k + 1) = di(`, k) + s(i, (`+ di(`, k))%n),

noting that

πki |Aπ`(b) = πdi(`,k)|Aπ`(b).

Also note that by the obvious induction, di(`, k) only depends on `%n and k. Finally,

note that

τ ki (`) = `+ di(`, k),

by one more straightforward induction.

As πi is periodic, for each j < n we can find kj > 0 and O < bj ≤ πj(b) with

π
kj
i |Abj = id.

It then follows that πdi(j,kj)|Abj = id, thus di(j, kj) = 0, so

∀` ∈ Z (` ≡ j (mod n) ⇒ τ
kj
i (`) = `).

Setting k =
Q
j<n kj, it follows that τ ki = id. a
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Lemma 4.8. τ = τ0 ◦ · · · ◦ τm.

Proof. Recursively define d : Z× N → Z by putting d(`,m) = s(m, `%n) and

d(`, i− 1) = d(`, i) + s(i− 1, (`+ d(`, i))%n),

noting that for all i ≤ m,

πi ◦ · · · ◦ πm|Aπ`(b) = πd(`,i)|Aπ`(b).

In particular, the assumption that π = π0 ◦ · · · ◦ πm implies that

∀` ∈ Z (d(`, 0) = 1).

As τ0 ◦ · · · ◦ τm(`) = `+ d(`, 0) = `+ 1, the lemma follows. a

We will close this section with a few words about a related question:

Question 4.9. Suppose that A is a σ-complete Boolean algebra. Which automor-

phisms of A are the composition of two involutions? Which automorphisms of A are

conjugate to their inverses?

The answer to these questions are surprisingly evasive! Even for the measure-

preserving automorphisms of the complete Boolean algebra LM of Lebesgue mea-

surable subsets of [0, 1] mod null, simply finding some automorphism which is not

the composition of two involutions is sufficiently difficult that Halmos-von Neumann

[43] once suggested that there might not be any such automorphisms. Nevertheless,

such automorphisms were constructed in the early 1950’s in Anzai [5], and in the late

1970’s del Junco [20] showed that the generic measure-preserving automorphism is

not conjugate to its inverse.

Similar problems arise in looking for Borel automorphisms of uncountable Polish

spaces which are not conjugate to their inverses. One of the simplest Borel automor-

phisms is the odometer σ on Cantor space C = 2N, which is given by

σ(x) =

8<: 0n1y if x = 1n0y,

0∞ if x = 1∞.
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Intuitively, σ is “addition by 10∞ with right carry.” As the odometer is clearly an

isometry with dense orbits, it follows from Corollary 3.10 that it is non-smooth, and

it follows from the proof of Proposition 4.1 that it is not conjugate to its inverse via

an element of its full group. However, the odometer is conjugate to its inverse via

the map x 7→ x which flips each digit of x. This is really just a symptom of a much

more general phenomenon:

Proposition 4.10. Every isometry of a Polish space is the composition of two Borel

involutions.

Proof. As the proposition is obvious for countable Polish spaces, we may assume

that the underlying space is C and that the Polish metric d on C is compatible with

its usual Borel structure. Define

E = {(x, y) ∈ C 2 : x ∈ [y]f},

and note that for all (x, y) ∈ E,

z ∈ [x]f ⇒ ∀ε > 0∃m,n ∈ Z
�
d(y, fm(x)), d(z, fn(x)) < ε

�
⇒ ∀ε > 0∃m,n ∈ Z

�
d(fm(y), x), d(fn(z), x) < ε

�
⇒ ∀ε > 0∃n ∈ Z (d(z, fn(y)) < ε)

⇒ z ∈ [y]f ,

from which it follows that E is an equivalence relation whose classes are the sets of

the form [x]f .

Let `(x) be the lexicographically minimal element of [x]f , and put Y = `(X).

For each y ∈ Y , define iy : [y]f → [y]f by i(fn(y)) = f−n(y). It is easily verified

that iy is an involution isometry of ([y]f , d|[y]f ) which anticommutes with f |[y]f .

Moreover, iy has a unique extension to an involution isometry iy : [y]f → [y]f which

anticommutes with f |[y]f . It follows that the map x 7→ i`(x)(x) is a Borel involution

which anticommutes with f . a

Remark 4.11. (Clemens) It is worth noting that the above argument shows that

every isometry with dense orbits is the composition of two involution isometries. The
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assumption of dense orbits is necessary, however, as it is easy to build a countable

Polish metric space in which the equivalence relation E mentioned above has 2 classes,

but whose isometries consist of the powers of a single aperiodic isometry, and thus

has no non-trivial involutions.

On the other hand, the assumption of dense orbits can be dropped if we restrict

our attention to certain tree metrics. A tree is a pair (T,≤), where T is any set and

≤ is a well-founded partial order on T . The height of t ∈ T is the order type of

≤ |{s ∈ T : s < t}, and the height of (T,≤) is the least ordinal α for which (T,≤)

has no nodes of height α. I will use Aut(T,≤) to denote the set of automorphisms of

(T,≤). A branch point for π ∈ Aut(T,≤) is a node t ∈ T whose π-orbit is of strictly

greater cardinality than that of all of its ≤-predecessors, or equivalently, a node t ∈ T
whose π-orbit includes one of his siblings.

Proposition 4.12. Suppose (T,≤) is a tree, π ∈ Aut(T,≤), and every element of

T has only finitely many ≤-predecessors which are branch points. Then T is the

composition of two involutions. In particular, every automorphism of a tree of height

≤ ω is the composition of two involutions.

Proof. Let α(t) denote the height of t ∈ T and set Tα = {t ∈ T : α(t) = α}. Let

A0 be a transversal for π|T0, and suppose we have constructed a decreasing sequence

〈Aβ〉β<α such that

1. ∀β < α
�
Aβ is a transversal for π|Tβ

�
.

2. ∀β < α ∀t ∈ Aβ ∀s < t
�
s ∈ Aα(s)

�
.

We claim that Bα = {t ∈ Tα : ∀s < t (s ∈ Aβ)} is a complete section for π|Tα. To see

this, note that for each t ∈ Tα, it follows from the fact that t has only finitely many

π-branching ≤-predecessors that there exists s < t such that

∀s < r < t (r is not π-branching).

Fixing n ∈ Z such that πn(s) ∈ Aα(s), it follows that πn(r) ∈ Aα(r) for all r < t, thus

πn(t) ∈ Bα. It follows that there is a transversal Aα ⊆ Bα of π|Tα.
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Associate with each t ∈ T a natural number n(t) such that πn(t)(t) ∈ Aα(t). It is

easily verified that the map t 7→ π2n(t)(t) is an involution of (T,≤) which anticommutes

with π. a

Remark 4.13. Note that when T is of height ω, the requirement that each node

has only finitely many predecessors which are branch points is superfluous. It follows

that every isometry of Cantor space and every isometry of Baire space N = NN is

the composition of two involution isometries.

Remark 4.14. It should also be noted that there are automorphisms of trees of

height ω + 1 which are not the composition of two involutions. To see this, let T be

the complete binary tree and set

T ′ = {(x, β) ∈ C ×ORD : β < ℵα(x)},

where α : C → ORD is a mapping from Cantor space into the ordinals such that

x, y ∈ C lie in the same orbit of σ exactly when α(x) = α(y). We will show that no

π ∈ Aut(T ∪ T ′,⊆) whose restriction to T induces the odometer can be conjugate

to its inverse. First note that the isometry of C induced by the restriction of any

element of Aut(T ∪ T ′,⊆) to T is in [σ]. Now suppose, towards a contradiction, that

there is an automorphism ϕ ∈ Aut(T ∪ T ′,⊆) such that ϕ ◦ π = π−1 ◦ ϕ. Letting ψ

be the isometry of C induced by ϕ|T , a simple category argument shows that ψ is of

the form x 7→ x0 + x, for some fixed x0 ∈ C , on a σ-invariant comeager subset of C ,

where + denotes addition with right carry, contradicting the fact that ψ ∈ [σ].

...

rr
rrd

...

r@
rd r@
rd r@
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r@
rd r@
rd r@
rd rd

Figure 1.6: Some natural modifications of the odometer.
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Despite Propositions 4.10 and 4.12, there is a natural path from the odometer to

an automorphism which is not Borel conjugate to its inverse. We will use D0, D1,

and D2 to denote the above diagrams. Associated with each diagram Di is the space

Xi of downward firing paths which begin at a circled node in Di. We will identify X0,

X1, and X2 with C , N× C , and N× 3N.

Except for the fact that each Xi has a leftmost and/or rightmost path, these di-

agrams are examples of the Borel-Bratteli diagrams of Bezuglyi-Dooley-Kwiatkowski

[9]. As noted there, one can associate with every such diagram a Vershik automor-

phism, which is obtained by replacing the minimal initial segment of a path which

is not a sequence of rightmost edges with the leftmost path whose final edge is to

the right of the final edge of the initial segment. As the above diagrams are not

quite Borel-Bratteli diagrams, their associated Vershik map is merely a Borel partial

function, not an automorphism. However, their restrictions to the (co-countable) set

of non-eventually constant sequences are Borel automorphisms.

The Vershik map corresponding to D0 is the map σ0 which sends 1n0y to 0n1y

and is undefined at 1∞. Away from 1∞, this is the odometer. The diagram D0 alone

makes it abundantly clear that the restriction of σ0 is conjugate to its inverse, for the

map which reflects downward firing paths around the vertical axis of symmetry of D0

clearly anticommutes with the Vershik map.

One natural strategy for building a Borel automorphism which is not conjugate

to its inverse is to modify D0 so as to destroy this symmetry. It is clear that any such

modification must involve changing infinitely many levels of D0, since otherwise it is

easy to come up with another diagram with an isomorphic Vershik automorphism,

but which possesses the same sort of symmetry as D0. Thus D1 is the simplest natural

candidate. The Vershik map corresponding to D1 is

σ1(n, x) =

8<: (m, 1y) if n = 0 and x = 1m0y,

(n− 1, 0x) if n > 0.

However, the restriction of σ1 can also be seen to be conjugate to its inverse, as one

can paste together the reflection used to show that the odometer is conjugate to its
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inverse with another reflection which lives in the new piece of D1:

i(n, x) =

8<: (0, x) if n = 0,

(m+ 1, 0n−11y) if n > 0 and x = 0m1y.

It is easy (albeit somewhat tedious) to verify that i is an involution which anticom-

mutes with σ1 on the non-eventually constant sequences.

The next simplest candidate which is not already ruled out by the above sorts of

remarks is D2. The Vershik map corresponding to D2 is

σ2(n, x) =

8>><>>: (0, 0m1y) if n = 0 and x = 2m0y,

(m+ 1, y) if n = 0 and x = 2m1y,

(0, 0n−12x) if n > 0.

This is the inverse of the Chacón automorphism. In del Junco-Rahe-Swanson [21], it

is shown that the Chacón automorphism is not conjugate to its inverse via a measure-

preserving transformation. As this automorphism has a unique ergodic measure, it

follows that it is not conjugate to its inverse via a Borel automorphism, since any

such automorphism would necessarily preserve measure.

5 Compositions of three involutions

In this section, we show that an automorphism of a σ-complete Boolean algebra,

whose powers admit maximal discrete sections, can always be written as a product of 3

involutions from its full group. In the aperiodic case, it then follows from Proposition

4.3 that the existence of maximal discrete sections for the powers of π is a necessary

and sufficient condition for writing π as the composition of n involutions from its full

group, for any n ≥ 3.

Suppose that A is a purely atomic Boolean algebra and π ∈ Aut(A) is aperiodic.

One can visualize any ϕ ∈ [π] as a collection of directed arcs which lie above the

π-orbits of atoms of A. An automorphism

ϕ =
Y
n∈Z

an
πn−→ πn(an)
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in [π] is non-crossing if none of these arcs cross, or equivalently, if

∀n ∈ Z∀m ∈ (0, n)

�
πm(an) ≤

X
`∈(0,n)

a`−m

�
, (†)

where (0, n) is shorthand for {m ∈ Z : 0 < m < n or n < m < 0}.

r r r r r r r r r r-� � - � -
-

-

�

- -

· · · · · ·
π

ϕ

Figure 1.7: The arcs associated with the action of ϕ on the π-orbit of an atom of A.

An arc associated with ϕ ∈ [π] is an outer arc if the ϕ-orbit of the points connected

by the arc lies below it, and a ≤ an is the base of an outer n-arc if

∀m ∈ N ∃` ∈ [0, n]
�
ϕm|Aa = π`|Aa

�
.

We say that b is covered by ϕ if every atom of b sits below an outer arc, i.e.,

b ≤
X
{πm(a) : ∃n ∈ N (m ∈ (0, n) and a is the base of an outer n-arc)}, (‡)

and ϕ is covering if it covers 1. It should be noted that if b is covered by ϕ then, in

fact, every atom below b is covered by infinitely many outer arcs.

r r r r r r r r r r· · · · · ·
π

ϕ

Figure 1.8: The arcs associated with the action of a non-covering involution.

Even when A is not purely atomic, we will take (†) and (‡) to be the official

definitions of non-crossing and covering. It should be noted that non-crossing covering

automorphisms are necessarily periodic, although we will have little need for this.

Proposition 5.1. Suppose that A is a Boolean algebra and π ∈ Aut(A) is aperiodic.

1. If ϕ is a non-crossing covering automorphism, then ϕ ◦ π is periodic.
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r r r r r r r r r r· · · · · ·
π

ϕ

Figure 1.9: The arcs associated with the action of a non-crossing covering involution.

2. If A is σ-complete and π admits a non-crossing covering automorphism, then

every element of [π] admits a maximal discrete section.

Proof. To see (1) suppose, towards a contradiction, that there is a non-zero

ϕ ◦ π-invariant a ∈ A such that ϕ ◦ π|Aa is aperiodic. As ϕ is covering, there is a

non-zero b ≤ a and positive natural numbers m < n such that π−m(b) is the base of

an outer n-arc. We will simply show that there is a non-zero element of Ab whose

orbit under ϕ ◦ π is trapped under this arc. As ϕ is non-crossing,

∀O < c ≤ b ∀` ∈ Z∀k 6∈ [−m,n−m]
�
(ϕ ◦ π)`|Ac 6= πk|Ac

�
.

In particular, we can recursively build a decreasing sequence b0 < · · · < bn+1 of

non-zero elements of Ab and a sequence of integers k0, . . . , kn+1 ∈ [−m,n−m] with

∀0 ≤ ` ≤ n+ 1
�
(ϕ ◦ π)`|Ab` = πk` |Ab`

�
.

As two of the ki’s must be equal, it follows that for some 1 ≤ ` ≤ n+ 1,

(ϕ ◦ π)`|Abn−1 = id,

contradicting the the aperiodicity of ϕ ◦ π|Aa.

To see (2), suppose ϕ is a non-crossing covering automorphism, fix an such that

ϕ(a) =
Y
n∈Z

an
πn−→ πn(an),

and let

bn =
X
|m|>n

am · π−m(a0 + a−1 + · · ·+ a−m)

be the piece of A which is the base of an outer m-arc, where |m| > n. Note that each

bn is π≤n-discrete because ϕ is non-crossing. As the base of an outer n-arc can only
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be covered by an outer m-arc if |m| > |n|, the obvious induction shows that each bn

is a complete section. It follows that the sections of the form πm(bn), with m ∈ Z, are

πn-discrete sections which sum to supp(πn). By Proposition 2.7, each πn admits a

maximal discrete section. By Proposition 3.1, every element of [π] admits a maximal

discrete section. a

Corollary 5.2. Suppose that A is a σ-complete Boolean algebra and π ∈ Aut(A)

admits a non-crossing covering involution. Then π is the composition of three invo-

lutions from its full group.

Proof. Suppose ι0 ∈ [π] is a non-crossing covering involution. By Proposition

5.1, ι0 ◦ π is periodic and every element of [ι0 ◦ π] ⊆ [π] admits a maximal discrete

section. By Proposition 3.5, ι0◦π is smooth. By Proposition 4.1, there are involutions

ι1, ι2 ∈ [ι0 ◦ π] such that ι0 ◦ π = ι1 ◦ ι2, or equivalently, π = ι−1
0 ◦ ι1 ◦ ι2. a

Now that the problem of writing an automorphism π as a composition of three

involutions in [π] has been reduced to the problem of finding non-crossing covering

involutions, it is time to embark upon the solution to this auxiliary problem.

An element a ∈ A has large gaps (with respect to an automorphism π of A) if

∀n ∈ N ∃b ≤ a
�
[a]π = [b]π and a · (π(b) + π2(b) + · · ·+ πn(b)) = O�.

Proposition 5.3. Suppose that A is a σ-complete Boolean algebra and π ∈ Aut(A)

is aperiodic and admits a complete section with large gaps. Then π admits a non-

crossing covering involution.

Proof. Suppose that A is purely atomic. Given any complete section a ∈ A, one

can think of the orbits of atoms of A as lying on a two dimensional mountain range.

The height of an atom b ∈ A is the least h(b) ∈ N such that either πh(b)(b) ≤ a or

π−h(b)(b) ≤ a. If πh(b)(b) ≤ a and π−h(b)(b) 6≤ a, then b is in the downward sloping

piece of the range. If πh(b)(b) 6≤ a and π−h(b)(b) ≤ a, then b is in the upward sloping

piece of the range. If πh(b)(b) ≤ a and π−h(b)(b) ≤ a, then b is on the peak of a
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mountain in the range. For n > 0,

an = πn(a)−
X

i∈[0,n)

πi(a)−
X
i∈[0,n]

π−i(a).

is the part of A at height n which lies on the upward sloping piece of the range.

For n < 0, the same formula defines the part of A at height |n| which lies on the

downward sloping piece.

Now suppose that a ∈ A is a complete section with large gaps. Note that this

guarantees that
P
m>n am is a complete section, for all n ∈ N. As the construction of

a non-crossing covering involution is straightforward when π is smooth (an “infinite

rainbow” centered on a transversal will certainly do the job), we may assume that

each
P
m>n am is doubly recurrent. That is, any atom of A can travel along its orbit

to an atom of greater height by moving in either direction.
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Figure 1.10: The induced mountain atop the π-orbit of an atom.

There is now a non-crossing covering involution right in front of us. Namely, the

map which fixes the atoms on the peaks of the mountains and sends any other atom

of A to the unique atom at the same height which he can see from his perch on

the mountain. The fact that there are arbitrarily tall mountains in either direction

ensures that such a point exists, and the visibility condition ensures that the resulting

involution is non-crossing. Formally, define

ι =
Y
n>0

(an
π−2n

−−−→ a−n).

It is clear that ι ∈ [π] is an involution. Noting that

∀n ∈ N (an+1 ≤ π(an) and a−n−1 ≤ π−1(a−n)),
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it easily follows that ι is non-crossing, and the fact that each
P
m>n am is doubly

recurrent ensures that ι is covering. It now only remains to remark that, with the

exception of the intuition behind the definition of ι, we have not actually used our

assumption that A is purely atomic. a

Corollary 5.4. Every aperiodic automorphism of a σ-complete Boolean algebra which

admits a complete section with large gaps is the composition of three involutions from

its full group.

There are many Boolean algebras whose automorphisms admit complete sections

with large gaps. A measure algebra is a pair (A, µ), where A is a σ-complete Boolean

algebra and µ is a measure on A which is strictly positive on A+. A measure algebra

is semi-finite if the elements of finite measure are dense in A.

Proposition 5.5. Every aperiodic automorphism of a semi-finite complete measure

algebra admits a complete section with large gaps.

Proof. Let A ⊆ A be a maximal set of elements of A with large gaps such that

∀a, b ∈ A (a 6= b⇒ [a]π · [b]π = O),

and let a ∈ A be the least upper bound of A . Clearly a has large gaps. Suppose,

towards a contradiction, that a is not a complete section. Then there is a non-zero

b ≤ 1 − [a]π of finite measure. For each n ∈ N, let bn be a maximal π<n·3
n
-discrete

section and fix i < 3n such that

cn =
X

in≤j<(i+1)n

b · πj(bn)

is of measure at most µ(b)/3n. Now set c = 1−P
n∈N cn, noting that µ(c) ≥ µ(b)/2.

It follows that d = [c]π is non-zero and c is a complete section for π|Ad with large

gaps, contradicting the maximality of A . a

Our task is not yet complete, however, for there are automorphisms of σ-complete

Boolean algebras which do not admit complete sections with large gaps. Let BP

denote the unique atomless, σ-complete Boolean algebra which has a countable dense

subalgebra (i.e., the Baire measurable subsets of a perfect Polish space mod meager).
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Proposition 5.6. Suppose that f is an isometry of a complete ultrametric space.

The following are equivalent:

1. f admits a Baire measurable transversal.

2. f admits a Baire measurable complete section with large gaps.

Proof. The proof of (1) ⇒ (2) is straightforward. To see ¬(1) ⇒ ¬(2), suppose

B is a Baire measurable complete section, and find an open ball U which does not

contain a non-empty open partial transversal. As X =
S
n∈Z f

n(B), it follows that by

replacing B with its image under some iterate of f and shrinking U , we may assume

that B is comeager in U . Then fn(U ) ∩ U 6= ∅ for some n 6= 0. As any two balls

of equal radius in an ultrametric space are either disjoint or identical, it follows that

fn(U ) = U , thus

A =
\
k∈Z

fkn(B)

is comeager in U . Now note that for all C ⊆ [A]π, at least one of π(C), . . . , πn(C)

must intersect A, and therefore must intersect B. It follows that B does not have

large gaps. a

Corollary 5.7. There is an automorphism of the homogeneous complete Boolean

algebra BP which does not admit a complete section with large gaps. There is an

automorphism of the σ-complete Boolean algebra of Borel subsets of an uncountable

Polish space which does not admit a complete section with large gaps.

Proof. By Corollary 3.10, the odometer does not admit a Baire measurable

transversal, and thus cannot admit a Baire measurable complete section with large

gaps. It follows that the automorphisms of the above Boolean algebras which are

induced by the odometer do not have complete sections with large gaps. a

Finally, it is time to complete the task at hand:

Theorem 5.8. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A), and

every element of [π] admits a maximal discrete section. Then π is the composition of

three involutions from [π].
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Proof. First note that by Propositions 3.5 and 4.1, the restriction of π to each of

its exact period n parts is the composition of two involutions. Thus we may assume

that π is aperiodic. Suppose that a ∈ A is doubly π-recurrent. Note that for each

k > 0, there is a maximal aπk ≤ a such that π(aπk), . . . , πk−1(aπk) are disjoint from a

and πk(aπk) ≤ a. Explicitly, this section is given by

aπk = a ·

�
π−k(a)−

X
1≤`<k

π−`(a)

�
.

The induced automorphism of Aa is given by

πa =
Y
k∈N

aπk
πk−→ πk(aπk).

Fix a decreasing sequence of elements an ∈ A such that a0 = 1 and an+1 is maximal

π<3
an -discrete. Set bn = πan(an+1), cn = π−1

an (an+1), ϕn = π−1
an ◦ πan+1 ◦ π−1

an , and

ι =
Y
n>0

(bn
ϕn−→ cn).

It is easily verified that ι is a non-crossing involution, but it need not be covering.

Nevertheless,

a =
X
n>0

π(bn) + · · ·+ π3n−1(bn)

is covered by ι. As 1 − a has large gaps and we have already produced a covering

non-crossing involution off of [1−a]π, it follows from Proposition 5.3 that π admits a

non-crossing covering involution, thus π is the composition of three involutions from

its full group, by Corollary 5.2. a

6 The full group of a group of automorphisms

Suppose that A is a κ-complete Boolean algebra and Γ is a group of cardinality

strictly less than κ which acts on A by automorphisms. When no confusion will result,

we will occasionally identify an element γ ∈ Γ with the automorphism by which it

acts. The full group of Γ is the group [Γ] of automorphisms of A of the form

π =
Y
γ∈Γ

aγ
γ−→ γ · aγ,

where 〈aγ〉γ∈Γ and 〈γ · aγ〉γ∈Γ are both partitions of unity.
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a0
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aγ

...

-id

-γ

a0

...

γ·aγ
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Figure 1.11: An element of the full group of Γ.

Proposition 6.1. Suppose that A is a κ-complete Boolean algebra and Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections. Then every element of [Γ] admits a maximal discrete section.

Proof. Suppose ϕ ∈ [Γ], fix a partition of unity 〈aγ〉γ∈Γ such that ϕ =
Q
γ∈Γ aγ

γ−→
γ · aγ, fix maximal γ-discrete sections bγ ∈ A, and observe that

supp(ϕ) =
X
γ∈Γ

aγ · supp(γ) ≤
X
γ∈Γ

aγ · (γ−1 · bγ + bγ + γ · bγ).

Now for each γ ∈ Γ and n ∈ Z,

(aγ · (γn · bγ)) · ϕ(aγ · (γn · bγ)) = aγ · (γn · bγ) · (γ · aγ) · (γn+1 · bγ)

≤ γn · (bγ · (γ · bγ))

= O,
thus each aγ · (γ · bγ) is ϕ-discrete, so ϕ admits a maximal discrete section, by Propo-

sition 2.7. a

The Γ-saturation of a ∈ A is [a]Γ =
P
γ∈Γ γ · a and a is a Γ-complete section if

[a]Γ = 1. A partial Γ-transversal is an element a ∈ A such that

∀γ ∈ Γ
�
γ|Aa·(γ·a) = id

�
,

and a Γ-transversal is a partial Γ-transversal which is also a Γ-complete section.

Proposition 6.2. Suppose that A is a κ-complete Boolean algebra and Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms. Then the following

are equivalent:
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1. Γ admits a transversal.

2. The set of partial Γ-transversals has a predense subset of cardinality < κ.

Proof. To see (1) ⇒ (2), it is enough to check that if a ∈ A is a partial Γ-

transversal, then for each δ ∈ Γ, the image δ · a is also a partial Γ-transversal. To

see this, suppose that γ ∈ Γ, and observe that if b ≤ (δ · a) · (γ · (δ · a)), then

δ−1 · b ≤ a · (δ−1γδ · a). As a is a partial Γ-transversal, it follows that

δ−1γδ · (δ−1 · b) = δ−1 · b,

thus

γ · b = δ · (δ−1γδ · (δ−1 · b))

= δ · (δ−1 · b)

= b,

hence δ · a is a partial Γ-transversal.

To see (2) ⇒ (1), suppose that 〈aξ〉ξ<λ is a predense sequence of partial Γ-

transversals, with λ < κ. Put b0 = O and recursively define

bξ+1 = bξ + (aξ − Γ · bξ) ,

and bξ =
P
ζ<ξ bζ when ξ is a limit ordinal. Noting that

bξ+1 · (γ · bξ+1) = (bξ + (aξ − [bξ]Γ)) · (γ · (bξ + (aξ − [bξ]Γ)))

≤ bξ · (γ · bξ) + aξ · (γ · aξ),

it follows from the obvious induction that bλ is a partial Γ-transversal. To see that

bλ is a Γ-complete section, note that for any non-zero a ∈ A there exists ξ < λ such

that a · aξ 6= O. It then follows from the definition of bξ+1 that a · (bξ+1 + [bξ]Γ) 6= O,

thus a · (Γ · bλ) 6= O. a

The action of the group Γ on A is smooth if it admits a transversal.
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Proposition 6.3. Suppose that A is a κ-complete Boolean algebra and Γ is a group

of cardinality strictly less than κ which acts smoothly on A. Then every element of

[Γ] admits a maximal discrete section.

Proof. By Proposition 6.1, it is enough to show that each γ ∈ Γ admits a maximal

discrete section. Fix a Γ-transversal a ∈ A, and note that supp(γ) is the sum of the

γ-discrete sections of the form (δ · a) − γ · (δ · a), thus γ admits a maximal discrete

section by Proposition 2.7. a

The Γ-orbit of a ∈ A is the set {γ · a : γ ∈ Γ}. An element a ∈ A is Γ-periodic

if for densely many b ∈ A there exists n ∈ N such that for all c ≤ b, every pairwise

disjoint set of non-zero elements of Aa contained in the Γ-orbit of c is of cardinality

at most n. The action of Γ is periodic if 1 is Γ-periodic. When A is purely atomic,

this simply says that the Γ-orbit of every atom is finite.

Proposition 6.4. Suppose that A is a κ-complete Boolean algebra and Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections. If the action of Γ admits a periodic complete section, then the action

of Γ on A is smooth.

Proof. Suppose that ∆ ⊆ Γ is finite and contains 1. A ∆-discrete section b ∈ A

is a local ∆-witness to the Γ-periodicity of a if [b]∆ ≤ a and for all c ≤ b, every

pairwise disjoint subset of the Γ-orbit of c contained in Aa is of cardinality at most

|∆|. It immediately follows that a ∈ A is Γ-periodic exactly when the local witnesses

to periodicity are dense below a. The remainder of the proof hinges on the following

connection between local witnesses and partial transversals:

Lemma 6.5. Suppose that A is a Boolean algebra, Γ is a group of cardinality strictly

less than κ which acts on A by automorphisms, and ∆ ⊆ Γ is finite and contains 1.

Then every local ∆-witness to periodicity is a partial Γ-transversal.

Proof. Suppose, towards a contradiction, that b is a local ∆-witness to periodicity

and there exists γ ∈ Γ such that

γ−1|Ab·(γ−1·b) 6= id.
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It then follows from Proposition 2.2 that there is a non-zero γ−1-discrete section

c ≤ b · (γ−1 · b). Then c · (γ · c) = O by Proposition 2.1, and since γ · c ≤ b, it follows

that (γ · c) · (δ · c) = O for all δ ∈ ∆, and this contradicts the fact that b is a local

∆-witness to Γ-periodicity. a

Before completing the proof, it will be useful to make a slight detour and consider

the corresponding notion of Γ-aperiodicity. An element a ∈ A is Γ-aperiodic if for

all n ∈ N, there are densely many non-zero b ∈ Aa whose Γ-orbits contain a pairwise

disjoint subset of Aa of cardinality n. Clearly, a is Γ-aperiodic exactly when there are

no local witnesses to the periodicity of a. Also note that when A is purely atomic,

aperiodicity means that Aa contains infinitely many elements of the Γ-orbit of every

atom in Aa. Equivalently, a is Γ-aperiodic if for every atom b ≤ a there is an infinite

set ∆ ⊆ Γ such that {δ · b}δ∈∆ ⊆ Aa is pairwise disjoint.

Lemma 6.6. Suppose that A is a κ-complete Boolean algebra, Γ is a group of car-

dinality strictly less than κ which acts on A by automorphisms which have supports,

and a ∈ A. Then there is a Γ-aperiodic aΓ
∞ ≤ a such that a− aΓ

∞ is Γ-periodic.

Proof. For each finite set ∆ ⊆ Γ containing 1 and γ ∈ Γ, define

aγ∆ =
Y
δ∈∆

a · (γ−1 · a) · supp(γ−1δ).

We claim that there are no non-zero local ∆-witnesses b ≤ aγ∆ to the Γ-periodicity of

a. For if b were such a witness, then we could find c ≤ b such that γ · c is disjoint

from [c]∆, contradicting the definition of a local ∆-witness to Γ-periodicity.

It follows that there are no such witnesses below

aΓ
∆ =

X
γ∈Γ

aγ∆,

thus there can be no non-zero local witnesses to the Γ-periodicity of a below

aΓ
∞ =

Y
∆⊆Γ finite

aΓ
∆.

On the other hand, it is clear that for any non-zero b ≤ a−aγ∆, either a ·(γ ·b) = O
or there exists δ ∈ ∆ such that (γ · b) · (δ · b) 6= O. It follows that

a− aΓ
∆ =

Y
γ∈Γ

a− aγ∆
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is a local ∆-witness to the Γ-periodicity of a, and therefore of a− aΓ
∞. As

a− aΓ
∞ = a−

Y
∆⊆Γ finite

aΓ
∆

=
X

∆⊆Γ finite

a− aΓ
∆,

it follows that a− aΓ
∞ is Γ-periodic. a

Now suppose that a ∈ A is a Γ-periodic complete section. To see that the action

of Γ is smooth, it is enough to find a collection of fewer than κ partial Γ-transversals

which are predense below a, by Proposition 6.2 and the fact that a is a Γ-complete

section. By Lemma 6.5, it is therefore enough to find a collection of fewer than κ

local witnesses to periodicity which are predense below a.

By the proof of Proposition 2.15, for each finite ∆ ⊆ Γ containing 1 we can find

finitely many ∆-discrete sections a∆
0 , . . . , a

∆
n ∈ A whose sum is 1. We claim that the

set of sections of the form

b∆i = a∆
i · (a− aΓ

∆)

is as desired. To see this, suppose that b ≤ a is non-zero, and find a finite set ∆ ⊆ Γ

containing 1 and a non-zero local ∆-witness c ≤ b to the Γ-periodicity of a. As c is

∆-discrete and c ≤ a − aΓ
∆, it follows that b∆i · c 6= O for some i, and this completes

the proof. a

�

a0

-r -
a1
r

···
-

an−1

-r
an
r

Figure 1.12: The action of a smooth automorphism of strict period n + 1 on its
support.

An automorphism π is of strict period n if

{a ∈ A : ∀i < n (πi(a) 6= a) and πn(a) = a}
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is dense in Asupp(π). When A is purely atomic, this means that the orbit of every atom

is of cardinality 1 or n. It is important here that automorphisms of strict period n

can have atoms whose orbits are of cardinality 1! We will say that an automorphism

is of exact period n if it is fixed-point free and of strict period n.

Proposition 6.7. Suppose that A is a κ-complete Boolean algebra, Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections, a ∈ A is Γ-aperiodic, and n ∈ N. Then there is a partition b0, . . . , bn

of a and an automorphism π ∈ [Γ] of strict period n+ 1 such that

∀i < n (π(bi) = bi+1) and π(bn) = b0.

Proof. We will begin by showing that the desired map can be built off of a

Γ-invariant section on which the action of Γ is smooth.

Lemma 6.8. There is a sequence of pairs (aξ,∆ξ) of length strictly less than κ such

that each ∆ξ contains 1 and is of cardinality n+ 1, and for each ∆ ⊆ Γ of cardinality

n+ 1, {aξ : ∆ = ∆ξ} is predense in the ∆-discrete elements of Aa.

Proof. As Γ has fewer than κ finite subsets, it is enough to check that for each

finite set ∆ ⊆ Γ, there is a finite set of ∆-discrete sections which is predense in the

set of all ∆-discrete sections. This is exactly what is shown in the second paragraph

of the proof of Proposition 2.15. a

Fix such a sequence (aξ,∆ξ). We will recursively build up a0, . . . , an and π, be-

ginning with

a
(0)
0 = a

(0)
1 = · · · = a(0)

n = O.
At stage ξ, we fix an enumeration 〈 δ(ξ)

i 〉i≤n of ∆ξ, with δ
(ξ)
0 = 1. We then consider the

maximal element of Aaξ whose images under the elements of ∆ξ lie below a and are

disjoint from all of the sections that were constructed before stage ξ. This element is

simply

a
(ξ)
0 = aξ ·

� Y
δ∈∆ξ

δ−1 · a

�
−

X
η<ξ,i≤n,δ∈∆ξ

δ−1 · a(η)
i .

We then set a
(ξ)
i = δ

(ξ)
i · a(ξ)

0 , for each 0 < i ≤ n.
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As soon as this process has been completed, we set ai =
P
ξ a

(ξ)
i , a′ =

P
i ai, and

π =
Y
ξ

(a
(ξ)
0

δ
(ξ)
1−−→ a

(ξ)
1

δ
(ξ)
2 (δ

(ξ)
1 )−1

−−−−−−→ · · ·
δ
(ξ)
n (δ

(ξ)
n−1)−1

−−−−−−−→ a(ξ)
n ).

It is clear that π is an automorphism of strict period n+ 1 that sends ai to ai+1 and

has support a′, but it could be the case that a′ < a.

Nevertheless, a − a′ is Γ-periodic. To see this suppose, towards a contradiction,

that there is a finite set ∆ ⊆ Γ of cardinality n+ 1 containing 1 and b ≤ a− a′ such

that {δ · b}δ∈∆ is a pairwise disjoint set of sections below a− a′. Then there exists ξ

such that ∆ξ = ∆ and c = b · aξ is non-zero, and it follows that

a
(ξ)
0 · c 6= O or ∃η < ξ ∃i ≤ n ∃δ ∈ ∆ξ ((δ−1 · a(η)

i ) · c 6= O),

contradicting the fact that c ≤ b ≤ a− a′ and δ · c ≤ δ · b ≤ a− a′.

It follows from Proposition 6.4 that the action of Γ on A[a−a′]Γ is smooth. So it

only remains to handle the case that the action of Γ on A is smooth. For this, we will

need the following fact:

a·a1

a
(1)
0

a·a2

a
(2)
1

a
(2)
0

···

···

a·aξ

...

a
(ξ)
η

...

···

···

Figure 1.13: When Γ acts smoothly, a can be partitioned into partial Γ-transversals.

Lemma 6.9. Suppose that A is a κ-complete Boolean algebra, Γ is a group of cardi-

nality λ < κ which acts smoothly on A by automorphisms, and a ∈ A. Then there is

a partition of unity into Γ-invariant sections aξ, where ξ ranges over cardinals ≤ λ,

and partitions of each a · aξ into ξ transversals for the action of Γ on Aaξ .

Proof. We begin with a sublemma:

Sublemma 6.10. For all b ≤ a, there is a maximal partial Γ-transversal in Aa−b.
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Proof. Fix an enumeration γξ of Γ. Fix a Γ-transversal c ∈ A, and set

cξ = (γξ · c) · (a− b),

noting that these sections are partial Γ-transversals which sum to a−b. We will define

an increasing sequence of sections dξ, at stage ξ adding as much of cξ as possible while

maintaining that dξ is a partial transversal. That is, we take d0 = O,

dξ+1 = dξ + (cξ − [dξ]Γ),

and dξ =
P
η<ξ dη at limit ordinals. Noting that

dξ+1 · (γ · dξ+1) = (dξ + (cξ − [dξ]Γ)) · (γ · dξ + γ · (cξ − [dξ]Γ))

= dξ · (γ · dξ) + dξ · (γ · (cξ − [dξ]Γ)) +

(cξ − [dξ]Γ) · (γ · dξ) + (cξ − [dξ]Γ) · (γ · (cξ − [dξ]Γ))

≤ dξ · (γ · dξ) + cξ · (γ · cξ),

it follows from the obvious induction that d =
P
ξ dξ is a partial Γ-transversal. Now

suppose, towards a contradiction, that there is a partial Γ-transversal e ∈ Aa−b with

d < e. Then there exists ξ such that

cξ · (e− d) 6= O,
thus dξ+1 · (e− d) 6= O, a contradiction. a

Now fix an enumeration γξ of Γ and a Γ-transversal b ∈ A. Put b0 = a · b, and

repeatedly apply Sublemma 6.10 so as to produce a sequence of sections bξ, with bξ

a maximal partial Γ-transversal in Aa which is disjoint from
P
η<ξ bη.

It follows from the proof of Sublemma 6.10 that the bξ’s may be chosen so that

a =
X
ξ<λ

bξ.

This is because we can use the same transversal c in constructing each of these

sections, and by doing so, we will guarantee that

γξ · c ≤
X
η≤ξ

bη.

In addition to this, we will we need one more fact:
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Sublemma 6.11. For all η < ξ, [bξ]Γ ≤ [bη]Γ.

Proof. Setting d = [bξ]Γ− [bη]Γ, it is clear that e = bη + bξ ·d is in Aa and disjoint

from
P
ζ<η bζ . Noting that

e · (γ · e) = (bη + bξ · d) · (γ · bη + γ · (bξ · d))

= bη · (γ · bη) + bη · (γ · (bξ · d)) + (bξ · d) · (γ · bη) + (bξ · d) · (γ · (bξ · d))

= bη · (γ · bη) + (bξ · d) · (γ · (bξ · d))

≤ bη · (γ · bη) + bξ · (γ · bξ),

it follows that e is a partial Γ-transversal, thus by maximality we have that bη = e,

hence d = O, and it follows that [bξ]Γ ≤ [bη]Γ. a

As the bξ’s are built up, they gradually cover more and more of a. Although it

is not necessarily the case, it could happen that non-zero Γ-invariant elements of A

are entirely covered before all of the bξ’s are constructed. That is, it might be that

[bξ]Γ < [bη]Γ, for some η < ξ. In the purely atomic case, this corresponds to the case

when the intersection of a with the Γ-orbit of some atom is of cardinality less than

|Γ|. For each cardinal ξ ≤ λ, let aξ be the maximal element of A which is covered for

the first time at an ordinal stage of cardinality ξ. That is, set

aξ =
Y
η<ξ

[bη]Γ −
Y
η<ξ+

[bη]Γ,

noting that even aλ makes sense, since bη = O for all η ≥ λ. It remains to check that

each a · aξ can be partitioned into ξ transversals for the action of Γ on aξ. As the

sections of the form

a · ([bη]Γ − [bη+1]Γ),

with ξ ≤ η < ξ+, partition a · aξ, it is enough to show that each of these can be

partitioned into ξ transversals for the action of Γ on [bη]Γ − [bη+1]Γ. As

〈bζ · ([bη]Γ − [bη+1]Γ)〉ζ≤η

provides such a partition, this completes the proof of the lemma. a
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Now let aξ be as in Lemma 6.9. We claim that an = O, for each n ∈ N. To see

this, simply note that if an 6= O, then we can find a non-zero b ≤ an and a finite set

∆ ⊆ Γ containing 1 for which b is a local ∆-witness to periodicity, contradicting the

Γ-aperiodicity of a.

For each cardinal ξ, fix transversals b(ξ)η , with η < ξ, for the action of Γ on aξ

which partition a · aξ. We claim that there are elements of [Γ] such that

π(ξ)
η (b(ξ)η ) = b

(ξ)
η+1.

Granting this, set

S = {λ+ i(n+ 1) : λ is a limit ordinal and i ∈ N},

put b0 =
P
η<ξ,η∈S a

(ξ)
η , define

π =
Y

η<ξ,η∈S
(a(ξ)
η

π
(ξ)
η−−→ a

(ξ)
η+1

π
(ξ)
η+1−−−→ · · ·

π
(ξ)
η+n−1−−−−→ a

(ξ)
η+n),

and put bi = πi(a0), for i ≤ n. It easily follows that π is an element of Γ of exact

period n+ 1 which carries bi to bi+1, for i < n. It only remains to check the following:

Lemma 6.12. Suppose A is a κ-complete Boolean algebra, Γ is a group of cardinality

strictly less than κ which acts on A by automorphisms that admit maximal discrete

sections, and a, b are Γ-transversals. Then there exists π ∈ [Γ] such that π(a) = b.

Proof. As we can always take π to be the identity on Aa·b, we may assume that

a · b = O. Fix an enumeration γξ of Γ. We will gradually build up the domain and

range of π, at stage ξ including the largest remaining piece of a which γξ maps into

the remaining piece of b. That is, we take

aξ =

�
a−

X
η<ξ

aη

�
·

�
γ−1
ξ ·

�
b−

X
η<ξ

bη

��
and bξ = γξ · aξ.

Set a′ =
P
ξ aξ and b′ =

P
ξ bξ, noting that these elements lie below a and b. In fact,

if c ≤ a then there exists ξ with c · (γ−1
ξ · b) 6= O, and it follows that

c · aη 6= O,
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for some η ≤ ξ. Thus every c ≤ a has a non-zero intersection with a′, so a′ = a. It

similarly follows that b′ = b, thus

π =
Y
ξ

(aξ
γξ−→ bξ)

is the desired element of [Γ]. a

7 Compositions of periodic automorphisms

In this section, we will give a complete the characterization of the circumstances

under which an aperiodic automorphism π of a σ-complete Boolean algebra A is the

composition of two automorphisms of prescribed strict periods from its full group.

We have already seen that the existence of maximal discrete sections for the powers

of π is necessary, and here we will show that it is sufficient, as long as we are not

trying to write the automorphism in question as the composition of two involutions.

We will also use similar ideas to show that if G is a σ-full group of automorphisms

which contains at least one aperiodic automorphism, then every element of G is a

commutator. We actually show this with the apparently weaker hypothesis that G is

κ-complete and contains a subgroup of cardinality less than κ which acts aperiodically,

but we then show that this implies that G contains an aperiodic automorphism. This

latter result is the natural generalization of the fact that every aperiodic countable

Borel equivalence relation contains an aperiodic hyperfinite subequivalence relation.

As was the case with involutions, we first consider the smooth case:

Proposition 7.1. Suppose that A is a σ-complete Boolean algebra and π ∈ Aut(A)

is aperiodic and smooth. Then for every n0, n1 ≥ 2, there are automorphisms πi ∈ [π]

such that each πi is of strict period ni and π = π0 ◦ π1.

Proof. It is enough to show that the successor on Z is the composition of permuta-

tions τi which are of strict period ni, for then we can obtain the desired automorphisms

by fixing a π-transversal a0 ∈ A, setting an = πn(a0), and defining

πi =
Y
n∈Z

an
πτi(n)−n
−−−−−→ aτi(n).
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We will build the τi’s recursively. At each stage, we will simply compose our approxi-

mation to each τi with an appropriately chosen cycle. The following lemma describes

one way of selecting these additional cycles (see Figure 1.14 for a depiction of their

action on Z):

a′′

···

a′ a ··· b

···

b′ b′′

- -

-

�

-
- -

�
τ ′1

τ ′0

Figure 1.14: Extending τi to τ ′i .

Lemma 7.2. Suppose ni ≥ 2, a ≤ b, τi is a permutation of [a, b] of strict period ni,

τ1(b) = b, and

τ0 ◦ τ1 = (a a+ 1 · · · b).

Set a′ = a− 1, b′ = b+ (n1 − 2), a′′ = a′ − (n0 − 2), b′′ = b′ + 1, and define

τ ′0 = (a′′ a′′ + 1 · · · a′ b′′) ◦ τ0 and τ ′1 = (a′ b b+ 1 · · · b′) ◦ τ1.

Then τ ′0 ◦ τ ′1 = (a′′ a′′ + 1 · · · b′′).

Proof. Suppose that a′′ ≤ k ≤ b′′. We break the task of checking that

τ ′0 ◦ τ ′1 = (a′′ a′′ + 1 · · · b′′)

into several cases:

1. If a′′ ≤ k < a′, then τ ′1(k) = k, thus τ ′0 ◦ τ ′1(k) = τ ′0(k) = k + 1.

2. If k = a′, then τ ′1(k) = b, thus τ ′0 ◦ τ ′1(k) = τ ′0(b) = τ0(b) = a = k + 1.

3. If a ≤ k < b, then τ ′1(k) = τ1(k), thus τ ′0 ◦ τ ′1(k) = τ ′0 ◦ τ1(k) = τ0 ◦ τ1(k) = k+ 1.

4. If b ≤ k < b′, then τ ′1(k) = k + 1, thus τ ′0 ◦ τ ′1(k) = τ ′0(k + 1) = k + 1.
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5. If k = b′, then τ ′1(k) = a′, thus τ ′0 ◦ τ ′1(k) = τ ′0(a
′) = b′′.

6. If k = b′′, then τ ′1(k) = b′′, thus τ ′0 ◦ τ ′1(k) = τ ′0(b
′′) = a′′.

It follows that τ ′0 ◦ τ ′1 = (a′′ a′′ + 1 · · · b′′), as desired. a

Using the above notation, set a0 = b0 = 0, τ
(0)
i = id, ak+1 = a′′k, bk+1 = b′′k, and

τ
(k+1)
i = (τ

(k)
i )′.

It follows that τ
(k)
i is a permutation of {−k(n0 − 1), . . . , k(n1 − 1)} such that

τ
(k)
0 ◦ τ (k)

1 = (−k(n0 − 1) · · · k(n1 − 1)).

The primary remaining observation is that for all n ∈ Z and all k0, k1 > |n|,

(τ
(k0)
i )±1(n) = (τ

(k1)
i )±1(n),

by the definition of τ
(k)
i . In particular, it makes sense to define τi : Z → Z by

τi(n) = lim
k→∞

τ
(k)
i (n).

We claim that τ0, τ1 are permutations of Z whose composition is the successor. To

see that τi is injective, suppose that τi(m) = τi(n), and fix k > max(|m|, |n|). Then

τ
(k)
i (m) = τi(m) = τi(n) = τ

(k)
i (n),

thus m = n, since τ
(k)
i is injective. To see that τi is surjective, fix n ∈ N and set

k = |n|+ 2 and

m = (τ
(k)
i )−1(n).

As |m| ≤ k − 1 by the definition of τ
(k)
i , it follows that

τi(m) = τ
(k)
i (m) = n.

To see that τ0 ◦ τ1 is the successor function, suppose that n ∈ N, fix

k > max(|n|, |τ (|n|+1)
1 (n)|),



62

and observe that

τ0 ◦ τ1(n) = τ0 ◦ τ (k)
1 (n)

= τ
(k)
0 ◦ τ (k)

1 (n)

= n+ 1,

which completes the proof of the proposition. a

Remark 7.3. It will be important later on to note that the cycle (0 . . . k(n0+n1−2))

is the composition of permutations τi which are of strict period ni. Of course this

follows easily from the above proof, as the permutations obtained at the kth stage of

the construction satisfy

τ
(k)
0 ◦ τ (k)

1 = (−k(n0 − 1) · · · k(n1 − 1)),

thus we can obtain the desired permutations by conjugating τ
(k)
i through the map

ϕ : {−k(n0 − 1), . . . , k(n1 − 1)} → {0, . . . , k(n0 + n1 − 2)} which is given by

ϕ(n) = n+ k(n0 − 1).

Remark 7.4. If ni ≥ 3, then τ
(k+1)
1−i has at least one more fixed point than τ

(k)
1−i, thus

has at least k+1 fixed points. This will be quite important in the arguments to come!

Proposition 4.1 tells us that whatever we have in store had better not work in the

case that n0 = n1 = 2. The fact that the number of fixed points does not (indeed,

cannot) increase in this case is where our argument breaks down.

Remark 7.5. When n0, n1 ≥ 3, k of the fixed points `
(0)
1 , . . . , `

(0)
k , `

(1)
1 , . . . , `

(1)
k of the

automorphisms

ϕ ◦ τ (k)
0 ◦ ϕ−1, ϕ ◦ τ (k)

1 ◦ ϕ−1

can be chosen so that they are interspersed, in the sense that

0 < `
(0)
1 < `

(1)
1 < · · · < `

(0)
k < `

(1)
k .

This follows from a simple inductive argument, although is perhaps most easily seen

by examining Figure 1.15.
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τ
(3)
1

reh`
(k)
1

τ
(3)
0

re `
(k)
0
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-
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�
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-

Figure 1.15: The action of τ
(3)
i when n0 = n1 = 3.

Remark 7.6. It will also be important to note that τ
(k)
0 , τ

(k)
1 are conjugate. This

follows from the fact that each of these permutations has the same cycle type.

We can already obtain an approximation to the sort of result we desire:

Proposition 7.7. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A) is

aperiodic, and every element of [π] admits a maximal discrete section. Then for all

n0, n1, n2 ≥ 2, there are automorphisms πi ∈ [π] of strict period ni such that

π = π0 ◦ π1 ◦ π2.

Proof. Find a maximal π<n0-discrete section a ∈ A and a covering non-crossing

involution ι for πa. Let

b =
X
n>0

a− supp(π−n ◦ ι) = a ·
Y
n≥0

supp(πn ◦ ι)

be the piece of A which is moved in the “same direction” by ι and π, and define

π0 = (b
π−→ π(b)

π−→ · · · π−→ πn0−2(b)
ι◦π−(n0−2)

−−−−−−→ ι(b)).

It is clear that π0 is a non-crossing covering automorphism of strict period n0, since

it has the same outer arcs as ι. By Lemma 5.1, it follows that ϕ = π0 ◦ π is periodic.

As a is π<n0-discrete, it also follows that

∀c ∈ A (π0|Ac 6= π−1|Ac),
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thus ϕ is fixed-point free.

By Ryzhikov [69], for each k ≥ 2 there is a finite group Gk = 〈g(k)
1 , g

(k)
2 〉, where

gk = g
(k)
1 g

(k)
2

is of order k and g
(k)
i is of order ni. We will group the ϕ-orbits of cardinality k into

sets of cardinality |Gk|/k, and copy the action of Gk on itself by left multiplication

over to these sets in such a way that the action of gk on Gk goes to the action of ϕ.

The push-forwards of the actions of the generators of Gk will then give rise to the

desired automorphisms π1, π2 ∈ [π].

Set Hk = 〈gk〉 and fix representatives h
(k)
i ∈ Gk, with i < |Gk|/k, for the left cosets

of Hk within Gk. Let ak be the period k part of ϕ. As the special case of Proposition

7.7 in which π is smooth follows from Proposition 7.1, we may assume that each ak

is π-aperiodic. Let bk be a transversal for the action of ϕ on Aak , noting that bk is

also π-aperiodic. It follows from Proposition 6.7 that there exists ψk ∈ Aut(Abk) of

exact period |Gk|/k. Let ck be a ψk-transversal. Put

Xk = {(m,n) ∈ N2 : m < k and n < |Gk|/k},

noting that the elements of the form ϕm ◦ψnk (ck), with (m,n) ∈ Xk, partition ak. For

i ∈ {1, 2} and (m,n) ∈ Xk, let (m′, n′) be the unique element of Xk such that

g
(k)
i gmk h

(n)
k = gm

′

k h
(n′)
k ,

and define

π
(k)
i =

Y
(m,n)∈Xk

ϕm ◦ ψnk (ck)
ϕm

′◦ψn′k ◦ψ−n
k

◦ϕ−m
−−−−−−−−−−−→ ϕm

′ ◦ ψn′k (ck).

It is clear that π
(k)
i is of exact period |g(k)

i | = ni, thus so too is

πi =
Y
k≥2

ak
π

(k)
i−−→ ak.

As gk = g
(k)
1 ◦ g(k)

2 , it follows that ϕ = π1 ◦ π2, thus π = π−1
0 ◦ π1 ◦ π2. a
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In order to describe the circumstances under which we can write π as a product

of two elements of its full group of prescribed periods, we must first make a slight

detour, and show a version of Alpern’s [3] multiple Rokhlin tower theorem.

Suppose that π ∈ Aut(A) and a ∈ A is doubly recurrent. As in the proof of Theo-

rem 5.8, we can partition a into countably many sections aπn, where aπn is the maximal

b ≤ a such that π(b), . . . , πn−1(b) are disjoint from a and πn(b) ≤ a. Explicitly, these

sections are given by

aπn = a · π−n(a)−
X

0<i<n

π−i(a),

and the associated induced automorphism of Aa is given by

πa =
Y
n>0

aπn
πn−→ πn(aπn).

The section a is n-spaced if a = aπn. Such sections are very useful in constructions

involving automorphisms. Unfortunately, not every automorphism admits complete

sections of this sort!

Example 7.8. The Bernoulli shift on X = 2Z is the bilateral shift,

f(〈xn〉n∈Z) = 〈xn+1〉n∈N .

We claim that for all n ≥ 2, f does not admit an n-spaced Baire measurable complete

section. Suppose, towards a contradiction, that B ⊆ X is such a section. As f sends

meager sets to meager sets and

X =
[
n∈Z

fn(B),

it follows that B is non-meager, thus comeager in some basic clopen neighborhood

Ns, with s : [−k, k] → {0, 1}.
We will show that B is comeager. Of course, it is enough to check that each

s′ : [−k′, k] → {0, 1} can be extended to an s′′ such that B is comeager in Ns′′ . Fix

m ∈ N sufficiently large that

mn− k > k′,
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and define s′′ : [−k′, k′] ∪ [mn− k,mn+ k] → {0, 1} by

s′′(i) =

8<: s′(i) if − k′ ≤ i ≤ k,

s(i−mn) otherwise.

As Ns′′ ⊆ fmn(Ns) and B is comeager in Ns and n-spaced, it follows that B is

comeager in Ns′′ .

As B is comeager, it follows that B contains comeagerly many full orbits of f . In

particular, B cannot be n-spaced, the desired contradiction.

To make up for this deficiency, we will work with a slightly more general sort of

section. Suppose that S ⊆ N is finite. Then a ∈ A is S-spaced if

a =
X
n∈S

aπn.

When A is purely atomic, a ∈ A is S-spaced exactly when for each atom b ≤ a, the

least k > 0 such that πk(b) ≤ a is in S (i.e., the size of the gap in-between successive

atoms is always in S).

Now we are ready for the promised version of Alpern’s theorem [3]:

Proposition 7.9. Suppose that A is a σ-complete Boolean algebra, π is an aperiodic

automorphism of A whose powers admit maximal discrete sections, and m,n ∈ N are

relatively prime. Then π admits an {m,n}-spaced complete section.

Proof. Fix x, y ∈ N such that

ny −mx = 1,

and find a maximal π<(mx)2-discrete section a ∈ A, noting that

a =
X

(mx)2≤k<2(mx)2

aπk .

Setting S ′ = {(q, r) ∈ N2 : 0 < r < mx ≤ q < 2mx}, it follows that the sections

aqr = aπ(mx)q+r = aπ(mx)(q−r)+(ny)r,
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with (q, r) ∈ S ′, partition a. Set bqr = πmx(q−r)(aqr), put

a′qr = aqr + πm(aqr) + π2m(aqr) + · · ·+ π(x(q−r)−1)m(aqr)

and

b′qr = bqr + πn(bqr) + π2n(bqr) + · · ·+ π(y(q−r)−1)n(bqr),

and define

c =
X

(q,r)∈S′
a′qr + b′qr.

Noting that

∀(q, r) ∈ S ′ (a′qr ≤ cπm and b′qr ≤ cπn),

it follows that c is the desired S-spaced complete section. a

Remark 7.10. When S ⊆ N is finite, the same idea can be used to show that π

admits an S-spaced complete section ⇔ π admits a gcd(S)-spaced complete section.

Now we are ready to turn to the problem of writing an automorphism as a com-

position of two automorphisms from its full group of prescribed periods. This was

originally accomplished in the case of the Lebesgue measure algebra by Ryzhikov [69].

Although the proof we give is a bit different than his, the basic idea of using involu-

tion results to reduce the problem to the finite case is taken directly from Ryzhikov

[69] and [70].

Theorem 7.11. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A) is

aperiodic, and every element of [π] admits a maximal discrete section. Then for all

n0 ≥ 2 and n1 ≥ 3, there are automorphisms πi ∈ [π] such that each πi is of strict

period ni and π = π0 ◦ π1.

Proof. Let m0 = 3(n0 + n1 − 2) and m1 = (m0 + 1)(n0 + n1 − 2), noting that

m0 + 1 and m1 + 1 are relatively prime. By Remark 7.4, there are permutations

τ
(j)
i ∈ S{0,...,mj},
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of strict period ni, such that τ
(j)
0 has fixed points 0 < `0 < `1 < `2 ≤ m0 which are

independent of j, and

τ
(j)
0 ◦ τ (j)

1 = (0 · · · mj).

It follows from Proposition 7.9 that π admits an {m0 +1,m1 +1}-spaced complete

section a ∈ A. By Proposition 7.7, there are automorphisms π′i ∈ [πa] of strict period

n0 such that

πa = π′0 ◦ π′1 ◦ π′2.

Let ϕ ∈ [π] be the automorphism of strict period n given by

ϕ =
Y

0≤i≤2

π`i(a)
π`i◦(π′i)

−1◦π−`i
−−−−−−−−−→ π`i(a),

and set ψ = ϕ ◦ π. By the period n part of ϕ, we meanY
0<m<n

supp(πm)− supp(πn).

Let aj be the period mj + 1 part of ψ.

Lemma 7.12. a0 + a1 = 1.
Proof. Set bj = (π′0 ◦ π′1 ◦ π′2)(aπmj+1), and note that

∀` < `0 (ψ`|Abj = π`|Abj),

thus ψ`0|Abj = π`0 ◦ (π′0)
−1|Abj . It follows that for all `0 ≤ ` < `1,

ψ`|Abj = π` ◦ (π′0)
−1|Abj ,

thus ψ`1 |Abj = π`1 ◦ (π′1)
−1 ◦ (π′0)

−1|Abj). It then follows that for all `1 ≤ ` < `2,

ψ`|Abj = π` ◦ (π′1)
−1 ◦ (π′0)

−1|Abj ,

thus

ψ`2|Abj = π`2 ◦ (π′2)
−1 ◦ (π′1)

−1 ◦ (π′0)
−1|Abj

= π`2 ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abj .
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It follows that ψ`2(bj) = π`2(aπmj+1), thus for all `2 ≤ ` ≤ mj + 1,

ψ`|Abj = π` ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abj .

In particular, we have

ψmj+1|Abj = πmj+1 ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abj

= πa ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abj

= (π′0 ◦ π′1 ◦ π′2) ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abj

= id.

Noting that for all ` ≤ mj + 1,

ψ`(bj) = π`(bj),

it follows that ψ|A[bj ]ϕ is of exact period mj + 1 and [b0]ψ + [b1]ψ = 1. a

Said somewhat differently, this means that ψ|A[aj ]ψ is of exact period mj + 1 and

ψ =
Y

j∈{0,1}
(aj

ψ−→ ψ(aj)
ψ−→ · · · ψ−→ ψmj(aj)).

Next, we will take advantage of the fact that we already know how to write cycles of

length mi + 1 in the desired form. For each i ∈ {0, 1}, set

ψi =
Y

0≤j≤1,0≤k≤mj
ψk(a · aj)

ψ
τ
(j)
i

(k)−k

−−−−−−→ ψτ
(j)
i (k)(a · aj).

As ψi is of strict period ni and

ϕ ◦ π = ψ = ψ0 ◦ ψ1,

it follows that π = (ϕ−1 ◦ψ0)◦ψ1. As the supports of ψ0 and ϕ are disjoint, it follows

that π0 = ϕ−1 ◦ ψ0 and π1 = ψ1 are as desired. a

Remark 7.13. Of course, the same proof can be used to show the corresponding

theorem when n0 ≥ 3 and n1 ≥ 2. Alternatively, this version can be obtained as
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a corollary by applying Theorem 7.11 to find automorphisms π∗0, π
∗
1 ∈ [π] of strict

periods n1, n0 such that

π−1 = π∗0 ◦ π∗1,

and then taking π0 = (π∗1)−1 and π1 = (π∗0)−1.

By slightly modifying the above argument, a stronger result can be obtained

when n0 = n1. Recall that π0, π1 ∈ [π] are conjugate if there exists ϕ ∈ [π] such that

ϕ ◦ π0 ◦ ϕ−1 = π1.

Theorem 7.14. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A) is

aperiodic, every element of [π] admits a maximal discrete section, and n ≥ 3. Then

there are automorphisms πi ∈ [π], of strict period n, such that π = π0 ◦ π1 and π0, π1

are conjugate via an element of [π].

Proof. Let m0 = 3(n + n − 2) = 6(n − 1) and m1 = (m0 + 1)(n + n − 2) =

2(m0 + 1)(n − 1), noting that m0 + 1,m1 + 1 are relatively prime. By Remark 7.5,

there are natural numbers

0 < `
(1)
0 < `

(0)
0 < `

(1)
1 < `

(0)
1 < `

(1)
2 < `

(0)
2 ≤ m0,

and permutations τ
(j)
i of {0, . . . ,mj} of strict period n, where τ

(j)
i (`

(i)
j ) = `

(i)
j and

τ
(j)
0 ◦ τ (j)

1 = (0 · · · mj).

It follows from Proposition 7.9 that π admits an {m0 +1,m1 +1}-spaced complete

section a ∈ A. By Proposition 7.7, there are automorphisms π′i ∈ [πa] of strict period

n such that

πa = π′0 ◦ π′1 ◦ π′2.

Moreover, we may assume that the support of each π′i is π-aperiodic. This is because

Proposition 6.4 ensures that π is smooth on the piece where this fails, and the proof

of Proposition 7.1 clearly produces conjugate transformations when n0 = n1.

Let ci be a transversal for the action of π′i on Asupp(π′i)
, note that each ci is π-

aperiodic, and apply Proposition 6.7 to find involutions ιi ∈ [π] with support ci. Let

di be a maximal ιi-discrete section, and set

e
(0)
i = [di]π′i and e

(1)
i = [ιi(di)]π′i .
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e
(0)
i

e
(1)
i

di

ιi(di)

π′i(di)

π′i◦ιi(di)

···

···

(π′i)
n−1(di)

(π′i)
n−1◦ιi(di)

ci
π′
i−→ π′i(ci)

π′
i−→ ···

π′
i−→ (π′i)

n−1(ci)

π′i
�

Figure 1.16: The partition of supp(π′i) ≤ a into the various images of di.

Now define ϕj ∈ [π] by

ϕj =
Y

0≤i≤2

π`
(j)
i (a)

π
`
(j)
i ◦(π′i|e

(j)
i )−1◦π−`

(j)
i

−−−−−−−−−−−−−→ π`
(j)
i (a),

set ψ = ϕ1 ◦ ϕ0 ◦ π, and let aj be the period mj + 1 part of ψ.

Lemma 7.15. a0 + a1 = 1.
Proof. For each s : {0, 1, 2, 3} → {0, 1}, set

bs = e
(s(0))
0 · π′0(e

(s(1))
1 ) · π′0 ◦ π′1(e

(s(2))
2 ) · (π′0 ◦ π′1 ◦ π′2)(aπms(3)+1),

and note that

∀` < `
(s(0))
0 (ψ`|Abs = π`|Abs),

thus ψ`
(s(0))
0 |Abs = π`

(s(0))
0 ◦ (π′0)

−1|Abs . It follows that for all `
(s(0))
0 ≤ ` < `

(s(1))
1 ,

ψ`|Abs = π` ◦ (π′0)
−1|Abs ,

thus ψ`
(s(1))
1 |Abs = π`

(s(1))
1 ◦(π′1)

−1◦(π′0)
−1|Abs). It follows that for all `

(s(1))
1 ≤ ` < `

(s(2))
2 ,

ψ`|Abs = π` ◦ (π′1)
−1 ◦ (π′0)

−1|Abs ,

thus

ψ`
(s(2))
2 |Abs = π`

(s(2))
2 ◦ (π′2)

−1 ◦ (π′1)
−1 ◦ (π′0)

−1|Abs

= π`
(s(2))
2 ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abs .
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It follows that ψ`
(s(2))
2 (bs) = π`

(s(2))
2 (aπms(3)+1), thus for all `

(s)
2 ≤ ` ≤ ms(3) + 1,

ψ`|Abs = π` ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abs .

In particular, we have

ψms(3)+1|Abs = πms(3)+1 ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abs

= πa ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abs

= (π′0 ◦ π′1 ◦ π′2) ◦ (π′0 ◦ π′1 ◦ π′2)−1|Abs

= id.

Noting that for all ` ≤ ms(3) + 1,

ψ`(bs) = π`(bs),

it follows that ψ|A[bs]ψ is of exact period ms(3) + 1 and
P
s:{0,1,2,3}→{0,1}[bs]ψ = 1. a

It is once more time to take advantage of the fact that we already know how to

write cycles of length mi + 1 in the desired form. For each i ∈ {0, 1}, set

ψi =
Y

0≤j≤1,0≤k≤mj
ψk(a · bj)

ψ
τ
(j)
i

(k)−k

−−−−−−→ ψτ
(j)
i (k)(a · bj),

and note that the ψi’s are conjugate automorphisms of strict period n and

ϕ1 ◦ ϕ0 ◦ π = ψ = ψ0 ◦ ψ1.

As ϕ0, ϕ1 have disjoint supports and therefore commute, it follows that

π = ϕ−1
0 ◦ ϕ−1

1 ◦ ψ0 ◦ ψ1

= ϕ−1
0 ◦ ϕ−1

1 ◦ ψ0 ◦ ϕ1 ◦ ϕ−1
1 ◦ ψ1

= ϕ−1
1 ◦ (ϕ−1

0 ◦ ψ0) ◦ ϕ1 ◦ (ϕ−1
1 ◦ ψ1).

As ϕi, ψi have disjoint supports and therefore commute, it follows that

π0 = ϕ−1
1 ◦ (ϕ−1

0 ◦ ψ0) ◦ ϕ1
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and π1 = ϕ−1
1 ◦ ψ1 are automorphisms of strict period n and π = π0 ◦ π1.

To see that π0 and π1 are conjugate, it is enough to check that ϕ−1
0 ◦ψ0 and ϕ−1

1 ◦ϕ1

are conjugate, and for this, it is enough to show that ϕ0 is conjugate to ϕ1 and ψ0 is

conjugate to ψ1. The former part follows from the fact that each ιi easily extends to

a conjugacy of π′i|e
(0)
i and π′i|e

(1)
i (see Figure 1.16), and the latter fact follows from the

fact that the permutations of Z from which the ψi’s are built are conjugate, which

itself follows from the Remark 7.6. a

Recall that g ∈ G is a commutator if it is of the form g = [g0, g1], where

[g0, g1] = g0g1g
−1
0 g−1

1 .

Note that g is a commutator exactly when it is of the form g0g1, where g0 and g−1
1 are

conjugate. As every smooth automorphism is conjugate to its inverse, it now follows

that if π is aperiodic and the elements of [π] admit maximal discrete sections, then

every element of [π] is a commutator. This is a special case of a more general fact:

Theorem 7.16. Suppose that A is a κ-complete Boolean algebra and Γ is a group of

cardinality strictly less than κ which acts aperiodically on A by automorphisms that

admit maximal discrete sections. Then every element of [Γ] is a commutator.

Proof. Fix π ∈ [Γ], let a∞ be the aperiodic part of π, let

aeven =
X
n∈N

Y
0<k<2n

supp(πk)− supp(π2n)

be the evenly periodic part of π, and let

aodd =
X
n∈N

Y
0<k<2n+1

supp(πk)− supp(π2n+1)

be the oddly periodic part of π. Fix a transversal beven ∈ A for π|Aaeven . By the proof

of Proposition 6.7, there is an involution ιeven ∈ [Γ] such that:

1. supp(ιeven) ≤ beven.

2. c = beven − supp(ιeven) is a partial Γ-transversal.
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3. [c]Γ is below the Γ-periodic part of aeven.

Set d∞ = [c]Γ · [a∞]Γ. It easily follows from the fact that c is a partial Γ-transversal

that there exists ϕ ∈ [Γ] such that

ϕ(c · d∞) ≤ a∞.

Set e0 = [c · d∞]π + [ϕ(c · d∞)]π, e1 = [c]Γ − [a∞]Γ, e2 = 1 − (e0 + e1). We will now

complete the proof via several lemmas.

Lemma 7.17. π|Ae0 is a commutator in [Γ|Ae0 ].

Proof. Set e = [c ·d∞]π. It follows from Proposition 4.1 that there are involutions

ι0, ι1 ∈ [Γ|Ae] whose composition is π|Ae. Now, set f = [ϕ(c · d∞)]π. It follows from

a simple modification of the proof of Proposition 7.1 that there are automorphisms

ϕ0, ϕ1 ∈ [Γ|Af ] such that:

1. π|Af = ϕ0 ◦ ϕ1.

2. For each i ∈ {1, 2, 3} and j ∈ {0, 1}, the exact period i part of ϕj is an aperiodic

complete section for π|Af .

3. For each j ∈ {0, 1}, the parts of ϕj of exact periods 1,2, and 3 partition f .

Setting πj = ιj ◦ ϕj, it follows that π|Ae0 = π0 ◦ π1. Now fix transversals g
(j)
i for

the action of πj on its part of exact period i. The smoothness of the action of Γ on

Ae0 coupled with the Γ-aperiodicity of each of these sections guarantees that for each

i ∈ {1, 2, 3}, there is a map ϕi ∈ [Γ] such that

ϕi(g
(0)
i ) = g

(1)
i .

It only remains to note that
Q
i∈{1,2,3} g

(0)
i

ϕi−→ g
(1)
i can easily be extended to a conjugacy

of π0, π1 within [Γ]. a

Lemma 7.18. π|Ae1 is a commutator in [Γ|Ae1 ].
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Proof. As [c]Γ lies below the Γ-periodic part of aeven, it follows that e1 lies

below the Γ-aperiodic part of aodd. By Proposition 4.1, we can find involutions

ι0, ι1 ∈ [Γ|Ae1 ] such that

π|Ae1 = ι0 ◦ ι1.

Coupled with the fact that e1 lies below the Γ-aperiodic part of aodd, the proof of

Proposition 4.1 implies that for each k ∈ {0, 1}, the exact period 1 and 2 parts of

ιk are aperiodic complete sections for π|Ae1 . As π|Ae1 is smooth, a simple argument

then shows that ι0 and ι1 are conjugate. a

Lemma 7.19. π|Ae2 is a commutator in [Γ|Ae2 ].

Proof. We still must handle the principal ideal below 1− [c]Γ. We will deal with

the principal ideals below the evenly periodic, oddly periodic, and aperiodic parts of

this section separately. Of course, Theorem 7.14 gives us the latter bit, so we need only

handle the evenly and oddly periodic parts. As the involutions produced by applying

the proof of Proposition 4.1 to an oddly periodic automorphism ϕ are conjugate

within [ϕ], it follows that we need only concern ourselves with aeven − (e0 + e1).

Fix a transversal d0 for ι|Aaeven−(e0+e1) and put d1 = ι(d0), noting that d0, d1

partition aeven − (e0 + e1). By the proof of Proposition 4.1, for each k ∈ {0, 1} there

is a pair of involutions

ι
(k)
0 , ι

(k)
1 ∈ [π|A[dk]π ]

such that

1. π|A[d0]π = ι
(0)
0 ◦ ι(0)

1 and π|A[d1]π = ι
(1)
0 ◦ ι(1)

1 .

2. ι
(0)
0 and ι

(1)
1 are fixed-point free.

3. supp(ι
(0)
1 ) = [d0]π − d′0 and supp(ι

(1)
0 ) = [d1]π − d′1, where

(a) d′0 is a disjoint sum of two partial transversals of π|[d0]π.

(b) d′1 is a disjoint sum of two partial transversals of π|[d1]π.
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In particular, (3) implies there is an automorphism in [Γ] which carries d0 to d1, thus

ι0 =
Y

k∈{0,1}
[dk]π

ι
(k)
0−−→ [dk]π and ι1 =

Y
k∈{0,1}

[dk]π
ι
(k)
1−−→ [dk]π

are conjugate, and clearly π|Aaeven−[c]Γ = ι0 ◦ ι1, so π|Aaeven−[c]Γ is a commutator. a

Remark 7.20. The above proof shows the slightly stronger statement that if the

support of π is Γ-aperiodic, then π0 and π1 can be chosen so that their supports are

contained in the support of π.

This result can be generalized once more. A group G ≤ Aut(A) is κ-full if

∀Γ ⊆ G (|Γ| < κ⇒ [Γ] ⊆ G).

As usual, we will say that G is σ-full if it is ω1-full.

Corollary 7.21. Suppose that A is a κ-complete Boolean algebra, G is a κ-full group

of automorphisms of A that admit maximal discrete sections, and G has a subgroup

of cardinality strictly less than κ which acts aperiodically. Then every element of G

is a commutator.

Proof. Fix an automorphism π ∈ G, let Γ ≤ G be a group of cardinality strictly

less than κ which acts aperiodically, and note that the group ∆ = 〈Γ, π〉 is also of

cardinality strictly less than κ and acts aperiodically. It follows that π is a commutator

within [∆] ≤ G. a

As every infinite Polish space has an aperiodic automorphism, we have the following:

Theorem 7.22. Every Borel automorphism of an infinite Polish space X is a com-

mutator within the group of all Borel automorphisms of X.

Finally, it should be noted that the existence of an aperiodic subgroup of cardi-

nality strictly less than κ is equivalent to the existence of an aperiodic automorphism

of G. This is a consequence of the following fact:
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Proposition 7.23. Suppose that A is a κ-complete Boolean algebra and Γ is a group

of cardinality strictly less than κ which acts aperiodically on A by automorphisms that

admit maximal discrete sections. Then [Γ] contains an aperiodic automorphism.

Proof. The full semigroup of Γ is the semigroup JΓK of isomorphisms π : Aa → Ab,

with a, b ∈ A, which are of the form

π =
Y
γ∈Γ

aγ
γ−→ γ · aγ,

in which 〈aγ〉γ∈Γ is a partition of a and 〈γ · aγ〉γ∈Γ is a partition of b.

a0

-r -
a1
r

···
-

an−1

-r
an
r

Figure 1.17: The action of an acyclic element of JΓK of period n+ 1.

The map ϕ ∈ JΓK is acyclic of period n if there is a partition of unity a1, . . . , an

such that dom(ϕ) = 1− an, rng(ϕ) = 1− a1, and ∀1 ≤ i < n (ϕ(ai) = ai+1).

Lemma 7.24. Suppose that ϕ : Aa → Ab is in JΓK and acyclic of period n. Then

there exists a′ ≤ a, b′ ≤ b, and a map ψ : Aa′ → Ab′ in JΓK which is acyclic of period

2n and extends ϕ.

Proof. As 1 is Γ-aperiodic, so too is a. By Proposition 6.7, there is an involution

ι ∈ [Γ] such that supp(ι) = a. Let a′ ≤ a be a maximal ι-discrete section, and observe

that the map obtained by composing ϕ with the partial map

ϕn−1(a′)
ι◦ϕ−(n−1)

−−−−−−→ ι(a′)

is the desired extension of ϕ. a

Set a0 = 1 and ϕ0 = ∅, and repeatedly apply Lemma 7.24 so as to obtain a

sequence of maps ϕn ∈ JΓK and sections an = 1 − rng(ϕn) and bn = 1 − dom(ϕn)

such that:
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1. ϕn+1 ∈ JΓK is acyclic of period 2n+1 and extends ϕn.

2. an+1 ≤ an and bn+1 ≤ bn.

Finally, let ϕ ∈ JΓK be the minimal extension of the ϕn’s, which is given by

ϕ(a) =
X
n∈N

ϕn(a · dom(ϕn)).

Set a =
Q
n∈N an = 1− rng(ϕn), b =

Q
n∈N bn = 1− dom(ϕn), and

c = 1− ([a]ϕ + [b]ϕ).

It is clear that ϕ|Ac is aperiodic, so it only remains to find aperiodic automorphisms

ϕa ∈ [Γ|A[a]π ] and ϕb ∈ [Γ|A[b]π ]. Fix a function f : N → N which has exactly one

orbit. Noting that 〈ϕk(a)〉k∈N and 〈ϕ−k(a)〉k∈N are both pairwise disjoint, it follows

that the maps

ϕa =
Y
k∈N

ϕk(a)
ϕf(k)−k−−−−→ ϕf(k)(a) and ϕb =

Y
k∈N

ϕ−k(b)
ϕk−f(k)−−−−→ ϕ−f(k)(b)

are the desired aperiodic automorphisms. a

8 Bergman’s property

In this section, we study a group-theoretic property which was originally discov-

ered to hold for the group of permutations of an infinite set in Bergman [7]. We

show that this property holds for a wide variety of full groups. We also describe a

strengthening of this property which holds for full groups which admit paradoxical

decompositions, but fails for many which admit invariant probability measures. This

leads to a characterization of the existence of an invariant probability measure for a

countable Borel equivalence relation in terms of a purely algebraic feature of its full

group.

A group G has the weak Bergman property if for every increasing, exhaustive

sequence 〈∆n〉n∈N of subsets of G, there exists n ∈ N such that G = ∆n
n.

Proposition 8.1. All left-invariant metrics on weakly Bergman groups are bounded.



79

Proof. Suppose d is a left-invariant metric on a weakly Bergman group G. Set

∆n = {g ∈ G : d(1G, g) ≤ n},

and note that since G has the weak Bergman property, there is a natural number

n ∈ N such that ∆n
n = G. As d is left-invariant, it follows that

d(1G, g1 · · · gn) ≤ d(1G, g1) + d(g1, g1g2) + · · ·+ d(g1g2 · · · gn−1, g1g2 · · · gn)

= d(1G, g1) + d(1G, g2) + · · · d(1G, gn)

≤ n2,

thus G = ∆n2 . a

Remark 8.2. It follows that if G is weakly Bergman and X ⊆ G is a set of generators

for G, then every element of G is a product of boundedly many elements of X±1. That

is, every Cayley graph of a weakly Bergman group is of bounded diameter.

In Bergman [7], it was shown that the group of all permutations of an infinite set

is weakly Bergman. A wide class of automorphism groups share this property:

Proposition 8.3. Suppose that A is a κ-complete Boolean algebra, G is a κ-full

group of automorphisms of A which admit maximal discrete sections, and G has a

subgroup of cardinality strictly less than κ which acts aperiodically. Then G has the

weak Bergman property.

Proof. We must show that for every increasing, exhaustive sequence of sets

∆n ⊆ G, there exists n ∈ N such that G = ∆n
n. Note that by replacing ∆n with

∆n∩∆−1
n , we may assume that each ∆n is symmetric. For ∆ ⊆ G and a ∈ A, we will

use ∆|Aa to denote {π|Aa : π ∈ ∆ and π(a) = a}.

Lemma 8.4. Suppose that A is a σ-complete Boolean algebra, G is a σ-full group

of automorphisms of A, a ∈ A, 〈an〉n∈N is a pairwise disjoint sequence of elements

of Aa, and 〈Λn〉n∈N is an increasing, exhaustive sequence of subsets of G|Aa. Then

∀∞n ∈ N (G|Aan = Λn|Aan).
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Proof. Suppose, towards a contradiction, that there is an increasing sequence of

natural numbers kn and automorphisms πn ∈ G|Aan with πkn 6∈ Λkn|Aakn
. Then

π =
Y
n∈N

an
πn−→ an

is in (G|Aa)\
S
n∈N Λn, a contradiction. a

a3z }| {a2z }| {a1z }| {
···

b3 b2 b1···

Figure 1.18: The partition of unity generated by the ιn’s.

Now fix a group Γ ≤ G of cardinality strictly less than κ which acts aperiodically,

and set a0 = 1. Given a Γ-aperiodic section an ∈ A, apply Proposition 6.7 to find

an involution ιn+1 ∈ G with support an, and fix a maximal ιn+1-discrete section

an+1 ∈ A. Set bn+1 = ιn+1(an+1), noting that the bn’s are pairwise disjoint. It follows

from Lemma 8.4 that there exists n0 > 1 such that

∀n ≥ n0 (G|Abn = ∆n|Abn).

For each n > n0, set cn = ιn0(bn), noting that the cn’s are pairwise disjoint and

below bn0 . Now observe that the sets of the form

Λn = {π|Abn0
: π ∈ ∆n and supp(π) ≤ bn0}

forms an increasing, exhaustive sequence of subsets of G|Abn0
. It follows from Lemma

8.4 that there exists n1 > n0 such that

∀n ≥ n1 (G|Acn = Λn|Acn).
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an0z }| {
bn0+1bn0+2···

bn0z }| {
cn0+1cn0+2···

Figure 1.19: The partition of an0−1 into the bn’s and cn’s.

Lemma 8.5. Suppose π ∈ G and supp(π) ≤ cn1. Then there exists πk ∈ ∆nk with

π = [π0, π1].

Proof. By Remark 7.20, there are automorphisms ϕ0, ϕ1 ∈ G which are supported

by cn1 and satisfy π = [ϕ0, ϕ1]. It follows from the construction of n0, n1 that there

are automorphisms πk ∈ ∆nk such that:

1. π0|Acn0
= ϕ0|Acn0

and π0|Abn0−cn1
= id.

2. π1|Acn1
= ϕ1|Acn1

and π1|A1−bn0
= id.

Noting that bn0 and cn1 are π0-invariant and π1-invariant, it follows that

(a) [π0, π1]|Acn1
= [ϕ0, ϕ1] = π|Acn1

,

(b) [π0, π1]|Abn0−cn1
= π1 ◦ π−1

1 |Abn0−cn1
= id, and

(c) [π0, π1]|A1−bn0
= π0 ◦ π−1

0 |A1−bn0
= id,

thus π = [π0, π1]. a

Now find an involution ι ∈ G with support cn1 and let c be a maximal ι-discrete

section. Let π1, . . . , πk be an enumeration of the automorphisms of the form�
c
ι
δ0
0 ◦···◦ι

δn1
n1−−−−−−→ ιδ00 ◦ · · · ◦ ιδn1

n1
(c)
��
ι(c)

ι
ε0
0 ◦···◦ι

εn1
n1−−−−−−→ ιε00 ◦ · · · ◦ ιεn1

n1
◦ ι(c)

�
,

where ∀i ≤ n1 (δi, εi ∈ {0, 1}), and fix n ≥ n1 sufficiently large that each πi is in ∆n.
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Note that any involution which is supported by a section of the form πi(c) +πj(c)

is a conjugate of an involution supported by cn1 via one of the πk’s. It follows that

every such involution is in ∆3
n.

Finally, observe that any involution ι ∈ G is a product of the k2 involutions

ιij =
�
πi(c) · ι−1(πj(c))

ι−→ πj(c) · ι−1(πi(c)
�
,

thus ∆3k2

n contains every involution in G, so G = ∆9k2

n , by Theorem 5.8. a

A group G is strongly k-Bergman if for every increasing, exhaustive sequence

〈∆n〉n∈N of subsets of G, there exists n ∈ N such that ∆k
n = G. A group G is strongly

Bergman if it is strongly k-Bergman, for some k ∈ N. In Bergman [7], it is shown

that infinite permutation groups are strongly 17-Bergman. For the sort of groups in

which we are interested, however, there is an impediment to this stronger property:

Proposition 8.6. Suppose that A is a σ-complete Boolean algebra, Γ is a countable

group that acts aperiodically on A by automorphisms which admit maximal discrete

sections, and µ is a Γ-invariant probability measure on A. Then [Γ] does not have

the strong Bergman property.

Proof. We must show that for each k > 0, [Γ] is not strongly k-Bergman. That

is, for each k > 0, we must find an increasing, exhaustive sequence 〈∆n〉n∈N of subsets

of [Γ] such that

∀n ∈ N (∆k−1
n 6= [Γ]).

Recall that the full semigroup of Γ is the set JΓK of isomorphisms π : Aa → Ab,

with a, b ∈ A, which are of the form

π =
Y
γ∈Γ

aγ
γ−→ γ · aγ,

in which 〈aγ〉γ∈Γ is a partition of a and 〈γ · aγ〉γ∈Γ is a partition of b.

Suppose that π, ϕ ∈ JΓK, and note that there is a maximal a ≤ dom(π) · dom(ϕ)

on which π|Aa = ϕ|Aa. This section is given by

e(π, ϕ) = dom(π) · dom(ϕ)− supp(π ◦ ϕ−1|Aπ(dom(ϕ))·rng(ϕ)).
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With this in mind, we may think of

d(π, ϕ) = µ(1− e(π, ϕ))

as the distance between π, ϕ. More generally, when π ∈ [Γ] and ∆ ⊆ JΓK, we will use

d(π,∆) = inf
δ∈∆

d(π,∆)

to denote the distance from π to ∆.

Fix an increasing, exhaustive sequence of finite sets Γn ⊆ Γ, and put

∆n = {ϕ ∈ [Γ] : d(γ, JΓnK) < 1/k} .

Lemma 8.7. 〈∆n〉n∈N is an increasing, exhaustive sequence of subsets of [Γ].

Proof. It is clear that ∆n ⊆ ∆n+1. To see that [Γ] =
S
n∈N ∆n, fix

π =
Y
γ∈Γ

aγ
γ−→ γ · aγ

in [Γ], and choose n ∈ N sufficiently large that

a =
X
γ∈Γn

aγ

is of measure at least 1− 1/k. Let ϕ ∈ JΓnK be the partial map

ϕ =
Y
γ∈Γn

aγ
γ−→ γ · aγ,

and observe that d(π, ϕ) < 1/k, thus π ∈ ∆n. a

It remains to check that each ∆k−1
n is strictly contained in [Γ]. We begin by noting

that the definition of ∆n places a serious limitation on elements of JΓknK:

Lemma 8.8. Suppose that π1, . . . , πk−1 ∈ ∆n. Then d(π1 ◦· · ·◦πk−1, JΓknK) < 1−1/k.

Proof. For each 1 ≤ i ≤ k − 1, fix ϕi ∈ JΓnK such that

d(πi, ϕi) < 1/k,
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and observe that

e(π1 ◦ · · · ◦ πk−1, ϕ1 ◦ · · · ◦ ϕk−1) ≥ e(πk−1, ϕk−1) · π−1
k−1(e(πk−2, ϕk−2)) ·

· · · · (π2 ◦ · · · ◦ πk−1)
−1(e(π1, ϕ1)),

thus1− e(π1 ◦ · · · ◦ πk−1, ϕ1 ◦ · · · ◦ ϕk−1) ≤ (1− e(πk−1, ϕk−1)) +

· · ·+ (1− (π2 ◦ · · · ◦ πk−1)
−1(e(π1, ϕ1))).

As µ is Γ-invariant, it follows that

d(π1 ◦ · · · ◦ πk−1, ϕ1 ◦ · · · ◦ ϕk−1) ≤ d(πk−1, ϕk−1) + · · ·+ d(π1, ϕ1),

and this latter quantity is strictly less than 1− 1/k. a

In particular, our task will be complete if we can find π ∈ [Γ] such that

d(π, JΓk−1
n K) ≥ 1− 1/k.

Thus, the following lemma completes the proof:

Lemma 8.9. Suppose that ∆ ⊆ [Γ] is finite, n ∈ N, and ε > 0. Then there is an

automorphism π ∈ [Γ] such that d(π, J∆K) ≥ 1− ε.

Proof. By Proposition 7.23, there is an aperiodic automorphism π ∈ [Γ]. Sup-

pose, towards a contradiction, that for each n ∈ N, there exists ϕn ∈ J∆K with

d(πn, ϕn) < 1− ε.

Then for each n ∈ N, we can find pairwise disjoint sections a
(n)
δ , whose sum is of

measure at least ε, such that for all δ ∈ ∆,

ϕn|Aa
(n)
δ

= δ|A
a
(n)
δ

.

It follows that we can find natural numbers m < n and δ ∈ ∆ such that

a = a
(m)
δ · a(n)

δ
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is of positive measure. In particular, a is non-zero and

πm|Aa = πn|Aa,

thus πn−m|Aπm(a) = id, contradicting the aperiodicity of π. a

Remark 8.10. The automorphism produced by the proof of Lemma 8.9 is aperiodic.

In fact, we could have built an aperiodic automorphism π ∈ [Γ] such that

d(π, J∆K) = 1.

This follows from a straightforward modification of the proof of Proposition 7.23.

There is also a natural condition which ensures strong Bergmanocity, and even

allows us to substantially weaken the assumption of the existence of maximal discrete

sections. Suppose that A is a κ-complete Boolean algebra and Γ is a group of cardi-

nality strictly less than κ which acts on A by automorphisms. We will write a ≈ b

to indicate the existence of an isomorphism π : Aa → Ab in JΓK. The action of Γ is

paradoxical if there is a partition of unity into two elements a ≈ b ≈ 1.

Proposition 8.11. Suppose that A is a σ-complete Boolean algebra, G is a κ-full

group of automorphisms of A whose elements are all products of k commutators, and

G has a subgroup of cardinality strictly less than κ that acts paradoxically. Then G

is strongly (12k + 4)-Bergman.

Proof. We must show that for every increasing, exhaustive sequence of sets

∆n ⊆ G, there exists n ∈ N such that G = ∆12k+4
n . Note that by replacing ∆n with

∆n ∩∆−1
n , we may assume that each ∆n is symmetric.

Fix a group Γ ≤ G of cardinality strictly less than κ which acts paradoxically,

fix an increasing, exhaustive sequence of sets of ∆n ⊆ G, and set a0 = 1. Given

a Γ-paradoxical section an ∈ A, an appeal to paradoxicality yields an involution

ιn+1 ∈ G with support an and Γ-paradoxical maximal discrete section an+1 ∈ A. Set

bn+1 = ιn+1(an+1), noting that the bn’s are pairwise disjoint. It follows from Lemma

8.4 that there exists n0 > 1 such that

∀n ≥ n0 (G|Abn = ∆n|Abn).
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a3z }| {a2z }| {a1z }| {
···

b3 b2 b1···

Figure 1.20: The partition of unity generated by the ιn’s.

an0z }| {
bn0+1bn0+2···

bn0z }| {
cn0+1cn0+2···

Figure 1.21: The partition of an0−1 into the bn’s and cn’s.

For each n > n0, set cn = ιn0(bn), noting that the cn’s are pairwise disjoint and

below bn0 . Now observe that the sets of the form

Λn = {π|Abn0
: π ∈ ∆n and supp(π) ≤ bn0}

form an increasing, exhaustive sequence of subsets of G|Abn0
. It follows from Lemma

8.4 that there exists n1 > n0 such that

∀n ≥ n1 (G|Acn = Λn|Acn).

Lemma 8.12. Suppose π ∈ G and supp(π) ≤ b. Then there exists π
(`)
i ∈ ∆ni with

π =
Ỳ
<k

[π
(`)
0 , π

(`)
1 ].
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Proof. Fix π ∈ G which is supported by b and note that since bn1 ≈ 1,

π =
Ỳ
<k

[ϕ
(`)
0 , ϕ

(`)
1 ],

where π
(`)
i ∈ Aut(Ab). Now find automorphisms π

(`)
i ∈ ∆ni such that

1. π
(`)
i agrees with ϕ

(`)
i on Ab.

2. π
(`)
0 |Abn0−b = id.

3. π
(`)
1 |A1−bn0

= id.

As these conditions easily imply that [π
(`)
0 , π

(`)
1 ] is supported by b and

[π
(`)
0 , π

(`)
1 ]|Ab = [ϕ

(`)
0 , ϕ

(`)
1 ],

it follows that π =
Q
`<k[π

(`)
0 , π

(`)
1 ]. a

It follows that every automorphism which is supported by b is the product of

4k elements of ∆n1 . Now put c0 = 1 − b and partition b into c1 ≈ c2 ≈ b. As

b ≈ 1 ≈ 1 − b, it follows that c0 ≈ c1 ≈ c2. By fixing n2 ≥ n1 sufficiently large, we

can ensure that ∆n2 includes an involution which swaps any pair of elements of this

partition and is the identity on the remaining element. In particular, it follows that

every automorphism which is the identity on ci, for i ∈ {1, 2}, is the product of 4k+2

elements of ∆n2 . We now need one more lemma:

Lemma 8.13. Suppose that A is a σ-complete Boolean algebra, π ∈ Aut(A),

a0, a1, a2 ∈ A

forms a partition of unity, and a0 +a1 is a doubly recurrent π-complete section. Then

there exists πi ∈ [π] with πi|Aai = id and π = π0 ◦ π1 ◦ π2.

Proof. Let π2 be the automorphism of A which is given by

π2 = (a0 + a1)
πa0+a1−−−−→ (a0 + a1),
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and for each i ∈ {0, 1}, let a
(n)
i be the maximal section a ≤ a0 + a1 such that

∀m < n (πm(a) ≤ a2) and πn(a) ≤ a1−i.

Explicitly, a
(n)
i is given by

ani = π(a0 + a1) · π−n(a1−i) ·
Y
m<n

π−m(a2).

Note that {πm(ani ) : 0 ≤ i ≤ 1 and m < n} partitions a2 and {πn(ani ) : n ∈ N}
partitions a1−i · π(a2). For each i ∈ {0, 1}, put

πi =
Y
n>0

(ani
π−→ π(ani )

π−→ · · · π−→ πn(ani )),

noting that π0 and π1 have disjoint supports. As πi|Aai = id is clear, it only remains

to check the following:

· · · · · ·a0 a2 a2 a2 a1 a1 a2 a2 a0 a0 a2 a1

-
-

-
-

- - -

π2

- - -

�
π0

- -
�
π1

π0

Figure 1.22: The action of the πi’s on the π-orbit of an atom of A.

Sublemma 8.14. π = π0 ◦ π1 ◦ π2.

Proof. The proof breaks into three cases:

1. To see that π|Aa2 = π0 ◦ π1 ◦ π2|Aa2 , fix natural numbers m < n, suppose that

a ≤ πm(ani ), and note that π2(a) = a, thus

π0 ◦ π1 ◦ π2(a) = π0 ◦ π1(a)

= π0 ◦ πm+1(a)

= πm+1(a),

where the final equality follows from the fact that π0, π1 have disjoint supports.
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2. To see that π|A(a0+a1)·π−1(a0+a1) = π0 ◦ π1 ◦ π2|A(a0+a1)·π−1(a0+a1), suppose that

a ≤ (a0 + a1) · π−1(a0 + a1),

and note that π2(a) = π(a) is disjoint from π(a2), thus fixed by π0 and π1.

3. To see that π|A(a0+a1)·π−1(a2) = π0 ◦ π1 ◦ π2|A(a0+a1)·π−1(a2), suppose that

a ≤ (a0 + a1) · π−1(ani ),

and observe that

π0 ◦ π1 ◦ π2(a) = π0 ◦ π1 ◦ πn+1(a)

= π−n ◦ πn+1(a)

= π(a).

Noting that

a2 + (a0 + a1) · π−1(a0 + a1) + (a0 + a1) · π−1(a2) = 1,
it follows that π = π0 ◦ π1 ◦ π2. a

Now suppose that π ∈ G. Clearly, there is a partition of unity into three π-

invariant pieces on which c0 +c1, c0 +c2, and c1 +c2 are doubly recurrent, respectively,

and the proposition follows. a

Remark 8.15. The hypotheses of Proposition 8.11 fall well short of those of Theorem

5.8. However, Bergmanocity nevertheless ensures that if every element of G is the

composition of finitely many involutions, then there is a bound on the number of

involutions necessary.

In particular, Proposition 8.11 implies that a wide variety of Boolean algebras

have strongly Bergman automorphism groups:

Corollary 8.16. The following groups are strongly 16-Bergman:

1. The group of permutations of an infinite set.
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2. The group of Borel automorphisms of an infinite Polish space.

3. The group of automorphisms of a Boolean algebra of the form

A =
Y
α

Aα,

where each Aα is an infinite weakly homogeneous complete Boolean algebra.

Proof. It is straightforward to see that any aperiodic smooth automorphism acts

paradoxically, so we just need to check that each of these algebras admits such an

automorphism. This is straightforward for (1) and (2), so only (3) remains.

Clearly, it is enough to show that each infinite weakly homogeneous complete

Boolean algebra A admits an aperiodic smooth automorphism. If A has an atom,

then weak homogeneity ensures that A is purely atomic, and completeness ensures

that A is isomorphic to the power set algebra. As A is infinite, it must be the power

set algebra of an infinite set, and it follows that any aperiodic permutation of the

atoms of A induces the desired smooth aperiodic automorphism.

We are left with the case that A is atomless. By a theorem of Koppelberg and

Solovay (see Theorem 4.1 of Rubin-Štěpánek [66]), A is of the form Bκ, where B is

a homogeneous complete Boolean algebra. So it is enough to show that B admits a

smooth aperiodic automorphism. As A is atomless, so too is B. It then that follows

that there is a partition of unity 〈bn〉n∈Z and isomorphisms πn : Bbn → Bbn+1 , thus

π =
Y
n∈Z

bn
πn−→ bn+1

is the desired smooth aperiodic automorphism of B. a

Remark 8.17. It follows from Corollary 8.16 and Maharam’s Theorem that the au-

tomorphism group of every atomless semi-finite complete measure algebra is strongly

16-Bergman.

There are circumstances under which the observations we have made thus far

yield a simple algebraic characterization of the existence of an invariant probability

measure. Suppose E is a countable Borel equivalence relation on a Polish space X.
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By Feldman-Moore [36], there is a countable group Γ of Borel automorphisms of X

whose associated orbit equivalence relation,

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y),

is E. The full group of E is the group [E] of Borel automorphisms of X whose graphs

are contained in E. This group can be identified with the full group of Γ, when Γ is

viewed as acting on the algebra of Borel subsets of X.

Theorem 8.18. Suppose that E is an aperiodic countable Borel equivalence relation

on a Polish space. Then [E] has the weak Bergman property, and exactly one of the

following holds:

1. E admits an invariant Borel probability measure.

2. [E] is strongly Bergman.

Moreover, if (2) holds then [E] is strongly 16-Bergman.

Proof. Let Γ be a countable group of Borel automorphisms such that E = EX
Γ .

By a result of Becker-Kechris [6] which itself hinges on a theorem of Nadkarni [61],

a countable Borel equivalence relation E admits an invariant probability measure

exactly when the action of Γ is not paradoxical. The theorem now follows from

Proposition 8.6, Theorem 7.16, and Proposition 8.11. a

9 Normal subgroups

In this section, we study the normal subgroup structure of full groups. We begin

with a new proof of Shortt’s [73] theorem characterizing the normal subgroups of the

group of Borel automorphisms of an uncountable Polish space. We then move on to

show a version of Theorem 381S of Fremlin [39], which describes the normal subgroups

of a full group in terms of invariant ideals on the underlying algebra. Fremlin’s result

only goes through for actions with no partial transversals, which automatically rules

out many of the full groups in which we are interested, such as the full group of a
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countable Borel equivalence relation. Our version of the result goes through for an

arbitrary aperiodic action, although its conclusion is (necessarily) a bit weaker than

that of Fremlin’s theorem.

We begin with the new proof of Shortt’s theorem:

Theorem 9.1 (Shortt). The group of Borel automorphisms of an uncountable Polish

space has exactly three proper normal subgroups: the automorphisms of finite support

and even cycle type, the automorphisms of finite support, and the automorphisms of

countable support.

Proof (Fremlin-Miller). Suppose that N is a proper normal subgroup of the

group of all Borel automorphisms. We will begin with the case that every element

of N has countable support. Fix a countably infinite set S = {xn}n∈N of elements

of X, and note that each Borel automorphism f ∈ N for which f(S) = S induces a

permutation of the xn’s, and therefore a permutation τf of the naturals which index

them. As there is a Borel isomorphism between any two countably infinite Borel

subsets of X, it follows that

N ′ = {τf : f ∈ N and f(S) = S}

does not depend on the choice of S. As N is normal in the group of all Borel

automorphisms, it follows that N ′ is normal in S∞. As the only proper normal

subgroups of S∞ are the group of permutations of finite support and even cycle type

and the group of permutations of finite support, it follows that N must be one of the

groups mentioned in the statement of the theorem.

Now, fix a Borel automorphism f : X → X with uncountable support. It only

remains to check that the normal closure of f is necessarily the group of all Borel

automorphisms of X. For this, we will need the following lemma:

Lemma 9.2. There is a Borel automorphism g : X → X such that the commutator

[f, g] is an involution with uncountable, co-uncountable support.

Proof. For each n ∈ N ∪ {∞}, define Xn ⊆ X by

Xn = {x ∈ X : |[x]f | = n} ,
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and set X≥4 = X \ (X2 ∪X3). The proof now breaks into three cases:

1. X2 is uncountable: We will build a copy of Figure 1.23. Find a Borel transversal

B ⊆ X2 of EX2

〈f〉, find a Borel set B′ ⊆ B such that both B′ and B \ B′ are

uncountable, find a partition of B′ into uncountable Borel sets B0, B2 ⊆ B′,

put B2i+1 = f(B2i) for i ∈ {0, 1}, find a Borel automorphism h : B0 → B2, and

put

g(x) =

8>><>>: h(x) if x ∈ B0,

h−1(x) if x ∈ B2,

x otherwise.

Setting X ′
2 = [B′]f , it follows that the E

X′
2

〈f,g〉-class of every x ∈ X ′
2 consists of

���
���

���
���

B0 B1

B2 B3

-

-

�

�

6

?

f

f

g

Figure 1.23: The action of f, g : X → X on X ′
2.

exactly one point from each Bi. Letting xi denote this element, it is clear that

f |[x]〈f,g〉 = (x0 x1)(x2 x3) and g|[x]〈f,g〉 = (x0 x2),

thus

[f, g]|[x]〈f,g〉 = [(x0 x1)(x2 x3), (x0 x2)]

= (x0 x1)(x2 x3)(x0 x2) ◦ (x0 x1)(x2 x3)(x0 x2)

= (x3 x2 x1 x0)(x3 x2 x1 x0)

= (x0 x2)(x1 x3),

hence [f, g] is an involution with uncountable, co-uncountable support.

2. X3 is uncountable: We will build a copy of Figure 1.24. Find a Borel transversal

B ⊆ X3 of EX3

〈f〉, find a partition of B into uncountable Borel sets B0, B3, put

B3i+j = f j(B3i),
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for i ∈ {0, 1} and j ∈ {1, 2}, find a Borel isomorphism h : B0 → B3, and put

g(x) =

8>><>>: h(x) if x ∈ B0,

h−1(x) if x ∈ B3,

x otherwise.

Setting X ′
3 = [B]f , it follows that the EX3

〈f,g〉-class of every x ∈ X ′
3 consists of

���
���

���
���

���
���

B0 B1 B2

B3 B4 B5

-

-

-

-
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f

f

f

g

�

�

Figure 1.24: The action of f, g : X → X on X ′
3.

exactly one point from each Bi. Letting xi denote this element, it is clear that

f |[x]〈f,g〉 = (x0 x1 x2)(x3 x4 x5) and g|[x]〈f,g〉 = (x0 x3),

thus

[f, g]|[x]〈f,g〉 = [(x0 x1 x2)(x3 x4 x5), (x0 x3)]

= (x0 x1 x2)(x3 x4 x5)(x0 x3) ◦ (x2 x1 x0)(x5 x4 x3)(x0 x3)

= (x0 x4 x5 x3 x1 x2)(x5 x4 x3 x2 x1 x0)

= (x0 x3)(x1 x4),

hence [f, g] is an involution with uncountable, co-uncountable support.

3. X≥4 is uncountable: We will build a copy of Figure 1.25. Find a Borel maximal

f≤3-discrete section B ⊆ X≥4, find an uncountable, co-uncountable Borel set

B0 ⊆ B, put Bi = f i(B) for i ∈ {1, 2, 3}, and define

g(x) =

8>><>>: f 2(x) if x ∈ B0,

f−2(x) if x ∈ B2,

x otherwise.
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Figure 1.25: The action of g on an orbit of f .

Noting that

f ◦ g ◦ f−1(x) = f

�8>><>>: f 2 ◦ f−1(x) if f−1(x) ∈ B0,

f−2 ◦ f−1(x) if f−1(x) ∈ B2,

f−1(x) otherwise

�

=

8>><>>: f 2(x) if x ∈ B1,

f−2(x) if x ∈ B3,

x otherwise,

it follows that

[f, g](x) = (f ◦ g ◦ f−1) ◦ g−1(x) =

8>><>>: f 2(x) if x ∈ B0 ∪B1,

f−2(x) if x ∈ B2 ∪B3,

x otherwise,

hence [f, g] is an involution with uncountable, co-uncountable support.

As one of X2, X3, and X≥4 is uncountable, this completes the proof of the lemma. a

Next, note that any two Borel involutions with uncountable, co-uncountable sup-

port are conjugate, since any Borel isomorphism between transversals can be easily

extended to the desired conjugacy. In particular, it follows that if g is as above and

i : X → X is any Borel involution with uncountable, co-uncountable support, then

there is a Borel automorphism h : X → X such that

i = h ◦ [f, g] ◦ h−1 = (h ◦ f ◦ h−1) ◦ ((h ◦ g) ◦ f−1 ◦ (h ◦ g)−1),

thus i is the composition of a conjugate of f and a conjugate of f−1.
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As it is easy to see that every Borel involution is a composition of two Borel

involutions which have uncountable, co-uncountable support, it follows from Theorem

5.8 that every Borel automorphism is a composition of twelve conjugates of f±1, thus

the normal closure of f contains every Borel automorphism. a

Remark 9.3. It is not hard to modify the proof of Theorem 9.1 so as to see that

if f : X → X has uncountable support, then every Borel automorphism of X is a

composition of six conjugates of f±1. To see this, it is enough to check that every

Borel automorphism is a composition of three Borel involutions with uncountable,

co-uncountable support. This follows from a fairly straightforward modification of

the proof of Theorem 5.8. (The main observation here is that if i : X → X a non-

crossing covering Borel involution then, by removing all of the arcs associated with

i which have no arcs below them, we obtain a non-crossing covering involution with

uncountably many fixed-points.)

Remark 9.4. With a little more work, we can show that if f : X → X has uncount-

able support, then every Borel automorphism of X is a composition of four conjugates

of f±1. To see this, partition X into two uncountable f -invariant Borel sets, one on

which f is smooth and one on which f is aperiodic. On the smooth part, we can

repeat the argument we have provided thus far, noting that by Proposition 4.1, the

restriction of f to this piece is the composition of two involutions. To handle the

aperiodic part, note that the proof of Lemma 9.2 can be modified so as to show that

there is a Borel automorphism g : X → X such that the commutator [f, g] is of strict

period 3 and has uncountable, co-uncountable support. Once this has been accom-

plished, it only remains to observe that by the proof of Theorem 7.14, every aperiodic

Borel automorphism is the composition of two automorphisms of strict period 3 which

have uncountable, co-uncountable support.

Remark 9.5. As noted in Moran [60], four is best possible. For if x0, x1, x2 are

distinct elements of an infinite set X, then (x0 x1 x2) is not the composition of three

fixed-point free involutions of X.

Now it is time to move on to the main result of this section. Suppose that A is a
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κ-complete Boolean algebra and G is a κ-full group of automorphisms of A. Ideally,

we would like to show that every normal subgroup of G is of the form

N = {π ∈ G : supp(π) ∈ I},

where I is a G-invariant ideal on A. In the special case that A is a complete Boolean

algebra and the action of G admits no non-trivial partial transversals, this is the exact

content of Theorem 381S of Fremlin [39]. Unfortunately, the requirement that the

action of G admits no non-trivial partial transversals automatically excludes purely

atomic Boolean algebras. In particular, this theorem tells us nothing about subgroups

of the group of Borel automorphisms of a Polish space.

Worse still, in all but the most trivial of cases, the existence of a partial G-

transversal gives rise to normal subgroups of G which are not of the desired form. In

order to get around this problem, we will seek only to characterize the elements of

N �G whose supports are in some sense large. Define

G∞ = {π ∈ G : ∃Γ ≤ G (|Γ| < κ and supp(π) is Γ-aperiodic)},

and for each N�G, let IN be the G-invariant ideal which is generated by the supports

of elements of G∞ ∩N .

Theorem 9.6. Suppose that A is a κ-complete Boolean algebra, G is a κ-full group

of automorphisms of A that admit maximal discrete sections, and N �G. Then

{π ∈ G : supp(π) ∈ IN} ≤ N,

thus G∞ ∩N = {π ∈ G∞ : supp(π) ∈ IN}.

Proof. We will begin with a series of observations that, in the spirit of the proof

of Theorem 9.1, will reduce the theorem to a question about involutions.

Lemma 9.7. Suppose that A is a κ-complete Boolean algebra, Γ is a group of car-

dinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections, and ϕ ∈ [Γ] has Γ-aperiodic support. Then there are involutions

ι0, ι1 ∈ [Γ] such that

supp(ϕ) ≤ supp([ϕ, ι0]) + supp(ι1 ◦ [ϕ, ι0] ◦ ι−1
1 ),
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and [ϕ, ι0] is an involution with Γ-aperiodic support.

Proof. For each n ≥ 1, we will use

aϕn =
X

1≤i<n
supp(ϕi)− supp(ϕn)

to denote the period n part of ϕ, and we will use

aϕ∞ =
Y
n≥1

supp(ϕn)

to denote the aperiodic part of ϕ.

We will begin by defining involutions on A2 = Aaϕ2
, A3 = Aaϕ3

, and A4 = Aaϕ≥4
:

1. On A2: We will build a copy of Figure 1.26. Fix a ϕ-transversal c2 ∈ A2, and

note that by the first half of the proof of Proposition 6.7, there is an involution

ι2 ∈ [Γ] such that supp(ι2) ≤ c2 and

c2 − supp(ι2)

is a partial Γ-transversal. Fix a maximal ι2-discrete section c
(2)
00 , set

c
(2)
jk = ϕj ◦ ιk2(c

(2)
00 ),

for 0 ≤ j, k ≤ 1, and note that

ι2 = (c
(2)
00

ι2−→ c
(2)
01 ) and ϕ = (c

(2)
00

ϕ−→ c
(2)
10 )(c

(2)
01

ϕ−→ c
(2)
11 ),

thus

[ϕ, ι2] = (ϕ ◦ ι2)2

= ((c
(2)
00

ϕ−→ c
(2)
10 )(c

(2)
01

ϕ−→ c
(2)
11 )(c

(2)
00

ι2−→ c
(2)
01 ))2

= (c
(2)
00

ϕ◦ι2−−→ c
(2)
11

ϕ−→ c
(2)
01

ϕ◦ι2−−→ c
(2)
10 )2

= (c
(2)
00

ι2−→ c
(2)
01 )(c

(2)
10

ϕ◦ι2◦ϕ−−−−→ c
(2)
11 ).

It follows that [ϕ, ι2] is an involution and

supp([ϕ, ι2]) = c
(2)
00 + c

(2)
01 + c

(2)
10 + c

(2)
11 .
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Figure 1.26: The action of ϕ, ι2 on the c
(2)
jk ’s.

Also, it will be important later to note that

aϕ2 − supp(ι2)

is the sum of the two partial Γ-transversals c2 − supp(ι2) and ϕ(c2 − supp(ι2)).

2. On A3: We will build a copy of Figure 1.27. Let c3 be a transversal of the action

of ϕ on A3, and note that by the first half of the proof of Proposition 6.7, there

is an involution ι3 ∈ [Γ] such that supp(ι3) ≤ c3 and

c3 − supp(ι3)

is a partial Γ-transversal. Fix a maximal ι3-discrete section c
(3)
00 , set

c
(3)
jk = ϕj ◦ ιk3(c

(3)
00 ),

for 0 ≤ j ≤ 2, 0 ≤ k ≤ 1, and note that

ι3 = (c
(3)
00

ι3−→ c
(3)
01 ) and ϕ = (c

(3)
00

ϕ−→ c
(3)
10

ϕ−→ c
(3)
20 )(c

(3)
01

ϕ−→ c
(3)
11

ϕ−→ c
(3)
21 ),

thus

[ϕ, ι3] = (c
(3)
00

ϕ−→ c
(3)
10

ϕ−→ c
(3)
20 )(c

(3)
01

ϕ−→ c
(3)
11

ϕ−→ c
(3)
21 )(c

(3)
00

ι3−→ c
(3)
01 )

(c
(3)
20

ϕ−1

−−→ c
(3)
10

ϕ−1

−−→ c
(3)
00 )(c

(3)
21

ϕ−1

−−→ c
(3)
11

ϕ−1

−−→ c
(3)
01 )(c

(3)
00

ι3−→ c
(3)
01 )

= (c
(3)
00

ϕ◦ι3−−→ c
(3)
11

ϕ−→ c
(3)
21

ϕ−→ c
(3)
01

ϕ◦ι3−−→ c
(3)
10

ϕ−→ c
(3)
20 )

(c
(3)
00

ϕ−1◦ι3−−−−→ c
(3)
21

ϕ−1

−−→ c
(3)
11

ϕ−1

−−→ c
(3)
01

ϕ−1◦ι3−−−−→ c
(3)
20

ϕ−1

−−→ c
(3)
10 )

= (c
(3)
00

ι3−→ c
(3)
01 )(c

(3)
10

ϕ◦ι3◦ϕ−1

−−−−−→ c
(3)
11 ).
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It follows that [ϕ, ι3] is an involution and

supp([ϕ, ι3]) = c
(3)
00 + c

(3)
01 + c

(3)
10 + c

(3)
11 .

It will later be important to note that aϕ3 − supp(ι3) is the sum of c
(3)
20 + c

(3)
21 and

the three partial Γ-transversals of the form

ϕi(c3 − supp(ι3)),

with i ∈ {0, 1, 2}.

���
���

���
���

���
���

c
(3)
00 c

(3)
10 c

(3)
20

c
(3)
01 c

(3)
11 c
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Figure 1.27: The action of ϕ, ι3 on the c
(3)
jk ’s.

3. On A4: We will build a copy of Figure 1.28. Fix a maximal ϕ≤3-discrete section

c
(4)
0 ∈ A4, set c

(4)
i = ϕi(c4) for i ∈ {1, 2, 3}, and define

ι4 = (c
(4)
0

ϕ2

−→ c
(4)
2 ).

Noting that ϕ ◦ ι4 ◦ ϕ−1 = (ϕ(c
(4)
0 )

ϕ2

−→ ϕ(c
(4)
2 )) = (c

(4)
1

ϕ2

−→ c
(4)
3 ), it follows that

[ϕ, ι4] = (c
(4)
0

ϕ2

−→ c
(4)
2 )(c

(4)
1

ϕ2

−→ c
(4)
3 ),

thus [ϕ, ι4] is an involution and

supp([ϕ, ι4]) = c
(4)
0 + c

(4)
1 + c

(4)
2 + c

(4)
3 .

Let ι0 ∈ [Γ] be the involution which agrees with ιk on Ak, for k ∈ {2, 3, 4}. It only

remains to find an involution ι1 ∈ [Γ] which sends

a =
�
aϕ2 − supp([ϕ, ι2])

�
+
�
aϕ3 − supp([ϕ, ι3])

�
+
�
aϕ≥4 − supp([ϕ, ι4])

�
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Figure 1.28: The action of ι4 on a ϕ-orbit of A≥4 in the purely atomic case.

into

b = supp([ϕ, ι2]) + supp([ϕ, ι3]) + supp([ϕ, ι≥4]).

As supp(ϕ) is Γ-aperiodic, so too is

c = c
(2)
00 + c

(3)
00 + c

(4)
0 .

By the proof of Proposition 6.12, there is an involution ι′ ∈ [Γ] which sends

d =
X

0≤i≤1

ϕi(c2 − supp(ι2)) +
X

0≤i≤2

ϕi(c3 − supp(ι3))

into c. It follows that

ι1 = (c
ι′−→ d)

Y
1≤i≤2

(c
(3)
2i

ϕ−1

−−→ c
(3)
1i )

Y
1≤i≤3

(ϕ3(c
(4)
i )

ϕ−3

−−→ c
(4)
i )

is as desired. a

It now follows that if supp(π) ∈ IN , then π is contained in a group Γ ≤ G of

cardinality strictly less than κ which also contains finitely many involutions in N with

Γ-aperiodic supports which cover the support of π. By Theorem 5.8, π is itself the

composition of three involutions whose supports are below the support of π. So it

only remains to prove the following:

Lemma 9.8. Suppose that A is a κ-complete Boolean algebra, Γ is a group of car-

dinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections, N � [Γ], ι ∈ [Γ] is an involution, and there are finitely many invo-

lutions ιk ∈ N with Γ-aperiodic support such that

supp(ι) ≤
X
k

supp(ιk).

Then ι ∈ N .
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Proof. For each involution ι′ ∈ [Γ], put

e(ι, ι′) =
X
{a ∈ A : ι|Aa = ι′|Aa} = 1− supp(ι′ ◦ ι−1).

We claim that, by expanding the list of ιk’s, we can ensure that

supp(ι) ≤
X
k

e(ι, ιk).

To see this, it is enough to observe the following:

Sublemma 9.9. Suppose that A is a κ-complete Boolean algebra, Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms that admit max-

imal discrete sections, and ι, ι′ ∈ [Γ] are involutions. Then there are conjugates

ι′0, ι
′
1, ι

′
2, ι

′
3 ∈ [Γ] of ι′ such that

supp(ι) · supp(ι′) ≤
X
k

e(ι, ι′k).

Proof. Let a0, a1 ∈ A be a partition of supp(ι) into maximal ι-discrete sections,

and let a′0, a
′
1 ∈ A be a partition of supp(ι′) into maximal ι′-discrete sections. Set

ajk = aj · a′k, noting that

supp(ι) · supp(ι′) ≤
X

0≤j,k≤1

ajk.

Setting

ιjk = (ι(ajk)
ι′◦ι−−→ ι′(ajk)),

it follows that for all a ≤ ajk,

ιjk ◦ ι′ ◦ ιjk(a) = ιjk ◦ ι′(a)

= ι ◦ ι′ ◦ ι′(a)

= ι(a),

thus

ajk ≤ e(ι, ιjk ◦ ι′ ◦ ιjk),

hence the involutions of the form ιjk ◦ ι′ ◦ ιjk are as desired. a
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When a ∈ A is π-invariant, we will use

π|a = a
π−→ a

to denote the automorphism of A which is supported by a and agrees with π on Aa.

Sublemma 9.10. Suppose that A is a κ-complete Boolean algebra, Γ is a group of

cardinality strictly less than κ which acts on A by automorphisms that admit maximal

discrete sections, N � [Γ], ι ∈ N is an involution with Γ-aperiodic support, and a ∈ A

is ι-invariant. Then ι|a ∈ N .

Proof. Of course, we may assume a ≤ supp(π). There are essentially two cases:

1. a is Γ-periodic: Let b be a maximal ι-discrete section, note that b − a is Γ-

aperiodic, and apply Proposition 6.7 to find an involution ϕ ∈ [Γ] such that

supp(ϕ) = b− a. Let b00 be a maximal ϕ-discrete section, put

bjk = ιj ◦ ϕk(b00),

for 0 ≤ j, k ≤ 1, and note that

ι|(1− a) = (b00
ι−→ b10)(b01

ι−→ b11) and ϕ = (b00
ϕ−→ b01).

���
���

���
���

b00 b10

b01 b11

-

-

�

�
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Figure 1.29: The action of ι, ϕ, ψ on A1−a.

Set ψ = (b00
ι◦ϕ−−→ b11), and observe that

ϕ ◦ ι ◦ ϕ−1|(1− a) = (b00
ϕ−→ b01)(b00

ι−→ b10)(b01
ι−→ b11)(b00

ϕ−→ b01)

= (b00
ι◦ϕ−−→ b11)(b01

ι◦ϕ−−→ b10),
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and

ψ ◦ ι ◦ ψ−1|(1− a) = (b00
ι◦ϕ−−→ b11)(b00

ι−→ b10)(b01
ι−→ b11)(b00

ι◦ϕ−−→ b11)

= (b00
ϕ−→ b01)(b10

ι◦ϕ◦ι−−−→ b11),

thus

(ϕ ◦ ι ◦ ϕ−1) ◦ (ψ ◦ ι ◦ ψ−1)|(1− a) = (b00
ι◦ϕ−−→ b11)(b01

ι◦ϕ−−→ b10)

(b00
ϕ−→ b01)(b10

ι◦ϕ◦ι−−−→ b11)

= (b00
ι−→ b10)(b01

ι−→ b11)

= ι|(1− a),

and it follows that ι ◦ (ϕ ◦ ι ◦ ϕ−1) ◦ (ψ ◦ ι ◦ ψ−1) = ι|a.

2. a is Γ-aperiodic: Let b be a maximal ι-discrete section, note that a · b is Γ-

aperiodic, and apply Proposition 6.7 to find an involution ϕ ∈ [Γ] such that

supp(ϕ) = a · b. Let b00 be a maximal ϕ-discrete section, put

bjk = ιj ◦ ϕk(b00),

for 0 ≤ j, k ≤ 1, and note that

ι|a = (b00
ι−→ b10)(b01

ι−→ b11) and ϕ = (b00
ϕ−→ b01).

���
���

���
���

b00 b10

b01 b11

-

-

�

�

6

? �
�

�
���

�
��	

ι

ι

ϕ ψ

Figure 1.30: The action of ι, ϕ, ψ on Aa.

Set ψ = (b00
ι◦ϕ−−→ b11), and observe that

ϕ ◦ ι ◦ ϕ−1|a = (b00
ϕ−→ b01)(b00

ι−→ b10)(b01
ι−→ b11)(b00

ϕ−→ b01)

= (b00
ι◦ϕ−−→ b11)(b01

ι◦ϕ−−→ b10),
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and

ψ ◦ ι ◦ ψ−1|a = (b00
ι◦ϕ−−→ b11)(b00

ι−→ b10)(b01
ι−→ b11)(b00

ι◦ϕ−−→ b11)

= (b00
ϕ−→ b01)(b10

ι◦ϕ◦ι−−−→ b11),

thus

(ϕ ◦ ι ◦ ϕ−1) ◦ (ψ ◦ ι ◦ ψ−1)|a = (b00
ι◦ϕ−−→ b11)(b01

ι◦ϕ−−→ b10)

(b00
ϕ−→ b01)(b10

ι◦ϕ◦ι−−−→ b11)

= (b00
ι−→ b10)(b01

ι−→ b11)

= ι|a,

and it follows that (ϕ ◦ ι ◦ ϕ−1) ◦ (ψ ◦ ι ◦ ψ−1) = ι|a.

For the general case, simply note that ι|a is the product of ι|aΓ
∞ and ι|(1− aΓ

∞), and

that these automorphisms are in N by the above arguments. a

To complete the proof of the lemma, and thus the theorem, put

ak = e(ι, ιk)−
X̀
<k

e(ι, ι`),

and observe that ι is the product of the automorphisms of the form ιk|ak. a

10 Closed normal subgroups

In this section, we use Theorem 9.6 to completely characterize the normal sub-

groups of a full group which satisfy a certain closure condition. We then use this to

give a new proof of Bezuglyi-Golodets’s [11] characterization of closed normal sub-

groups of full groups of probability algebras. We also give a version of this theorem

for the group of Borel automorphisms of an uncountable Polish space, when equipped

with the uniform topology of Bezuglyi-Dooley-Kwiatkowski [9].

Suppose that A is a κ-complete Boolean algebra. A sequence 〈πn〉n∈N of automor-

phisms of A discretely converges to π if for densely many a ∈ A,

∀∞n ∈ N (πn(a) = π(a)).
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When A is purely atomic, this simply means that for each atom a ∈ A, the value of

πn(a) eventually settles down to π(a). A set A ⊆ Aut(A) is discretely σ-closed if the

limit of every discretely convergent sequence in A N is also in A .

Theorem 10.1. Suppose that A is a κ-complete Boolean algebra, G is a κ-full group

of automorphisms of A that admit maximal discrete sections, and G has a subgroup

of cardinality strictly less than κ that acts aperiodically. Then the discretely σ-closed

normal subgroups of G are exactly the groups of the form

N = {π ∈ G : supp(π) ∈ I},

where I is a G-invariant σ-ideal on A.

Proof. First note that if I is a G-invariant σ-ideal on A, then

N = {π ∈ G : supp(π) ∈ I}

is clearly a normal subgroup of G. Moreover, if 〈πn〉n∈N is a sequence of elements of

N which discretely converges to π, then

supp(π) ≤
X
n∈N

supp(πn),

thus π ∈ N , and it follows that N is discretely σ-closed.

It remains to show that if N � G and I is the G-invariant σ-ideal generated by

the supports of elements of N , then

N = {π ∈ G : supp(π) ∈ I}.

For this, we will need the following lemma:

Lemma 10.2. Suppose that ϕ ∈ N . Then there exists π ∈ N with supp(ϕ) ≤ supp(π)

and an aperiodic group Γ ≤ G of cardinality strictly less than κ which contains ϕ and

π and for which π has Γ-aperiodic support.

Proof. Let Γ be a subgroup of G of cardinality strictly less than κ that acts

aperiodically and contains ϕ. Let a be the Γ-saturation of the Γ-periodic part of
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supp(ϕ). As the action of Γ on A is aperiodic, it follows that there is an involution

ι ∈ [Γ] such that supp(ι) ≤ a and

ι(a · supp(ϕ)) ≤ a− supp(ϕ).

Setting π0 = [ϕ, ι], it follows that

a · supp(ϕ) ≤ supp(π0) ≤ a,

and supp(π0) is Γ-periodic.

Let 〈ιn〉n∈N be a sequence of involutions with supports in Aa such that the sections

of the form ιn(supp(π0)) are pairwise disjoint, and define

πn = ϕ ◦ (ι1 ◦ π0 ◦ ι−1
1 ) ◦ · · · ◦ (ιn ◦ π0 ◦ ι−1

n ).

It is clear that 〈πn〉n>0 is a sequence of elements of N which is discretely convergent

to an automorphism π ∈ [Γ] with Γ-aperiodic support, thus π ∈ N . As

supp(ϕ) ≤ supp(π),

the lemma follows. a

It follows from Theorem 9.6 that

N = {π ∈ G : supp(π) ∈ IN},

so it only remains to check that IN is a σ-ideal. That is, we must check that if

π0, π1, . . . ∈ N and

supp(π) ≤
X
n∈N

supp(πn),

then supp(π) ∈ N .

By Lemma 10.2, we may assume that each supp(πn) is Γ-aperiodic. Let ι0 be an

involution which has the same support as π0, and recursively find ιn+1 such that

supp(ιn+1) ≤ supp(πn+1)−
X
m≤n

supp(ιm),
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and �
supp(πn+1)−

X
m≤n

supp(ιm)

�
− supp(ιn+1)

is a partial Γ-transversal. Setting

ϕn = ι0 ◦ · · · ◦ ιn,

it is clear that the ϕn’s are discretely convergent to an involution ι ∈ N , and thatX
n∈N

supp(πn)− supp(ι)

is a partial Γ-transversal. It follows that there is an involution ι′ ∈ [Γ] such thatX
n∈Z

supp(πn) ≤ supp(ι) + supp(ι′ ◦ ι ◦ ι′),

thus supp(π) ∈ IN . a

Corollary 10.3. Suppose that A is a complete Boolean algebra which satisfies the

countable chain condition and G is a full subgroup of Aut(A) which acts aperiodically.

Then the discretely σ-closed normal subgroups of G are exactly the groups of the form

N = {π ∈ G : supp(π) ≤ a},

where a is a G-invariant element of A.

Proof. Simply note that every σ-ideal on A is of the form I = Aa, for some

a ∈ A, and apply Theorem 10.1. a

We will say that a measure algebra (A, µ) is a probability algebra if µ is a proba-

bility measure. Note that every probability algebra necessarily satisfies the countable

chain condition, and is therefore complete. Associated with (A, µ) is the uniform

topology on Aut(A), which is generated by the metric

d(ϕ, ψ) = µ(supp(ϕ ◦ ψ−1)).

We now are ready for our new proof of a theorem a theorem of Bezuglyi-Golodets

[11], which itself generalizes the special case when Γ acts by measure-preserving au-

tomorphisms, due to Dye [27].
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Theorem 10.4 (Bezuglyi-Golodets). Suppose that (A, µ) is a probability algebra

and G is a full group which acts aperiodically on A by automorphisms. Then the

normal subgroups of G which are closed in the uniform topology are exactly the groups

of the form

N = {π ∈ G : supp(π) ≤ a},

where a ∈ A is Γ-invariant.

Proof (Miller). Noting that any discretely convergent sequence is necessarily

convergent in the uniform topology, it follows from Corollary 10.3 that every normal

subgroup is of the desired form. It only remains to check that each group of the form

N = {π ∈ G : supp(π) ≤ a}

is closed in the uniform topology, or equivalently, that its complement is open. To see

this, note that if π 6∈ N , then ε = µ(supp(π)− a) is positive, and the ε-ball centered

at π avoids N . a

Let B be the σ-complete Boolean algebra of Borel subsets of an uncountable Polish

space X, and let P (X) denote the standard Borel space of probability measures on

X. In Bezuglyi-Dooley-Kwiatkowski [9], the uniform topology on Aut(B) is defined

as the topology which is generated by the basic open sets of the form

U (ϕ, µ0, . . . , µn, ε) = {ψ ∈ Aut(B) : ∀i ≤ n (µi(supp(ϕ ◦ ψ−1)) < ε)},

where ϕ ∈ Aut(B), µ0, . . . , µn ∈ P (X), and ε > 0. We will close this section by

proving an analog of Theorem 10.4 for the group of Borel automorphisms of X,

equipped with the uniform topology. Given a group G of Borel automorphisms and

a set M ⊆ P (X), we will say that M is G-invariant if

∀µ ∈M (g∗µ ∈M).

Let NULLµ denote the ideal of null Borel subsets of X, and for M ⊆ P (X), put

NULLM =
\
µ∈M

NULLµ.
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Theorem 10.5. Suppose that G is a σ-full group of automorphisms of B which

contains a countable aperiodic subgroup. Then the uniformly closed normal subgroups

of G are exactly those of the form

N = {π ∈ G : supp(π) ∈ NULLM},

where M ⊆ P (X) is G-invariant.

Proof. First, we must check that all subsets of G of the desired form are uniformly

closed normal subgroups. Suppose that M ⊆ P (X), and set

N = {π ∈ G : supp(π) ∈ NULLM}.

Clearly id ∈ N and π ∈ N ⇒ π−1 ∈ N . As

supp(ϕ ◦ ψ) ≤ supp(ϕ) + supp(ψ),

it follows that N is a subgroup of G. As

supp(ψ ◦ ϕ ◦ ψ−1) = ψ(supp(ϕ)),

it follows that if M is G-invariant, then N is a normal subgroup of G. To see that N

is uniformly closed, note that if π 6∈ N then there exists a probability measure µ ∈M
such that

µ(supp(π)) ≥ ε,

for some ε > 0. Noting that if ϕ ∈ N then

µ(supp(π)− supp(ϕ)) ≥ ε,

it follows that µ(supp(π ◦ ϕ−1)) ≥ ε, thus U (π, µ, ε) is an open neighborhood of π

which avoids N .

It remains to check that every uniformly closed N �G is of the desired form. As

every discretely convergent sequence is uniformly convergent, it follows from Theorem

10.1 that there is a G-invariant σ-ideal I on B such that

N = {π ∈ G : supp(π) ∈ I}.
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Let M ⊆ P (X) be the set of all probability measures µ on X for which I ⊆ NULLµ.

It is clear that M is G-invariant and I ⊆ NULLM .

Now suppose, towards a contradiction, that there exists π ∈ G \N such that

supp(π) ∈ NULLM .

As N is uniformly closed, there exist µ1, . . . , µn ∈ P (X) and ε > 0 such that

U (π, µ1, . . . , µn, ε) ∩N = ∅.

Put b0 = O, and given i < n and bi ∈ I, find bi+1 ∈ B which is of maximal µi+1-

measure with the property that bi ≤ bi+1 and bi+1 ∈ I. Set b = bn, and for each

1 ≤ i ≤ n with µi(b) < 1, let νi be the relative probability measure

νi(a) = µi(a− b)/µi(1− b).

Immediately we obtain the following:

Lemma 10.6. For all 1 ≤ i ≤ n, either µi(b) = 1 or νi ∈M .

As b ∈ I and I is G-invariant, it follows that [b]π ∈ I, so the automorphism

ϕ = π|[b]π

is in N . Noting that for all 1 ≤ i ≤ n,

µi(supp(π ◦ ϕ−1)) = µi(supp(π ◦ ϕ−1)− b)

≤ µi((supp(π) + supp(ϕ))− b)

≤ µi(supp(π)− b) + µi(supp(ϕ)− b)

= 0,

thus ϕ ∈ U (π, µ1, . . . , µn, ε), we now have the desired contradiction. a
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Chapter 2

Some classification problems

1 Introduction

In this chapter, we modify techniques of Shelah-Weiss [72], Harrington-Kechris-

Louveau [44], and Dougherty-Jackson-Kechris [24] so as to produce a variety of new

descriptive set-theoretic classification results. We focus on three basic topics: order-

preserving embeddings of Borel functions, betweenness-preserving embeddability of

Borel forests of lines, and G-action embeddings of group actions on quotient spaces

of the form X/E, where X is a Polish space and E is a countable Borel equivalence

relation on X.

Associated with each Borel function f : X → X is a Borel equivalence relation

Et(f) and a Borel assignment of partial ordering ≤f to each Et(f)-class, given by

xEt(f)y ⇔ ∃m,n ∈ N (fm(x) = fn(y)) and x ≤f y ⇔ ∃n ≥ 0 (fn(x) = y).

Given Borel functions f : X → X and g : Y → Y , an order-preserving embedding of

f into g is a Borel injection π : X → Y such that for all x, x′ ∈ X,

xEt(f)x′ ⇔ π(x)Et(g)π(x′) and x ≤f x
′ ⇔ π(x) ≤g π(x′).

The odometer is the isometry of 2N which adds 1 to the 0th digit of x, and then carries
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right. More precisely, it is given by

σ(x) =

8<: 0n1y if x = 1n0y,

0∞ if x = 1∞.

In §2, we show the following:

Theorem. Suppose that X is a Polish space and f : X → X is a Borel function.

Then exactly one of the following holds:

1. X can be partitioned into countably many Borel ≤f -antichains.

2. There is an order-preserving Borel embedding of the odometer into f .

This generalizes the result of Shelah-Weiss [72] and strengthens special cases of

Harrington-Kechris-Louveau [44] and Kanovei [50].

Suppose that f : X → X is a Borel automorphism and A ⊆ X is Borel. We say

that A is a complete section for f if it intersects every orbit of f , and that A is doubly

recurrent for f if for all x ∈ A, there exists m < 0 < n such that fm(x), fn(x) ∈ A.

Associated with any such set A ⊆ X is the induced automorphism of A,

fA(x) = fn(x)(x),

where n(x) is the least natural number n for which fn(x) ∈ A. Two Borel automor-

phisms f : X → X and g : Y → Y are descriptive Kakutani equivalent if there are

doubly recurrent Borel complete sections A ⊆ X and B ⊆ Y and a Borel isomor-

phism of fA and gB. This notion was introduced by Nadkarni [61], who asked if any

two Borel automorphisms of finite rank are descriptive Kakutani equivalent. This is

the analog of the measure-theoretic notion of Kakutani [49], who originally conjec-

tured that in the measure-theoretic context, all automorphisms should be Kakutani

equivalent (this later turned out to be false).

The results of §3 are joint with Christian Rosendal. We strengthen the argument of

Dougherty-Jackson-Kechris [24] so as to show that every Borel automorphism order-

preservingly embeds into the odometer. This leads to the following:
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Theorem (Miller-Rosendal). Suppose that X is a Polish space and f, g : X →
X are non-smooth aperiodic Borel automorphisms of X. Then f, g are descriptive

Kakutani equivalent.

In particular, this answers Nadkarni’s [61] question and provides a positive an-

swer to the descriptive version of Kakutani’s original conjecture. Actually, our proof

gives a somewhat stronger result, and we show that further strengthenings of it are

impeded by the complexities which arise in the measure-theoretic context. Christian

Rosendal has noted that our result also gives the corresponding result for Borel R-

flows. We close the section with an answer to a related question of Louveau. We use

the argument of Eigen-Hajian-Weiss [31] to show that any collection of non-smooth

Borel automorphisms which are minimal for the relation of Borel conjugacy must be

of size continuum.

A Borel forest of lines is a Borel forest L ⊆ X2 whose connected components are

trees of vertex degree 2. Clearly, if f : X → X is an aperiodic Borel automorphism,

then graph(f)∪graph(f−1) is Borel forest of lines. However, Scot Adams has pointed

out there are Borel forests of lines which are not of this form. We term such forests

undirectable.

Although there is no notion of order-preserving embedding for Borel forests of

lines, there is something very close — a betweenness-preserving embedding. In §4,

we produce a combinatorially simple undirectable line L0, by weaving together pairs

of orbits of the odometer. We then alter the combinatorics of the Shelah-Weiss [72]

argument so as to show that L0 is the minimal undirectable Borel forest of lines. We

then apply this result to the study of 2-regular Borel marriage problems. We obtain a

new proof of Laczkovich’s [59] result that there is a 2-regular Borel marriage problem

with a solution but no universally measurable solution. A corollary of our result

for L0 is that every 2-regular Borel marriage problem with a universally measurable

solution has a Borel solution. We also use this result to obtain a positive answer to a

question of K lopotowski-Nadkarni-Sarbadhikari-Srivastava [58], which deals with the

connection between definable solutions to Borel marriage problems and the existence

of certain sorts of ergodic probability measures.
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In §5, we define the corresponding notion of Kakutani equivalence for Borel forests

of lines, and modify the Dougherty-Jackson-Kechris [24] argument once more so as to

show that any two undirectable Borel forests of lines are Kakutani equivalent (again,

this is joint with Christian Rosendal). In particular, this leads to the following:

Theorem (Miller-Rosendal). Up to Kakutani equivalence, there are exactly three

Borel forests of lines on Polish spaces. In order of betweenness-preserving Borel em-

beddability, these are:

1. Forests which are induced by smooth Borel automorphisms.

2. Forests which are induced by non-smooth Borel automorphisms.

3. Forests which are not induced by Borel automorphisms at all.

Much as one can associate with any non-smooth Borel equivalence relation E the

σ-ideal of Borel sets on which E is smooth, one can associate with any undirectable

Borel forest of lines L the σ-ideal of Borel sets on which L is directable. We close §5
by showing that these directability ideals are genuinely new, in the sense that no such

ideal is also the smoothness ideal of any Borel equivalence relation. This generalizes

and strengthens a result of K lopotowski-Nadkarni-Sarbadhikari-Srivastava [58].

In §6, we turn our attention to group actions on quotient spaces of the form X/E,

where X is Polish and E is a countable Borel equivalence relation. We introduce

a descriptive notion of ergodicity for such actions which has strong strong ties to

the measure-theoretic study of normalizers of full groups (see Connes-Krieger [19],

Bezuglyi-Golodets [12] and [13], Bezuglyi [8], and Feldman-Sutherland-Zimmer [37]).

This study of this notion is partially motivated by the desire to understand the sorts of

actions for which the results of Chapter I do not apply. When the group in question

is cyclic, say Γ = 〈π〉, then the ergodicity of the action of Γ is equivalent to the

inexistence of a maximal π-discrete section.

In §7, we embark upon the task of proving the descriptive analogs of various

results from ergodic theory. We associate with each countable group G an equivalence

relation E0(G) on X0(G) = GN and a smooth action of G on X0(G) which factors

over the quotient to an ergodic action of G. We then show the following:
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Theorem. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and G is a countable group which acts freely and in a Borel fashion

on X/E. Then exactly one of the following holds:

1. The action of G on X/E is not ergodic.

2. There is a continuous embedding of X0(G) into X which induces a G-action

embedding of X0(G)/E0(G) into X/E.

As a corollary, we see that the descriptive notion of ergodicity for an action of G

on X/E is equivalent to the existence of an E-ergodic probability measure for which

the action of G has a non-singular lifting. From this, we obtain the following:

Theorem. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a countable group which acts ergodically and freely on X/E, L

is a countable signature, and K is a class of countable L-structures which is closed

under isomorphism. Then the following are equivalent:

1. There is a definable assignment of K -structures to the orbits of G.

2. There is a right-invariant K -structure on G.

As a special case, we obtain the following rigidity theorem:

Theorem. Suppose that X and Y are Polish spaces, E and F are countable Borel

equivalence relations on X and Y , G and H are countable groups which act freely and

ergodically on X/E and Y/F , and EG ∼= EH . Then G ∼= H.

In §8, we describe a special case in which the conclusion of this theorem can be

substantially strengthened:

Theorem. Suppose that X and Y are Polish spaces, E and F are countable Borel

equivalence relations on X and Y , G and H are countable groups which act freely

and ergodically on X/E and Y/F , EG ∼= EH , and these equivalence relations have

hyperfinite liftings. Then G ∼= H and the actions are Borel isomorphic.

For actions of finite groups, this has the following consequence:
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Theorem. Suppose that X and Y are Polish spaces, E and F are hyperfinite Borel

equivalence relations on X and Y , G and H are finite groups which act freely and

ergodically on X/E and Y/F , and EG ∼= EH . Then G ∼= H and the actions are Borel

isomorphic.

This answers a question of Bezuglyi.

2 Order-preserving embeddability of σ

Suppose that X and Y are Polish spaces and f : X → X and g : Y → Y are Borel

functions. The quasi-ordering induced by f is given by

x ≤f y ⇔ ∃n ∈ N (fn(x) = y),

and the tail equivalence relation induced by f is given by

xEt(f)y ⇔ ∃m,n ∈ N (fm(x) = fn(y)).

Note that Et(f) is the transitive closure of the comparability relation of ≤f .
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Figure 2.1: A piece of an Et(f)-class whose points are ≤f -ascending from left to right.

A reduction of R ⊆ X2 into S ⊆ Y 2 is a map π : X → Y such that

∀x, x′ ∈ X ((x, x′) ∈ R⇔ (π(x), π(x′)) ∈ S).

An order-preserving embedding of f into g is an injection π : X → Y which is

simultaneously a reduction of Et(f) into Et(g) and a reduction of ≤f into ≤g. We
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will use f ≤O g to denote the existence of an order-preserving Borel embedding of f

into g. A function f is aperiodic if

∀x ∀n > 0 (fn(x) 6= x).

The notion of order-preserving embeddability is a bit simpler for such functions:

Proposition 2.1. Suppose that X is a Polish space and f : X → X is an aperiodic

Borel function. Then the following are equivalent:

1. π is an order-preserving embedding of f into g.

2. π is a reduction of ≤f into ≤g.

Moreover, if f is injective and g is aperiodic, then these are equivalent to:

3. ∀x, x′ ∈ X (x <f x
′ ⇒ π(x) <g π(x′) and π(x)Et(g)π(x′) ⇒ xEt(f)x′).

Proof. Clearly (1) ⇒ (2) ⇒ (3), so it is enough to show (2) ⇒ (1) and if f is

injective and g is aperiodic, then (3) ⇒ (2).

We will begin with (2) ⇒ (1). Suppose that f is aperiodic and π is a reduction of

≤f into ≤g. To see that π is injective, simply note that if π(x) = π(x′) then

π(x) ≤g π(x′) ≤g π(x),

thus x ≤f x
′ ≤f x. As f is aperiodic, this implies that x = x′.

It remains to check that π is a reduction of Et(f) into Et(g), i.e.,

∀x, x′ ∈ X (xEt(f)x′ ⇔ π(x)Et(g)π(x′)).

To see (⇒), suppose that xEt(f)x′ and find x′′ ∈ X such that x, x′ ≤f x
′′. Then

π(x), π(x′) ≤g π(x′′),

thus π(x)Et(g)π(x′). To see (⇐), suppose π(x)Et(g)π(x′) and find n ∈ N such that

π(x), π(x′) ≤g g
n ◦ π(x).
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Note that the injectivity of π and the aperiodicity of f ensure that

π(x) <g π ◦ f(x) <g · · · <g π ◦ fn(x),

thus gn ◦ π(x) ≤g π ◦ fn(x). It follows that

π(x′) ≤g π ◦ fn(x),

thus x′ ≤f f
n(x), hence xEt(f)x′.

It only remains to check (3) ⇒ (2). Suppose that f is injective, g is aperiodic,

and π(x) ≤g π(x′). Then π(x)Et(g)π(x′), so xEt(f)x′. Now the only way that (2)

can fail is if x′ <f x, but this implies that π(x′) <g π(x), a contradiction. a

A countable Borel equivalence relation E is smooth if there is a Borel set B which

intersects every E-class in exactly one point. Such a set is called a transversal of

E. The canonical example of a non-smooth equivalence relation is the equivalence

relation on Cantor space C = 2N given by

xE0y ⇔ ∀∞n ∈ N (xn = yn),

where “∀∞” means “for all but finitely many.”

Proposition 2.2. E0 is not smooth.

Proof. Suppose, towards a contradiction, that B is a Borel transversal of E0.

For each n ∈ N, let in be the involution of C which flips the nth digit, i.e.,

[in(x)]k =

8<: 1− xk if k = n,

xk otherwise.

As each of these functions sends meager sets to meager sets and the sets of the form

in0 ◦ · · · ◦ in`(B) cover C , B is non-meager. Fix s ∈ 2<N such that B is comeager

in Ns, set n = |s|, and observe that B and in(B) are disjoint sets which are both

comeager in Ns, the desired contradiction. a

As in Kanovei [50], we will use ≤0 to denote the following partial ordering of C :

x ≤0 y ⇔ (x = y or ∃n ∈ N (xn < yn and ∀m > n (xm = ym))).
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We will also use ≤0 to denote the similarly defined linear ordering of 2k given by

x ≤0 y ⇔ (x = y or ∃n < k (xn < yn and ∀n < m < k (xm = ym))).

Note that if x, y ∈ C agree from their kth digit on, then

x ≤0 y ⇔ (x|k) ≤0 (y|k).

The odometer is the isometry of C given by

σ(x) =

8<: 0n1y if x = 1n0y,

0∞ if x = 1∞.

Thus the odometer is the map which adds 1 to the 0th digit of x, and then carries

right. Let C0 denote the set of non-eventually constant elements of C .

Proposition 2.3. Et(σ) = (E0|C0) ∪ (C \ C0)
2 and ≤σ =≤0 ∪ ([1∞]E0× [0∞]E0).

Proof. We will show that Et(σ)|C0 = E0|C0 and ≤σ |C0 = ≤0 |C0, and the rest

follows easily from the observation that σ(1∞) = 0∞. I claim that for n > 0,

∀x ∈ C0

�
{σi(0nx)}i<2n = {sx}s∈2n and σ2n−1(0nx) = 1nx

�
.

The proof is by induction on n. The case n = 1 is trivial since σ(0x) = σ(1x) is clear

from the definition of σ. Now suppose the claim has been proven up to n. Then

σ2n(0n+1x) = σ ◦ σ2n−1(0n0x)

= σ(1n0x)

= 0n1x.

It follows that σ2n+1−1(0n+1x) = σ2n−1(0n1x) = 1n+1x and

{σi(0n+1x)}i<2n+1 = {σi(0n0x)}i<2n ∪ {σi(0n1x)}i<2n

= {s0x}s∈2n ∪ {s1x}s∈2n

= {sx}s∈2n+1 ,

which completes the proof of the claim.
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It immediately follows that E0|C0 ⊆ Et(σ)|C0. To see the reverse inclusion, note

that it is enough to show xE0σ
±1(x) for all x ∈ C0, and this follows trivially from the

definition of σ.

Now fix x, y ∈ C0. It is clear that x <0 σ(x), thus x <σ y ⇒ x <0 y. It remains

to check that if x <0 y, then x <σ y. It already follows from the last paragraph that

xEt(σ)y, so the only way this can fail is if y ≤σ x. But it follows from our previous

observation that this implies y ≤0 x, a contradiction. a

An antichain for a partial order ≤ is a set of pairwise ≤-incomparable elements.

The goal of this section is to prove the following:

Theorem 2.4. Suppose that X is a Polish space and f : X → X is a Borel function.

Then exactly one of the following holds:

1. X can be partitioned into countably many Borel ≤f -antichains.

2. There is an order-preserving Borel embedding of the odometer into f .

We will actually show the version of Theorem 2.4 in which (2) is replaced with,

“≤0 continuously embeds into ≤f ,” but this is clearly sufficient by the above remarks.

Before getting to the proof, we will briefly discuss how Theorem 2.4 sits in relation

to similar known results. The main ingredient of Shelah-Weiss [72] is the special case

of Theorem 2.4 in which f is a Borel automorphism. Actually, in their proof (1) is

replaced with the statement, “Et(f) is smooth,” but these are equivalent:

Proposition 2.5. Suppose that X is a Polish space and f : X → X is a Borel

automorphism. Then X can be partitioned into countably many Borel ≤f -antichains

⇔ Et(f) is smooth.

Proof. To see (⇒), suppose An are Borel antichains which partition X, let

[Y ]f = {x ∈ X : ∃y ∈ Y (xEt(f)y)}

denote the Et(f)-saturation of Y ⊆ X, set

Bn = An \
[
m<n

[Am]f ,
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and note that B =
S
nBn is a Borel transversal of Et(f).

To see (⇐), suppose that B is a Borel transversal of Et(f), let 〈kn〉n∈N be an

enumeration of Z, and observe that the sets of the form

An = fn(B),

for n ∈ Z, give the desired partition X into Borel ≤f -antichains. a

If f is many-to-one, however, then these conditions are not equivalent:

Example 2.6. Consider the shift on

[Z]N = {x ∈ ZN : ∀n ∈ N (xn < xn+1)},

given by s(〈xn〉n∈N) = 〈xn+1〉n∈N. It is clear that

Xk = {x ∈ [Z]N : x0 = k}

partitions [Z]N into countably many Borel ≤s-antichains. On the other hand, Et(s) is

not smooth. To see this, note that E0 reduces into Et(s) via the injection π(〈xn〉n∈N) =

〈xn + 2n〉n∈N. Now suppose, towards a contradiction, that B is a Borel transversal

of Et(s). It immediately follows that π−1(B) is a Borel transversal of E0, which

contradicts Proposition 2.2.

The main result of Kanovei [50] (and its subsequent strengthenings due to Lou-

veau) lives in a much broader setting than Theorem 2.4, in that it describes when

≤0 embeds into an arbitrary Borel partial order. However, when restricted to partial

orders of the form ≤f , where f is a Borel function, it is the version of Theorem 2.4 in

which (1) is replaced with the statement, “≤f is contained in a Borel linear ordering

of X.” This can be easily recovered from Theorem 2.4:

Proposition 2.7. Suppose that X is a Polish space, ≤ is a Borel partial ordering of

X, and there is a partition of X into countably many Borel ≤-antichains. Then ≤
can be extended to a Borel linear ordering of X.
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Proof. Given x ∈ X and an antichain A ⊆, we will write x < A whenever x lies

below some element of A. Suppose that An are Borel antichains which partition X,

and for each s ∈ {0, 2}<N, define

Bs =
¦
x ∈ A|s| : ∀n < |s| (x < An ⇔ sn = 0)

©
.

Let s(x) = s1, where s is the unique element of {0, 2}<N with x ∈ Bs, and note that

∀x, y ∈ X (x < y ⇒ s(x) <lex s(y)).

For each s ∈ {0, 2}<N, fix a Borel linear ordering <s of Bs. It follows that

x ≺ y ⇔ (s(x) <lex s(y) or ∃s ∈ {0, 2}<N (x <s y))

defines the desired extension of <. a

The structure of the proof of Theorem 2.4 is quite similar to that of the proof given

in Shelah-Weiss [72], in that there are three basic tools that need to be identified: a

σ-ideal, a game, and a coloring. Unsurprisingly, the σ-ideal here is simply the family

of sets which can be covered with a countable family of disjoint Borel antichains.

Unlike the situation in Shelah-Weiss [72], however, some amount of descriptive set

theory appears necessary to show that this σ-ideal possesses various closure properties

that are essential to the proof. The game, which is necessarily different than the

one used in Shelah-Weiss [72], is a Choquet-like game in which player II makes fewer

commitments than usual at each stage. The coloring is similar to that used in Shelah-

Weiss [72], although it is interesting to note that it is not always possible to build

countable Borel colorings of the graphs associated with Borel functions in the same

way that one can for Borel automorphisms (see Kechris-Solecki-Todorcevic [56]), and

it is only the fact that colorings of somewhat smaller graphs are all that is necessary

that saves the proof.

I should add that the change of topology results which Weiss [79] later used to

simplify the proof of Shelah-Weiss [72] can also be used to simplify the proof of

Theorem 2.4 that I will give, but only in the special case that f sends Borel sets

to Borel sets. This is because Borel functions do not necessarily send Borel sets to
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Borel sets, and it is impossible to find a Polish topology on a Polish space X whose

associated Borel sets properly extend the usual Borel subsets of X (see, for example,

Exercise 25.19 of [51]). Nevertheless, the extra bit of descriptive set theory necessary

to prove the full version of Theorem 2.4 is quite minimal, and certainly pales in

comparison to that which is used in Harrington-Kechris-Louveau [44].

Suppose X is a Polish space and f : X → X is a Borel function. The recurrent

part of a set Y ⊆ X is given by

rec(Y ) = {y ∈ Y : ∃∞n ∈ N (fn(y) ∈ Y )} =
\
n∈N

f≤−n(Y ),

where “∃∞” is shorthand for “there exists infinitely many,” and “f≤−n(Y )” is short-

hand for “
S
m≥n f

−m(Y ).” The set Y ⊆ X is nowhere recurrent if rec(Y ) = ∅, and

the set Y ⊆ X is strongly nowhere recurrent if

∃n ∈ N (Y ∩ f≤−n(Y ) = ∅).

Proposition 2.8. Suppose that X is a Polish space, f : X → X is an aperiodic Borel

function, and Y ⊆ X. Then the following are equivalent:

1. Y can be covered with countably many nowhere recurrent analytic sets.

2. Y can be covered with countably many strongly nowhere recurrent analytic sets.

3. Y can be covered with countably many nowhere recurrent Borel sets.

4. Y can be covered with countably many pairwise disjoint Borel antichains.

Proof. To see (1) ⇒ (2), it suffices to show that every nowhere recurrent analytic

set A can be covered with countably many strongly nowhere recurrent analytic sets.

As Σ1
1 obeys the generalized separation property (see 35.1 of [K]), there is a sequence

of Borel sets Bn ⊇ f≤−n(A) whose intersection is empty. It follows that An = A \Bn

is a countable collection of strongly nowhere recurrent analytic sets which cover A.

To see (2) ⇒ (3), it suffices to show that every strongly nowhere recurrent analytic

set A can be covered with a nowhere recurrent Borel set. Fix a natural number n

such that A ∩ f≤−n(A) = ∅, noting that A ∩ f≥n(A) = ∅ as well. As Σ1
1 obeys the
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separation property (see 14.7 of [K]), we can find a Borel set B ⊇ A which is disjoint

from f≥n(A), and then B \ rec(B) is a nowhere recurrent Borel set containing A.

To see (3) ⇒ (4), it suffices to show that every nowhere recurrent Borel set B can

be partitioned into countably many Borel antichains, and it is clear that

Bn = {x ∈ B : fn(x) ∈ B and ∀m > n (fm(x) 6∈ B)}

defines such a partition. As (4) ⇒ (1) is trivial, this completes the proof. a

Remark 2.9. Christian Rosendal has pointed out that by using the first reflection

principle (see 35.10 of Kechris [51]), one can easily see that every nowhere recurrent

analytic set is contained in a nowhere recurrent Borel set. We will not need this

strengthening of (1) ⇒ (3), however.

We will use I to denote the σ-ideal generated by Borel antichains.

Proposition 2.10. Suppose that X is a Polish space, f : X → X is Borel, and

A ⊆ X is analytic. Then A ∈ I ⇔ f−1(A) ∈ I ⇔ rec(A) ∈ I.

Proof. To see A ∈ I ⇒ f−1(A) ∈ I, simply note that pre-images of nowhere

recurrent sets are nowhere recurrent. To see f−1(A) ∈ I ⇒ rec(A) ∈ I, note that

rec(A) ⊆
[
n>0

f−n(A).

It follows from our previous observation that each f−n(A) ∈ I, thus rec(A) ∈ I.

It remains to check that rec(A) ∈ I ⇒ A ∈ I. Suppose rec(A) ∈ I, find nowhere

recurrent Borel sets Bn which cover rec(A), and note that A \ SnBn is a nowhere

recurrent analytic set, thus A ∈ I. a

Corollary 2.11. Suppose that X is a Polish space, f : X → X is Borel, and A ⊆ X

is analytic. Then A 6∈ I ⇔ ∃∞k > 0 (A ∩ f−k(A) 6∈ I).

Proof. It is enough to show (⇒). If A 6∈ I, then rec(A) 6∈ I by Proposition

2.10. Fix n ∈ N. As rec(A) ⊆ S
k>nA ∩ f−k(A), it follows that A ∩ f−k(A) 6∈ I for

some k > n. a

It should be noted that one can have A ∈ I and f(A) 6∈ I:
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Example 2.12. Set X = C × N, put X0 = {(x, n) ∈ X : n = 0}, and define

f : X → X by

f(x, n) =

8<: (σ(x), 0) if n = 0,

(x, n− 1) otherwise.

Then A = X \ X0 is nowhere recurrent, thus A ∈ I, but f(A) = X 6∈ I by

Propositions 2.2 and 2.5.

It is because of the existence of such sets that the game which appears in Shelah-

Weiss [72] cannot be used here. Instead, we will use the Choquet-like game G which

is given by

I ∅ 6= A0 ∈ Σ1
1 ∅ 6= A1 ∈ Σ1

1 . . .

II A0 ⊆ Σ1
1, |A0| ≤ ℵ0 A1 ⊆ Σ1

1, |A1| ≤ ℵ0 ,

subject to the requirements that An =
S

An, each element of each An is of diameter

≤ 1/(n+ 1), and each An+1 is contained in some element of An, and in which player

II wins if
T
nAn 6= ∅.

Proposition 2.13. Player II has a winning strategy in G.

Proof. Given Y ⊆ X ×N , we will use p[Y ] to denote the projection of Y onto

X. We will assume that N is endowed with its usual metric, X is endowed with a

Polish metric which is compatible with its underlying Polish topology, and X ×N

is endowed with the product metric. This will be important because any sequence of

sets Yn ⊆ X×N whose diameter is vanishing with respect to the product metric gives

rise to another decreasing sequence of sets p[Yn] ⊆ X whose diameter is vanishing

with respect to the metric on X.

Now we will describe the winning strategy for player II. After player I plays A0,

player II fixes a closed set C0 ⊆ X ×N such that A0 = p[C0], finds a countable set

C0 of closed sets of diameter ≤ 1 whose union is C0, and then plays A0 = {p[C ′
0] :

C ′
0 ∈ C0}.

After player I plays A1, player II fixes closed sets C11 ⊆ X × N and C10 ∈ C0

such that

A1 = p[C11] ⊆ p[C10],
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finds countable sets C1i, for i ≤ 1, of closed sets of diameter ≤ 1/2 whose union is

C1i, and plays

A1 = {p[C ′
0] ∩ p[C ′

1] : ∀i ≤ 1 (C ′
i ∈ C1i)}.

Player II simply continues in this fashion. After player I plays An+1, player II

fixes closed sets Cn+1n+1 ⊆ X ×N and Cn+1i ∈ Cni, for i ≤ n, such that

An+1 = p[Cn+1n+1] ⊆
\
i≤n

p[Cn+1i],

finds countable sets Cn+1i, for i ≤ n+ 1, of closed sets of diameter ≤ 1/(n+ 1) whose

union is Cn+1i, and plays

An+1 =

8<: \
i≤n+1

p[C ′
i] : ∀i ≤ n+ 1 (C ′

i ∈ Cn+1i)

9=; .
It is clear that as long as player I does his part, this strategy leads to a valid

run of G. Fix i ∈ N, and note that 〈Cni〉i≤n is a decreasing sequence of closed sets

with vanishing diameter, so there is a single point (xi, yi) in their intersection. As

〈p[Cni]〉i≤n also has vanishing diameter, it follows that xi is the unique element ofT
i≤n p[Cni], and moreover, that the value of xi does not depend on i. It easily follows

that xi is the unique element of
T
nAn, thus the strategy we have described is a

winning strategy for player II. a

In addition to this winning strategy for G, we will also need a way of coloring

certain sorts of graphs. The graph associated with f : X → X is given by

(x, y) ∈ Gf ⇔ (x 6= y and (x = f(y) or y = f(x))).

Given any graph G on X, we will use G <n to denote the thickened graph in which

two distinct points are neighbors if they are of distance less than n from one another

with respect to the graph metric on G . A set B ⊆ X is G -discrete if no point of B

has a G -neighbor which also lies in B. A coloring of G is a function c : X → I such

that c(x) 6= c(y) whenever (x, y) ∈ G , or equivalently, a function c : X → I such that

the pre-image of any singleton is G -discrete. A κ-coloring is a coloring c : X → I

with κ = |I|.
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Ideally, we would like to show that each G <n
f admits a Borel ℵ0-coloring. While

this is true when f is finite-to-one (see Lemma 1.17 of [48]), it is false in general (see

Proposition 6.2 of [56]). So instead, we will work with a somewhat smaller graph.

Let E0(f) denote the subequivalence relation of Et(f) which is given by

xE0(f)y ⇔ ∃n ∈ N (fn(x) = fn(y)),

and set Gn(f) = G <n
f \ E0(f).

Proposition 2.14. Suppose that X is a Polish space, f : X → X is a Borel function,

and n ∈ N. Then Gn(f) admits a Borel ℵ0-coloring.

Proof. Assume without loss of generality that X = C . Let i(x) ∈ N be least

such that

∀`,m < n (f `(x) 6= fm(x) ⇒ f `(x)|i(x) 6= fm(x)|i(x)),

and put π(x) = 〈fm(x)|i(x)〉m<n. Now suppose π(x) = π(y) and (x, y) ∈ G <n
f , and

find `,m < n with f `(x) = fm(y). As i(x) = i(y), it follows that

f `(x)|i(x) = fm(y)|i(y) = fm(x)|i(x),

thus ` = m, so xE0(f)y. Hence, π is a Borel ℵ0-coloring of Gn(f). a

A function f : X → X is eventually periodic if

∀x ∈ X ∀∞n ∈ N ∃m > n (fm(x) = fn(x)).

It is easy to see that one can always find an Et(f)-invariant Borel set B ⊆ X such

that f |B is aperiodic and f |(X \ B) is eventually periodic. Thus, the following fact

will allow us to concentrate on aperiodic functions:

Proposition 2.15. Suppose that X is a Polish space and f : X → X is an eventually

periodic Borel function. Then X is in the associated ideal I.

Proof. Note that B = {x ∈ X : ∃n > 0 (x = fn(x))} is a Borel Et(f)-complete

section. Fix any Borel linear ordering < of X, and define

Bn = {x ∈ B : x is the nth element of [x]E ∩B with respect to <}.
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Now put B′ = f−1(B) \ B, and observe that 〈Bn〉n∈N ∪ 〈f−n(B′)〉n∈N partitions X

into Borel ≤f -antichains, thus X ∈ I. a

The following fact completes the proof of Theorem 2.4:

Proposition 2.16. Suppose that X is a Polish space and f : X → X is a Borel

function whose associated ideal I does not contain X. Then ≤0 continuously reduces

into ≤f .

Proof. By Lemma 2.15, we may assume that f is aperiodic. Let ϕ be a winning

strategy for player II in G. We will recursively define a decreasing sequence of I-

positive clopen sets An and an increasing sequence of natural numbers kn, beginning

with A0 = X and k0 = 1. At stage n, we will have defined I-positive analytic sets

A0 ⊇ B1 ⊇ A1 ⊇ · · · ⊇ Bn ⊇ An, which should be viewed as increasingly accurate

approximations to the left branch of the desired embedding. We will also have found

a sequence of natural numbers k0 < k1 < · · · < kn.

r r
A0 A1

-
k0 r r r r- -

A00 A10 A01 A11

k0 k0

k1

-

r r r r- -
-
k1 r r r r- -

-
k1

k0 k0 k0 k0

k2

-

A000 A100 A010 A110 A001 A101 A011 A111

Figure 2.2: The first three stages of the construction of π : C ↪→ X.

We proceed to the next step via three separate stages:

1. Thinning out An: Fix a Borel coloring c : G3kn(f) → N, find i ∈ N with

B = {x ∈ An : c(x) = i}

I-positive, and set Bn+1 = B.

2. Playing the game: Given a function f : 2n+1 → P(X) such that

∀s ∈ 2n+1
�
f(s) ∈ ϕ(B0, f

s0k0(B1), . . . , f
P

i≤n siki(Bn+1))
�
,
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define Bf ⊆ Bn+1 by

Bf =
\

s∈2n+1

f
−
P

i≤n siki(Bs).

As there are only countably many such functions and B =
S
f Bf , it follows

that we can find such an f for which Bf is I-positive.

3. Finding the next link: For each k > 3kn, set

Ck = {x ∈ Bf : fk(x) ∈ An}.

We claim that there exists k > 3kn such that Ck 6∈ I. To see this, it is enough

to note that

C = Bf \
[

k>3kn

Ck

is strongly nowhere recurrent, and therefore I-null. So fix such a k ∈ N, define

kn+1 = k, and set An+1 = Ck.

Once the recursion is complete, we obtain a decreasing sequence of I-positive

analytic sets An ⊆ X and natural numbers kn ∈ N such that:

(a) For each n ∈ N, the set An+1 is G3kn(f)-discrete.

(b) For each x ∈ C , the sequence

I B0 . . . f
P

i≤n kixi(Bn+1) . . .

II ϕ(B0) ϕ(B0, . . . , f
P

i≤n kixi(Bn+1))

constitutes a valid run of G. In particular, f
P

i≤n kixi(An+1) is of diameter

≤ 1/(n+ 1) and \
n∈N

f
P

i≤n kixi(An+1)

is a singleton. Let π(x) denote the unique element of this intersection.

(c) For each n ∈ N, fkn+1(An+1) ⊆ An.

It follows from (b) that π : C → X is a continuous injection, so it only remains

to check that π is a reduction of ≤0 into ≤f , i.e., that for all x, y ∈ C ,

x ≤0 y ⇔ π(x) ≤f π(y).
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To see (⇒), it is enough to check that x <0 y ⇒ π(x) <f π(y). So suppose that

x <0 y, and find n ∈ N, s, t ∈ 2n+1 with sn < tn, and w ∈ C such that x = sw and

y = tw. Now put z = 0n+1w, and note that for all m ≥ n,

f
P

i≤n siki ◦ f
P

i≤m ziki(Bm+1) = f
P

i≤m xiki(Bm+1).

In particular, as f
P

i≤n siki ◦ π(z) lies in the set on the left-hand side of this equality,

it must also lie in the set on the right-hand side. It then follows from the definition

of π that

f
P

i≤n siki ◦ π(z) = π(x).

Of course, a similar argument shows that

f
P

i≤n tiki ◦ π(z) = π(y).

Now, the fact that sn < tn ensures that

` =
X
i≤n

tiki −
X
i≤n

siki

is strictly greater than 0, and it follows that

f ` ◦ π(x) = f ` ◦ f
P

i≤n siki ◦ π(z)

= f
P

i≤n tiki ◦ π(z)

= π(y),

thus π(x) <0 π(y).

It only remains to show (⇐). Note that it is enough to show that

π(x) ≤f π(y) ⇒ xE0y,

since then the only way (⇐) could fail is if π(x) ≤f π(y) and y <0 x, and our proof

of (⇒) implies that y <0 x ⇒ π(y) <f π(y), a contradiction. We will actually show

the contrapositive. More precisely, we will show that if xn 6= yn, then

∀ix, iy < kn/2 (f ix ◦ π(x) 6= f iy ◦ π(y)).
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Suppose, towards a contradiction, that xn < yn but we can find ix, iy < kn/2 with

f ix ◦ π(x) = f iy ◦ π(y).

By the definition of π, we can find u, v ∈ Bn+1 such that

f
P

i≤n xiki(u) = π(x) and f
P

i≤n yiki(v) = π(y).

Setting iu = ix +
P
i≤n xiki and iv = iy +

P
i≤n yiki, we have that

f iu(u) = f iv(v).

Noting that iu, iv < 3kn and Bn+1 is G3kn(f)-discrete, it follows that uE0(f)v. As f

is aperiodic and f iu(u) = f iv(v), this implies that iu = iv. That is,

ix +
X
i≤n

xiki = iy +
X
i≤n

yiki.

As xn = 0 and yn = 1, this means that

kn = (ix − iy) +
X
i<n

(xi − yi)ki,

contradicting the fact that the sum on the right is bounded above by kn/2 + kn/3. a

3 Kakutani equivalence

The following fact comes from a result of Jackson-Kechris-Louveau [48]:

Proposition 3.1. Suppose G is a locally countable Borel graph which admits a Borel

ℵ0-coloring. Then there is a Borel maximal G -discrete set.

Proof. For Y ⊆ X, I will use

G (Y ) = {x ∈ X : ∃y ∈ Y ((x, y) ∈ G )}

to denote the set of G -neighbors of points of Y . Note that if Y is Borel, then the local

countability of G ensures that G (Y ) is also Borel. Fix a Borel ℵ0-coloring c : X → N
of G , put B0 = c−1({0}), and recursively define Bn by

Bn+1 = Bn ∪ (c−1({n+ 1}) \ G (Bn)).
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It is clear that each Bn is G -discrete, thus so too is B =
S
nBn. Now note that if

x 6∈ B, then x 6∈ Bc(x), thus c(x) > 0 and x ∈ G (Bc(x)−1) ⊆ G (B). It follows that B

is maximal G -discrete. a

Given f : X → X, B ⊆ X, and x ∈ X, the distance from x to B is

dB(x) =

8<: n if n is the least natural number such that f−n(x) ∈ B,
∞ if no such natural exists.

The set B has bounded gaps if supx∈X dB(x) <∞, and B ⊆ X is doubly recurrent if

∀x ∈ B∃m < 0 < n (fm(x), fn(x) ∈ B).

Note that any set with bounded gaps is doubly recurrent. Associated with any doubly

recurrent Borel set is the induced automorphism of B, given by fB(x) = fn(x)(x),

where n(x) > 0 is least such that fn(x)(x) ∈ B.

Proposition 3.2. Suppose that X is a Polish space and f : X → X is an aperiodic

Borel automorphism. Then there is a decreasing, vanishing sequence of Borel sets

with bounded gaps.

Proof. Set B0 = X, and suppose that Bn is a Borel set with bounded gaps.

Then Bn is recurrent, so f induces an automorphism of Bn. Let Bn+1 be any Borel

maximal GfBn -discrete set. Note that dBn(x) < 3n for all x ∈ X, and each Bn is

G <2n-discrete. It follows that while
T
nBn need not be empty, this intersection is a

partial transversal , i.e., it intersects each orbit of f in at most one point.

It only remains to show the lemma when f is smooth. Set

Sn = {k · 2n : k 6= 0},

fix a Borel transversal B ⊆ X, and observe that

Bn =
[
k∈Sn

fk(B)

is as desired. a

The following fact completes the description of order-preserving embeddability:
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Theorem 3.3 (Miller-Rosendal). Suppose that X is a Polish space and f : X → X

is an aperiodic Borel automorphism. Then f order-preservingly embeds into σ.

Proof. We may assume without loss of generality that X = C . By Proposition

18, there is a decreasing, vanishing sequence of Borel complete sections Bn such that

∀x ∈ X (dBn(x) < 2n).

Let fn(x) = f−dBn (x)(x), and define ϕn : C → 2n·2
n

by

ϕn(x) =
M
m<2n

fm ◦ fn(x)|n,

where ⊕ denotes concatenation. Let b2(n) = σn(0∞) be the base 2 representation of

n, noting that

∀m,n ∈ N (m ≤ n⇔ b2(m) ≤0 b2(n)),

and define ψn : X → 2n+1 by

ψn(x) = b2(dBn+1(fn(x)))|(n+ 1) = b2(dBn+1(x)− dBn(x))|(n+ 1).

r
[fn+1(x)]0
[fn+1(x)]1

...
[fn+1(x)]n−1

...

· · · r
[fn(x)]0
[fn(x)]1

...
[fn(x)]n−1

...

· · · r
x0

x1

...
xn−1

...

· · · r
[f2n−1◦fn(x)]0
[f2n−1◦fn(x)]1

...

[f2n−1◦fn(x)]n−1

...

ϕn(x)

z }| {kn+1(x)−kn(x)

Figure 2.3: ϕn approximates [x]f and ψn codes the distance between fn(x), fn+1(x).

We claim that

π(x) =
M
n∈N

ϕn(x)⊕ ψn(x)

is the desired reduction. As the range of π is clearly contained in C0, it is enough to

show that

∀x, y ∈ X (x ≤f y ⇔ π(x) ≤0 π(y)).
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To see (⇒), it is enough to check that if x <f y, then π(x) <0 π(y). Let n ∈ N be

maximal such that fn(x) 6= fn(y), and note that

dBn+1 (fn(x)) < dBn+1 (fn(y)) .

As dBn+1(fn(x)), dBn+1(fn(y)) < 2n+1, it follows that ψn(x) <0 ψn(y). As

∀m > n (ϕm(x)⊕ ψm(x) = ϕm(y)⊕ ψm(y)),

it follows that π(x) <0 π(y).

To see (⇐), it is enough to show that π(x) ≤0 π(y) ⇒ xEt(f)y, since then x ≤0 y

by (⇒). So suppose that π(x) ≤0 π(y), and fix n ∈ N sufficiently large that

∀m ≥ n (ϕm(x)⊕ ψm(x) = ϕm(y)⊕ ψm(y)).

Set k = dBn(x)− dBn(y), noting that dBm(x) = dBm(y) + k for all m ≥ n. Identifying

ϕm(x), ϕm(y) with the corresponding elements of (2m)2m , it follows that

x|m = (ϕm(x))dBm (x)

= (ϕm(y))dBm (y)+k

= fdBm (y)+k ◦ fm(y)|m

= fk(y)|m,

thus x = fk(y), so xEt(f)y. a

Corollary 3.4. Every aperiodic Borel automorphism of a Polish space can be order-

preservingly Borel embedded into every non-smooth Borel automorphism of a Pol-

ish space. Thus, two aperiodic Borel automorphisms of a Polish space are order-

preservingly bi-embeddable if and only if they are both smooth or both non-smooth.

Proof. This follows directly from Theorems 2.4 and 3.3. a

Suppose that X and Y are Polish spaces and f : X → X and g : Y → Y are

Borel automorphisms. A set A ⊆ X is a complete section for f if A intersects every

orbit of f . The automorphisms f and g are descriptive Kakutani equivalent if there
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are Borel complete sections A,B for f, g and a Borel isomorphism π : A→ B which

is a reduction of ≤f to ≤g. In Nadkarni [61], it is asked if all non-smooth Borel

automorphisms of finite rank are descriptive Kakutani equivalent. In fact, we have

the following:

Theorem 3.5 (Miller-Rosendal). All non-smooth aperiodic Borel automorphisms

of a Polish space are descriptive Kakutani equivalent. Moreover, if X and Y are Pol-

ish spaces and f : X → X and g : Y → Y are non-smooth aperiodic Borel automor-

phisms, then there are invariant Borel sets A ⊆ X and B ⊆ Y such that f |A, g|(Y \B)

are order-preservingly Borel embeddable onto complete sections of g|B, f |(X \ A).

Proof. Fix order-preserving Borel embeddings ϕ, ψ of f, g into g, f . We will

proceed via a standard Schröder-Bernstein argument, albeit with respect to the maps

that ϕ, ψ induce on the quotients X/Et(f), Y/Et(g). Set A0 = X \ [ψ(Y )]f , and

recursively define

Bn = [ϕ(An)]g and An+1 = [ψ(Bn)]f .

Setting A =
S
nAn and B =

S
nBn, it follows that ϕ is an order-preserving Borel

embedding of f |A onto a complete section of g|B.

'

&

$

%

'

&

$

%

f |A g|B

f |(X\A) g|(Y \B)

-

�

ϕ

ψ

Figure 2.4: A witness to the descriptive Kakutani equivalence of f and g.

To see that ψ is a order-preserving Borel embedding of g|(Y \B) onto a complete
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section of f |(X \ A), simply observe that

[ψ(Y \B)]f = [ψ(Y ) \ ψ(B)]f

=

"
ψ(Y ) \

[
n∈N

ψ(Bn)

#
f

⊇ [ψ(Y )]f \
[
n∈N

[ψ(Bn)]f

= (X \ A0) \
[
n>0

An

= X \ A.
a

If R acts freely on X, then the usual ordering of the reals can be pushed through

the action to orderings of each orbit. Two actions of the reals are trajectory equiva-

lent if there is a Borel isomorphism of their underlying spaces which preserves these

induced orderings.

Theorem 3.6 (Rosendal). All non-smooth Borel free actions of R are trajectory

equivalent.

Proof. By a theorem of Wagh (see Nadkarni [61]), any Borel free action of R
has a Borel complete section which is discrete with respect to the induced ordering.

Clearly such a section can be modified so as to ensure that its intersection with each

class is of type Z, so that there is a non-smooth aperiodic Borel automorphism of

the complete section which induces the same ordering as the action of R. Find such

automorphisms corresponding to each of the actions, apply Theorem 3.5 to obtain

a descriptive Kakutani equivalence of these two automorphisms, and note that any

such map can easily be extended to a trajectory equivalence. a

In Dougherty-Jackson-Kechris [24], the analog of Theorem 3.5 is shown for the

weaker notion of Borel embeddability , in which the embedding is not required to be

order-preserving. Actually, in that case something even stronger holds:

Proposition 3.7. Suppose that f, g are aperiodic non-smooth Borel automorphisms.

Then at least one of f, g Borel embeds onto a complete section of the other.
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Proof. By reversing the roles of f, g if necessary, we may assume that f admits

at least as many invariant, ergodic probability measures as g. By Dougherty-Jackson-

Kechris [24], there is a Borel complete section B ⊆ Y such that Et(f), Et(g)|B admit

the same number of invariant, ergodic probability measures. But then Et(f) is Borel

isomorphic to Et(g)|B, again by Dougherty-Jackson-Kechris [24], and this isomor-

phism is a Borel embedding of Et(f) onto a complete section of Et(g). a

The analogous property for order-preserving Borel embeddability is false:

Proposition 3.8. There is a σ-invariant Borel set B ⊆ C such that neither of

σ|B, σ|(X \B)

is order-preservingly Borel embeddable onto a complete section of the other.

Proof. Let µ be the usual product measure on C , and note that since µ is the

unique invariant ergodic probability measure for σ, then exactly one of σ|B, σ|(X \B)

has an invariant ergodic finite measure. We will arrange things so that σ|B has such

a measure. Note that this guarantees that σ|(X \ B) does not Borel embed onto a

complete section of σ|B, since µ|B could be pulled back through any such embedding.

For each n ≥ 1, fix a maximal σ<n·3
n
(σ)-discrete Borel set An ⊆ X and find i < 3n

such that

A′
n =

[
in≤j<(i+1)n

σj(An)

is of measure ≤ 1/3n. Now set A = X \ Sn≥1A
′
n and B = [A]σ, noting that µ(A) ≥

1/2, thus B is of full measure.

Suppose, towards a contradiction, that π : B → X \ B is an order-preserving

Borel embedding of σ|B onto a complete section of σ|(X \ B). Then A′ = A ∪ π(A)

intersects every orbit [x]σ in a set with large gaps, i.e.,

∀x ∈ X ∀m ∈ N ∃n ∈ N (σn(x), σn+1(x), . . . , σn+m(x) 6∈ A′).

As A′ is a complete section for σ, there is some s ∈ 2<N such that Ns \A′ is meager.

It follows that

∀∗x ∈ X ∃n ∈ N ∀k ∈ N
�
k ≡ n (mod 2|s|) ⇒ σk(x) ∈ A′� ,
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which contradicts the fact that A′ intersects each orbit in a set with large gaps. a

In fact, there are large collections of Borel automorphisms whose induced equiv-

alence relations are Borel isomorphic, but for which no automorphism in the col-

lection can be order-preservingly Borel embedded onto a complete section of any

of the others. One reason for this is that the sorts of complications which arise in

the measure-theoretic version of order-preserving Borel embeddability come into play

here. Suppose f : X → X and g : Y → Y are Borel automorphisms with invariant,

ergodic probability measures µ and ν. Then (f, µ) and (g, ν) are Kakutani equiva-

lent if there are recurrent Borel sets A ⊆ X and B ⊆ Y of positive measure and a

Borel isomorphism π of (fA, µ|A) with (gB, ν|B). It follows from the arguments of

Ornstein-Rudolph-Weiss [63] that there are large collections of such pairs which are

pairwise non-Kakutani equivalent. So it is enough to note the following fact:

Proposition 3.9. Suppose that f, g are Borel automorphisms with unique invariant

(ergodic) probability measures µ, ν. If (f, µ), (g, ν) are not Kakutani equivalent, then

neither of f, g order-preservingly Borel embeds onto a complete section of the other.

Proof. Simply observe that by unique ergodicity, any order-preserving Borel

embedding of f onto a complete section of g is measure-preserving, and therefore

provides a witness to the Kakutani equivalence of (f, µ) and (g, ν). a

We will close this section by answering a related question of Louveau. Suppose that

X and Y are Polish spaces and f : X → X and g : Y → Y are Borel automorphisms.

An embedding of f into g is a Borel injection π : X → Y such that π ◦ f = g ◦ π.

Equivalently, an embedding is a Borel isomorphism of (X, f) with (B, g|B), for some

g-invariant Borel set B ⊆ Y . It follows from Clemens [17] (and the generalization

provided by Gao [41]) that Borel embeddability of Borel automorphisms is far more

complicated than order-preserving Borel embeddability. However, their results do

leave open the possibility of an analog of Theorem 2.4 for embeddability, i.e., the

existence of a minimal non-smooth Borel automorphism, and Louveau asked if such

an automorphism exists. The answer is no:
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Theorem 3.10. Suppose that A is a collection of Borel automorphisms of a Polish

space, and for every non-smooth Borel automorphism f : X → X of a Polish space

X, there is an automorphism in A which Borel embeds into f . Then |A | = c.

Proof. To show this, we will simply note that the construction of Eigen-Hajian-

Weiss [31] does a bit more than the authors intended. Fix a set {xα}α∈C ⊆ C0 which

is almost disjoint , i.e.,

∀α 6= β (| supp(xα) ∩ supp(xβ)| < ℵ0) ,

define Wα = {x ∈ C : supp(x) ⊆ supp(xα)}, set

Xα = [Wα]E0 =
¦
x ∈ C : | supp(x) \ supp(xα)| < ℵ0

©
,

and define X ′
α =

S
α 6=βXβ. The main observation is the following:

Lemma 3.11 (essentially Eigen-Hajian-Weiss). Suppose that α ∈ C and B ⊆
Xα is a σ-invariant Borel set for which σ|B is non-smooth. Then σ|B does not Borel

embed into σ|X ′
α.

Proof. Suppose thatB ⊆ Xα is a σ-invariant Borel set and π is a Borel embedding

of σ|B into σ|X ′
α. Define

W ′
α = {x ∈ π(B) : supp(x) ∩ supp(xα) = ∅},

and note that

∀x ∈ π(B) (|supp(x) ∩ supp(xα)| < ℵ0) ,

thus π(B) = [W ′
α]E0 .

The main point here is that for all n ∈ N,

Wα ∩ σn(Wα) = ∅ or W ′
α ∩ σn(W ′

α) = ∅.

To see this, let k be the smallest digit on which the base 2 representation of n

is non-zero. If k ∈ supp(xα) then W ′
α ∩ σn(W ′

α) = ∅, and if k 6∈ supp(xα) then

Wα ∩ σn(Wα) = ∅.
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Setting W ′′
α = π−1(W ′

α), it follows that {σi(Wα) ∩ σj(W ′′
α)}i,j∈Z is a countable

family of Borel sets each of which intersects every E0|B-class in at most one point,

and which together cover B. It follows that σ|B is smooth. a

In particular, any non-smooth Borel automorphism embeds into at most one au-

tomorphism of the form σ|Xα, and the theorem follows. a

4 Betweenness-preserving embeddability of L0

Suppose that X is a Polish space. A graph L ⊆ X2 is a forest of lines if every

connected component of L is a tree of vertex degree two, and such a forest is directable

if there is a Borel automorphism f : X → X such that L = Lf , where Lf denotes

the union of the graphs of f and f−1. As pointed out by Scot Adams [1], not all Borel

forests of lines are directable.
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Figure 2.5: The action of i, j on C0.

One way of seeing this is as follows: for x ∈ C , let xn = 1− xn, set

i(x) = x and j(x) = σ(x),

and put L0 = graph(i) ∪ graph(j). Note that j(0n1x) = 0n1x.

Proposition 4.1. L0|C0 is an undirectable Borel forest of lines.

Proof. First, we will show that L0|C0 is a forest of lines. Clearly i|C0 and

j|C0 are fixed-point free. As the odometer is also fixed-point free, it follows that
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i(x) 6= σ ◦ i(x) = j(x), thus x, i(x), and j(x) are always distinct. It follows that

L0|C0 is a graph of vertex degree 2. As j ◦ i(x) = σ(x) and σ has no finite orbits, each

connected component of L0|C0 must be infinite. Since the only infinite, connected

graph of vertex degree 2 is a line, it follows that L0|C0 is a forest of lines.
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σ2(x) σ(x) x σ−1(x) σ−2(x)

··· ···

Figure 2.6: The components of L0 weave together pairs of E0-classes.

It remains to check that L0|C0 is undirectable. Suppose, towards a contradiction,

that there is a Borel automorphism f : C0 → C0 with Lf = L0|C0, and observe that

B = {x ∈ C0 : f(x) = i(x)}

is an E0-invariant Borel set which, together with B, partitions C0. As these two sets

are either both meager or both comeager, this is a contradiction. a

Suppose that X and Y are Polish spaces and L ⊆ X2 and M ⊆ Y 2 are Borel

forests of lines. An L -path from x to x′ is a sequence x = x0, x1, . . . , xn = x′ of

distinct points with (xi, xi+1) ∈ L . The notion of betweenness induced by L is given

by

xBL (y, z) ⇔ ∃an L -path from y to z which goes through x.

A betweenness-preserving embedding of L into M is an injection π : X → Y which

is simultaneously a reduction of EL into EM and of BL into BM .

Proposition 4.2. Suppose that X and Y are sets and L and M are forests of

lines on X and Y . Then every reduction of BL into BM is a betweenness-preserving

embedding of L into M .
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Proof. Suppose π is a reduction of BL into BM . To see that π is injective, simply

note that if π(x) = π(x′) then π(x)BM (π(x′), π(x′)), thus xBL (x′, x′), so x = x′. To

see that π is a reduction of EL into EM , simply note that for all x, x′ ∈ X,

xEL x
′ ⇔ xBL (x, x′)

⇔ π(x)BM (π(x), π(x′))

⇔ π(x)EMπ(x′).
a

The primary goal of this section is to show the following analog of Theorem 2.4:

Theorem 4.3. Suppose that X is a Polish space and L is a Borel forest of lines on

X. Then exactly one of the following holds:

1. L is directable.

2. L0 betweenness-preservingly Borel embeds into L .

Already (1) ⇒ ¬(2) follows from Proposition 4.1, as any betweenness-preserving

embedding of L0 into a directable line would give a way of directing L0.

As in §2, we must develop several tools before getting to the main construction.

We will begin with a lemma which will be used in the spirit of Weiss [79], and removes

the need to play games:

Proposition 4.4. Suppose that X is a Polish space, B is a countable family of Borel

subsets of X, and F is a countable family of finite-to-1 Borel partial functions on

X. Then there is a zero-dimensional Polish topology on X, finer than the one with

which X was originally endowed but compatible with the underlying Borel structure

of X, in which each element of B is clopen and each element of F is a continuous

open-and-closed map.

Proof. Let < be a Borel linear ordering of X, and for each f ∈ F define

X(f,n) = {x ∈ dom(f) : x is the nth element of f−1({f(x)})}.

Note that the restriction of f to X(f,n) is injective. Let U0 be a countable basis for the

topology with which X was originally endowed, and let A0 be the smallest algebra
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of subsets of X which includes each X(f,n), each element of B ∪ U0, and is closed

under images and pre-images under elements of F . Noting that every element of

A0 is Borel, it follows from Exercise 13.5 of [51] that there is a Polish topology τ0,

compatible with the underlying Borel structure of X, in which each element of A0 is

clopen.

Now suppose we have constructed an algebra An of subsets of X and a Polish

topology τn, compatible with the underlying Borel structure of X, in which each

element of An is clopen. Let Un+1 be a countable open basis for τn, and let An+1 be

the smallest algebra of subsets of X which includes each element of An ∪ Un+1 and

is closed under images and pre-images under elements of F . Again, every element of

An+1 is Borel, so by appealing to Exercise 13.5 of [51], we can find a Polish topology

τn+1, compatible with the underlying Borel structure of X, in which each element of

An+1 is clopen.

Letting τ be the topology generated by the τn’s, it follows from Lemma 13.3 of

[51] that τ is Polish, compatible with the underlying Borel structure of X, and has a

clopen basis given by A =
S
n An. As B ⊆ A0 ⊆ A , it is clear that each element of

B is τ -clopen. Now suppose f ∈ F . To see that f is τ -continuous, suppose that U

is τ -open, find a countable collection of sets An in A such that U =
S
nAn, and note

that f−1(U) =
S
n f

−1(An), which is clearly τ -open. To see that f sends τ -open sets

to τ -open sets, suppose that U is τ -open, find a countable collection of sets An in A

such that U =
S
nAn, and note that f(U) =

S
n f(An), which is clearly τ -open. To

see that f sends τ -closed sets to τ -closed sets, suppose C is τ -closed, find a collection

of sets An in A with C =
T
nAn, and note that

f(C) =
[
m

f
�
C ∩X(f,m)

�
=
[
m

f

�\
n

An ∩X(f,m)

�
.

It remains to check that if z ∈ f(C), then z ∈ f(C). Find a sequence of points

xi ∈
T
nAn∩X(f,mi) such that f(xi) → z. As f(X) is clopen, it follows that z ∈ f(X),

thus we can find m ∈ N such that z ∈ f(X(f,m)). Note that since this set is τ -open, it

must be that mi is eventually constant with value m. It follows that all but finitely
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many of the xi’s are in \
n

f
�
An ∩X(f,m)

�
,

and as this latter set is τ -closed, it follows that z ∈ f(C). a

Remark 4.5. If we drop the requirement that f is a closed map, then finite-to-one

can be weakened to countable-to-one in Proposition 4.4. However, the analog of

Proposition 4.4 for any countable-to-one Borel function for which uncountably many

points have infinite pre-images is false.

Suppose L is a Borel forest of lines. Given any set B, we will use LB to denote

the set of pairs (x, y) ∈ B2 which are the endpoints of an L -path which contains no

points of B, with the exception of x and y. Note that every component of LB is a line

exactly when B is recurrent with respect to L , i.e., when any L -path through [B]L

can be extended to an L -path whose endpoints lie in B, where [B]L = [B]EL
is the

EL -saturation of B. Even when B is not recurrent, I will say that LB is directable

if the restriction of LB to the union of its components which are lines is directable.

Note that in this case, LB is induced by a partial Borel injection.

Associated with L is the σ-ideal I of Borel sets B for which LB is directable.

Next we will introduce a notion which makes working with this σ-ideal a bit easier.

A sequence F = 〈fn〉n∈Z of Borel functions on X is a local director for L if for each

x ∈ X the fk(x)’s are distinct and (fk(x), fk+1(x)) ∈ L .

Proposition 4.6. Every Borel forest of lines admits a local director.

Proof. Set f0 = id. By Theorem 18.10 of [51], there are Borel functions f−1 and

f1 whose graphs partition L . Recursively define F = 〈fn〉n∈Z by letting f±(n+2)(x)

be the unique L -neighbor of f±(n+1)(x) other than f±n(x). a

Associated with a local director F = 〈fn〉n∈Z is an induced equivalence relation,

xEFy ⇔ ∃m∀n (fn(x) = fm+n(y)),

as well as an induced partial automorphism fF(x) = fn(x)(x), where n(x) > 0 is least

such that xEFfn(x)(x). Note that every EL -class consists of at most 2 EF-classes, and



146

· · · · · ·r r r r r r r r r r r re - e - e - e - e -

� � � � � � �

Figure 2.7: The automorphism induced by a local director.

that EF = Et(fF). Given Borel equivalence relations E ⊆ F such that each F -class

consists of at most two E-classes, F/E is smooth if there is an E-invariant Borel set

B such that B/E is a transversal of F/E.

Proposition 4.7. Suppose that X is a Polish space, L is a Borel forest of lines

on X, F is a local director for L , and B ⊆ X is Borel. Then LB is directable

⇔ (EL |B)/(EF|B) is smooth.

Proof. To see (⇒), suppose that f generates LB and observe that

A = {[x]EF
: ∃n > 0 (f(x) = fn(x))}

is a transversal of EL /EF. To see (⇐), suppose that A ⊆ B is an fF-invariant Borel

set which induces a transversal of (EL |B)/(EF|B), set

f(x) =

8<: fn(x) if x ∈ A and n > 0 is least such that fn(x) ∈ B,

f−n(x) if x 6∈ A and n > 0 is least such that f−n(x) ∈ B,

and note that f is a partial Borel injection from B which generates LB. a

Before getting to the main construction, it will be important to make one final

observation which does not have a counterpart in §2. The need for this arises out of

the fact that, while L0 is a very natural example of an undirectable line, it is of index

two above E0, and the sorts of arguments we use require objects which live within

E0.

Let C ′
0 be the set of non-eventually 0 points of C , define

i′(x) = x0x1x2 . . . and j′(0n1x) = 0n1x0x1x2 . . . ,

and set L ′
0 = graph(i′) ∪ graph(j′).
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Proposition 4.8. There is an isometry π : C → C which sends (C0, EL0 ,L0) to

(C ′
0, E0|C ′

0,L
′
0).

Proof. Put R0 = {1} and for each n ∈ N, define Rn+1 ⊆ 2n+2 by

Rn+1 = {x ∈ 2n+2 : xn 6= xn+1}.

r rd
N0 N1

i R0 r rd r rd
N00 N11 N10 N01

i i
j R1

r rd r rd r rd r rdi i i i
j jj R2

N000 N111 N100 N011 N010 N101 N110 N001

Figure 2.8: The points picked out by the first three Rn’s.

It is clear that the function

π(x) = 〈χRn(x0x1 . . . xn)〉n∈N

is an isometry. To see that π(C0) = C ′
0, note that

x ∈ C0 ⇔ ∃∞n ∈ N (xn 6= xn+1)

⇔ ∃∞n ∈ N (πn(x) = 1)

⇔ π(x) ∈ C ′
0.

We claim that EL ′
0

= E0|C ′
0. As EL ′

0
⊆ E0 is clear, it is enough to check that if

x, y ∈ C ′
0 are E0-equivalent, then x and y are L ′

0-connected. For this, it is enough to

check that for all n ∈ N and z ∈ C ′
0,

{0n+1z, i′(0n+1z), j′ ◦ i′(0n+1z), . . . , i′ ◦ (j′ ◦ i′)2n−1(0n+1z)} = {sz}s∈2n+1 . (†)

We will simultaneously show (†) and

∀z ∈ C ′
0

�
i′ ◦ (j′ ◦ i′)2n−1(0n+1z) = 0n1z

�
, (‡)
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by induction on n ∈ N. The case n = 0 is trivial, so suppose that (†) and (‡) have

been established strictly below n. Applying (‡) at n− 1 to 0z and 1z gives

i′ ◦ (j′ ◦ i′)2n−1−1(0n0z) = 0n−110z and i′ ◦ (j′ ◦ i′)2n−1−1(0n1z) = 0n−111z.

By applying i′ ◦ (j′ ◦ i′)2n−1−1 to each side of the latter equation, we obtain

i′ ◦ (j′ ◦ i′)2n−1−1(0n−111z) = 0n1z.

Noting that j′(0n−110z) = 0n−111z, it follows that

i′ ◦ (j′ ◦ i′)2n−1(0n+1z) = i′ ◦ (j′ ◦ i′)2n−1−1 ◦ j′ ◦ i′ ◦ (j′ ◦ i′)2n−1−1(0n0z)

= i′ ◦ (j′ ◦ i′)2n−1−1 ◦ j′(0n−110z)

= i′ ◦ (j′ ◦ i′)2n−1−1(0n−111z)

= 0n1z,

thus (‡) holds at n and

{0n+1z, i′(0n+1z), j′ ◦ i′(0n+1z), . . . , i′ ◦ (j′ ◦ i′)2n−1(0n+1z)}

is of cardinality 2n+1, so (†) holds at n as well.

Thus, to show that π sends EL0 to E0|C ′
0, it is enough to show that π sends L0

to L ′
0. Clearly L ′

0 is of vertex degree 2, and since each E0-class is infinite, it follows

that L ′
0 is a Borel forest of lines. Thus, we need only show that π sends L0 into

L ′
0. Noting that π(x) and π(x) agree off of their first digit, it follows that π sends

graph(i) into graph(i′). As π fixes the first n+ 1 digits of any sequence which begins

with 0n1, it follows that π(0n1x) and π(0n1x) agree off of their (n+ 1)st digit, thus π

sends graph(j) into graph(j′). a

From the point of view of the construction to come, it is really L ′
0 that plays the

role of σ. The following fact completes the proof of Theorem 4.3:

Proposition 4.9. Suppose X is a Polish space and L is an undirectable Borel forest

of lines on X. Then L0 continuously betweenness-preservingly embeds into L .



149

Proof. By Lemma 4.6, there is a local director F = 〈fn〉n∈N of L . By throwing

away an L -invariant Borel set on which L is directable, I can assume that fF is a

Borel automorphism. By Lemma 4.4, there is a Polish topology τ on X, finer than

that with which X was originally endowed but compatible with the underlying Borel

structure of X, in which each {x : xEFfk(x)} is clopen and each f±1
k sends closed sets

to closed sets. Let d be a Polish metric which is compatible with this topology.

Next, we will recursively choose natural numbers kn and I-positive, τ -clopen sets

Bn which satisfy the following additional properties:

1. ∀x ∈ Bn+1 (x, fkn(x) ∈ Bn and (x, fkn(x)) 6∈ EF), and

2. f−7kn(Bn+1), . . . , f7kn(Bn+1) are pairwise disjoint and of diameter < 1/(n+ 1).

Note that (1) and (2) together imply that kn+1 > 7kn, thusX
i≤n

ki <
X
i≤n

kn+1/7
i+1

< kn+1

X
i>0

1/7i

= kn+1/6.

The recursion begins by setting B0 = X. Now suppose that we have built

{Bm}m≤n and {km}m<n. We claim that for some natural number k > 0, the τ -clopen

set

Ak =
¦
x : x, fk(x) ∈ Bn and (x, fk(x)) /∈ EF

©
is I-positive. To see this, it is enough to check that the set

B = Bn \
[
k>0

Ak

is I-null. Since

∀x ∈ B∀k > 0 (fk(x) ∈ B ⇒ xEFfk(x)),

it follows that B cannot intersect any EL -class C in an (EF|C)-complete section

which is recurrent for f , thus B ∈ I.



150

So fix kn with Akn 6∈ I, and note that for each x ∈ Akn , it follows from the

τ -continuity of the fi’s that there is a τ -clopen neighborhood U of x, such that

f−7kn(U), . . . , f7kn(U) are pairwise disjoint and of diameter < 1/(n+ 1).

It follows that we can partition Akn into countably many such sets. Let Bn+1 be any

I-positive set from such a partition.

r rd
B0 B1

k0 r rd r rd
B00 B10 B11 B01

k0 k0

k1

r rd r rd r rd r rdk0 k0 k0 k0

k1 k1

k2

B000 B100 B110 B010 B011 B111 B101 B001

Figure 2.9: The first three stages of the construction of π : C ′
0 ↪→ X.

Set B∅ = X, and for s ∈ 2n+1, define

Bs = f s0k0 ◦ f
s1
k1
◦ · · · ◦ f snkn

�
Bn+1

�
.

Then, for each x ∈ 2N,
¬
Bx|n

¶
n∈N is a decreasing sequence of τ -closed sets of vanishing

diameter. It follows that
T
n∈NBx|n consists of a unique element π(x).

It is clear that π : C ′
0 → X is continuous, so it only remains to check that π is an

isomorphism of L ′
0 with Lπ(C ′0). As L ′

0,L are forests of lines, it is enough to check

the following:

1. ∀x, y ∈ C ′
0 (π(x)E`π(y) ⇒ xE0y).

2. For all x ∈ C ′
0 and n ∈ N, both

(π(0x), π(1x)) and (π(0n10x), π(0n11x))

are in Lπ(C ′0).

Given x, y ∈ X, set dL (x, y) = n if there is an L -path from x to y with n edges,

and set dL (x, y) = ∞ if (x, y) 6∈ EL . I claim that for x, y ∈ C ′
0,

dL (π(x), π(y)) ≤ kn ⇔ ∀m > n (xm = ym).
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To see (⇒), it is enough to check that if xn+1 6= yn+1, then

dL (π(x), π(y)) > kn.

By reversing the roles of x and y if necessary, we may assume xn+1 = 0, and then

dL (π(x), π(y)) ≥ dL (fx0
k0
◦ · · · ◦ fxn+1

kn+1
(Bn+2), f

y0
k0
◦ · · · ◦ f yn+1

kn+1
(Bn+2))

= dL (fx0
k0
◦ · · · ◦ fxnkn (Bn+2), f

y0
k0
◦ · · · ◦ f ynkn ◦ fkn+1(Bn+2))

≥ kn+1 − 2
X
i≤n

ki

> kn+1 − kn+1/3

> kn.

To see (⇐), suppose that ∀m > n (xm = ym), and note that for m ≥ n, the

restriction of

f ′ =
�
f y0k0 ◦ · · · ◦ f

yn
kn

�
◦
�
fxnkn ◦ · · · ◦ f

x0
k0

�
to B′ = fx0

k0
◦ · · · ◦ fxmkm (Bm+1) is injective. This is because any two distinct points of

B′ are of dL -distance at least km+1−2
P
i≤m km apart, thus their images under f ′ are

of dL -distance at least km+1 − 6
P
i≤m km > 0 apart. It follows that

{π(y)} =
\
m≥n

f y0k0 ◦ · · · ◦ f
ym
km

(Bm+1)

=
\
m≥n

�
f y0k0 ◦ · · · ◦ f

yn
kn

�
◦
�
fxnkn ◦ · · · ◦ f

x0
k0

�
◦
�
fx0
k0
◦ · · · ◦ fxmkm (Bm+1)

�
=

�
f y0k0 ◦ · · · ◦ f

yn
kn

�
◦
�
fxnkn ◦ · · · ◦ f

x0
k0

�� \
m≥n

fx0
k0
◦ · · · ◦ fxmkm (Bm+1)

�
=

¦�
f y0k0 ◦ · · · ◦ f

yn
kn

�
◦
�
fxnkn ◦ · · · ◦ f

x0
k0

�
◦ π(x)

©
.

Setting z =
�
fxnkn ◦ · · · ◦ f

x0
k0

�
◦ π(x), it follows that

π(x) = fx0
k0
◦ · · · ◦ fxnkn (z) and π(y) = f y0k0 ◦ · · · ◦ f

yn
kn

(z).

As z ∈ Bn+1, it follows that for all s ∈ 2n+1,

f s0k0 ◦ · · · ◦ f
sn
kn

(z) = fP
`
(−1)`kis

`

(z),
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where 〈is`〉 is the decreasing enumeration of supp(s). Noting that

0 ≤
X̀

(−1)`kis
`
≤ kn,

it follows that π(x), π(y) are of the form fk(z), with 0 ≤ k ≤ kn, thus

dL (π(x), π(y)) ≤ kn.

It is also important to note that

dL (π(x), π(y)) < kn+1 − 2kn ⇒ dL (π(x), π(y)) ≤ kn.

To see this suppose, towards a contradiction, that

kn < dL (π(x), π(y)) < kn+1 − 2kn.

Then xn+1 6= yn+1 and ∀m > n+ 1 xm = ym, so it follows that

π(y) =
�
f y0k0 ◦ · · · ◦ f

yn
kn

�
◦ fkn+1 ◦

�
fx0
k0
◦ · · · ◦ fxnkn

�
◦ π(x).

But then, as before,

dL (π(x), π(y)) ≥ kn+1 − 2 max
s∈2n+1

X̀
(−1)`kis

`
≥ kn+1 − 2kn,

and this is the desired contradiction.

It follows that each pair of the form (ix, ı̄x) is in Lπ(C ′0), as these two points are

of minimal distance apart. It also follows that, for all x ∈ C ′
0 and n ∈ N,

π(0n11x) = fkn ◦ fkn+1 ◦ fkn ◦ π(0n10x) = f2kn−kn+1(0
n11x).

Thus, to see that (π(0n10x), π(0n11x)) ∈ Lπ(C ′0), it is enough to check that if

k = dL (π(0n10x), π(y))

is less than kn+1−2kn (thus at most kn), then fk ◦π(0n10x) = π(y), as it then follows

that k = kn+1 − 2kn is the minimal natural number such that

f−k ◦ π(0n10x) ∈ π(C ′
0).
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To see this, note that

π(y) = f y0k0 ◦ · · · ◦ f
yn−1

kn−1
◦ fkn ◦ π(0n10x) = fk ◦ π(0n10x),

for some k > 0, since kn > 7kn−1. a

We will close this section with some applications of Theorem 4.3 to the study of

Borel marriage problems. Suppose that X is a Polish space, M,W ⊆ X are Borel

sets which partition X, and G is a Borel graph for which M,W are discrete, or

equivalently, for which M,W witness that G is bipartite. Intuitively, M should be

thought of as a set of men, W should be thought of as a set of women, and G is the set

of pairs (m,w) of men and women who are willing to marry one another. A solution

to the marriage problem associated with (G ,M,W ) is a bijection f : M → W whose

graph is contained in G .

Now suppose that G is of vertex degree two. Then G clearly has a solvable

marriage problem: fix a transversal B ⊆ M of EG , let f : B → W be a function

whose graph is contained in G , and observe that f has a unique extension to a

solution to the marriage problem for (G ,M,W ). On the other hand, Laczkovich [59]

has shown that there is a Borel graph G of vertex degree 2 whose marriage problem

admits no Borel solution.

Note that if EG is finite, thus smooth, then the strategy of the previous paragraph

can be used to produce a Borel solution to the associated marriage problem. So

from the point of view of understanding the Borel marriage problem, I might as well

restrict my attention to the case that G = L is a Borel forest of lines.

Proposition 4.10. Suppose that X is a Polish space, L is a Borel forest of lines

on X, M,W partition X into Borel L -discrete sets. Then (L ,M,W ) has a solvable

Borel marriage problem ⇔ L is directable.

Proof. To see (⇒), suppose that f is a solution to the Borel marriage problem

for L , extend f to a Borel automorphism g : X → X by letting g(w) be the unique

L -neighbor of w other than f−1(w) for w ∈ W , and observe that g induces L . To

see (⇐), suppose that f is a Borel automorphism inducing L , and note that f |M is

a solution to the Borel marriage problem of G . a
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This immediately yields an alternative solution to the problem of Laczkovich [59]:

Theorem 4.11. There is a Borel graph of vertex degree 2 on a Polish space and a

partition of the underlying space into discrete Borel sets such that the associated Borel

marriage problem is unsolvable.

Proof. The idea is to combine Propositions 4.1 and 4.10. There are several

ways of doing this. One way is to find a Borel maximal (L0|C0)-discrete set M , put

W = i(M), and set G = (L0)M∪W . Another is to set M = C0 and W = L0|C0, and

put (x, (y, z)) ∈ G whenever x ∈ {y, z}. a

Laczkovich [59] actually shows that for his example, there is not even a solution

to the Lebesgue-measurable marriage problem. Of course the same thing is true for

the modifications of L0 mentioned above, as can be seen by repeating the proof of

Proposition 4.1 with (the appropriate modification of) Lebesgue measure in place of

Baire category (as it stands, the proof there shows that there is no solution to the

Baire-measurable marriage problem). More generally, we have the following:

Theorem 4.12. Suppose that X is a Polish space, G ⊆ X2 is a bipartite Borel graph

of vertex degree two, and M,W ⊆ X are Borel sets which partition X. If (G ,M,W )

has a solvable universally measurable marriage problem, then (G ,M,W ) has a solvable

Borel marriage problem.

Proof. Suppose, towards a contradiction, that there is a solution to the uni-

versally measurable marriage problem for (G ,M,W ), but that the Borel marriage

problem is unsolvable. Then there is a universally measurable function f which in-

duces G and a betweenness-preserving Borel embedding of L0 into G , and by pulling

back f through this embedding, one obtains a universally measurable function g which

induces L0. But there is no such function. a

From this, one can conclude that whenever a marriage problem admits a suf-

ficiently definable solution, then it admits a Borel solution. For instance, under

projective determinacy it follows that any Borel marriage problem with a projective

solution has a Borel solution.
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We will close this section with one final application of Theorem 4.3. Suppose that

(L , X, Y ) is a Borel marriage problem, where L is a Borel forest of lines on X ∪ Y .

Set S = L ∩ (X × Y ), and define h, v : S → S by

h(x, y) = (x′, y) and v(x, y) = (x, y′),

where x′, y′ are the unique L -neighbors of y, x other than x, y. Let G = 〈h, v〉 be

the group generated by h, v, and let G0 = 〈hv〉 be the group generated by hv. In

K lopotowski-Nadkarni-Sarbadhikari-Srivastava [58], it is shown that if (L , X, Y ) has

a Borel solution, then there is no G-quasi-invariant probability measure which is

G0-ergodic, and it is asked if the converse holds.

We can now give their question an affirmative answer. Define L ′ ⊆ S2 by

L ′ = graph(h) ∪ graph(v),

noting that L ′ is a Borel forest of lines on S. As in Proposition 4.10, it is straight-

forward to check that the existence of a Borel solution to (L , X, Y ) is equivalent to

the directability of L ′. Now note that the function f1 = v has a unique extension to

a local director F′ of L ′, and the corresponding function f ′F is simply hv. It follows

that if µ is a probability measure on S, then

µ is G-quasi-invariant, G0-ergodic ⇔ µ is EL ′-quasi-invariant, EF′-ergodic.

So it is certainly enough to show the following more general fact:

Theorem 4.13. Suppose X is a Polish space, L is a Borel forest of lines on X, and

F = 〈fn〉n∈Z is a local director for L such that

∀x ∈ X ([x]EF
( [x]EL

).

Then exactly one of the following holds:

1. L is directable.

2. There is an EL -quasi-invariant, EF-ergodic probability measure.
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Proof. We will begin with (1) ⇒ ¬(2). Suppose that g : X → X is a Borel

automorphism which induces L , and observe that

B = {x ∈ X : g(x) = f1(x)}

is a Borel EF-invariant EL -complete, co-complete section. It follows that there are

no EL -quasi-invariant, EF-ergodic probability measures.

It remains to show ¬(1) ⇒ (2). Suppose that L is not directable, and apply

Theorem 4.3 to find a betweenness-preserving Borel embedding π of L0 into L . Let

µ be the Lebesgue measure on C , and define ν on X by

ν(B) =
X
n∈Z

µ(π−1 ◦ fnF (B))/2n+1.

It is easily verified that ν is EF-quasi-invariant and EF-ergodic. Suppose, towards a

contradiction, that ν is not EL -quasi-invariant, and find a Borel set B ⊆ X with

ν(B) = 0 and ν([B]EL
) > 0.

By the definition of ν, we may assume that B if EF-invariant. By throwing away a

null EL -invariant Borel set, we may assume that B intersects exactly one EF-class

within every EL -class within [B]EL
. It follows that L |[B]EL

is directable. Setting

A = π−1(B),

it follows that L0|[A]E0 is also directable. As µ([A]E0) > 0, this contradicts the fact

that L0 is not directable on any Borel set of positive measure. a

5 More on betweenness and directability

In this section, we will provide strengthenings of the following:

Proposition 5.1. Suppose that X and Y are Polish spaces and L and L ′ are Borel

forests of lines on X and Y .

1. If L is directable and L ′ is undirectable, then L betweenness-preservingly

embeds into L ′.
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2. If L ′ is non-smooth, then there is a Borel set on which L ′ is non-smooth and

directable.

Proof. Of course it is enough to show (2) when L ′ is undirectable. Let Lσ

be the Borel forest of lines which is induced by the odometer. It is easily verified

that the function π : C → C , given by π(x) = x00x10 . . ., is a betweenness-preserving

embedding of Lσ into L0. By Theorems 3.3 and 4.3, there are betweenness-preserving

Borel embeddings π′, π′′ of L into Lσ, L0 into L ′.

To see (1), simply note that π′′ ◦ π ◦ π′ is a betweenness-preserving embedding of

L into L ′. To see (2), observe that π′′ ◦π(C ) is a Borel set on which L ′ is directable

but non-smooth. a

It will be convenient to have an alternative description of L ′
0 in terms of linear

orderings of 2n. For x, y ∈ 2n+1, put

x ≤′
0 y ⇔ x = y or xn < yn or (xn = yn and (x|n ≤′

0 y|n⇔ xn = 0)).

Letting n(x, y) ≤ n be greatest such that xn(x,y) 6= yn(x,y), it is easily verified that

x ≤′
0 y ⇔

24x = y or

�
xn(x,y) < yn(x,y) ⇔

X
n(x,y)<i≤n

xi ≡ 0 (mod 2)

�35 .
Proposition 5.2. Suppose x, y, z ∈ C ′

0 and xE0yE0z. The following are equivalent:

1. y is L ′
0-between x, z.

2. ∀∞n ∈ N (y|n is ≤′
0-between x|n, z|n).

Proof. Clearly we may assume that x, y, z are not all equal. Let n(x, y, z) be the

greatest digit on which x, y, z do not all agree. Then y is L ′
0-between x, z exactly

when y|n appears between x|n, z|n in the sequence

0n, i′(0n), j′ ◦ i′(0n), . . . , i′ ◦ (j′ ◦ i′)2n−1−1(0n),

for every n > n(x, y, z). Thus, it is enough to check that for each n,

0n+1, i′(0n+1), j′ ◦ i′(0n+1), . . . , i′ ◦ (j′ ◦ i′)2n−1(0n+1)
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is ≤′
0-increasing. This follows from the obvious induction, the fact that

i′ ◦ (j′ ◦ i′)2n−1−1(0n+1) = 0n−110 ≤′
0 0n−111

= (j′ ◦ i′)2n−1

(0n+1),

and the proof of Proposition 4.8. a

The following fact is the analog of Theorem 3.3:

Theorem 5.3 (Miller-Rosendal). Suppose that X is a Polish space and L is a

Borel forest of lines on X. Then L betweenness-preservingly embeds into L0.

Proof. It is enough to show that every Borel forest of lines L on X = C

betweenness-preservingly Borel embeds into L ′
0. Let F = 〈fn〉n∈Z be a local director

for L . Given a recurrent set B ⊆ X, put

d−B(x) = min{n ∈ N : f−n(x) ∈ B} and d+
B(x) = min{n ∈ N : fn(x) ∈ B}.

Fix a decreasing, vanishing sequence of Borel complete sections Bn ⊆ X such that

∀n ∈ N ∀x ∈ X
�
d−Bn(x), d+

Bn(x) < 2n−1
�
.

Fix a Borel linear ordering � of X, define gn : X → X by

gn(x) = min
�

(f−d−Bn (x)(x), fd+Bn (x)(x)),

put

jn(x) = the unique j ∈ Z such that fj ◦ gn(x) = x,

and set kn(x) = jn(x) + 2n−1, noting that 0 ≤ kn(x) < 2n.

Now define ϕn : X → 2n·2
n

by

ϕn(x) =
M

−2n−1≤m<2n−1

fm ◦ gn(x)|n,

define ψn : X → 2n+1 by ψn(x) = bn+1(kn+1 ◦ gn(x)), where

bn(m) = the mth element of ≤′
0 |2n,
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r
[fn+1(x)]0
[fn+1(x)]1

...
[fn+1(x)]n−1

...

· · · r
[fn(x)]0
[fn(x)]1

...
[fn(x)]n−1

...

· · · r
x0

x1

...
xn−1

...

· · · r
[f(2n−1,n)(x)]0
[f(2n−1,n)(x)]1

...
[f(2n−1,n)(x)]n−1

...

ϕn(x)

z }| {ψn(x)

Figure 2.10: ϕn approximates [x]f and ψn specifies how to put the approximations
together.

and define ξn : X → {0, 1} by

ξn(x) =

8<: 0 if gn(x)EFgn+1(x),

1 otherwise.

We claim that

π(x) =
M
n∈N

〈ξn(x)〉 ⊕ ϕn(x)⊕ ϕn(x)⊕ ψn(x)⊕ ψn(x)

is the desired reduction, or equivalently, that

∀x, y, z ∈ X
�
y is L -between x, z ⇔ π(y) is L ′

0-between π(x), π(z)
�
.

For each n ∈ N, let n′ ∈ N be the unique natural number such that for all x ∈ X,

π(x)|n′ =
M
m<n

〈ξn(x)〉 ⊕ ϕn(x)⊕ ϕn(x)⊕ ψn(x)⊕ ψn(x).

Also, define

xEny ⇔ gn(x) = gn(y) and x <n y ⇔
�
xEny and kn(x) < kn(y)

�
,

noting that

xEL y ⇔ ∃n ∈ N (xEny)

⇔ ∀∞n ∈ N (xEny),

for all x, y ∈ X. We will show the following:
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1. ∀n ∈ N ∀x, y ∈ X
�
x <n y ⇒ π(x)|n′ <′

0 π(y)|n′
�
.

2. ∀x, y ∈ X
�
π(x)E0π(y) ⇒ xEL y

�
.

To see that this is sufficient, note that (1) and (2) together imply that

∀n ∈ N ∀x, y ∈ En
�
x ≤n y ⇔ π(x)|n′ ≤′

0 π(y)|n′
�
.

As the range of π is clearly contained in C ′
0, it follows that for all x, y, z ∈ X,

y is L -between x, z ⇔ ∀∞n ∈ N (y is ≤n-between x, z)

⇔ π(x)E0π(y)E0π(z) and

∀∞n ∈ N (π(y)|n′ is ≤′
0-between π(x)|n′, π(z)|n′)

⇔ π(x)E0π(y)E0π(z) and

∀∞n ∈ N (π(y)|n is ≤′
0-between π(x)|n, π(z)|n)

⇔ π(y) is L ′
0-between π(x), π(z).

To see (1), suppose x 6= y lie in the same connected component of L and set

n(x, y) = max{n ∈ N : gn(x) 6= gn(y)}.

By reversing the roles of x, y if necessary, we may assume that x <n(x,y)+1 y. As

kn(x,y)+1(x) < kn(x,y)+1(y) ⇒ kn(x,y)+1 ◦ gn(x,y)(x) < kn(x,y)+1 ◦ gn(x,y)(y),

it follows that ψn(x,y)(x) <′
0 ψn(x,y)(y), thus

π(x)|(n(x, y) + 1)′ <′
0 π(y)|(n(x, y) + 1)′.

Now note that if m ≥ n and x <n y, then

x <n+1 y ⇔ ξn(x) = 0.

Similarly, if m ≥ n and π(x)|n′ <′
0 π(y)|n′, then

π(x)|(n+ 1)′ <′
0 π(y)|(n+ 1)′ ⇔ ξn(x) = 0.
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A simple inductive argument now gives (1).

To see (2), suppose that π(x)E0π(y), fix n ∈ N sufficiently large that

∀m ≥ n
�
〈ξm(x)〉 ⊕ ϕm(x)⊕ ψm(x) = 〈ξm(y)〉 ⊕ ϕm(y)⊕ ψm(y)

�
,

and set `m = km(x)− km(y), noting that for all m ≥ n,

`m = (−1)
P

n≤i<m ξi(x)`n.

Identifying ϕm(x), ϕm(y) with the corresponding elements of (2m)2m , it follows that

x|m = fkm(x) ◦ gm(x)|m

= (ϕm(x))km(x)

= (ϕm(y))km(y)+`m

= fkm(y)+`m ◦ gm(y)|m

= fkm(y)+(−1)n≤i<mξi(x) ◦ gm(y)|m

=

8<: fkm(y)+`n ◦ gm(y)|m if gm(y)EFgn(y),

fkm(y)−`n ◦ gm(y)|m otherwise,

= fkn(y)+`n ◦ gn(y)|m,

thus x = fkn(y)+`n ◦ gn(y), so xEL y. a

There is an analog of Kakutani equivalence in this setting. Two Borel forests

of lines L and M are Kakutani equivalent if there are Borel complete sections A

and B such that LA
∼= MB. A proof identical to that given in §3 shows that

betweenness-preserving Borel bi-embeddability of lines implies Kakutani equivalence.

In particular, this gives our strengthening of the first half of Proposition 5.1:

Theorem 5.4. Up to Kakutani equivalence, there are exactly three Borel forests of

lines on Polish spaces. In order of betweenness-preserving Borel embeddability, these

are: those which are induced by smooth Borel automorphisms, those which are in-

duced by non-smooth Borel automorphisms, and those which are not induced by Borel

automorphisms at all.
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Proof. Simply combine Theorems 4.3 and 5.3 with Proposition 5.1. a

Various issues surrounding the proof of Theorem 5.3 lead to another natural forest

of lines, which I will mention briefly here. Put C ′′
0 = C 2 \ E0, define

i′′(x, y) = (y, x) and j′′(x, y) = (σ−1(y), σ(x)),

and set L ′′
0 = graph(i′′) ∪ graph(j′′).

Proposition 5.5. L ′′
0 |C ′′

0
∼=B L0|C0 ×∆(C ).

Proof. Let + denote “addition with right carry” on C . Clearly (C ,+) is an

abelian group with identity 0∞. We will use · to denote multiplication,

x · y =
X
yn=1

0nx0x1 . . . ,

and we will use 1 to denote 10∞, the multiplicative identity.

One should note that i, j have simple representations in terms of this notation:

i(x) = x = −x− 1 and j(x) = σ ◦ i(x) = −x.

Define

Cα = C \ [α1α2 . . .]σ,

where [x]σ denotes the orbit of x under σ, define iα, jα on Cα by

iα(x) = α− x− 1 and jα(x) = α− x,

and put Lα = graph(iα) ∪ graph(jα). Letting

L = {((α, x), (α, y)) : (x, y) ∈ Lα},

it follows that the map (x, y) 7→ (x + y, x) is an isomorphism of L ′′
0 with L . So

it only remains to construct an isomorphism of L0 × ∆(C ) with L , and for this it

is enough to provide a uniform-in-α collection of isomorphisms from L0 to Lα. Fix

α ∈ C , define

πα(x) = (−1)α0x+ α1α2 . . . ,
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and note that

πα(graph(i)) = {((−1)α0x+ α1α2 . . . , (−1)α0(−x− 1) + α1α2 . . .)}x∈C0

= {((−1)α0x+ α1α2 . . . ,

−((−1)α0x+ α1α2 . . .) + (−1)α0 + 0α1α2 . . .)
©
x∈C0

=
¦
(x,−x+ (−1)α0 + 0α1α2 . . .)

©
x∈Cα

=

8<: graph(iα) if α0 = 0,

graph(jα) if α0 = 1,

and similarly,

πα(graph(j)) = {((−1)α0x+ α1α2 . . . , (−1)α0(−x) + α1α2 . . .)}x∈C0

= {((−1)α0x+ α1α2 . . . ,

−((−1)α0x+ α1α2 . . .) + 0α1α2 . . .)}x∈C0

= {(x,−x+ 0α1α2 . . .)}x∈Cα

=

8<: graph(jα) if α0 = 0,

graph(iα) if α0 = 1,

thus πα is an isomorphism of L0 with Lα, and it follows that

π(x, y) = (π−1
x+y(x), x+ y)

is an isomorphism of L ′′
0 with L0 ×∆(C ). a

Remark 5.6. In the above proof, it was necessary for some of the πα’s to send (i, j)

to (jα, iα). In fact, there is a Borel isomorphism sending (iα, jα) to (iβ, jβ) exactly

when α0 = β0. To see this, it is enough to show that there is no Borel isomorphism

of (i, j) with (i1, j1). Suppose, towards a contradiction, that π is such a map. As

jα ◦ iα = jβ ◦ iβ = σ, it follows that π must carry σ to σ, i.e., π and σ must commute.

But then, after throwing away an invariant Borel meager set, π(x) = x+ γ for some

fixed γ ∈ C , and no such map can carry i to any iα with α0 = 1.

Next, we will turn to a strengthening of the second half of Proposition 5.1. Given

countable Borel equivalence relations E1 ⊆ E2 on X, we will say that E2/E1 is smooth
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if the underlying space X can be covered with countably many E1-invariant Borel set

Bn which are partial transversals of E2/E1, i.e., which intersect at most 1 E1-class

within every E2-class. Note that when E2 is countably generated over E1, i.e., when

there are countably many E1-invariant Borel functions fn which together with E1

generate E2, then the smoothness of E2/E1 is equivalent to the existence of an E1-

invariant Borel set B which gives a transversal of E2/E1. In the same way that one

may associate a σ-ideal I(E) = {B : E|B is smooth} with every Borel equivalence

relation, one may associate a σ-ideal

I(E2/E1) = {B : (E2|B)/(E1|B) is smooth}

with every pair of countable Borel equivalence relations E1 ⊆ E2.

Theorem 5.7. Suppose that X is a Polish space, E1 ⊆ E2 are countable Borel equiv-

alence relations on X, [E2 : E1] < ℵ0, and E2/E1 is non-smooth. Then I(E2/E1) 6⊆
I(E), for any non-smooth Borel equivalence relation E.

Proof. Let J (E2/E1) be the σ-ideal of Borel sets B for which (E2|B)/(E1|B)

admits a Borel transversal. We will show the apparently weaker fact that

J (E2/E1) 6⊆ I(E),

for any non-smooth Borel equivalence relation E. To see that this is enough, assume

without loss of generality that [E2 : E1] = n, find a sequence of Borel functions fi,

with f0 = id, such that

∀x
 

[x]E2 =
[
i<n

[fi(x)]E1

!
,

and put xE ′
1y ⇔ ∀i < n (fi(x)E1fi(y)). Clearly J (E2/E

′
1) ⊆ I(E2/E1), so if

J (E2/E
′
1) 6⊆ I(E), then I(E2/E1) 6⊆ I(E) as well.

Now suppose, towards a contradiction, that E is a Borel equivalence relation

with the property that whenever E|B is non-smooth, (E2|B)/(E1|B) has no Borel

transversal. By [44], there is a Borel set B such that E|B is non-smooth and hyperfi-

nite. By replacing E with E|B, I may assume that E is aperiodic and hyperfinite. I

will perform the Glimm-Effros style embedding of E0 into E from [79], along the way
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ensuring that the image of C0 intersects at most one E1-class within every E2-class,

thus lies within J (E2/E1) \I(E), the desired contradiction.

Let f be a Borel automorphism which generates E, put fn = fn, fix a countable

collection of Borel automorphisms gn, the union of whose graphs is E2, let τ be a

zero-dimensional Polish topology on X, finer than that with which X was originally

endowed but compatible with the underlying Borel structure of X, in which each

{x : fm(x)Eifn(x)} is clopen, the support of any composition of the f ’s and gn’s

is clopen, and f and the gn’s are homeomorphisms, and let d be a Polish metric

compatible with τ .

I will recursively choose natural numbers kn and I(E)-positive, τ -clopen sets Bn

which satisfy several additional properties. Letting fs = f s0k0 ◦ · · · ◦ f
sn
kn

, for s ∈ 2n+1,

and

Hn = {id} ∪ {fi}|i|≤n ∪ {gi}i≤n,

these properties are as follows:

1. ∀x ∈ Bn+1

�
x, fkn(x) ∈ Bn and ∀s, t ∈ 2n∀h ∈ Hn (fs(x) 6= h ◦ ft ◦ fkn(x))

�
,

2. ∀x ∈ Bn+1∀s, t ∈ 2n+1
�
(fs(x), ft(x)) 6∈ E2 \ E1

�
, and

3. ∀s ∈ 2n+1
�
fs(Bn+1) is of diameter < 1/(n+ 1)

�
.

The recursion begins by setting B0 = X. Now suppose I have built {Bm}m≤n and

{km}m<n. I claim that for some natural number k, the τ -clopen set Ak of all x such

that

1′.
�
x, fk(x) ∈ Bn and ∀s, t ∈ 2n∀h ∈ Hn (fs(x) 6= h ◦ ft ◦ fk(x)

�
, and

2′. ∀s, t ∈ 2n
�
(fs(x), ft ◦ fk(x)) 6∈ E2 \ E1

�
,

is I(E)-positive. To see this, it suffices to check that B = Bn \
S

[Ak]E is I(E)-null.

It follows from the definition of B that

∀x ∈ B∀∞y ∈ B ∩ [x]E∃s, t ∈ 2n
�
(fs(x), ft(y)) ∈ E2 \ E1

�
. (∗)

I will show that this implies that B intersects every E-class C in only finitely many

points, which of course implies that B ∈ I(E).



166

Let 〈Ci〉 be an enumeration of C/E1, let 〈xi〉 be an enumeration of B ∩ C, set

Ti = {j ∈ N : ∃s ∈ 2n (fs(xi) ∈ Cj)},

and define a finite equivalence relation F on N, by putting

iF j ⇔ Ci, Cj lie within the same E2-class.

Clearly 〈Ti〉 is a sequence of partial transversals of F , and it follows from (∗) that the

union along any infinite subsequence is not a partial transversal. So it only remains

to note the following:

Lemma 5.8. Suppose that F is a finite equivalence relation on N and 〈Ti〉i∈N is a

sequence of partial transversals of F of bounded cardinality. Then there is an infinite

set N ⊆ N such that
S
i∈N Ti is a partial transversal of F .

Proof. By induction on k = maxi |Si|. The case k = 1 is trivial, so suppose that

we have shown the lemma below k. Let 〈Di〉 be an enumeration of the equivalence

classes of F , put D′
i =

S
j≤iDj, and note that if

∀i∀∞j (Tj ∩D′
i = ∅),

then N can be easily built: set i0 = 0, and given in, fix i sufficiently large that

Ti0 , . . . , Tin ⊆ D′
i and choose in+1 such that Tin+1 ∩D′

i = ∅. Clearly N = {in}n∈N is

as desired.

So we may assume that for some i, there are infinitely many j with Tj ∩D′
i 6= ∅.

By passing to an infinite subsequence, I may assume that this is true for all j, and

moreover, that this intersection is independent of j (here is where we use that F is

finite). Now it follows from the induction hypothesis that by passing to an infinite

subsequence once more, I may assume that
S
Sj \ D′

i is a partial transversal of F ,

thus so too is
S
Sj. a

So fix such a k = kn, and note that, by the τ -continuity of the fi’s and gi’s, each

x ∈ Akn has a τ -clopen neighborhood U such that fs(U) is of diameter < 1/(n + 1),

for each s ∈ 2n. It follows that there is a partition of Akn into countably many such

sets. Let Bn+1 be any I(E)-positive set from such a partition.
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Figure 2.11: The first three stages of the construction of π : C0 ↪→ X.

Set B∅ = X, and for s ∈ 2n+1, define

Bs = fs(Bn+1) = f s0k0 ◦ f
s1
k1
◦ · · · ◦ f snkn (Bn+1).

Then, for each x ∈ 2N, {Bx|n} is a decreasing sequence of τ -clopen sets of vanishing

diameter, and it follows that
T
Bx|n consists of a unique element π(x).

It is clear that π : C0 → X is continuous, so it only remains to check that π is

an embedding of E0|C0 into E, the image of which consists of at most one E1-class

within any E2-class. For this, it is enough to check that

(a) ∀x, y ((x, y) 6∈ E0 ⇒ (π(x), π(y)) 6∈ E ∪ E2), and

(b) ∀x∀s, t (π(sx), π(tx)) ∈ E \ (E2 \ E1).

To see (a), simply note that if xn 6= yn, then π(x) 6= h ◦ π(y) for any h ∈ Hn, by

(1). Thus, if x, y disagree on infinitely many coordinates, then π(x) 6= h ◦ π(y) for

any h ∈ SHn, and then (a) follows from the fact that E ∪ E2 =
S
h∈
S

Hn
graph(h).

To see (b), simply note that

{π(sx)} =
\
m>n

f s0k0 ◦ · · · ◦ f
sn
kn
◦ fx0

kn+1
◦ · · · ◦ fxm−n−1

km
(Bm+1)

= f s0k0 ◦ · · · ◦ f
sn
kn

 \
m>n

fx0
kn+1

◦ · · · ◦ fxm−n−1

km
(Bm+1)

!
=

¦
f s0k0 ◦ · · · ◦ f

sn
kn
◦ π(0n+1x)

©
,

and similarly π(tx) = f t0k0 ◦ · · · ◦ f
tn
kn
◦ π(0n+1x), thus (π(sx), π(tx)) ∈ E \ (E2 \E1). a
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Corollary 5.9. Suppose that X is a Polish space and L is an undirectable Borel

forest of lines on X. Then the directability σ-ideal of L is not the smoothness σ-

ideal of any Borel equivalence relation on X.

Proof. Let F be a local director for L , recall that the directability σ-ideal

induced by L is exactly I(EL /EF), and apply Theorem 5.7. a

6 Ergodic equivalence relations on quotients

Suppose that F1, . . . , Fn are countable Borel equivalence relations on Polish spaces

X1, . . . , Xn. Although the
Q
i Fi-saturation of B ⊆ Q

iXi is given by

[B]Q
i
Fi

= {([x1]F1 , . . . , [xn]Fn) : (x1, . . . , xn) ∈ B},

we will also use this notation to denote the corresponding subset of
Q
iXi/

Q
i Fi. The

quotient Borel structure on
Q
iXi/Fi is given by

B
�Y

i

Xi/Fi

�
=
§

[B]Q
i
Fi

: B ⊆
Y
i

Xi is Borel
ª
.

When each Fi is smooth, the space
Q
iXi/Fi is standard Borel. On the other hand, as

soon as one of the Fi’s is non-smooth, the quotient Borel structure is neither countably

generated nor is it generated by products of Borel rectangles.

A function f : X1/F1 → X2/F2 is Borel if its graph,

graph(f) = {([x]F1 , [y]F2) ∈ X1 ×X2/F1 × F2 : f([x]F1) = [y]F2}

is Borel. It follows from the Lusin-Novikov uniformization theorem (see 18.10 of

Kechris [51]) that a countable-to-one function f : X1/F1 → X2/F2 is Borel exactly

when it has a Borel lifting , i.e., a Borel function f̃ : X1 → X2 such that graph(f) =

[graph(f̃)]F1×F2 , or equivalently, such that

∀x ∈ X1

�
f̃(x) ∈ f([x]E1)

�
.

In fact, there is useful strengthening of this:
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Proposition 6.1. Suppose that X1, X2 are Polish spaces, F1, F2 are countable Borel

equivalence relations on X1, X2, F2 is aperiodic, and f : X1/F1 → X2/F2 is a

countable-to-one Borel function. Then f has a finite-to-one Borel lifting.

Proof. By the Lusin-Novikov uniformization theorem (see 18.10 of Kechris [51]),

there is a countable family of Borel partial injections fn pppX1 → X2 whose domains

partition X1 with

∀n ∈ N∀x ∈ dom(fn)
�
fn(x) ∈ f([x]F1)

�
.

Let n(x) be the unique natural number such that x ∈ dom(fn(x)).

Lemma 6.2. Suppose that X is a Polish space and F is an aperiodic countable Borel

equivalence relation on X. Then there is a partition of X into Borel complete sections

Cn and a finite-to-one Borel function ϕ : X → X such that ∀n ∈ N (ϕ(Cn) ⊆ Cn+1)

and ∀x ∈ X (ϕ(x) ∈ [x]F ).

Proof. Note that it is enough to prove the lemma off of an F -invariant Borel

set on which F is smooth, for it is clear how to proceed in the smooth case. By

Feldman-Moore [36], we can find Borel involutions in : X → X such that

∀n ∈ N

�
F =

[
m≥n

graph(im)

�
.

Now we will recursively define several sets and involutions. Put A0 = X, and given

An, define

Bn
m = (supp(im+n) ∩ An ∩ im+n(An)) \

[
`<m

Bn
` ∪ im+n(Bn

` ),

where supp(f) = {x ∈ X : f(x) 6= x} denotes the support of f . Set Bn =
S
m∈NB

n
m,

and for each x ∈ Bn, let mn(x) denote the unique natural number such that x ∈
Bn
mn(x). Now define jn : Bn → Bn by

jn(x) = imn(x)+n(x).

As each Bn
m is im+n-invariant, it follows that jn is an involution. As An\Bn is a partial

transversal for F , we may assume that An = Bn. Let Cn be a Borel transversal of

the orbit equivalence relation induced by jn, and put An+1 = jn(Cn).
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Figure 2.12: The construction of 〈Cn〉n∈N and ϕ.

Noting that X \Sn∈NCn is a partial transversal of F , we may assume that 〈Cn〉n∈N

is a partition of X. Now define ϕn : Cn → Cn+1 by

ϕ(x) =

8<: in(x) if x ∈ Cn and in(x) ∈ Cn+1,

in+1 ◦ in(x) otherwise.

It is clear that ϕ : X → X \ C0 is exactly two-to-one. a

Now fix Cn and ϕ : X2 → X2 as in Lemma 6.2, and define f̃ : X1 → X2 by

f̃(x) = ϕn(x) ◦ fn(x)(x).

As ϕ is finite-to-one, so too is f̃ . a

There is a connection between the notions we have mentioned thus far and the

ergodic-theoretic study of normalizers of full groups. Suppose that E is a countable

Borel equivalence relation on a Polish space X. The full group of E is

[E] = {f : X → X Borel : graph(f) ⊆ E}.

The normalizer of [E] is the group N [E] of Borel automorphisms f such that f ◦ [E]◦
f−1 = [E], or equivalently, such that ∀x, y ∈ X (xEy ⇔ f(x)Ef(y)).

It is clear that any element ofN [E] gives rise to a Borel automorphism ofX/E, and

moreover, that the corresponding map from N [E]/E to the Borel automorphisms of

X/E is injective. Next we will see that in the ergodic-theoretic context, this is actually

a bijection. We will use EG denote the orbit equivalence relation on X induced by an

action of the group G on X/E.
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Proposition 6.3. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, f : X/E → X/E is a Borel automorphism, and µ is an

E〈f〉-invariant probability measure on X. Then there exists f̃ ∈ N [E] such that

∀∗µx ∈ X (f̃(x) ∈ f([x]E)).

Proof. By the Lusin-Novikov uniformization theorem (see 18.10 of [51]), there is

a sequence of partial Borel injections fn pppX → X such that

graph(f) =
[
n∈N

graph(fn).

Recursively define An = dom(fn) \ Sm<nAm ∪ fn(Am), set A =
S
n∈NAn, and for

x ∈ A, let n(x) be the unique natural number such that x ∈ An(x). Now define

f̃(x) = fn(x)(x),

and note that for each x ∈ X, either [x]E ⊆ dom(f̃) or f([x]E) ⊆ rng(f̃). As

X \ dom(f̃) and X \ rng(f̃) are both null by the invariance of µ, the proposition

follows. a

Remark 6.4. If E and E〈f〉 have the same set of invariant (ergodic) probability

measures, then a combination of the above proof with a compressibility argument

shows that f has a lifting in N [E].

Suppose E is a countable Borel equivalence relation on X/F . The E-saturation

of B ⊆ X/F is

[B]E = {x ∈ X/F : ∃y ∈ B (xEy)}.

A complete section for E is a set B ⊆ X/F such that [B]E = X/F . A co-complete

section for E is the complement of a complete section. The equivalence relation E is

ergodic if it admits no Borel complete section which is also co-complete. The following

fact provides plenty of examples of ergodic equivalence relations:

Proposition 6.5. Suppose that F ⊆ E are Borel equivalence relations on a Polish

space X and there is an F -ergodic, E-quasi-invariant probability measure µ on X.

Then E/F is ergodic.
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Proof. To see this, suppose that B is a Borel complete section for E/F . It follows

that the corresponding Borel set B̃ ⊆ X is an F -invariant Borel complete section for

E. Then µ(B̃) = 1 by F -ergodicity of µ, thus µ(X \ B̃) = 0. It then follows from the

E-quasi-invariance of µ that X \ B̃ is not a complete section for E, thus B is not a

co-complete section for E/F . a

7 Rigidity for ergodic actions

Suppose that G is a countable group. Put X0(G) = GN, define

~gE0(G)~h⇔ ∃N ∈ N∀n ≥ N
�
~gn = ~hn

�
,

and let G act on X0(G) via g ·~g = 〈g~g0, g~g1, . . .〉. Of course, the action of G on X0(G)

is smooth.

Proposition 7.1. The induced action of G on X0(G)/E0(G) is ergodic.

Proof. Note that both E0(G) and EG are generic and generically ergodic, and

repeat the proof of Proposition 6.5 with category in place of measure. a

For the sake of the arguments to come, it will be convenient to work with a slight

modification of the action of G on X0(G)/E0(G). Define F0(G) ⊆ E0(G) by

~gF0(G)~h⇔ ∃N ∈ N
�
~g0 · · ·~gN = ~h0 . . .~hN and ∀n > N

�
~gn = ~hn

��
,

and let G act on X0(G) via g · 〈~g0, ~g1, . . .〉 = 〈g~g0, ~g1, ~g2, . . .〉. Note that the equiv-

alence relation which is generated by the induced action of G on X0(G)/F0(G) is

E0(G)/F0(G). It is easily verified that the function π : X0(G) → X0(G) which is

given by

πn(~g) =

8<: ~g0 if n = 0,

~g−1
n−1~gn otherwise,

is an isometry which simultaneously carries E0(G) to F0(G) and the old action of G to

the new action of G. The following fact shows that the action of G on X0(G)/F0(G)

(as well as the action of G on X0(G)/E0(G)) is the minimal free ergodic G-action:
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Theorem 7.2. Suppose that X is a standard Borel space, F is a countable Borel

equivalence relation on X, and G is a countable group which acts freely and in a

Borel fashion on X/F . Then exactly one of the following holds:

1. The action of G on X/F is not ergodic.

2. There is a continuous embedding of X0(G) into X which induces a G-action

embedding of X0(G)/F0(G) into X/F .

Proof. Proposition 7.1 essentially shows (1) ⇒ ¬(2), so it is enough to show

¬(1) ⇒ (2). We claim that for this, it is enough to show that if the action of G on

X/F is ergodic, then there is a continuous injection π : X → X0(G) such that

(a) ∀(~g,~h) ∈ E0(G)∀g ∈ G
�
g · ~gF0(G)~h⇔ g · [π(~g)]F = [π(~h)]F

�
.

(b) ∀(~g,~h) 6∈ E0(G)
�
(π(~g), π(~h)) 6∈ F

�
.

To see this really is sufficient, set E = EG and suppose, towards a contradiction,

that there exists (~g,~h) /∈ E0(G) such that π(~g)Eπ(~h). Then there exists g ∈ G such

that g · [π(~g)]F = [π(~h)]F . Now it follows from (a) that π(g · ~g) ∈ g · [π(~g)]F , thus

(g · ~g,~h) 6∈ E0(G) but (g · ~g,~h) ∈ F , which contradicts (b). Thus we have shown that

(a) and (b) together imply

(b′) ∀(~g,~h) 6∈ E0(G)
�
(π(~g), π(~h)) 6∈ E

�
.

Clearly (a) and (b′) imply that π is simultaneously an embedding of F0(G) into F

and of E0(G) into E, and it then follows that the induced map from X0(G)/F0(G) to

X/F is a G-action embedding.

So suppose that the action of G on X/F is ergodic. Let I be the σ-ideal of Borel

sets B ⊆ X such that (E|B)/(F |B) is not ergodic. By Feldman-Moore [36], there are

Borel automorphisms fn : X → X, with f0 = id, such that F =
S
n∈N graph(fn), and

by Proposition 6.1 there are finite-to-one Borel functions fg : X → X such that

∀g ∈ G∀x ∈ X
�
fg(x) ∈ g · [x]F

�
.
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r r-
fgx fg(x)

6fα(x)

rfα,g(x)

������1fα,g

[x]F g·[x]F-
g

[x]E

Figure 2.13: The action of fα,g on [x]E.

By Proposition 4.4, there is a Polish metric d on X which is compatible with the

underlying Borel structure of X and in which each fn and fg is a continuous open-

and-closed map.

We will associate with every Borel partial function α pppX → N and g ∈ G a lifting

fα,g : X → X of g| dom(α),

fα,g(x) =

8<: fα(x) ◦ fg(x) if g 6= 1G and x ∈ dom(α),

x otherwise.

Let Π be the set of sequences 〈~α(g,n) pppX → N 〉(g,n)∈G+×N of Borel partial functions

such that

∀∞(g, n) ∈ G+× N
�
α(g,n) = ∅

�
, (†)

where G+ = G \ {1G}. Associated with each ~α ∈ Π, ~g ∈ X0(G), and S ⊆ N is a

function f~α,~g,S : X → X given by

f~α,~g,S = f~α(~gn0 ,n0),~gn0
◦ f~α(~gn1 ,n1),~gn1

◦ · · · ◦ f~α(~gnk
,nk),~gnk

◦ · · · ,

where n0, n1, . . . is the increasing enumeration of S. Note that this makes sense even

when S is infinite, as (†) ensures that only finitely many of the functions in this

composition are non-trivial. Associated with each finite family F ⊆ G+× N is the

set

XF =
¦
~g ∈ X0(G) : ∀n ∈ N

�
~gn = 1G or (~gn, n) ∈ F

�©
.

Given F ⊆ G+ × N, B ⊆ X, and ε > 0, we say that ~α ∈ Π is (F , B, ε)-good if:
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1. F is finite and ∀(g, n) 6∈ F
�
α(g,n) = ∅

�
.

2. B is clopen and I-positive.

3. ∀~g ∈ XF

�
diam

�
f~α,~g,[0,∞)(B)

�
< ε

�
.

4. ∀~g,~h ∈ XF∀n ∈ N
�
~gn 6= ~hn ⇒ ∀i ≤ n

�
f~α,~g,[0,∞)(B) ∩ fi ◦ f~α,~h,[0,∞)(B) = ∅

��
.

For ~g ∈ XF and n ∈ N, we will use ~g(n) to denote the element of XF which results

from replacing each of the first n entries of ~g with 1G. Note that for all ~g ∈ XF ,

f~α,~g,[n,∞) = f~α,~g (n),[n,∞) = f~α,~g (n),[0,∞).

Setting X
(n)
F =

¦
~g(n) : ~g ∈ XF

©
, it follows from (4) that

∀~g,~h ∈ X(n)
F

�
~g 6= ~h⇒ f~α,~g,[n,∞)(B) ∩ f~α,~h,[n,∞)(B) = ∅

�
.

Now suppose that ~α ∈ Π is (F , B, ε)-good and ~α′ ∈ Π is (F ′, B′, ε′)-good. Then

(~α′,F ′, B′, ε′) extends (~α,F , B, ε) if the following conditions are satisfied:

1. F ⊆ F ′.

2. B′ ⊆ B.

3. ∀~g ∈ X0(G)∀(g, n) ∈ F
�
~α′(g,n) = ~α(g,n)

�
.

4. ∀~g ∈ X0(G)∀(g, n) 6∈ F
�
f~α′

(g,n)
,g ◦ f~α,~g,(n,∞)(B

′) ⊆ f~α,~g,(n,∞)(B)
�
.

Note that if (~α′,F ′, B′, ε′) extends (~α,F , B, ε), then

∀~g ∈ XF

�
f~α′,~g,[0,∞) = f~α,~g,[0,∞)

�
and ∀~g ∈ X0(G)

�
f~α′,~g,[0,∞)(B

′) ⊆ f~α,~g,[0,∞)(B)
�
.

The rest of the proof will be quite similar to the proofs of the previous sections, as

soon as we establish the following lemma:

Lemma 7.3. Suppose that F ⊆ F ′ are finite subsets of G+× N, ε′ > 0, and ~α is

(F , B, ε)-good. Then there exists B′ ⊆ B and an (F ′, B′, ε′)-good ~α′ ∈ P such that

(~α′,F ′, B′, ε′) extends (~α,F , B, ε).
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Proof. By the obvious induction, we may assume that F ′ = F ∪{(g, n)}, where

(g, n) 6∈ F . Fix an enumeration ~g0, . . . , ~gM−1 of X
(n+1)
F , and set

Xm = XF ∪
¦
~g ∈ XF ′ : ∃` < m

�
~g(n+1) = (~g`)(n+1)

�©
.

I will recursively define I-positive Borel sets B0 ⊇ B1 ⊇ · · · ⊇ BM and ~α0 ⊆ ~α1 ⊆
· · · ⊆ ~αM ∈ Π, beginning with B0 = B and ~α0 = ~α. Suppose now that we have

already defined Bm and ~αm, for some m < M . For each k ∈ N, define

~α
(m,k)
(g′,n′)(x) =

8<: k if x ∈ f~αm,~gm,(n,∞)(Bm) and (g′, n′) = (g, n),

~αm(g′,n′)(x) otherwise,

put ` = max{k ∈ N : ∃g ∈ G ((g, k) ∈ F ′)}, and let Ak be the set of all x ∈ Bm such

that:

(a) (fk ◦ fg) ◦ f~αm,~gm,(n,∞)(x) ∈ f~αm,~gm,(n,∞)(Bm), and

(b) ∀i ≤ `∀~g ∈ Xm∀~h ∈ Xm+1 \Xm

�
f~α(m,k),~g,[0,∞)(x) 6= fi ◦ f~α(m,k),~h,[0,∞)(x)

�
.

I claim that A = Bm \
S
k∈NAk is I-null. To see this, suppose that x ∈ A and set

y = f~αm,~gm,(n,∞)(x).

Note that if ~g ∈ Xm, then

~gn = g ⇒ f~αm,~gm,(n,∞)(Bm) ∩ f~αm,~g,(n,∞)(Bm) = ∅,

thus f~α(m,k),~g,[0,∞) = f~αm,~g,[0,∞). It follows that if k ∈ N and

(fk ◦ fg)(y) ∈ f~αm,~gm,(n,∞)(Bm),

then there exists i ≤ `, ~g ∈ Xm, and ~h ∈ Xm+1 \Xm such that

f~αm,~g,[0,∞)(x) = fi ◦ f~αm,~h,[0,n) ◦ (fk ◦ fg)(y),

thus

(fk ◦ fg)(y) ∈ f−1

~αm,~h,[0,n)
◦ f−1

i ◦ f~αm,~g,[0,∞) ◦ f−1
~αm,~gm,(n,∞)(y).
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As there are only finitely many possibilities for i, ~g,~h and all of the functions involved

are finite-to-one, it follows that there are only finitely many possible values of (fk ◦
fg)(y) which are in f~αm,~gm,(n,∞)(Bm). That is,

f~αm,~gm,(n,∞)(Bm) ∩

�
g
Y
j>n

~gmj

�
· [x]F

is finite. It follows that A can be partitioned into a pair of Borel sets A0, A1 such

that:

1. f~αm,~gm,(n,∞)(Bm) intersects every F |A0-class in a finite non-zero set.

2. f~αm,~gm,(n,∞)(Bm) entirely misses at least one F -class and has non-zero intersec-

tion with at least one F -class within each E|A1-class.

Clearly (E|A1)/(F |A1) is not ergodic. It follows that (E|A0)/(F |A0) is also not

ergodic, since F |A0 is smooth. Thus A ∈ I.

It now follows that there exists k ∈ N such that Ak is I-positive. Put ~αk+1 = ~αm,k,

and note that since Ak is open, it can be thinned down to an I-positive clopen set

Bm+1 with

∀~g ∈ Xm+1

�
diam

�
f~αk+1,~g,[0,∞)(Bm+1)

�
< ε′

�
.

Setting B′ = BM and ~α′ = ~αM , it follows that ~α′ is (F ′, B′, ε′)-good and that

(~α′,F ′, B′, ε′) extends (~α,F , B, ε). a

Now fix an increasing, exhaustive sequence Fn of finite subsets of G+× N and

a sequence of positive real numbers εn → 0. Put B0 = X, let ~α0 be the triv-

ial element of Π, and repeatedly apply Lemma 7.3 so as to produce a decreasing

sequence of I-positive clopen sets Bn and an increasing sequence ~αn ∈ Π such

that each ~αn+1 is (Fn+1, Bn+1, εn+1)-good and each (~αn+1,Fn+1, Bn+1, εn+1) extends

(~α,Fn, Bn, εn). It follows from conditions (2) and (3) of the definition of goodness

that each 〈f~αn,~g,[0,∞)(Bn)〉n∈N is a decreasing sequence of closed sets with vanishing

diameter. Thus

B~g =
\
n∈N

f~αn,~g,[0,∞)(Bn)
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consists of a single point, which we will denote by π(~g). It follows from condition (3)

of the definition of goodness that the function π : X0(G) → X is continuous, and it

follows from condition (4) of the definition of goodness that π is injective.

Now observe that for ~g ∈ X0(G), m ∈ N, and ` ∈ N sufficiently large that

∀i < m ((~gi, i) ∈ F`),

B~g(m) =
\
n∈N

f~αn,~g(m),[0,∞)(Bn)

=
\
n∈N

f~αn,~g,[m,∞)(Bn)

⊆
\
n∈N

f−1
~αn,~g,[0,m)

�
f~αn,~g,[0,m) ◦ f~αn,~g,[m,∞)(Bn)

�
= f−1

~α`,~g,[0,m)

� \
n∈N

f~αn,~g,[0,∞)(Bn)
�

= f−1
~α`,~g,[0,m)

�
B~g
�
,

thus π(~g) = f~α`,~g,[0,m) ◦ π(~g(m)). Now suppose that ~gE0(G)~h, fix `,m ∈ N sufficiently

large that

~g(m) = ~h(m) and ∀i < m ((~gi, i), (~hi, i) ∈ F`),

and observe that

[π(g · ~g)]F =
�
f~α`,g·~g,[0,m) ◦ π

�
~g(m)

��
F

= g~g0 . . . ~gm−1 ·
�
π
�
~g(m)

��
F

= g · [π(~g)]F

and

[π(~h)]F =
�
f~α`,~h,[0,m) ◦ π

�
~h(m)

��
F

= ~h0 . . .~hm−1 ·
�
π
�
~h(m)

��
F
,

thus

π(g · ~g)Fπ(~h) ⇔ g · π(~g)Fπ(~h)

⇔ g~g0 . . . ~gm−1 = ~h0 . . .~hm−1

⇔ g · ~gF0(G)~h,

thus (a) holds.

It only remains to check (b). It is enough to show that if ~g,~h ∈ X0(G) and

~gn 6= ~hn, then

∀i ≤ n
�
π(~g) 6= fi ◦ π(~h)

�
. (‡)
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Fix ` ∈ N sufficiently large that ∀i < m ((~gi, i), (~hi, i) ∈ F`), and note that by

condition (4) of the definition of goodness,

∀i ≤ n
�
f~α(`),~g,[0,∞)(B`) ∩ fi ◦ f~α(`),~h,[0,∞)(B`) = ∅

�
,

and (‡) follows. a

As a corollary, we see that Proposition 6.5 is the only route to ergodic free actions:

Theorem 7.4. Suppose that X is a standard Borel space, F is a countable Borel

equivalence relation on X, and G is a countable group which acts freely and in a

Borel fashion on X/F . Then the following are equivalent:

1. The action of G on X is ergodic.

2. There is an E-ergodic, EG-quasi-invariant probability measure on X.

Proof. By Proposition 6.5, it is enough to show (1) ⇒ (2). Let π : X0(G) → X

be the embedding of Theorem 7.2, let µ be a strictly positive probability measure on

P(G), let ν be the associated product measure on X0(G), and fix Borel automor-

phisms fn : X → X such that

F =
[
n∈N

graph(fn).

It is easily verified that ν(B) =
P
n∈N µ(π−1 ◦ fn(B))/2n+1 is as desired. a

Now suppose that L = {Ri}i∈I is a countable relational language and K is a class

of countable L-structures. An assignment C 7→ KC of L-structures to the classes of

E/F is Borel if

∀i ∈ I
�¦

([x1]F , . . . , [xn]F ) ∈ Cn : C ∈ E/F and RKC
i ([x1]F , . . . , [xn]F )

©
is Borel

�
,

and such an assignment is a K -structuring if each KC is isomorphic to some L-

structure in K .

Theorem 7.5. Suppose that X is a Polish space, F ⊆ E are countable Borel equiv-

alence relations on X, E/F is generated by a free ergodic action of G, L = {Ri}i∈I
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is a countable relational language, and K is a set of L-structures on G. Then the

following are equivalent:

1. K contains a right-invariant L-structure.

2. There is a Borel K -structuring of E/F .

Proof. To see (1) ⇒ (2), note that the right-invariance of KG ∈ K ensures that

RC
i =

¦
([x1]F , . . . , [xn]F ) ∈ Cn : ∃x ∈ C∃(g1, . . . , gn) ∈ RG

i ∀1 ≤ i ≤ n (gi · x = xi)
©

defines the desired assignment of L-structures.

To see (2) ⇒ (1), it follows from Theorem 7.2 that it is enough to show that

every Borel K -structuring C 7→ KC of E0(G)/F0(G) gives rise to a right-invariant

L-structure KG ∈ K . For each i ∈ I and g1, . . . , gni ∈ G, note that

X i
g1,...,gni

=
¦
x ∈ X0(G) : R

[x]E0(G)

i (g1 · [x]F0(G), . . . , gni · [x]F0(G))
©

is F0(G)-invariant, and therefore either meager or comeager. Setting

S = {(i, g1, . . . , gni) : X i
g1,...,gni

is comeager},

it follows that there is a comeager E0(G)-invariant Borel set B contained in\
(i,g1,...,gni )∈S

X i
g1,...,gni

∩
\

(i,g1,...,gni ) 6∈S
X \X i

g1,...,gni
.

Fix x ∈ B, set C = [x]E0(G), and note that

RG
i =

¦
(g1, . . . , gni) ∈ Gn : (g1 · [x]F , . . . , gni · [x]F ) ∈ RKC

i

©
defines the desired L-structure. a

It is worth noting that the definability constraint on the structuring can be weak-

ened under appropriate determinacy hypothesis. For instance, under projective de-

terminacy Borel can be weakened to projective.

Theorem 7.6. Suppose that X is a Polish space, F ⊆ E are countable Borel equiv-

alence relations on X, and E/F is ergodic. Then there is at most one group which

freely acts in a Borel fashion on X/F so as to generate E/F .
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Proof. Suppose that G and H are groups which both act freely on X/F so as to

generate E/F . It then follows from Theorem 7.5 that there is a transitive free action

of H on G and a function π : H → G such that h · g = π(h)g. Clearly any such π is

an isomorphism of H and G. a

Theorem 7.5 also gives a recipe for building equivalence relations which are difficult

to distinguish:

Proposition 7.7. Suppose that X1 and X2 are Polish spaces, F1 ⊆ E1 and F2 ⊆ E2

are countable Borel equivalence relations on X1 and X2, and E1/F1 and E2/F2 are

generated by an ergodic action of the same group. Then E1/F1 and E2/F2 admit the

same definable structurings.

Finally, Theorem 7.5 makes it easy to see that various sorts of structurability

behave much differently for ergodic equivalence relations than for equivalence relations

on Polish spaces. We will just mention one such example here:

Proposition 7.8. Suppose that X is a standard Borel space, F ⊆ E are countable

Borel equivalence relations on X, and E/F is ergodic. Then the following are mutually

exclusive:

1. E/F is generated by the action of an aperiodic Borel automorphism of X/F .

2. E/F is the increasing union of finite Borel subequivalence relations on X/F .

Proof. Suppose, towards a contradiction, that both (1) and (2) hold. Then E/F

is induced by a free Borel action of Z, and (2) coupled with Theorem 7.5 then imply

that Z is locally finite, a contradiction. a

8 Ergodic hyperfinite actions

Suppose that X is a Polish space and F ⊆ E are countable Borel equivalence

relations on X. The equivalence relation E/F is hyperfinite if E is hyperfinite. A

Borel action of a group G on X/F is hyperfinite if the induced equivalence relation on
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X/F is hyperfinite. It is not hard to see that the equivalence relation E0(G)/F0(G)

of §7 is hyperfinite.

Theorem 8.1. Suppose that X is a Polish space, F is a countable Borel equivalence

relation on X, and G acts freely and hyperfinitely on X/F . Then there is a Borel

G-action embedding of X/F into X0(G)/F0(G).

Proof. We can assume that X = X0(G). Let f : X0(G) → X0(G) be a Borel

automorphism which induces E = EG, and fix a decreasing sequence of Borel sets Bn

such that

∀n ∈ N
�
X =

[
k<2n

fk(Bn)

�
,

and whose intersection is a transversal for the restriction of E to its periodic part.

Put

kn(x) = min
¦
k ∈ N : f−k(x) ∈ Bn

©
,

define ϕn : X → Gn·2n by

ϕn(x) =
M
k<2n

fk−kn(x)(x)|n,

where ⊕ denotes concatenation. Fix g0 ∈ G\{1}, put g1 = 1, define ψn+1 : X → Gn+1

by

ψn+1(x) = 〈gb0 , gb1 , . . . , gbn〉 ,

where b0b1 . . . bn is the base 2 representation of kn+1(x) − kn(x), and let gn+1(x) be

the unique element of G such that�Y
ϕn+1(x)

��Y
ψn+1(x)

�
gn+1(x) · [fn+1(x)]F = [fn(x)]F ,

where
Q

denotes the product of the elements along the sequence. Now define π :

X → X0(G) by

π(x) =
M
n>0

ϕn(x)⊕ ψn(x)⊕ 〈gn(x)〉 .

Lemma 8.2. If xEy, then π(x)E0(G)π(y) and g · [x]F = [y]F ⇔ g · π(x)F0(G)π(y).
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Proof. Set fn(x) = f−kn(x)(x). For the first assertion, fix N ∈ N with fN(x) =

fN(y) and note that for n ≥ N ,

ϕn+1(x)⊕ ψn+1(x)⊕ 〈gn+1(x)〉 = ϕn+1(y)⊕ ψn+1(y)⊕ 〈gn+1(y)〉 ,

thus π(x)E0(G)π(y). For the second assertion, define

gz =
Y
n≤N

�Y
ϕn+1(z)

��Y
ψn+1(z)

�
gn+1(z),

for z ∈ X, and note that

g · π(x)F0(G)π(y) ⇔ ggx = gy.

Now it follows from the definition of gn+1 that for all z ∈ X,

gz · [fN+1(z)]F = [z]F ,

and since fN+1(x) = fN+1(y) and the action of G is free, it follows that

g · [x]F = [y]F ⇔ ggx · [fN+1(x)]F = gy · [fN+1(y)]F

⇔ ggx = gy

⇔ g · π(x)F0(G)π(y),

and the lemma follows. a

Lemma 8.3. θ is injective, and moreover, if π(x)E0(G)π(y) then xEy.

Proof. Suppose that π(x)E0(G)π(y) and fix N ∈ N sufficiently large that for all

n ≥ N ,

ϕn+1(x)⊕ ψn+1(x)⊕ 〈gn+1(x)〉 = ϕn+1(y)⊕ ψn+1(y)⊕ 〈gn+1(y)〉 .

It follows that kn(x)− kN(x) = kn(y)− kN(y) for all n > N , thus

x|n = fkn(x)−kn(y)(y)|n = fkN (x)−kN (y)(y)|n,

thus x = fkN (x)−kN (y)(y), so xEy. Also, if x 6= y then kN(x) 6= kN(y), thus π is

injective. a
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By Lemma 8.2, xFy ⇒ xEy ⇒ π(x)F0(G)π(y), and by Lemma 8.3,

π(x)F0(G)π(y) ⇒ π(x)E0(G)π(y) ⇒ xEy ⇒ xFy,

thus π is simultaneously an embedding of F into F0(G) and an embedding of E into

E0(G). It follows from Lemma 8.2 that π induces an embedding of G-actions. a

Putting together this result with the results of the previous section, we now have:

Theorem 8.4. Suppose that G is a countable group. Then any two free ergodic

hyperfinite actions of G on quotients of Polish spaces by countable Borel equivalence

relations are Borel isomorphic.

Proof. As in the proof of Theorem 3.5, this follows from a Schröder-Bernstein

argument. a

Corollary 8.5. Suppose that G is a finite group. Then any two free ergodic ac-

tions of G on quotients of Polish spaces by hyperfinite equivalence relations are Borel

isomorphic.

Proof. By Proposition 1.3 of Jackson-Kechris-Louveau [48], every Borel equiva-

lence relation with a finite index hyperfinite subequivalence relation is itself hyperfi-

nite, and the corollary follows. a
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Chapter 3

Measures and graphings

1 Introduction

The primary motivation underlying this chapter is the desire to understand the

sort of information that can be discerned about countable Borel equivalence relations

from probability measures and graphings which live on them.

Suppose that X is a Polish space and f : X → X is a Borel automorphism. A

probability measure µ on X is f -invariant if

∀B ⊆ X Borel (µ(B) = µ(f−1(B))).

A probability measure µ on X is f -quasi-invariant if

∀B ⊆ X Borel (µ(B) = 0 ⇔ µ(f−1(B)) = 0).

The full group of a countable Borel equivalence relation E on X is the group [E] of

Borel automorphisms f : X → X such that

∀x ∈ X (xEf(x)),

and a set B ⊆ X is E-invariant if it is equal to its E-saturation,

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.
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The probability measure µ is E-(quasi-)invariant if it is (quasi-)invariant with respect

to every element of [E], and the probability measure µ is E-ergodic if every E-invariant

Borel set is null or conull.

The following theorem shows that we can get our hands on all such measures:

Theorem (Farrell-Varadarajan). Suppose X is a Polish space and E is a countable

Borel equivalence relation on X which admits an invariant probability measure. Then

the set EI(E) of E-invariant, E-ergodic probability measures is non-empty and Borel,

and there is a (surjective) Borel function π : X → EI(E) such that

1. If µ is E-invariant, then µ =
R
π(x) dµ(x).

2. If µ is also E-ergodic, then π(x) = µ for µ-almost every x ∈ X.

Of course, this says nothing when E admits no invariant measures. Nadkarni [62]

filled this void by showing that the inexistence of invariant measures always has a

very specific sort of witness. The full semigroup of E is the group JEK of partial Borel

injections f pppX → X such that xEf(x) whenever x ∈ dom(f). A complete section

for E is a set B ⊆ X which intersects every class of E. A compression of E is a

partial Borel injection f ∈ JEK with full domain and co-complete range. Intuitively,

a compression can be thought of as a uniform witness to the fact that each class of

E is Dedekind infinite.

Theorem (Nadkarni). Suppose that X is a Polish space and E is a countable Borel

equivalence relation on X. Then E has no invariant probability measure exactly when

E is compressible.

By making use of Nadkarni’s theorem, one can also obtain an analog of Tarski’s

theorem on the existence of finitely additive invariant probability measures. An equiv-

alence relation E is paradoxical if there are partial injections f, g ∈ JEK with full

domains, whose ranges partition X.

Theorem (Becker-Kechris). Suppose that X is a Polish space and E is a countable

Borel equivalence relation on X. Then E has no invariant probability measure exactly

when E is paradoxical.
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Together, these results give rise to a powerful tool for studying equivalence rela-

tions, for they imply that one can prove things about equivalence relations by combin-

ing sufficiently uniform measure-theoretic arguments with arguments that presume

the existence of a compression or a paradoxical decomposition. A notable such ap-

plication appears in Dougherty-Jackson-Kechris [24], where hyperfinite equivalence

relations are classified up to Borel isomorphism.

Unfortunately, most Borel probability measures are not E-invariant, and these

theorems say nothing about such measures. The theorem of Farrell-Varadarajan

has been generalized to quasi-invariant measures, first by Kifer-Pirogov [57] in the

hyperfinite case (the proof of their result was later simplified by Schmidt [71]), and

then by Ditzen [23] in the general case. On the other hand, the results of Nadkarni

[61] and Becker-Kechris [6] have not been so generalized.

In §2, we present several facts about quasi-invariant measures. We begin by

showing that every probability measure is E-quasi-invariant on a complete section, so

that the study of probability measures essentially reduces to the study of those which

are quasi-invariant. (Actually, this result is morally due to Woodin, who showed the

analogous fact for Baire category.) Here we also introduce the well-known way of

associating with each quasi-invariant measure a Borel function D : E → R+, which

describes a relative notion of mass between E-related points of X. That is, when xEy

we think of x as being D(x, y) times more massive than y. This intuition is solidified

by the fact that if f ∈ [E] and B ⊆ X is Borel, then

µ(f−1(B)) =
Z
B
D(f−1(x), x) dµ(x).

In particular, E is µ-invariant if the associated function D : E → R+ has constant

value 1. We describe how a simple proof of the analog of the Lebesgue density theorem

for Polish ultrametric spaces can be used to calculate D from µ. We then isolate a

σ-ideal (which agrees with usual σ-ideal of smooth sets when D = 1), which plays a

fundamental role in our work, and describe some of its properties.

In §3, we prove several selection theorems which allow us to build finite Borel

subequivalence relations whose classes satisfy a wide range of properties. We also note

various barriers to further strengthenings of these theorems. Coincidentally, one of
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these barriers gives rise to a quite simple answer to a question of Nadkarni [62] and its

subsequent modification in Eigen-Hajian-Nadkarni [30] (where the original question

was answered in a different manner) regarding a potential alternative characterization

of compressibility.

In §4 and §5, we embark upon the program of providing analogs and general-

izations of the theorems of Farrell-Varadarajan, Nadkarni, and Becker-Kechris for

probability measures with a given D : E → R+. The generalization of the theorem of

Farrell-Varadarajan to this context has already been achieved, first by Kifer-Pirogov

[57] for hyperfinite equivalence relations, and then in general by Ditzen [23]. The

proof of Kifer-Pirogov [57] was quite complex, and their theorem was given a much

simpler proof, using only the Hurewicz ergodic theorem, by Schmidt [71]. Ditzen’s

proof uses quite a bit of ergodic theory beyond this, however. While analogs of the

theorems of Nadkarni and Becker-Kechris did not exist before now, it is worth noting

that Nadkarni has found a new proof of the hyperfinite case of his theorem which uses

little more than Srivatsa’s descriptive strengthening of the Birkhoff ergodic theorem

(the invariant special case of the Hurewicz ergodic theorem).

The main result of §4 is a slight weakening of the Hurewicz ergodic theorem

which holds for all countable Borel equivalence relations. We prove this theorem

using nothing more than the selection results of §3. We then describe how this can be

used to give two new proofs of Ditzen’s [23] theorem. The second of these proofs is

really a reduction of Ditzen’s [23] theorem to that of Kifer-Pirogov [57]. The source

of this reduction is the following fact, which we again prove with our bare hands:

Theorem. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and D : E → R+ is a Borel cocycle. Then there is a hyperfinite

equivalence relation F ⊆ E such the the set of D-invariant probability measures and

the set of D|F -invariant probability measures coincide.

In §5, we give the analog of the theorems of Nadkarni [61] and Becker-Kechris [6]

in the quasi-invariant setting. One of the main difficulties here is that the function

D : E → R+ can impose limitations on the existence of invariant functions in JEK

so severe that it may be impossible to find a compression, even when no D-invariant
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probability measures exist. This is similar to the situation that arises with a countable

group Γ of Borel automorphisms of X. Even if there are no Γ-invariant probability

measures, it is clearly impossible for any element of Γ to be a compression, for every

element of Γ has full range. The solution is to search for compressions in the full

semigroup of the orbit equivalence relation associated with Γ,

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

This allows us to break up sets and map pieces of one set to pieces of another via

different elements of Γ. We handle the new limitations imposed by D by going one

step further, and work with an enlarged full group [JDK] in which we can break up

points and map pieces of one point to pieces of another via different elements of

Γ. This leads to natural analogs of the notions of aperiodicity, compressibility, and

paradoxicality. We show that the natural analogs of the theorems of Nadkarni and

Becker-Kechris go through with respect to these notions (whose definitions we shall

suppress until §5):

Theorem. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, and E is D-aperiodic. Then exactly

one of the following holds:

1. E admits a D-invariant probability measure.

2. E is D-compressible.

3. E is D-paradoxical.

As an application of our results, we also provide compressibility-like criteria for

the existence of an invariant probability measure for a countable-to-one function,

answering a question of Nadkarni. We close this section with a result (joint with

Kechris) on the incompatibility between measure and category in this setting, which

generalizes a result of Wright [80].

In §6, we turn our attention to graphings. We focus on results concerning ends of

graphs . All of our results here generalize work of Paulin [65], which itself generalizes
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work of Adams [1]. Again, the main tools of this section are the selection results of §3.

With few exceptions, our results do not depend at all on the presence of D-invariant

measures. For those which do, we still give descriptive results by showing them off of

a D-compressible set.

We begin by showing that every aperiodic countable Borel equivalence relation

admits a single-ended locally finite graphing. We then show the following:

Theorem. Suppose X is a Polish space and G is a locally countable Borel graph on

X, each of whose connected components has exactly two ends. Then EG is hyperfinite.

We also show the following, which was independently observed by Blanc [15]:

Theorem. Suppose that X is a Polish space and G is a locally countable Borel graph

on X. Then off of an E-invariant Borel set on which E is smooth, every component

of G has 0, 1, 2, or infinitely many ends.

In order to strengthen this theorem, we then work with cocycles. Given a Borel

graph G and a Borel cocycle D : EG → R+, we study a natural subset of the ends of

G which we term the D-ends . When D = 1, these are exactly the usual ends of G .

Here we show the following:

Theorem. Suppose that X is a Polish space, G is a locally countable Borel graph

on X, and D : EG → R+ is a Borel cocycle. Then off of a D-negligible E-invariant

Borel set, every component of G has 0, 1, 2, or perfectly many D-ends.

We close the section with a generalization of the Poincaré recurrence lemma:

Theorem. Suppose that X is a Polish space, G is a locally countable Borel graph on

X, D : EG → R+ is a Borel cocycle, and B is a Borel complete section for EG . Then

off of a D-negligible E-invariant Borel set, B is dense in the D-ends of G .

2 Quasi-invariant measures

Suppose that X is a Polish space. By a measure on X, we mean a countably

additive extended real-valued function µ on the Borel subsets of X such that µ(∅) = 0.
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By a probability measure on X, we mean a measure µ on X such that µ(X) = 1. The

set of all probability measures on X is denoted by P (X).

Now suppose that E is a countable Borel equivalence relation on X. The E-

saturation of a set B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.

The set B ⊆ X is E-invariant if B = [B]E, and the set B ⊆ X is a complete section for

E if [B]E = X. By the Lusin-Novikov Uniformization Theorem (see Theorem 18.10

of Kechris [51]), every countable Borel equivalence relation is the union of countably

many Borel graphs. It follows that the E-saturation of every Borel set is also Borel.

A probability measure µ is E-quasi-invariant if the saturation of every null set is

null. There is a substantial sense in which every probability measure on X is nearly

E-quasi-invariant. This is essentially due to Woodin, who showed the analogous fact

for Baire category:

Proposition 2.1 (essentially Woodin). Suppose that X is a Polish space, E is

a countable Borel equivalence relation on X, and µ is a probability measure on X.

Then there is a conull Borel E-complete section B ⊆ X such that µ|B is (E|B)-quasi-

invariant.

Proof. We may assume, without loss of generality, that X = R. Fix a sequence

of open intervals Un which form a basis for the usual topology on R. Also, fix a

sequence of Borel automorphisms fn : X → X such that

E =
[
n∈N

graph(fn).

For each pair of natural numbers (m,n) for which it is possible, fix a Borel set

Bmn ⊆ Um such that µ(Bmn) ≥ µ(Um)/2 and µ(f−1
n (Bmn)) = 0. Now define

A = X \
[
m,n

f−1
n (Bmn).

Lemma 2.2. µ|A is (E|A)-quasi-invariant.
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Proof. Suppose, towards a contradiction, that there is a Borel null set A′ ⊆ A

such that [A′]E|A is non-null. Set An = A ∩ f−1
n (A), and note that

[A′]E|A =
[
n∈N

fn(A′ ∩ An).

In particular, it follows that there exists n ∈ N such that

µ(fn(A′ ∩ An)) > 0.

By the Lebesgue density theorem, there exists m ∈ N such that

µ(fn(A′ ∩ An) ∩Um) > µ(Um)/2.

It follows that Bmn exists, and since µ(Bmn) ≥ µ(Um)/2, we have that

fn(A′ ∩ An) ∩Bmn 6= ∅.

It then follows that A ∩ f−1
n (Bmn) 6= ∅, a contradiction. a

It now follows that the set

B = A ∪ (X \ [A]E)

is a conull Borel complete section for E and µ|B is (E|B)-quasi-invariant. a

It was Kechris who pointed out that Woodin’s argument can be used here. As

our original proof is a bit more in the spirit of the arguments to come (and avoids the

need for the Lebesgue density theorem), it seems worthwhile to reproduce it here:

Alternative Proof (Miller). A topological space is zero-dimensional if it has

a clopen basis. By change of topology results (see §13 of Kechris [51]), there is a zero-

dimensional Polish topology on X, compatible with its underlying Borel structure.

An ultrametric on X is a metric d which satisfies the strong triangle inequality ,

∀x, y, z ∈ X
�
d(x, z) ≤ max(d(x, y), d(y, z))

�
.
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It follows that there is a complete ultrametric d on X which is compatible with its

underlying Borel structure, as any zero-dimensional Polish space admits such an ultra-

metric. We will use B(x, ε) to denote the ball around x of radius ε. The requirement

that d is an ultrametric ensures that

∀δ ≤ ε ∀x, y ∈ X
�
B(x, δ) ∩B(y, ε) = ∅ or B(x, δ) ⊆ B(y, ε)

�
.

For each f ∈ [E] and ε > 0, set

ρf,ε(x) =
µ(f(B(x, ε)))

µ(B(x, ε))
.

Note that ρf,ε is well-defined off of a (countable) union of null open balls, and therefore

has conull domain. As dom(ρf,ε) decreases as ε→ 0, it follows that\
ε>0

dom(ρf,ε) =
\
n>0

dom(ρf,1/n),

thus for all f ∈ [E], almost every point of X is in the domain of every ρf,ε. Set

Af =

(
x ∈

\
ε>0

dom(ρf,ε) : lim sup
ε→0

ρf,ε(x) <∞
)
.

Lemma 2.3. For all f ∈ [E], the set Af is conull.

Proof. The measure µ is regular if

∀B ⊆ X Borel
�
µ(B) = inf

B⊆U open
µ(U)

�
,

and the measure µ is tight if

∀B ⊆ X Borel
�
µ(B) = inf

B⊇K compact
µ(K)

�
.

Every probability measure on a Polish space is regular and tight (see, for example,

§17 of Kechris [51]).

Now suppose, towards a contradiction, that X \ Af is of positive measure. It

follows from the tightness of µ that there is a compact set K ⊆ X \ Af of positive

measure which is contained in the domain of every ρf,ε, for ε > 0. We will show that

nµ(K) ≤ µ(f(K)) for all n ∈ N, contradicting the fact that µ(f(K)) ≤ 1.
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It follows from the regularity of the probability measure B 7→ µ(f(B)) that there

is an open set U ⊇ K such that

µ(f(U )) ≤ µ(f(K)) + µ(K).

For each x ∈ K, fix εx > 0 such that B(x, εx) ⊆ U and ρf,εx(x) ≥ n + 1. As K is

compact, we can find a finite family of points xi ∈ K such that the set

V =
[
i<k

B(xi, εxi)

contains K . As (X, d) is an ultrametric space, after throwing out some of the xi’s we

may assume that the balls B(xi, εxi) partition V . As V ⊆ U , it follows that

(n+ 1)µ(V ) =
X
i<k

(n+ 1)µ(B(xi, εxi))

≤
X
i<k

µ(f(B(xi, εxi)))

= µ(f(V ))

≤ µ(f(K)) + µ(K),

thus nµ(K) ≤ (n+ 1)µ(V )− µ(K) ≤ µ(f(K)), the desired contradiction. a

By Feldman-Moore [36], there are Borel automorphisms fn : X → X such that

E =
[
n∈N

graph(fn).

It follows from Lemma 2.3 that the set A =
T
n∈NAfn is conull.

Lemma 2.4. µ|A is E|A-quasi-invariant.

Proof. Suppose, towards a contradiction, that B ⊆ A is a null Borel set whose

saturation is of positive measure. As

[B]E =
[
n∈N

fn(B),

it follows that there exists n ∈ N such that µ(fn(B)) > ε, for some ε > 0. Set f = fn.

By the tightness of the measure C 7→ µ(f(C)), there is a compact set K ⊆ B such

that µ(f(K)) > ε. It follows from Lemma 2.3 that for m ∈ N sufficiently large,

lim sup
ε→0

ρf,ε(x) ≤ m.
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For each x ∈ K, fix εx > 0 such that ρf,ε(x) ≤ m. As K is compact, we can find a

finite family of points xi ∈ K such that

V =
[
i<k

B(xi, εxi)

contains K . It now follows that

µ(f(K)) ≤
X
i<k

µ(f(B(xi, εxi)))

≤
X
i<k

mµ(B(xi, εxi))

= 0,

the desired contradiction. a

It now follows that the set

B = A ∪ (X \ [A]E)

is a conull Borel complete section for E and µ|B is (E|B)-quasi-invariant. a

Suppose that f : X → X is a Borel automorphism. The measure µ is f -quasi-

invariant if f sends null sets to null sets. We will use f∗µ to denote the probability

measure given by B 7→ µ(f−1(B)). Note that µ is f -quasi-invariant exactly when

µ and f∗µ have the same null sets. By the Radon-Nikodym Theorem (see Theorem

6.10 of Rudin [67]), there is a Borel function df∗µ/dµ : X → R+ in L1(µ) such that

for every ϕ : X → R+ in L1(µ),Z
ϕ(x) df∗µ(x) =

Z
ϕ(x)(df∗µ/dµ)(x) dµ(x),

and moreover, the function df∗µ/dµ is unique modulo null sets. In Polish ultrametric

spaces, these derivatives are not difficult to compute:

Proposition 2.5. Suppose that (X, d) is a Polish ultrametric space, f : X → X is a

Borel automorphism, and µ is an f -quasi-invariant probability measure. Then

(df∗µ/dµ)(x) = lim
ε→0

�
f∗µ(B(y, ε))

µ(B(y, ε))

�
µ−a.e.
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Proof. The main point is the following version of the Lebesgue density theorem:

Lemma 2.6. Suppose that (X, d) is a Polish ultrametric space, µ is a probability

measure on X, and ϕ : X → R+ is (locally) in L1(µ). Then

ϕ(x) = lim
ε→0

 R
B(x,ε) ϕ(y) dµ(y)

µ(B(x, ε))

!
µ−a.e.

Proof. By an approximation argument, it is enough to show the lemma for simple

functions, thus for characteristic functions. For this, it is enough to show

∀B ⊆ X Borel∀∗µx ∈ B
�

lim
ε→0

�
µ(B ∩B(x, ε))

µ(B(x, ε))

�
= 1

�
, (†)

as (†) can then be applied to B and X \ B. Fix a Borel set B ⊆ X, and for x ∈ B

and ε > 0, put

ρx(ε) =
µ(B ∩B(x, ε))

µ(B(x, ε))
.

Note that by replacing X with the conull closed set

{x ∈ X : ∀ε > 0 (µ(B(x, ε)) > 0)},

we may assume that ρx(ε) is defined everywhere. Now suppose, towards a contradic-

tion, that

A =
§
x ∈ X : lim inf

ε→0
ρx(ε) < 1

ª
is of positive measure. Then we can find δ > 0 such that

A′ =
§
x ∈ A : lim inf

ε→0
ρx(ε) < 1− δ

ª
is of positive measure. By the tightness of µ, there is compact set K ⊆ A′ of positive

measure. Now suppose U ⊇ K is open, and for each x ∈ K, choose εx > 0 such that

B(x, εx) ⊆ U and ρx(εx) < 1− δ.

As {B(x, εx)}x∈K forms an open cover of K, there is a finite subcover {B(xi, εxi)}i<n.

As d is an ultrametric, we may assume this subcover is pairwise disjoint. Setting

V =
[
i<n

B(xi, εxi),
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it follows that

µ(K)

µ(U )
≤ µ(K)

µ(V )

=

P
i<n µ(K ∩B(xi, εxi))P

i<n µ(B(xi, εxi))
< 1− δ,

thus there is no open set U ⊇ K such that µ(U ) ≤ µ(K)/(1− δ), contradicting the

regularity of µ. It follows that

∀∗µx ∈ B
�

lim inf
ε→0

ρx(ε) ≥ 1
�
,

thus (†) holds. a

It now follows that for µ-almost all x ∈ X,

(df∗µ/dµ)(x) = lim
ε→0

 R
B(x,ε)(df∗µ/dµ)(y) dµ(y)

µ(B(x, ε))

!
µ−a.e.

= lim
ε→0

�
f∗µ(B(x, ε))

µ(B(x, ε))

�
µ−a.e.,

and the proposition follows. a

The full group of E is the group [E] of Borel automorphisms of X whose graphs

are contained in X, or equivalently, the group of Borel automorphisms f : X → X

such that

∀x ∈ X (xEf(x)).

Note that µ is E-quasi-invariant exactly when µ is quasi-invariant with respect to

every element of [E]. A function D : E → R+ is a cocycle if D(x, z) = D(x, y)D(y, z)

whenever xEyEz.

Proposition 2.7. Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X, and µ is an E-quasi-invariant probability measure. Then there

is a Borel cocycle D : E → R+ such that for every f ∈ [E] and (locally) integrable

ϕ : X → R+, Z
ϕ(x) df∗µ(x) =

Z
ϕ(x)D(f−1(x), x) dµ(x).
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Proof. By Feldman-Moore [36], there is a countable group Γ ≤ [E] which gen-

erates E. That is, E coincides with the orbit equivalence relation associated with Γ,

which is given by

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

By the Lusin-Novikov Uniformization Theorem, there is a Borel function π : E → Γ

such that

∀(x, y) ∈ E (π(x, y) · y = x).

Define D : E → R+ by

D(y, x) = (dπ(x, y)∗µ/dµ)(y).

Now suppose that f ∈ [E], for each γ ∈ Γ put

Aγ = {x ∈ X : f−1(x) = γ−1 · x and π(x, γ−1 · x) = γ},

and observe thatZ
ϕ(x) df∗µ(x) =

X
γ∈Γ

Z
Aγ
ϕ(x) dγ∗µ(x)

=
X
γ∈Γ

Z
Aγ
ϕ(x)(dγ∗µ/dµ)(x) dµ(x)

=
X
γ∈Γ

Z
Aγ
ϕ(x)(dπ(x, γ−1 · x)∗µ/dµ) dµ(x)

=
X
γ∈Γ

Z
Aγ
ϕ(x)D(γ−1 · x, x) dµ(x)

=
Z
ϕ(x)D(f−1(x), x) dµ(x).

Unfortunately, it need not be the case that D is a cocycle. However, it is the case

that D is a cocycle almost everywhere, in the sense that

∀∗µx ∈ X ∀u, v, w ∈ [x]E (D(u,w) = D(u, v)D(v, w)).

Granting this, D can be turned into the desired cocycle by setting it equal to 1 on

the union of the E-classes on whose restriction it fails to be a cocycle.

To see that D really is a cocycle almost everywhere, it is enough to show that for

all γ, δ ∈ Γ,

D(δ−1 · x, x) = D(δ−1 · x, γ−1 · x)D(γ−1 · x, x) µ−a.e.,



199

or equivalently, that

(dδ∗µ/dµ)(x) = (d(γδ−1)∗µ/dµ)(γ−1 · x) · (dγ∗µ/dµ)(x) µ−a.e. (†)

Fix a Polish ultrametric d on X which is compatible with the underlying Borel struc-

ture of X. Noting that the pullback of d through the action of γ is also a Polish

ultrametric on X which is compatible with its underlying Borel structure, it follows

from the uniqueness of the derivative and Proposition 2.5 that

(d(γδ−1)∗µ/dµ)(γ−1 · x) = lim
ε→0

�
(γδ−1)∗µ(B(γ−1 · x, ε))

µ(B(γ−1 · x, ε))

�
µ−a.e.

= lim
ε→0

�
δ∗µ(γ ·B(γ−1 · x, ε))
γ∗µ(γ ·B(γ−1 · x, ε))

�
µ−a.e.

= (dδ∗µ/dγ∗µ)(x) µ−a.e.

The chain rule (for derivatives of measures) now implies that (†) holds. a

Remark 2.8. It is not difficult to see that D : E → R+ is unique modulo null sets,

in that any other such map must agree with D on an E-invariant set of full measure.

Remark 2.9. Our primary use of Proposition 2.7 will be when ϕ is the characteristic

function 1B of some Borel set B ⊆ X, in which case we obtain that

∀f ∈ [E]
�
µ(f−1(B)) =

Z
B
D(f−1(x), x) dµ(x)

�
.

Note that when D : E → R+ is the constant cocycle, this just says that the elements

of [E] are all measure-preserving. In this case, we say that µ is E-invariant .

Remark 2.10. A probability measure µ on X is D-invariant if D agrees with the

cocycle of Proposition 2.7 almost everywhere. It follows that if Γ generates E, then

µ is D-invariant exactly when

∀∗µx ∈ X ∀γ ∈ Γ
�
D(γ−1 · x, x) = (dγ∗µ/dµ)(x)

�
.

In fact, if U is a countable open basis for X, then µ is D-invariant exactly when

∀γ ∈ Γ∀U ∈ U
�
µ(γ−1(U)) =

Z
U
D(γ−1 · x, x) dµ(x)

�
.
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To see this, observe that this condition ensures that the map B 7→ R
BD(γ−1 · x, x) is

a probability measure. It follows from regularity that both this measure and γ∗µ are

determined by their values on U , and therefore must be identical.

Remark 2.11. As noted in Kechris-Miller [55], the cocycle D is simply the Radon-

Nikodym derivative of the σ-finite measures Ml and Mr on E which are given by

Ml(A) =
Z
|Ax| dµ(x) and Mr(A) =

Z
|Ay| dµ(y),

where Ax = {y ∈ A : (x, y) ∈ A} and Ay = {x ∈ A : (x, y) ∈ A}.

In light of the observations we have made thus far, it is reasonable to view the

Borel cocycle D : E → R+ associated with a quasi-invariant measure µ as giving a

notion of relative mass between E-related points of X. That is, we think of each

equivalence class as being a single mass which has been divided into countably many

pieces, and D(x, y) as the ratio of the mass of the piece corresponding to x to the

mass of the piece corresponding to y.

In fact, we obtain a notion of relative mass between subsets of each E-class. Let

[E]<∞ = {S ⊆ X finite : ∀x, y ∈ S (xEy)},

and define an equivalence relation F on [E]<∞ by

(S, T ) ∈ F ⇔ (S and T are contained in the same E-class).

Given an E-class C, z ∈ C, and S ⊆ C, we will use

|S|z =
X
x∈S

D(x, z)

to denote the mass of S relative to z, and we extend D to fD : F → R+ by settingfD(S, T ) =
|S|z
|T |z

=

P
x∈S D(x, z)P
y∈T D(y, z)

,

where z ∈ C. Note that because D is a Borel cocycle, fD(S, T ) is independent of the

choice of z ∈ C and is also a Borel cocycle. As no confusion will result, we will use

D to refer to both cocycles.
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Now suppose that S ∈ [E]<∞. Although |S|z can depend on our choice of z,

whether or not |S|z is finite does not. We say that S is D-finite if |S|z is finite, and

S is D-infinite otherwise. The equivalence relation E is D-periodic if all of its classes

are D-finite, and E is D-aperiodic if all of its classes are D-infinite. A set B ⊆ X

is D-negligible if it is null with respect to every D-invariant measure, and ϕ holds

D-almost everywhere if the set of x for which ϕ(x) fails is D-negligible.

Proposition 2.12. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, and D : E → R+ is a Borel cocycle.

1. If E is D-periodic, then E is smooth.

2. If E is smooth, then D-almost every class of E is D-finite.

Proof. To see (1), note that the classes of any D-periodic equivalence relation

each contain a finite, non-empty set of x’s such that

∀y ∈ [x]E (D(y, x) ≤ 1).

Letting � be a Borel linear ordering of X, it follows that

A = {x ∈ B : ∀y ∈ [x]E (D(y, x) < 1 or y � x)}

is a Borel transversal of E.

To see (2) suppose, towards a contradiction, that E is smooth, D-aperiodic and

µ is D-invariant. Fix a Borel transversal B ⊆ X of E, and build an infinite pairwise

disjoint sequence of Borel complete sections Bn ⊆ X such that

∀n ∈ N (µ(Bn) > µ(B)).

Then
P
n∈N µ(Bn) = ∞, a contradiction. a

Now suppose that E is a smooth equivalence relation and D : E → R+ is a Borel

cocycle. It follows from Proposition 2.12 that the D-aperiodic part of E admits no

D-invariant probability measures. Moreover, if B ⊆ X is a Borel transversal of the
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restriction of E to its D-periodic part, then there is a natural correspondence between

P (B) and the space of D-invariant probability measures.

Thus, from now on we will focus on D-aperiodic equivalence relations. The pre-

ordering induced by D is the assignment of pre-orderings to the classes of E which is

given by

x ≤D y ⇔ (xEy and D(x, y) ≤ 1).

Clearly the restriction of ≤D to any E-class is pre-linear.

Proposition 2.13. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation, D : E → R+ is a Borel cocycle, and E is D-aperiodic. Then

{x ∈ X :≤D |[x]E is a discrete linear ordering of [x]E}

is D-negligible.

Proof. Suppose, towards a contradiction, that

∀x ∈ X (≤D |[x]E is a discrete linear ordering of [x]E),

and that there is a D-invariant probability measure µ on X. By Proposition 2.12, we

may assume that ≤D provides a Z-ordering of each class of E. Let + be the successor

function for ≤D, and observe that

µ(X) = µ(X+)

=
Z
X
D(x+, x) dµ(x)

> µ(X),

a contradiction. a

Note that in the invariant case, the restriction of ≤D to each class of E|B is a

discrete linear order exactly when B is a partial transversal of E, so that the σ-ideal

generated by such sets is just the σ-ideal of Borel sets B ⊆ X for which E|B is

smooth. It is not difficult, however, to come up with cocycles D : E → R+ for which

the latter σ-ideal is strictly contained in the former. It is the former σ-ideal which

will be of primary importance in the arguments to come.



203

It is trivial to see that the restriction of ≤D to each class of E can be a discrete

pre-order, even in the presence of a D-invariant probability measure. Nevertheless,

there is a density condition that ≤D must obey off of a D-negligible set. A cocycle

D is dense around x if

∀ε > 0∃∞y ∈ [x]E (1 ≤ D(x, y) ≤ 1 + ε).

Proposition 2.14. Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, and D : E → R+ is a Borel cocycle. Then there is a Borel set

B ⊆ X such that the restriction of ≤D to each class of E|B is a discrete linear order

and D is dense around every point of X \ [B]E.

Proof. Set A = {x ∈ X : D is not dense around x}, let x 7→ ε(x) be a Borel

assignment of points of (0, 1) to points of A such that

∀x ∈ A∀∞y ∈ [x]E (D(x, y) < 1 or D(x, y) > 1 + ε(x)),

and for each E-class C, define

ε(C) = sup
x∈A∩C

ε(x).

Put xFy ⇔ D(x, y) = 1, fix a Borel transversal A′ ⊆ A of F |A, and observe that

B = {x ∈ A′ : ε(x) > ε([x]E)/2}

is an (E|A)-complete section and ≤D discretely orders each class of E|B. a

Of course, Proposition 2.14 cannot be strengthened so as to ensure that

∀ε > 0∃∞y ∈ [x]E (1 < D(x, y) < 1 + ε),

off of a D-negligible set. It is important to note that we also cannot guarantee that

∃∞y ∈ [x]E (D(x, y) = 1),

off of a D-negligible set:
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Example 2.15. We will use C = 2N to denote Cantor space, and Ns to denote the

basic clopen subset of C which consists of sequences that begin with s ∈ 2<N. Let µ

be the probability measure on 2N which satisfies

µ(Ns0) =
µ(Ns)

1 + 21/2|s|
,

for all s ∈ 2<N, and let

σ(x) =

8<: 0n1y if x = 1n0y,

0∞ if x = 1∞.

be the odometer on C . Alternatively, one can think of the odometer as “addition by

10∞ with right carry.” Define E0 on C by

xE0y ⇔ ∀∞n ∈ N (xn = yn),

noting that off of the eventually constant sequences,

xE0y ⇔ ∃n ∈ Z (σn(x) = y).

Now note that if U ⊆ C is open, then

µ(U )/4 ≤ µ(σ±1(U )) ≤ 4µ(U ),

from which it easily follows that µ is E0-quasi-invariant. By Proposition 2.5, µ is

invariant with respect to the cocycle D : E0 → R+ which is given by

D(x, y) = lim
k→∞

 
µ(σn(Ny|k))

µ(Ny|k)

!
= lim

k→∞

 
µ(Nx|k)

µ(Ny|k)

!
= lim

k→∞

Y
i<k

2(xi−yi)/2i

= 2
P

i<k
(xi−yi)/2i ,

where x = σn(y). In particular, if D(x, y) = 1 then x and y must be base 2 represen-

tations of the same real. As xE0y, it follows that x = y.



205

3 Maximal finite subequivalence relations

Suppose thatX is a Polish space and E is a countable Borel equivalence relation on

X. A (partial) finite subequivalence relation (or fsr) of E is a finite Borel equivalence

relation F , defined on a Borel set dom(F ) ⊆ X, such that F ⊆ E. The standard

Borel space of finite subsets of X is denoted by [X]<∞, and the standard Borel space

of finite, pairwise E-related subsets of X is denote by [E]<∞.

In contrast with the viewpoint of ergodic theory, we will often find it useful to think

of ourselves as working within individual E-classes, albeit in a sufficiently uniform

manner that the objects we build are Borel. As a result, it will be useful to think

of Borel sets Φ ⊆ [E]<∞ as definable statements about finite subsets of E-classes.

Adopting this point of view, it is natural to use Φ(S) to denote S ∈ Φ. An fsr F ⊆ E

is Φ-satisfying if

∀x ∈ dom(F ) (Φ([x]F )),

and a Φ-satisfying fsr F ⊆ E is Φ-maximal if

∀S ∈ [E]<∞ (S ∩ dom(F ) = ∅ ⇒ ¬Φ(S)),

or equivalently, if there is no Φ-satisfying fsr F ′ ) F such that

∀x ∈ dom(F )
�
[x]F = [x]F ′

�
.

The following fact was first explicitly isolated in Kechris-Miller [55], although it can

also be easily shown via the techniques of Kechris-Solecki-Todorcevic [56]:

Theorem 3.1. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and Φ ⊆ [E]<∞ is Borel. Then E admits a Φ-maximal fsr.

Proof. Consider the graph G on [E]<∞ which is given by

G = {(S, T ) ∈ [E]<∞ : S 6= T and S ∩ T 6= ∅}.

We begin by noting that G admits a Borel ℵ0-coloring , i.e., a Borel map c : [E]<∞ →
I, with I a countable (discrete) set, such that

∀S, T ∈ [E]<∞
�
(S, T ) ∈ G⇒ c(S) 6= c(T )

�
.
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By Feldman-Moore [36], there are Borel involutions gn : X → X such that

E =
[
n∈N

graph(gn).

Let < be a Borel linear ordering of X, and given S ∈ [E]<∞, let 〈xSi 〉i<n be the

<-increasing enumeration of S and let c(S) be the lexicographically least sequence

〈kij〉i,j<n of natural numbers such that

∀i, j < n
�
gkij · xSi = xSj

�
.

Now suppose, towards contradiction, that c is not a coloring. Then we can find

(S, T ) ∈ G such that c(S) = c(T ). Put n = |S| = |T | and fix i, j < n such that

xSi = ySj . Then

i < j ⇔ xSi < xSj

⇔ xSi < gkij(x
S
i )

⇔ ySj < gkij(y
S
j )

⇔ ySj < ySi

⇔ j < i,

thus i = j and xSi = ySi . It follows that for all m < n,

xSm = gkim(xSi )

= gkim(ySi )

= ySm,

thus S = T , contradicting our assumption that (S, T ) ∈ G.

Now that we have seen that c is a coloring, recursively define a sequence of fsr’s

Fn of E by putting xFny exactly when

∃S ∈ [E]<∞
 
x, y ∈ S and Φ(S) and c(S) = n and S ∩

 [
m<n

dom(Fm)

!
= ∅

!
.

Noting that

∀m 6= n (dom(Fm) ∩ dom(Fn) = ∅),
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it follows that F =
S
n∈N Fn is an fsr of E. It is also clear that the classes of F satisfy

Φ. To see that F is Φ-maximal, it remains to check that if S ∈ [E]<∞ satisfies Φ,

then S ∩ dom(F ) 6= ∅. In fact, it follows from the definition of Fc(S) that either S

forms a class of Fc(S) or S ∩ Fn 6= ∅, for some n < c(S). a

Theorem 3.1 is a remarkably useful tool in the study of countable Borel equivalence

relations. Here is a simple example of its application:

Lemma 3.2. Suppose that X is a Polish space, E is an aperiodic countable Borel

equivalence relation on X, and n is a positive natural number. Then there is a Borel

subequivalence relation F of E, all of whose classes are of cardinality n.

Proof. It is clear how to proceed when E is smooth. In the general case, put

Φ(S) ⇔ |S| = n,

and let F ⊆ E be a Φ-maximal fsr. Clearly X \ dom(F ) intersects each E-class in at

most n− 1 points, thus E is smooth off of the set on which F is as desired. a

As can be easily seen by considering Φ = [E]<∞, a Φ-maximal fsr can be properly

contained in another Φ-maximal fsr. Thus we are lead to the following question:

Question 3.3. Are there stronger notions of maximality which satisfy an analog of

Theorem 3.1?

A Φ-maximal fsr F ⊆ E is strongly Φ-maximal if

∀x ∈ dom(F )∀S ∈ [E]<∞
�
S ∩ dom(F ) = ∅ ⇒ ¬Φ([x]F ∪ S)

�
,

or equivalently, if there is no Φ-satisfying fsr F ′ ) F such that

∀x ∈ dom(F ) ([x]F = [x]F ′ ∩ dom(F )).

Although strong maximality might appear to be a rather innocuous strengthening of

maximality, there are simple obstructions to the existence of such fsr’s:
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Example 3.4. Set X = N, E = N2, and define

Φ(S) ⇔ 0 ∈ S.

Clearly E does not admit a strongly Φ-maximal fsr.

Nevertheless, a version of Theorem 3.1 still goes through:

Theorem 3.5. Suppose that E is a countable Borel equivalence relation and Φ ⊆
[E]<∞ is Borel. Then there is an E-invariant Borel set B ⊆ X such that

1. E|B admits no invariant probability measures.

2. E|(X \B) admits a strongly Φ-maximal fsr.

Proof. Given a Φ-maximal fsr F ⊆ E, let ΦF be the set of S ∈ Φ such that

S ∩ dom(F ) is a single F -class which is properly contained in S,

noting that F is strongly Φ-maximal exactly when ΦF = ∅.
Fix a Φ-maximal fsr F0 ⊆ E, and recursively define an increasing sequence of fsr’s

of E by letting Fn+1 be the union of Fn with a ΦFn-maximal fsr F ′
n. Define

F =
[
n∈N

Fn,

let A ⊆ X be the aperiodic part of F , and set B = [A]E. It is clear that F |(X \B) is a

strongly Φ-maximal fsr of E|(X\B). As the intersection of each F -class with dom(F0)

is a non-empty finite set, it follows that F |A is a smooth aperiodic subequivalence

relation of E|A, thus E|B admits no invariant probability measures. a

Remark 3.6. By Example 3.4, the analog of Theorem 3.5 for Baire category is false.

There is another direction in which one can improve Theorem 3.1. Given a se-

quence of Borel sets Φn ⊆ [E]<∞, we say that an fsr F ⊆ E is simultaneously Φn-

satisfying if for each n ∈ N, every E-class contains an F -class which satisfies Φn.

Although it is once again straightforward to see that such an fsr need not always

exist, we do have the following:
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Theorem 3.7. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, E is D-aperiodic, and 〈Φn〉n∈N is

a sequence of Borel subsets of [E]<∞ such that each Φn contains a subset of every

E-class. Then there is a D-co-negligible E-invariant Borel set B ⊆ X such that E|B
admits a simultaneously Φn-satisfying fsr.

Proof. We begin by recursively defining Borel sets Ψn ⊆ [E]<∞, fsr’s Fn ⊆ E,

and Borel sets An ⊆ X. Set

Ψn(S) ⇔ ∃T ⊆ S (Φn(T ) and ∀m < n (D(Am ∩ S, [T ]Fm) > 2n)), (∗)

and fix a Ψn-maximal fsr Fn ⊆ E. Fix a Borel assignment S 7→ T (S) of witness to

(∗) to the classes of Fn and define

An =
[

S an Fn−class

T (S).

For each m ∈ N, define

Bm = Am \
[
n>m

[An]Fm ,

and set F =
S
n∈N Fn|Bn. As the Bm’s are pairwise disjoint and Fm-invariant, it

follows that F ⊆ E|B is Φn-satisfying, where

B =
\
n∈N

[Bn]E.

It remains to show that X \B is D-negligible. Suppose, towards a contradiction, that

there is a D-invariant probability measure µ such that µ([Bm]E) < 1, and fix m ∈ N
such that A = X \ [Bm]E is of positive measure. As [dom(Fm)]E is co-D-negligible,

it follows that µ(A ∩ dom(Fm)) > 0, thus for all n > m,

µ(A ∩ [An]Fm) =
Z
A∩dom(Fm)

D([T ([x]Fn)]Fm , [x]Fn) dµ(x)

=
Z
A∩dom(Fn)

D([T ([x]Fn)]Fm , Am ∩ [x]Fn) ·

D(Am ∩ [x]Fn , [x]Fn) dµ(x)

<
Z
A∩dom(Fn)

D(Am ∩ [x]Fn , [x]Fn)/2n dµ(x)

= µ(A ∩ Am ∩ dom(Fn))/2n

≤ µ(A ∩ Am)/2n.
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It follows that

µ(A ∩ Am) >
X
n>0

µ(A ∩ [An]Fm),

thus µ(A ∩Bm) > 0, the desired contradiction. a

Corollary 3.8. Suppose that X is a Polish space, E is an aperiodic countable Borel

equivalence relation on X, µ is an E-invariant probability measure on X, and 〈Φn〉n∈N

is a sequence of Borel subsets of [E]<∞ such that each Φn contains a subset of every

E-class. Then there is a conull E-invariant Borel set B ⊆ X such that E|B admits

a simultaneously Φn-satisfying fsr.

Although Corollary 3.8 has several applications, the main reason we mention it

here is that it points to a significant difference between measure and category:

Example 3.9. For each n ∈ N, define Φn ⊆ [E0]
<∞ by

Φn(S) ⇔ ∃x ∈ X
�
S = {σi(x)}i<n

�
.

Letting µ be the usual product measure on C , it follows from Corollary 3.8 that there

is a conull E0-invariant Borel set B ⊆ X such that E0|B admits a simultaneously

Φn-satisfying fsr.

On the other hand, every E0-invariant Borel set B ⊆ X for which E0|B admits a

simultaneously Φn-satisfying fsr is necessarily meager! To see this suppose, towards

a contradiction, that B ⊆ X is a non-meager E0-invariant Borel set and F ⊆ E0|B is

a simultaneously Φn-satisfying fsr. Define

A = {x ∈ C : (x, σ(x)) /∈ F},

and note that since A is an E0|B-complete section, there exists s ∈ 2<N such that

B is comeager in Ns. Find a comeager E0-invariant Borel set C ⊆ C such that

C ∩Ns ⊆ B, and note that since

σ2|s|(Ns) = Ns,

it follows that there are comeagerly many E0-classes which do not contain an F -class

which satisfies Φn, for any n > 2|s|, a contradiction.
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As we have already mentioned, the goal of the next several sections is to provide an

effective means of describing the set of D-invariant probability measures. A significant

part of this project is to understand the circumstances under which there are no D-

invariant probability measures. In the invariant case, an answer to this piece of the

puzzle was given by Nadkarni [62]. Suppose that X is a Polish space and E is a

countable Borel equivalence relation on X. The full semigroup of E is the semigroup

JEK of all partial Borel injections from X into itself whose graphs are contained in E.

A map f ∈ JEK is a compression of E if it has full domain and the complement of its

range is an E-complete section, and E is compressible if it admits a compression.

Theorem 3.10 (Nadkarni). Suppose X is a Polish space and E is an aperiodic

countable Borel equivalence relation on X. Then E has no invariant probability mea-

sure ⇔ E is compressible.

We will eventually provide a new proof of this theorem, as well as a version

for D-invariant measures. In the meantime, we will close this section by noting

that the idea behind Example 3.9 can be used to answer questions of Nadkarni [62]

and Eigen-Hajian-Nadkarni [30] regarding a potential alternative characterization of

compressibility.

Suppose f : X → X is an aperiodic Borel automorphism. A set B ⊆ X is weakly

wandering if there is an infinite set S ⊆ N such that 〈fn(B)〉n∈S is pairwise disjoint.

Question 3.11 (Nadkarni). Suppose that X is a Polish space, f : X → X is a

Borel automorphism, and E is the orbit equivalence relation associated with f . Is E

compressible exactly when E admits a weakly wandering Borel complete section?

It is straightforward to see that if E admits a weakly wandering Borel complete

section, then E is compressible. However, Eigen-Hajian-Nadkarni [30] answered Ques-

tion 3.11 in the negative by constructing a compressible Borel automorphism which

admits no weakly wandering Borel complete section. However, their method left open

the following possibility:

Question 3.12 (Eigen-Hajian-Nadkarni). Suppose that X is a Polish space, f :

X → X is a Borel automorphism, and E is the orbit equivalence relation associated
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with f . Is E compressible exactly when there is a countably generated partition B

of X into E-invariant Borel sets such that E|B admits a weakly wandering Borel

complete section, for each B ∈ B?

Again, the answer to this question is no. Here is a counterexample:

Example 3.13. Let µ be the usual product measure on C , fix a null comeager E0-

invariant Borel set A ⊆ C , and put f = σ|A. As µ is the unique invariant probability

measure for E0, it follows that there are no invariant probability measures for E0|A,

and thus E0|A is compressible.

Now suppose that B is a countably generated partition of A into E0-invariant

Borel sets, and note that there is a comeager set C ∈ B. As in Example 3.9, it

follows that if B ⊆ C is a Borel complete section for E0|C, then after throwing out a

meager E0-invariant Borel subset of C, we may assume that there exists an s ∈ 2<N

such that Ns ∩C ⊆ B. It then follows that no collection of more than 2|s| iterates of

B under f is pairwise disjoint, thus f |C admits no weakly wandering Borel complete

section.

4 Ergodic decomposition

Suppose that X is a Polish space, E is a countable Borel equivalence relation on

X, D : E → R+ is a Borel cocycle, and f : X → R is a Borel function. For each set

S ∈ [E]<∞, fix z ∈ [S]E and put

IS(f) =

P
x∈S f(x)D(x, z)P

x∈S D(x, z)
.

Since D is a cocycle, this quantity does not depend on our choice of z. Intuitively,

IS(f) is simply S’s best guess at the value of
R
f dµ. We will use

µS(B) = IS(1B)

to denote the density of B within S.

Proposition 4.1. Suppose that X is a Polish space, E is a countable Borel equiva-

lence relation on X, D : E → R+ is a Borel cocycle, µ is a D-invariant probability
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measure on X, F ⊆ E is a finite Borel equivalence relation, and f : X → R is a

bounded Borel function. ThenZ
f(x) dµ(x) =

Z
I[x]F (f) dµ(x).

Proof. By breaking upX into countably many F -invariant pieces, we may assume

that each F -class is of cardinality n > 0. Let B ⊆ X be a Borel transversal for F ,

let g : X → X be a Borel automorphism whose associated orbit equivalence relation

is F , and observe thatZ
f(x) dµ(x) =

X
i<n

Z
gi(B)

f(x) dµ(x)

=
X
i<n

Z
B
f ◦ gi(x)D(gi(x), x) dµ(x)

=
Z
B

X
y∈[x]F

f(y)D(y, x) dµ(x)

=
Z
B
I[x]F (f)

X
y∈[x]F

D(y, x) dµ(x)

=
X
i<n

Z
gi(B)

I[x]F (f) dµ(x)

=
Z
I[x]F (f) dµ(x).

a

The following fact is intended as a descriptive version of the Hurewicz ergodic

theorem for countable Borel equivalence relations:

Theorem 4.2. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, and F is a countable family of

bounded real-valued Borel functions on X. Then there is a Borel set B ⊆ X such

that the restriction of ≤D to each class of E|B is a discrete linear order, and an

increasing sequence of finite Borel subequivalence relations Fn ⊆ E such that for all

x ∈ X \ [B]E, all f ∈ F , and all D-invariant probability measures µ ∈ P (X):

1. 〈I[x]Fn (f)〉n∈N converges uniformly in x to some Ix(f) ∈ R.

2. x 7→ Ix(f) is E-invariant.
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3.
R
f(x) dµ(x) =

R
Ix(f) dµ(x).

Proof. A finite Borel equivalence relation F ⊆ E is ε-approximating for f if

∀C ∈ X/E ∀S, T ∈ C/F (|IS(f)− IT (f)| ≤ ε) .

Lemma 4.3. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, ε > 0, and F ⊆ E is a finite Borel

equivalence relation which is ε-approximating for f . Then there is a Borel set B ⊆ X

and a finite Borel equivalence relation F ⊆ F ′ ⊆ E such that:

1. F ′ is (3ε/4)-approximating for f |(X \ [B]E).

2. The restriction of ≤D to each class of E|B is a discrete linear order.

Proof. For each E-class C, set

IC(f) =
1

2

�
inf
x∈C

I[x]F (f) + sup
x∈C

I[x]F (f)

�
,

define Φ ⊆ [E]<∞ by

Φ(S) ⇔
�
S is F -invariant and |IS(f)− I[S]E(f)| ≤ ε/4

�
,

let F ′′ ⊆ E be a Φ-maximal fsr, and define F ′ = F ∪ F ′′. Setting

A = {x ∈ X : ∃y, z ∈ [x]E (|I[y]F ′ (f)− I[z]F ′ (f)| > 3ε/4)},

it is clear that F ′|(X \ A) is (3ε/4)-approximating for f .

Now suppose, towards a contradiction, that there is no Borel complete section

B ⊆ A for E|A such that the restriction of ≤D to each class of E|B is a discrete

linear order. We will use DF to denote the cocycle induced by D on X/F .

Sublemma 4.4. Suppose that X is a Polish space, E is a countable Borel equivalence

relation, F ⊆ E is a finite Borel subequivalence relation, and D : E → R+ is a Borel

cocycle. If E/F admits a ≤DF -linearly discretely ordered Borel complete section, then

E admits a ≤D-linearly discretely ordered Borel complete section.
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Proof. By breaking X into countably many E-invariant Borel sets and going

down to an F -invariant Borel complete section, we may assume that each class of F

is of cardinality n ∈ N. Fix an F -invariant Borel complete section A ⊆ X for E such

that the restriction of ≤DF to each class of (E/F )|(B/F ) is a discrete linear order.

As it is clear how to proceed when E/F is smooth, we may assume that

∀x ∈ A∃y, z ∈ A (D([y]F , [x]F ), D([x]F , [z]F ) ≥ n).

Define B ⊆ A by

B = {x ∈ A : ∀y ∈ [x]F (D(x, y) ≥ 1)},

noting that B is a complete section for F |A and

∀x ∈ B (1 ≤ |[x]F |x ≤ n).

As D([x]F , [y]F ) = D([x]F , x)D(x, y)D(y, [y]F ), it follows that

D(x, y)/n ≤ D([x]F , [y]F ) ≤ nD(x, y),

thus for all x, y ∈ B there exists x′, y′ ∈ B such that

∀z ∈ B (x ≤D z ≤D y ⇒ [x′]F ≤DF [z]F ≤DF [y′]F ).

As DF is discrete, the set of all such z must be finite. Define F ′ on B by

xF ′y ⇔ D(x, y) = 1,

note that the classes of F ′ are finite, and let C ⊆ B be a Borel transversal of F ′. It is

clear that C is an E-complete section and the restriction of ≤D to each class of E|C
is a discrete linear order. a

Now define (E|A)-complete sections Y, Z ⊆ A by

Y = {y ∈ A : I[y]F ′ (f) < I[y]E(f)− ε/4}

and

Z = {z ∈ A : I[z]F ′ (f) > I[z]E(f) + ε/4},
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noting that Y and Z are disjoint from dom(F ′′), thus F |Y = F ′|Y and F |Z = F ′|Z.

By Proposition 2.14 and Sublemma 4.4, we may assume that there exists x ∈ A such

that the restrictions of DF to (E/F )|(Y/F ) and (E/F )/(Z/F ) are dense around every

point of [x]E ∩ Y and [x]E ∩ Z.

Fix y ∈ [x]E ∩ Y ′ and z ∈ [x]E ∩ Z ′, choose m,n ∈ N such that

2/3 ≤ (m/n)D([y]F , [z]F ) ≤ 3/2,

and choose δ > 0 sufficiently small that

δ/(m|[y]F |x), δ/(n|[z]F |x) < 1/2.

Now fix pairwise F -inequivalent elements yi ∈ [x]E ∩ Y and zj ∈ [x]E ∩ Z such that

∀i, j ∈ N (1 ≤ D([yi]F , [y]F ), D([zj]F , [z]F ) ≤ 1 + δ) .

Set Y ′ =
S
i<m[yi]F and Z ′ =

S
j<n[zi]F , and note that

m|[y]F |x ≤ |Y ′|x ≤ m|[y]F |x +mδ

and

n|[z]F |x ≤ |Z ′|x ≤ n|[z]F |x + nδ,

thus
m|[y]F |x

n(|[z]F |x + δ)
≤
P
i<m |[yi]F |xP
j<n |[zj]F |x

≤ m(|[y]F |x + δ)

n|[z]F |x
.

As the middle quantity is by definition D(Y ′, Z ′), we have that

D(Y ′, Z ′) ≤ (m/n)D([y]F , [z]F ) + δ/(n|[z]F |x) ≤ 2

and

D(Z ′, Y ′) ≤ (n/m)D([z]F , [y]F ) + δ/(m|[y]F |x) ≤ 2,

so D(Y ′ ∪ Z ′, Y ′), D(Y ′ ∪ Z ′, Z ′) ≤ 3. It follows that

IY ′∪Z′(f) = D(Y ′, Y ′ ∪ Z ′)IY ′(f) +D(Z ′, Y ′ ∪ Z ′)IZ′(f)

≤ (1/3)IY ′(f) + (2/3)IZ′(f)

≤ (1/3)(I[x]E(f)− ε/4) + (2/3)(I[x]E(f) + ε/2)

= I[x]E(f) + ε/4,
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and similarly,

IY ′∪Z′(f) = D(Y ′, Y ′ ∪ Z ′)IY ′(f) +D(Z ′, Y ′ ∪ Z ′)IZ′(f)

≥ (2/3)IY ′(f) + (1/3)IZ′(f)

≥ (2/3)(I[x]E(f)− ε/2) + (1/3)(I[x]E(f) + ε/4)

= I[x]E(f)− ε/4,

thus |IY ′∪Z′(f)− I[x]E(f)| ≤ ε/4, contradicting the Φ-maximality of F ′′. a

Now fix a sequence of functions fn ∈ F such that

∀n ∈ N (F = {fm}m≥n) ,

put F0 = ∆(X) = {(x, x)}x∈X , and given a finite Borel equivalence relation Fn ⊆ E,

apply Lemma 4.3 finitely many times to produce an E-invariant Borel set Bn ⊆ X on

which E admits a ≤D-discretely linearly ordered complete section and a finite Borel

equivalence relation Fn ⊆ Fn+1 ⊆ E which is (1/n)-approximating for fn.

It is clear that the restriction of E to B =
S
n∈NBn admits a Borel complete section

C ⊆ B such that the restriction of ≤D to each class of E|C is a discrete linear order.

Moreover, the sequence 〈I[x]Fn (f)〉n∈N converges uniformly for x ∈ X \ B. Letting

Ix(f) be this limit, it follows from Proposition 4.1 thatZ
f dµ(x) = lim

n→∞

Z
I[x]Fn (f) dµ(x) =

Z
Ix(f) dµ(x).

Note that for all ε > 0 and n ∈ N sufficiently large, Fn is ε-approximating for f . It

easily follows that Ix(f) is E-invariant. a

Now we are ready to prove Ditzen’s theorem:

Theorem 4.5 (Ditzen). Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, D : E → R+ is a Borel cocycle, and E admits a D-

invariant probability measure. Then the set EI(D) of D-invariant, E-ergodic proba-

bility measures on X is non-empty and Borel, and there is a [surjective] Borel function

π : X → EI(D) such that



218

1. If µ is D-invariant, then µ =
R
π(x) dµ(x).

2. If µ is also E-ergodic, then ∀∗µx ∈ X (π(x) = µ).

Proof (Miller). Without loss of generality, we may assume that X = C . Let

F be the set of characteristic functions of basic clopen sets. By Theorem 4.2, there

is a co-D-negligible E-invariant Borel set A ⊆ X and bounded E-invariant Borel

functions I(f) : A→ R, for f ∈ F , such thatZ
f(x) dµ(x) =

Z
Ix(f) dµ(x),

for every D-invariant probability measure µ on X. It follows from the proof of The-

orem 4.2 that

Ix(1C ) = 1 and ∀s ∈ 2<N �Ix(1Ns) = Ix(1Ns0) + Ix(1Ns0)
�
,

for all x ∈ A. It now follows from Exercise 17.7 of Kechris [51] that each assignment

Ns 7→ Ix(1Ns)

uniquely determines a probability measure µx on X. It follows that

∀s ∈ 2<N
�
µ(Ns) =

Z
µx(Ns) dµ(x)

�
,

for every D-invariant probability measure µ on X. In particular, if µ is also E-ergodic,

then

∀s ∈ 2<N ∀∗µx ∈ A (µ(N ) = µx(Ns)),

thus ∀∗µx ∈ A (µ = µx). It follows that

B = {x ∈ A : µx is not a D-invariant, E-ergodic probability measure}

is null with respect to every D-invariant, E-ergodic probability measure on X.

Lemma 4.6. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, and B ⊆ X is a Borel set which is

null with respect to every D-invariant, E-ergodic probability measure on X. Then B

is null with respect to every D-invariant probability measure on X.
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Proof. As usual, we may extend the topology of X, while maintaining its under-

lying Borel structure, so that B is open. By Feldman-Moore [36], there is a countable

group G ≤ [E] which generates E. Fix an enumeration 〈Bn〉n∈N of a G-invariant

algebra of sets B which forms a basis for the new topology such that B ∈ B, and

define d : I(D)2 → R by

d(µ, ν) =
X
n∈N

|µ(Bn)− ν(Bn)|
2n

.

We claim that (I(D), d) is a compact metric space. It is clear that d is symmetric

and satisfies the triangle inequality. As any probability measure on X is determined

by its values on the elements of B, it follows that

µ = ν ⇔ d(µ, ν) = 0,

thus d is a metric.

As d is clearly complete, it only remains to check that it is totally bounded, i.e.,

that X can be covered with finitely many ε-balls, for all ε > 0 (see Proposition 4.2

of Kechris [51]). Fix n > 4/ε, let S be the set of functions from {0, . . . , n} into itself,

and for each s ∈ S, fix µs ∈ I(D) such that

∀i < n (si/n ≤ µs(Bi) ≤ (si + 1)/n),

if such a probability measure exists. It is clear that for each µ ∈ I(D), there exists

s ∈ S such that

∀i < n (|µs(Bi)− µ(Bi)| < ε/4),

and it follows that

d(µ, µs) =
X
i≤n

|µ(Bi)− µs(Bi)|/2i +
X
i>n

|µ(Bi)− µs(Bi)|/2i

<
X
i≤n

ε/2i+2 +
X
i>n

1/2i

< ε/2 + 1/2n

< ε,

thus the sets of the form B(µs, ε) form the desired cover.
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Now that we have established that (I(D), d) is compact, set

α = sup
µ∈I(D)

µ(B),

and define

A = {µ ∈ I(D) : µ(B) = α}.

As the map µ 7→ µ(B) is continuous, it follows that A is a non-empty compact convex

subspace of (I(D), d). It now follows from the Krein-Millman Theorem that A has

an extreme point µ. Since every extreme point of A is clearly E-ergodic, it follows

that α = 0. a

It follows that the set of D-invariant, E-ergodic probability measures on X is

non-empty and

EI(D) = {µ ∈ P (X) : µ is D-invariant and ∀∗µx ∈ A (µ = µx)},

thus EI(D) is Borel. Fix a D-invariant, E-ergodic probability measure µ, and set

π(x) =

8<: µx if x ∈ A \B,
µ otherwise.

Clearly π is as desired. a

Theorem 4.2 can also be used to reduce Ditzen’s theorem to that of Kifer-Pirogov.

This can be seen via the following strengthening of Lemma 9.3.2 of Zimmer [82]:

Theorem 4.7. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and D : E → R+ is a Borel cocycle. Then there is a hyperfinite

equivalence relation F ⊆ E such that EI(D) = EI(D|F ), thus I(D) = I(D|F ).

Proof. Without loss of generality, we may assume that X is a Polish ultrametric

space. Let B be the (countable) set of open balls of rational radius, and apply

Theorem 4.2 to obtain an E-invariant Borel set A ⊆ X off of which E admits a ≤D-

discretely linearly ordered complete section, and an increasing sequence of finite Borel

subequivalence relations Fn ⊆ E such that for all x ∈ A, B ∈ B, and D-invariant

probability measure µ ∈ P (X):
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1. 〈I[x]Fn (1B)〉n∈N converges uniformly in x to some Ix(1B) ∈ R.

2. Ix(1B) is E-invariant.

3.
R 1B(x) dµ(x) =

R
Ix(1B) dµ(x).

Setting µx(B) = Ix(1B), it follows that if µ ∈ EI(D), then

∀B ∈ B ∀∗µx ∈ B (µ(B) = µx(B)).

We will show that

F =
[
n∈N

Fn ∪ (E|(X \ A))

is the desired hyperfinite subequivalence relation.

Suppose that µ ∈ EI(D) and A ⊆ X is a non-null Borel set. We will show that

µ([A]F ) = 1. Fix 0 < ε < 1/2. By Lemma 2.6, we can find B ∈ B such that

µ(A ∩B) > (1− ε2)µ(B),

and it follows from (1) that we can find n ∈ N such that

∀∗µx ∈ X
����µ[x]Fn

(B)− µ(B)
��� < εµ(B)

�
,

where µS(B) = IS(1B). Now define C ⊆ X by

C = {x ∈ X : µ[x]Fn
(A ∩B) > (1− ε/(1− ε))µ[x]Fn

(B)},

and observe that

(1− ε2)µ(B) < µ(A ∩B)

=
Z
µ[x]Fn

(A ∩B) dµ(x)

=
Z
C
µ[x]Fn

(A ∩B) dµ(x) +
Z
X\C

µ[x]Fn
(A ∩B) dµ(x)

≤
Z
C
µ[x]Fn

(B) dµ(x) +
�

1−
�

ε

1− ε

�� Z
X\C

µ[x]Fn
(B) dµ(x)

= µ(B)−
�

ε

1− ε

� Z
X\C

µ[x]Fn
(B) dµ(x)

≤ µ(B)−
�

ε

1− ε

� Z
X\C

(1− ε)µ(B) dµ(x)

= µ(B)−
�

ε

1− ε

�
µ(X \ C)(1− ε)µ(B)

= µ(B) (1− εµ(X \ C)) ,
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thus 1− εµ(X \ C) > 1− ε2, and it follows that µ(C) > 1− ε.

Noting that for almost all x ∈ B we have that

µ[x]Fn
(A ∩B) > (1− ε)µ[x]Fn

(B)

> (1− ε)2µ(B)

> 0,

it follows that almost all of C is contained in [A ∩B]Fn . In particular, we have that

µ([A]F ) ≥ µ([A ∩B]Fn)

≥ µ(C)

> 1− ε,

and as 0 < ε < 1/2 was arbitrary, it follows that µ([A]F ) = 1. a

5 Existence of D-invariant probability measures

Suppose that X is a Polish space, E is a countable Borel equivalence relation on

X, and D : E → R+ is a Borel cocycle. A map f ∈ JEK is D-invariant if

∀x ∈ dom(f) (D(f(x), x) = 1).

We will use [D] and JDK to denote the D-invariant elements of [E] and JEK, respec-

tively. The following simple example provides a significant obstruction to a general-

ization of Theorem 3.10:

Example 5.1. Suppose that X = N and E = (N+)2. Define D : E → R+ by

D(m,n) = m/n.

Clearly D is a Borel cocycle, E is D-aperiodic, E admits no D-invariant Borel prob-

ability measures, and

JDK = {id|S : S ⊆ N},

thus JDK contains no compressions of E.
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A natural first reaction to this example is to hope that if JDK is sufficiently trivial

then there is no D-invariant probability measure, and then to try to push through an

analog of Theorem 3.10 outside of this special case. Such an approach is implausible,

however, for Example 2.15 provides a setting in which JDK is trivial but there is a

D-invariant probability measure.

So it seems that if we are to have any hope of coming up with an analog of

Theorem 3.10, JDK must be enriched in such a manner that points which cannot be

mapped to one another via a D-invariant function can be split into pieces so that

fractions of these points can be mapped to one another. This is not so different from

the invariant case: If G is a countable group of Borel automorphisms for which there

is no G-invariant probability measure, then it is necessary to pass to the full group of

EG in order to find a compression. The purpose of this is to allow us to begin with

two sets A,B ⊆ X which do not map to one another via an element of G, break them

up into pieces, and then map these pieces to one another via different elements of G.

The additional constraint of D-invariance simply forces us to go a step further, and

break up the points of X themselves.

We will use B to denote the set of Borel functions b : X → [0, 1]. We will think of

the elements of B as fractional Borel subsets of X, with b(x) specifying the fraction

of x included in b. We will use ≤ to denote the partial ordering of B given by

a ≤ b⇔ ∀x ∈ X (a(x) ≤ b(x)).

The minimal element of (B,≤) is the constantly 0 function O, and the maximal

element of (B,≤) is the constantly 1 function 1. We will use + and − to denote the

binary operations on B given by

[a+ b](x) = min(a(x) + b(x), 1)

and

[a− b](x) = max(a(x)− b(x), 0).

It is straightforward to check that the map B 7→ 1B provides an embedding of the

Borel subsets of X under union into B under addition.
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Given a Borel cocycle D : E → R+, we will think of each non-negative function

ϕ : E → R as specifying D-invariant mappings between (possibly fractional) multiples

of (the masses associated with) points of X. Specifically, if r = ϕ(x, y), then we think

of ϕ as sending r copies of x to rD(x, y) copies of y. The domain of ϕ is a real-valued

function on X, given by

[domD(ϕ)](x) =
X

y∈[x]E

ϕ(x, y),

and similarly, the range of ϕ is given by

[rngD(ϕ)](y) =
X

x∈[y]E

ϕ(x, y)D(x, y).

The fractional full semigroup of D is

[JDK] = {ϕ : E → [0, 1] Borel : domD(ϕ), rngD(ϕ) ∈ B}.

Given ϕ ∈ [JDK] and b ≤ domD(ϕ), the restriction of ϕ to b is

[ϕ � b](x, y) = ϕ(x, y)D(x, y)b(x)/[domD(ϕ)](x),

as well as the image of b under ϕ,

ϕ[b] = rngD(ϕ � b).

Given ϕ, ψ : E → R+ such that domD(ϕ) ≤ rngD(ψ), the composition of ϕ, ψ is

ϕ ∗ ψ(x, y) =
X

z∈[x]E

ψ(x, z)ϕ(z, y),

Also, the inverse of ϕ ∈ [JDK] is given by

ϕ∗(x, y) = ϕ(y, x)D(y, x).

Note that JDK embeds into [JDK] via the map f 7→ ϕf , where

ϕf (x, y) =

8<: 1 if x ∈ dom(f) and f(x) = y,

0 otherwise.
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The image of [D] under this embedding is the subsemigroup of the image of JDK of

maps for which

domD(ϕ) = 1 and rngD(ϕ) = 1.
A map has full domain if it satisfies the former condition, and full range if it satisfies

the latter.

A fractional Borel set b ∈ B is a complete section for E if

Bb = {x ∈ B : b(x) > 0}

is a complete section for E, and B is a co-complete section for E if its complement1−b is a complete section. A D-compression of E is a map ϕ ∈ [JDK] with full domain

and co-complete range. The equivalence relation E is D-compressible if it admits a

D-compression.

The following fact is the analog of Nadkarni’s theorem [62]:

Theorem 5.2. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, and E is D-aperiodic. Then exactly

one of the following holds:

1. E admits a D-invariant probability measure.

2. E is D-compressible.

Proof. To see (2) ⇒ ¬(1) suppose, towards a contradiction, that ϕ ∈ [JDK] is a

D-compression of E and µ is a D-invariant probability measure on X. Fix a sequence

of automorphisms fn ∈ [E] and a sequence of Borel sets Bn ⊆ X such that the sets
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of the form graph(fn|Bn) partition E, and observe thatZ
[rngD(ϕ)](y) dµ(y) =

Z X
x∈[y]E

ϕ(x, y)D(x, y) dµ(y)

=
Z X

n∈N
ϕ(f−1

n (y), y)D(f−1
n (y), y)1fn(Bn)(y) dµ(y)

=
X
n∈N

Z
fn(Bn)

ϕ(f−1
n (y), y)D(f−1

n (y), y) dµ(y)

=
X
n∈N

Z
fn(Bn)

ϕ(f−1
n (y), y) d(fn)∗µ(y)

=
X
n∈N

Z
Bn
ϕ(x, fn(x)) dµ(x)

=
Z X

n∈N
ϕ(x, fn(x))1Bn(x) dµ(x)

=
Z X

y∈[x]E

ϕ(x, y) dµ(x)

=
Z

[domD(ϕ)](x) dµ(x).

As domD(ϕ) = 1, it follows that rngD(ϕ) = 1 µ-almost everywhere. As rngD(ϕ) is a

co-complete section for E, this contradicts the fact that µ is E-quasi-invariant.

To see ¬(1) ⇒ (2), we will first use an enhanced version of the proof of Theorem

4.5 to show that if there are no D-invariant probability measures on X, then X can

be partition into countably many E-invariant Borel sets on which we obtain very

specific sorts of witnesses to D-negligibility. We will then describe how to build

D-compressions from such witnesses.

Suppose that B ⊆ X is an E-invariant Borel set.

1. A witness to D-negligibility of B of type 1 is a Borel complete section A ⊆ B

such that the restriction of <D to each class of E|A is a discrete linear order.

2. A witness to D-negligibility of B of type 2 is a partition of B into Borel sets

Bn ⊆ B and an increasing sequence of finite Borel equivalence relations Fn ⊆ E

such that

(a) For all x ∈ X and all B in the algebra B generated by the Bn’s, µ[x]Fn
(B)

converges uniformly in x to some real number µx(B).
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(b) For each B ∈ B, the map x 7→ µx(B) is E-invariant.

(c)
P
n∈N µx(Bn) < 1.

3. A witness to D-negligibility of B of type 3 is a finite Borel equivalence relation

F ⊆ E, a Borel automorphism f ∈ [E], and a Borel complete section A ⊆ B

such that for all x ∈ B,

D(f([x]F ) ∩ A, [x]F ∩ A) > 1.

Lemma 5.3. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and D : E → R+ is a Borel cocycle which admits no invariant prob-

ability measures. Then X can be partitioned into countably many E-invariant Borel

sets which admit witnesses to D-negligibility.

Proof. We will gradually strip away verifiably D-negligible E-invariant Borel

subsets of X until nothing remains. By Feldman-Moore [36], there is a countable

group G ≤ [E] which generates E. For each g ∈ G, define Dg : X → R+ by

Dg(y) = D(g(y), y),

and for each n > 0, set

Xgn = {x ∈ X : 1/n ≤ Dg(x) ≤ n}.

By Exercise 13.12 of Kechris [51], we can find a Polish ultrametric d on X, compatible

with its underlying Borel structure, in which each element of G is a homeomorphism,

each Dg is continuous, and each Xgn is clopen. Let U be a countable G-invariant

algebra of clopen subsets of X which contains all clopen balls of rational diameter

and every Xgn, for g ∈ G and n ∈ N. Let F be the closure of the family of functions

of the form 1U and Dg, for U ∈ U and g ∈ G, under pairwise multiplication. Note

that each element of F is continuous. By Theorem 4.2, there is an E-invariant Borel

set X1 ⊆ X whose complement is verifiably D-negligible of type 1, and an increasing

sequence of finite Borel equivalence relations Fn ⊆ E|X1 such that for all x ∈ X1,

f ∈ F , and µ ∈ I(D):
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1. 〈I[x]Fn (f)〉n∈N converges uniformly in x ∈ X1 to some Ix(f) ∈ R.

2. Ix(f) is E-invariant.

3.
R
f(x) dµ(x) =

R
Ix(f) dµ(x).

We will use µx(U) to denote Ix(1U). For x ∈ X1 and B ⊆ X Borel, put

µ∗x(B) = inf

8<:X
V ∈V

µx(V ) : V ⊆ U covers B

9=; .
Sublemma 5.4. For all x ∈ X1, the map µ∗x is a measure on X.

Proof. First, we will show that µ∗x is an outer measure. That is,

1. µ∗x(∅) = 0.

2. ∀A ⊆ B ⊆ X Borel (µ∗x(A) ≤ µ∗x(B)).

3. ∀B0, B1, . . . ⊆ X Borel (µ∗x (
S
n∈NBn) ≤ P

n∈N µ
∗
x(Bn)).

Conditions (1) and (2) follow trivially from the definition of µ∗x. To see (3), fix ε > 0

and covers Vn ⊆ U of Bn such that

µ∗x(Bn) ≥
X
V ∈Vn

µx(V )− ε/2n+1,

and observe that V =
S
n∈N Vn is a cover of

S
n∈NBn and

µ∗x

 [
n∈N

Bn

!
≤
X
V ∈V

µx(V ) ≤ ε+
X
n∈N

µ∗x(Bn),

thus µ∗x (
S
n∈NBn) ≤ P

n∈N µ
∗
x(Bn).

In fact, µ∗x is a metric outer measure. That is,

∀A,B ⊆ X Borel
�
d(A,B) > 0 ⇒ µ∗x(A ∪B) = µ∗x(A) + µ∗x(B)

�
,

where

d(A,B) = inf
x∈A,y∈B

d(x, y).
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To see this, fix ε > 0 and find a cover V ⊆ U of A ∪B withX
V ∈V

µx(V ) < µ∗x(A ∪B) + ε.

Let 〈Vn〉n∈N be an enumeration of V , and for each n ∈ N, find a family Wn ⊆ U of

sets of diameter less than d(A,B) which partitions Vn. Set

W =
[
n∈N

Wn,

and define

WA = {W ∈ W : A ∩W 6= ∅}

and

WB = {W ∈ W : B ∩W 6= ∅},

noting that WA ∩WB = ∅. Now observe that

µ∗x(A) + µ∗x(B) ≤
X

W∈WA

µx(W ) +
X

W∈WB

µx(W )

≤
X
W∈W

µx(W )

=
X
n∈N

X
W∈Wn

µx(W ).

Fix n ∈ N and an enumeration Wmn of Wn, and note that since µx is finitely additive,X
W∈Wn

µx(W ) = lim
`→∞

X
m<`

µx(Wmn)

= lim
`→∞

µx

 [
m<`

Wmn

!
≤ lim

`→∞
µx

 [
m∈N

Wmn

!
= µx(Vn),

thus

µ∗x(A) + µ∗x(B) ≤
X
n∈N

µx(Vn) < µ∗x(A ∪B) + ε,

and it follows that µ∗x(A) + µ∗x(B) ≤ µ∗x(A ∪B).
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It now follows from Example 4 of §17.B of Kechris [51] that µ∗x is a measure. a

Now let Un ⊆ U denote the set of clopen balls of diameter 1/n, and note that

there is an E-invariant Borel set X2 ⊆ X1 such that X1 \X2 is verifiably D-negligible

of type 2, and X
U∈Un

µx(U) = 1,

for all n ∈ N and x ∈ X2. More generally, as µx(U) + µx(X \ U) = 1 for all U ∈ U ,

it follows that

µx(U) =
X
V ∈Un

µx(U ∩ V ).

Sublemma 5.5. For all x ∈ X2 and f ∈ F , Ix(f) =
R
f(y) dµ∗x(y).

Proof. We will begin with the special case that f = 1U , for some U ∈ U . It is

enough to show that µ∗x(U) ≥ µx(U) − ε, for all ε > 0 and x ∈ X2. For each n ∈ N,

fix a finite pairwise disjoint family Vn ⊆ Un of subsets of U such that

µx

�
U ∩

[
Vn
�
> µx(U)− ε/2n+1.

Set Kn = U ∩ Tm<nSVn, and observe that K =
T
n∈NKn is totally bounded and

closed, thus compact. Now suppose, towards a contradiction, that

µ∗x(K) < µx(U)− ε.

Then there is a cover of K by pairwise disjoint sets Vn ∈ U such thatX
n∈N

µ∗x(Vn) < µx(U)− ε.

By compactness, there is a finite subcover V1, . . . , Vn. Letting V be the union of the

sets in this subcover, it follows that V ∈ U and µ∗x(V ) < µx(U)− ε.

We claim that Kn ⊆ V for some n ∈ N. As

µ∗x(V ) < µx(U)− ε < µ∗x(Kn)

and µ∗x is monotonic, this will give the desired contradiction. So suppose, towards a

contradiction, that for each n ∈ N there exists xn ∈ Kn \ V . It follows that for each
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n ∈ N, the closure of Xn = {xm}m>n is compact, thus\
n∈N

Xn ⊆ K \ V 6= ∅,

which contradicts the fact that K ⊆ V .

Now we are ready for the general case. We will proceed via a straightforward

approximation argument. Unfortunately, we need to make several approximations

before getting to the main calculation, and the order in which these approximations

are made is not the same as the order in which they are used. In order to help the

reader keep track of things, we will therefore associate with each approximation a

number which indicates the order in which it is used in the final calculation.

Suppose that f ∈ F , fix ε > 0, and note that by the continuity of f , there is a

partition V ⊆ U of X and real numbers fV , for V ∈ V , such that

∀x ∈ X2 ∀V ∈ V ∀y ∈ V (|f(y)− fV | ≤ ε).

Noting that for each V ∈ V ,����Z
V
f(y)dµ∗x(y)− fV µ

∗
x(V )

���� =
����Z
V
f(y) dµ∗x(y)−

Z
V
fV dµ∗x(y)

����
≤

Z
V
|f(y)− fV | dµ∗x(y)

≤ εµ∗x(V ),

it follows that ������Z f(y) dµ∗x(y)−
X
V ∈V

fV µ
∗
x(V )

������ ≤ ε. (1)

Fix finite sets Vn ⊆ V and a partition of X2 into E-invariant Borel sets X
(n)
2 withX

V ∈V \Vn
fV µ

∗
x(V ) ≤ ε, (2)

X
V ∈V \Vn

Ix(f1V ) ≤ ε, (7)
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and

µx
�
X \

[
Vn
�
≤ ε/ sup

x∈X
f(x), (9)

for all n ∈ N and x ∈ X(n)
2 (actually, (7) follows from (9)). It follows from the f = 1U

case that

fV µ
∗
x(U) = fV µx(U) = Ix(fV 1V ). (3)

Now, for all n ∈ N there exists kn ∈ N such that for all x ∈ X(n)
2 and V ∈ Vn,���µx�X \

[
Vn
�
− µ[x]Fkn

�
X \

[
Vn
���� ≤ ε/ sup

x∈X
f(x) (8)

and���Ix(fV 1V )− I[x]Fkn
(fV 1V )

���+ ���Ix(f)− I[x]Fkn
(f)

��� ≤ ε/|Vn|,

from which it follows that������ XV ∈Vn

Ix(fV 1V )−
X
V ∈Vn

I[x]Fkn
(fV 1V )

������ ≤ ε (4)

and

|Ix(f)− I[x]Fkn
(f)| ≤ ε. (6)

Noting that for all k ∈ N,���I[x]Fk (fV 1V )− I[x]Fk (f1V )
��� =

������Py∈[x]Fk
(fV − f(y))1V (y)D(y, x)P

y∈[x]Fk
D(y, x)

������
≤

P
y∈[x]Fk

|fV − f(y)|1V (y)D(y, x)P
y∈[x]Fk

D(y, x)

≤ εµ[x]Fk
(V ),

it follows that ������ XV ∈Vn

I[x]Fk (fV 1V )−
X
V ∈Vn

I[x]Fk (f1V )

������ ≤ ε. (5)
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Finally, we are ready for the main calculation:����Z f(y) dµ∗x(y)− Ix(f)
���� ≤

������Z f(y) dµ∗x(y)−
X
V ∈V

fV µ
∗
x(V )

������+������XV ∈V

fV µ
∗
x(V )− Ix(f)

������
≤ ε+

X
V ∈V \Vn

fV µ
∗
x(V ) +

������ XV ∈Vn

fV µ
∗
x(V )− Ix(f)

������
≤ 2ε+

������ XV ∈Vn

Ix(fV 1V )− Ix(f)

������
≤ 2ε+

������ XV ∈Vn

Ix(fV 1V )−
X
V ∈Vn

I[x]Fkn
(fV 1V )

������+������ XV ∈Vn

I[x]Fkn
(fV 1V )− Ix(f)

������
≤ 3ε+

������ XV ∈Vn

I[x]Fkn
(fV 1V )−

X
V ∈Vn

I[x]Fkn
(f1V )

������+������ XV ∈Vn

I[x]Fkn
(f1V )− Ix(f)

������
≤ 4ε+ |Ix(f)− I[x]Fkn

(f)|+������ XV ∈Vn

I[x]Fkn
(f1V )− I[x]Fkn

(f)

������
≤ 5ε+

X
V ∈V \Vn

I[x]Fkn
(f1V )

≤ 5ε+ µ[x]Fkn

�
X \

[
Vn
�

sup
x∈X

f(x)

≤ 5ε+
���µ[x]Fkn

�
X \

[
Vn
�
− µx

�
X \

[
Vn
���� sup
x∈X

f(x) +

µx
�
X \

[
Vn
�

sup
x∈X

f(x)

≤ 7ε.

As ε > 0 was arbitrary, it follows that Ix(f) =
R
f(y) dµ∗x(y). a

In particular, it follows that µ∗x is a probability measure on X, for every x ∈ X2.
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As E admits no D-invariant probability measures, it must be the case that

∀x ∈ X2 (µ∗x is not D-invariant).

By Proposition 2.10, for each x ∈ X2 there exists g ∈ G and U ∈ U such that

µ∗x(g(U)) 6=
Z
U
Dg(y) dµ∗x(y).

By choosing n ∈ N sufficiently large and setting V = U ∩Xgn, it follows that

µ∗x(g(V )) 6=
Z
V
Dg(y) dµ∗x(y).

By Sublemma 5.5, we can find a countable partition X of X into E-invariant Borel

sets and natural numbers kB, for B ∈ X , such that for all B ∈ X , one of the

following holds:

1. ∀x ∈ B
�
µ[x]FkB

(g(V )) < I[x]Fkn
(Dg1V )

�
.

2. ∀x ∈ B
�
µ[x]FkB

(g(V )) > I[x]Fkn
(Dg1V )

�
.

Noting that

µ[x]FkB
(g(V )) =

P
y∈[x]FkB

∩g(V )D(y, x)P
y∈[x]FkB

D(y, x)

and

I[x]Fkn
(Dg1V ) =

P
y∈[x]FkB

∩V D(g(y), y)D(y, x)P
y∈[x]FkB

D(y, x)
=

P
y∈g([x]FkB

)∩g(V )D(y, x)P
y∈[x]FkB

D(y, x)
,

it follows that the above two conditions are equivalent to:

1. ∀x ∈ B
�
D(g([x]Fkn ) ∩ g(V ), [x]Fkn ∩ g(V )) > 1

�
.

2. ∀x ∈ B
�
D(g([x]Fkn ) ∩ g(V ), [x]Fkn ∩ g(V )) < 1

�
.

In case (1), 〈Fkn , g, g(V )〉 is a type 3 witness to D-negligibility. In case (2),¬
g(Fkn), g−1, g(V )

¶
is a type 3 witness to D-negligibility. a

To complete the proof of the theorem, it is now sufficient to show the following:
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Lemma 5.6. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, and E can be partitioned into countably

many E-invariant Borel sets which admit witnesses to D-negligibility. Then E is D-

compressible.

Proof. It is trivial to check that E must beD-aperiodic. There are now essentially

four cases:

• E is smooth: Let B be a Borel transversal of E, and note that we can easily

build a pairwise disjoint sequence of Borel complete sections Bn ⊆ X for E,

with B0 = B, such that

∀n ∈ N ∀x ∈ X (Bn ∩ [x]E is D-finite and D(Bn+1 ∩ [x]E, Bn ∩ [x]E) > 1) .

For each n ∈ N, fix a Borel function ϕn : E ∩ (Bn ×Bn+1) → [0, 1] such that:

1. ∀x ∈ Bn

�P
y∈Bn+1∩[x]E ϕn(x, y) = 1

�
.

2. ∀y ∈ Bn+1

�P
x∈Bn∩[y]E ϕn(x, y) ≤ 1

�
.

Now define ϕ ∈ [JDK] by

ϕ(x, y) =

8>><>>: ϕn(x, y) if n ∈ N, x ∈ Bn, and y ∈ Bn+1,

x if x /∈ Sn∈NBn and y = x,

0 otherwise.

It is clear that ϕ is a D-compression of E.

• X admits a witness to D-negligibility of type 1: Fix a Borel complete section

B ⊆ X for E such that the restriction of <D to each class of E|B is a discrete

linear order. As we have already handled the smooth case, we may assume that

each of these restrictions is of type Z. Let + : B → B be the corresponding

successor function, define f ∈ [E] by

f(x) =

8<: x+ if x ∈ B,
x otherwise,
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and set

ϕ(x, y) =

8<: ϕf (x, y) if x ∈ B,
ϕid(x, y) otherwise.

Clearly ϕ is a D-compression of E.

• X admits a witness to D-negligibility of type 2: Fix a partition of X into Borel

sets Bn ⊆ X and an increasing sequence of finite Borel equivalence relations of

Fn ⊆ E such that:

1. For all x ∈ X and all B in the algebra B generated by the Bn’s, µ[x]Fn
(B)

converges uniformly in x to some real number µx(B).

2. For each B ∈ B, the map x 7→ µx(B) is E-invariant.

3.
P
n∈N µx(Bn) < 1.

Clearly we can find a countable partition X of X into E-invariant Borel sets

such that for each B ∈ X , there exists εB > 0 and kB ∈ N such that

µx(Bk) ≤ inf
n∈N

µx

�[
k≥n

Bk

�
− εB,

for all x ∈ B and k ≥ kB. Moreover, we can ensure that

BkB is a complete section for E|B.

For a, b ∈ B, we will write a � b if there exists ϕ ∈ [JDK] such that

domD(ϕ) = a and rngD(ϕ) ≤ b.

We will refer to such maps as injections from a into b.

Sublemma 5.7. Suppose that X is a Polish space, E is a countable Borel

equivalence relation on X, D : E → R+ is a Borel cocycle, a, b ∈ B, and F ⊆ E

is a finite Borel subequivalence relation of E such that I[x]F (a) ≤ I[x]F (b), for all

x ∈ X. Then there is an injection ϕ ∈ [JDK] of a into b such that

∀(x, y) ∈ E (ϕ(x, y) > 0 ⇒ xFy).
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Proof. Noting that I[x]F (a) ≤ I[x]F (b) implies that for all x ∈ X,X
y∈[x]F

a(y)|y|x ≤
X

y∈[x]F

b(y)|y|x,

the sublemma then follows easily from the smoothness of F . a

Now fix B ∈ X0. We will recursively construct injections ϕk ∈ [JDK] from Bk

into
S
`>kB B`, for k ≥ kB, such thatX

k≥kB
rngD(ϕk) ≤

X
k>kB

1Bk .
Granting that we have accomplished this, set ϕk = ϕid for k < kB, let k(x) be

the unique natural number such that x ∈ Bk(x), and observe that

ϕ(x, y) = ϕk(x)(x, y)

is the desired D-compression. In building the ϕk’s, we will also ensure that

∀∞` ∈ N ∀x, y ∈ X (ϕk(x, y) > 0 ⇒ xF`y),

which implies that

Ix(domD(ϕk)) = Ix(rngD(ϕk)).

Suppose that we have accomplished this for kB ≤ ` < k, and note that for all

B ∈ X and x ∈ B,

Ix(1Bk) ≤
X
j≥k

Ix(1Bj)− εB

=
X
j≥k

Ix(1Bj) +
X

kB≤j<k
Ix(dom(ϕj))−

X
kB≤j<k

Ix(rng(ϕj))− εB

=
X
j≥kB

Ix(1Bj)− X
kB≤j<k

rng(ϕj)− εB.

It follows that for ` ∈ N sufficiently large,

I[x]F` (1Bk) ≤ X
j≥kB

I[x]F` (Bj)−
X

kB≤j<k
I[x]F` (rng(ϕj))− εB.

By Sublemma 5.7, there is an injection ϕk ∈ [JDK] of 1Bk intoX
j≥kB

1Bj − X
kB≤j<k

rngD(ϕj)

such that ∀(x, y) ∈ E (ϕk(x, y) > 0 ⇒ xF`y).
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• X admits a witness to D-negligibility of type 3: Fix a finite Borel equivalence

relation F ⊆ E, a Borel automorphism f ∈ [E], and a Borel complete section

B ⊆ X such that

∀x ∈ X
�
D(f([x]F ) ∩B, [x]F ∩B) > 1

�
.

Define R ⊆ E|B by

R = {(x, y) ∈ E : x, y ∈ B and y ∈ f([x]F )},

and find a Borel function ψ : R→ [0, 1] such that:

1. ∀x ∈ B
�P

y∈Rx ψ(x, y) = 1
�
.

2. ∀y ∈ B (
P
x∈Ry ψ(x, y) ≤ 1).

Now define ϕ ∈ [JDK] by

ϕ(x, y) =

8>><>>: ψ(x, y) if x ∈ B and y ∈ Rx,

1 if x 6∈ B,
0 otherwise.

It is clear that ϕ is a D-compression of E.

For the general case, partition X into countably many E-invariant Borel sets

which fall into one of these categories, and paste the D-compressions together. a

Remark 5.8. In the invariant case, it is not difficult to modify the proof of Lemma

5.6 to show that whenever its hypotheses are satisfied, there is a compression of E.

This gives a new proof of Theorem 3.10, although it is essentially the same proof as

that of Nadkarni [61] in the hyperfinite case.

Next, we note that the results of Becker-Kechris (see [52]) on paradoxicality also

have analogs in the D-invariant setting. We say that E is D-paradoxical if there exist

a, b ∈ B such that a + b = 1 and a ≈ b ≈ 1. We refer to such a pair a, b as a

D-paradoxical decomposition.
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Theorem 5.9. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and D : E → R+ is a Borel cocycle. Then the following are equivalent:

1. There is no D-invariant probability measure on X.

2. E is D-paradoxical.

Proof. To see (2) ⇒ (1), simply note that a ≈ b ≈ 1 implies that both a and

b are complete sections for E, thus any injection of 1 into a or b is necessarily a

D-compression.

To see (1) ⇒ (2), suppose that ϕ ∈ [JDK] is a D-compression of E, set

an = ϕn[1− ϕ[1]],

put

a∞ = lim
n→∞

ϕn[1],

and define

a =
X
n∈N

a2n and b = a∞ +
X
n∈N

a2n+1.

It is clear that a � b � 1. We claim that 1 � a. To see this, fix a countable sequence

of Borel automorphisms fn : X → X such that

∀n ∈ N

�
E =

[
m≥n

graph(fm)

�
,

put ϕn = ϕfn � a0, and observe that

∀x ∈ X
 X
n∈N

[rngD(ϕn)](x) = ∞
!
.

Setting bn = 1−Pm<n rngD(ϕn) and ψn = ϕ∗n � bn, it follows that
P
n∈N dom(ψn) = 1

and rng(ψn) ≤ a0 for each n ∈ N, thus

π(x, y) =
X
n∈N

[ϕn ∗ ψn](x, y)

is an injection of 1 into a.

It only remains to note the following variant of the Schröder-Bernstein Theorem:
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Lemma 5.10. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, D : E → R+ is a Borel cocycle, a, b ∈ B are Borel, and a � b � a.

Then a ≈ b.

Proof. Fix injections ϕ and ψ in [JDK] of a into b and b into a. Set

an = (ψ ∗ ϕ)n[a]− (ψ ∗ ϕ)n ∗ ψ[b]

and

bn = (ψ ∗ ϕ)n ∗ ψ[b]− (ψ ∗ ϕ)n+1[a],

put a∞ =
P
n∈N an, b∞ =

P
n∈N bn, and c∞ = limn→∞(ψ ∗ ϕ)n, and define

π = ϕ � a∞ + ψ∗ � (b∞ + c∞).

Now note that

domD(π) = domD(ϕ � a∞ + ψ∗ � (b∞ + c∞))

= a∞ + b∞ + c∞

= a,

and

rngD(π) = rngD(ϕ � a∞ + ψ∗ � (b∞ + c∞))

=
X
n∈N

rngD(ϕ � an) +
X
n∈N

rngD(ψ∗ � bn) + rngD(c∞)

=
X
n∈N

ϕ ∗ (ψ ∗ ϕ)n[a]− ϕ ∗ (ψ ∗ ϕ)n ∗ ψ[b] +X
n∈N

ψ∗ ∗ (ψ ∗ ϕ)n ∗ ψ[b]− ψ∗ ∗ (ψ ∗ ϕ)n+1[a] + ψ∗
h

lim
n→∞

(ψ ∗ ϕ)n[a]
i

=
X
n∈N

(ϕ ∗ ψ)n ∗ ϕ[a]− (ϕ ∗ ψ)n+1[b] +
X
n∈N

(ϕ ∗ ψ)n[b]− (ϕ ∗ ψ)n ∗ ϕ[a] +

lim
n→∞

(ϕ ∗ ψ)n ∗ ϕ[a]

= b.

It follows that a ≈ b. a
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Remark 5.11. As in the invariant case, it is not hard to modify the above proof to

show that the D-compressibility of E is equivalent to the existence of a partition of

unity into fractional Borel sets bn ∈ B such that ∀m,n ∈ N (bm ≈ bn).

Suppose f : X → X is Borel. A probability measure µ on X is f -invariant if

∀B ⊆ X Borel (µ(f−1(B)) = µ(B)).

When f is injective, the invariance of µ with respect to f is equivalent to the invariance

of µ with respect to the corresponding orbit equivalence relation. This is false for

many-to-one functions, however. As an application of Theorem 5.2, we will now

answer the following:

Question 5.12 (Nadkarni). Suppose that X is a Polish space and f : X → X

is a countable-to-one Borel function. Is there a version of compressibility which is

equivalent to the existence of an f -invariant probability measure?

The first step towards answering this question is to give an equivalent version of

invariance in terms of cocycles. The tail equivalence relation associated with f is

xEt(f)y ⇔ ∃m,n ∈ N (fm(x) = fn(y)).

Proposition 5.13. Suppose X is a Polish space, f : X → X is a countable-to-1

Borel automorphism, D : Et(f) → R+ is a Borel cocycle, and µ is a D-invariant

probability measure on X. Then

µ is f -invariant ⇔ ∀∗µx ∈ X

� X
f(y)=x

D(y, x) = 1

�
.

Proof. Fix a partition of X into Borel sets Xn, and note that for B ⊆ X Borel,

µ(f−1(B)) =
X
n∈N

µ(f−1(B) ∩Xn)

=
X
n∈N

Z
B∩f(Xn)

D(f−1(x), x) dµ(x)

=
Z
B

X
f(y)=x

D(y, x) dµ(x).
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It follows that if
P
f(y)=xD(y, x) = 1 for µ-almost every x ∈ X, then µ is f -invariant.

Conversely, if µ is f -invariant then for all Borel sets B ⊆ X,Z
B

1 dµ(x) = µ(B) = µ(f−1(B)) =
Z
B

X
f(y)=x

D(y, x) dµ(x),

thus
P
f(y)=xD(y, x) = 1 for µ-almost all x ∈ X. a

Accordingly, we say that a cocycle D : Et(f) → R+ is f -invariant ifX
y∈[x]E

D(y, x) = 1,

for all x ∈ X. Of course, when f is injective this information alone completely

determines D. In the many-to-1 case, this puts a serious limitation on the sorts of

cocycles which can appear, but certainly does not fully determine them. In particular,

f -invariance has nothing to say about the restriction of the cocycle to the smooth

equivalence relation associated with f , which is given by

xEs(f)y ⇔ f(x) = f(y).

In some sense, however, this is the only missing information:

Proposition 5.14. Suppose that X is a Polish space, f : X → X is a Borel auto-

morphism, and D : Es(f) → R+ is a Borel cocycle. Then there is at most one way

of extending D to an f -invariant cocycle.

Proof. Suppose that D′ : Et(f) → R+ is such an extension. Then

D′([x]Es(f), f(x)) = 1,

thus

D′(x, f(x)) = D(x, [x]Es(f))D
′([x]Es(f), f(x)) = D(x, [x]Es(f)).

It follows that

D′(x, fm(x)) =
Y
i<m

D′(f i(x), f i+1(x)) =
Y
i<m

D(f i(x), [f i(x)]Es(f)).
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Now suppose xEt(f)y, find m,n ∈ N such that fm(x) = fn(y), and note that

D′(x, y) = D′(x, fm(x))D′(fm(x), fn(y))D′(fn(y), y)

=
Y
i<m

D(f i(x), [f i(x)]Es(f))/
Y
j<n

D(f j(x), [f j(x)]Es(f)),

thus D′ is completely determined by D. a

Finally, we are ready to answer Nadkarni’s question:

Theorem 5.15. Suppose X is a Polish space and f : X → X is an aperiodic ℵ0-to-1

Borel function. Then exactly one of the following holds:

1. There is an f -invariant probability measure on X.

2. For every Borel set B ⊆ X with f(B) = B and every Borel cocycle D :

Es(f |B) → R+ which has an f |B-invariant extension D′ : Et(f |B) → R+,

there is a D′-compression of Et(f |B).

Proof. To see (1) ⇒ ¬(2), suppose that µ is an f -invariant probability measure

on X. By Proposition 2.1, there is a conull Borel Et(f)-complete section A ⊆ X such

that µ|A is Et(f)|A-quasi-invariant. As f−1(A \ f(A)) ∩ A = ∅, it follows that

µ(A \ f(A)) = µ(f−1(A \ f(A))) = 0,

thus

µ([A \ f(A)]Et(f)) = µ([A \ f(A)]Et(f) ∩ A)

= µ([A \ f(A)]Et(f)|A)

= 0.

Similarly, as µ(A \ f−1(A)) ≤ µ(f−1(f(A) \ A)) = 0, it follows that

µ([f(A) \ A]Et(f)) = µ([f−1(f(A) \ A)]Et(f))

= µ([[A]Es(f) \ f−1(A)]Et(f))

= µ([A \ f−1(A)]Et(f))

= µ([A \ f−1(A)]Et(f) ∩ A)

= µ([A \ f−1(A)]Et(f)|A)

= 0.
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Hence, there is a conull Et(f)-invariant Borel set A′ ⊆ X such that A∩A′ = f(A)∩A′.

Setting B = A ∩ A′, it follows that B = f(B). Letting D′ : Et(f |B) → R+ be the

cocycle associated with µ|B, it follows that Et(f |B) is not D′-compressible.

To see ¬(2) ⇒ (1), suppose that B ⊆ X is a conull Borel Et(f)-complete section,

f(B) = B, D : Et(f |B) → R+ is an f -invariant Borel cocycle, and Et(f |B) is not

D-compressible. By Theorem 5.2, there is a D-invariant probability measure µ. It

follows that A 7→ µ(A ∩B) is an f -invariant probability measure. a

We will close this section by showing that whenever E is D-aperiodic, there is a

D-negligible E-invariant comeager Borel set C ⊆ X. This generalizes a theorem of

Wright [80], who proved the special case when X is a perfect Polish space, D = 1,

and E is generated by a countable group of homeomorphisms with a dense orbit.

Theorem 5.16 (Kechris-Miller). Suppose X is a Polish space, E is a countable

Borel equivalence relation on X, D : E → R+ is a Borel cocycle, and E is D-aperiodic.

Then there is an invariant comeager Borel set C ⊆ X and a smooth D-aperiodic Borel

subequivalence relation of E|C. In particular, E|C admits no D-invariant probability

measures.

Proof. Fix a decreasing, vanishing sequence of Borel sets An ⊆ X which are

complete sections for E. Recursively define Borel functions kn : X → N by setting

k0(x) = 0 and

kn+1(x) = min{k ∈ N : Ak ∩ [x]E ( Akn(x) ∩ [x]E}.

It is clear that the sets

Bn = {x ∈ X : x ∈ Akn(x) \ Akn+1(x)}.

are complete sections for E which partition X. By neglecting an E-invariant Borel set

on which E is D-periodic and thus smooth, we may assume each E|Bn is D-aperiodic.

Let c : [E]<∞ → N be the Borel ℵ0-coloring of the graph G from the proof

of Proposition 3.1. For α ∈ NN, recursively define an increasing sequence of fsr’s

Fα
n ⊆ E by setting Fα

0 = ∆|B0, and putting xFα
n+1y if either xFα

n y or

∃S ∈ [E]<∞
�
c(S) = n and x, y ∈ S and ∃z ∈ B0∃T ⊆ Cn (S = [z]Fnα ∪ T )

�
,
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where Cn = (B1 ∪ · · · ∪Bn) \ dom(F n
α ). Setting Fα

∞ =
S
n∈N F

α
n , we claim that

∀∗α ∈ NN∀∗x ∈ X (|[x]Fα∞|x = ∞). (†)

Granting this, it follows that there exists α ∈ NN such that

B = {x ∈ X : |[x]Fα∞| = ∞}

is comeager. Set C = [B]E, fix Borel automorphisms fn : X → X such that

f0 = id and E =
[
n∈N

graph(fn),

let n(x) be the least natural number such that fn(x)(x) ∈ B, and define F ⊆ E|C by

xFy ⇔ fn(x)F
α
∞fn(y).

As B0 is a transversal of F , it follows that F is smooth and D-aperiodic.

It remains to prove (†). It is enough to show that

∀x ∈ X ∀∗α ∈ NN (|[x]Fα∞|x = ∞),

by the Kuratowski-Ulam Theorem (see Theorem 8.41 of Kechris [51]). Noting that

{α ∈ NN : |[x]Fα∞|x = ∞} =
\
n∈N

{α ∈ NN : |[x]Fα∞|x > n},

and that the latter sets are clearly open, it suffices to show that each

{α ∈ N : |[x]Fα∞ |x > n}

is dense. So suppose that Ns is a basic neighborhood of NN with x ∈ S
n<|s|Bn.

Defining F s
|s| as before, it follows that we can find S ∈ [E]<∞, containing x, which is

the union of a single F s
|s|-class with a set T ⊆ B|s|+1 \ dom(F s

|s|) such that |T |x > n.

Letting s′ = s_〈c(S)〉, it follows that

∀α ∈ Ns′ (|[x]Fα∞|x > n),

which completes the proof. a
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6 Ends of Graphs

Suppose that X is a Polish space and E is a countable Borel equivalence relation

on X. A graphing of E is a Borel graph G ⊆ X2 whose connected components are

exactly the equivalence classes of E. Strengthening results of Adams [1] and Paulin

[65] in the measure-theoretic context, here we will examine what sort of information

about E can be extracted from certain features of G .

A path through G is a sequence 〈x0, x1, . . . , xn〉 of distinct vertices of G , with

(xi, xi+1) ∈ G for all i < n. A ray through G is an infinite sequence α of distinct

vertices of G , with (αn, αn+1) ∈ G for all n. Two rays α, β are end-equivalent if

for any finite set S of vertices of G , there is a G -path from α to β which avoids S.

Equivalently, α and β are end-equivalent if there are infinitely many paths from α

to β, no two of which have any intermediate vertices in common. The ends of G are

simply the end equivalence-classes of G .

����������������: α

XXXXXXXXXXXXXXXXz β

γ0 γ1 γ2 ···

Figure 3.1: α, β are end-equivalent if there is an infinite ladder of paths between
them.

If (T , x) is a rooted tree, then the ends of (T , x) can be identified with the

branches of (T , x). To see this, simply note that every end-class contains some ray

beginning at x, this ray is necessarily a branch of (T , x), and any two such branches

which are end-equivalent are identical.

When G is connected, there is a more substantial sense in which the ends of a

graph generalize the branches of a tree. For each ray x through G and finite vertex

set S, let N x
S be the set of ends of G which contain a ray who is connected to x via a

G -path which avoids S. It is straightforward to check that the topology τ generated
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by the N x
S ’s is a zero-dimensional, Hausdorff topology on the ends of G . Moreover, if

G is countable then τ is second countable, and if G is locally finite then τ is compact.

One might refer to the ends that we have defined above as combinatorial ends.

There is also a topological notion of an end which is in some sense more natural. For

locally finite graphs, the two notions do not differ. On the other hand, most of the

theorems we shall consider fail for relatively uninteresting reasons if we substitute

topological ends for combinatorial ends. The reader is encouraged to look to Diestel-

Kühn [22] for more on this distinction.

Now suppose that G is a Borel graph on a standard Borel space X. We use [G ]∞

to denote the standard Borel space of rays through G , and we use EG to denote the

end-equivalence relation on [G ]∞. Although we will prove a variety of stronger results,

the primary information we wish to get across is summarized in Figure 3.2.

Feature of each component of G Information about E
Locally finite and exactly 1 end Aperiodic

Exactly 2 ends Hyperfinite
At least 3 ends, but only finitely many Smooth

At least 3 ends, but fewer than perfectly many Compressible

Figure 3.2: Features of G which determine information about EG .

Theorem 6.1. Suppose that X is a Polish space and E is a countable Borel equiva-

lence relation on X. Then there is a locally finite Borel graphing of E whose compo-

nents each have exactly 1 end.

Proof. We begin with the case that E is compressible. By Jackson-Kechris-

Louveau [48], we can find a locally finite graphing H of E. Define a graphing G of

E × I(N) by putting ((x,m), (y, n)) ∈ G in case

((x, y) ∈ H and m = n) or (x = y and m = n± 1).

Clearly G is locally finite. We will show that every component of G has exactly

one end. Suppose that C is an equivalence-class of E × I(N), 〈(xi,mi)〉 , 〈(yi, ni)〉
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are rays of G |C, and S is a finite subset of C. Fix i ∈ N sufficiently large that

(xi,m), (yi, n) 6∈ S for all m ≥ mi and n ≥ ni, and fix ` ≥ mi, ni such that

∀(z, k) ∈ S (k < `).

It is clear that the “vertical” G -path from (xi,mi) to (x, `) and the “vertical” G -path

from (yi, ni) to (yi, `) avoids S, as does any “horizontal” path from (x, `) to (y, `),

thus there is a path from (xi,mi) to (yi, ni) which avoids S.

For the general case, we employ a similar idea. By Jackson-Kechris-Louveau [48],

we can partition X into complete sections Bn ⊆ X for E. Let n(x) be the unique

natural number such that x ∈ Bn(x), and note that by Jackson-Kechris-Louveau [48],

we can find locally finite graphings Gn of E|Bn. By Theorem 18.10 of Kechris [51], we

can find a Borel function ϕ : X → X such that n(ϕ(x)) = n(x) + 1. By removing an

E-invariant Borel set on which E is compressible, we may assume that ϕ is finite-to-1.

Now define a graphing G of E by

G =
¦
(x, y) ∈ E : ϕ(x) = y or ϕ(y) = x or ∃n ∈ N ((x, y) ∈ Gn)

©
.

Clearly G is locally finite. Again, we will show that every component of G has exactly

one end. Suppose that C is an equivalence-class of E, 〈(xi,mi)〉i∈N , 〈(yi, ni)〉i∈N are

rays of G |C, and S ⊆ C is finite. Fix i ∈ N sufficiently large that

∀n ∈ N (ϕn(xi), ϕ
n(yi) 6∈ S),

and fix ` ≥ n(xi), n(yi) sufficiently large that

∀z ∈ S (n(z) < `).

Clearly the path along ϕ from xi to B` avoids S, as does the path along ϕ from yi to

B`. As the corresponding elements of B` are G`-connected via a path which avoids S,

it follows that there is a path from xi to yi which avoids S. a

Remark 6.2. As noted by Adams [1], the situation is much different for treeings T

with 1 end. This is because the function f which sends x to its unique T -neighbor

in the direction of the end is a Borel function which induces T , thus E = Et(f) must

be hyperfinite by Jackson-Kechris-Louveau [48].
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Next we turn to the case of 2 ends:

Theorem 6.3. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a Borel graphing of E, and B ⊆ [G ]∞ is an EG -invariant Borel

set consisting of exactly 2 end-classes of every component of G . Then there is a Borel

E-complete section B ⊆ X and a Borel forest L ⊆ G |B whose restriction to each

class of E is a segment, a ray, or a line. In particular, E is hyperfinite.

Proof. A set S ∈ [E]<∞ disconnects B-ends if there are rays α, β ∈ B through

G |[S]E which are not connected by a G -path that avoids S. Let F ⊆ E be a maximal

fsr whose classes are G -connected and disconnect B-ends. The main observation is

that, for each E-class C, there is a canonical way of picking out a tree T ⊆ G |C of

vertex degree ≤ 2, which passes through each (F |C)-class exactly once. To see this,

we must first establish several facts regarding the manner in which the classes of F |C
sit within G |C.

For S ∈ [E]<∞, define

GS = {(x, y) ∈ G |C : x, y 6∈ S},

and put BS = B ∩ [GS|C]∞.

PPPPPPi

������)

γα

α

α′
����
S

γ

������1

PPPPPPq

γβ

β

β′

Figure 3.3: If α, β are GS-connected, then so too are α′, β′.

Lemma 6.4. Each S ∈ C/F disconnects every pair of end-inequivalent rays of BS.

Proof. Fix end-inequivalent rays α, β ∈ BS and suppose, towards a contradiction,

that there is a GS-path γ from α to β. Fix (G |C)-rays α′ ∈ [α]EG
, β′ ∈ [β]EG

which are

disconnected by S, and note that by removing initial segments, we may assume that
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α′, β′ are rays through GS. Let γα be a GS-path from α′ to α whose terminal point is

the initial point of γ, and let γβ be a GS-path from β to β′ whose initial point is the

terminal point of γ. Then γαγγβ is a GS-path from α′ to β′, a contradiction. a

� r
γα

α ����
S

����
S′

γ

-r
γβ

β

Figure 3.4: If S ′ is not GS-connected to α or β, it cannot disconnect them.

Lemma 6.5. If S, S ′ are distinct classes of F |C, then S ′ is GS-connected to a ray

though GS.

Proof. Fix end-inequivalent rays α, β ∈ BS, let γα be a G -path of minimal

length from α to S, let γβ be a G -path of minimal length from S to β, and let γ be a

(G \ GS)-path from the terminal point of γα to the initial point of γβ. Then γαγγβ is

a GS′-path from α to β. Together with Lemma 6.4, this contradicts the fact that S ′

disconnects ends. a

Lemma 6.6. Suppose that S, S ′, S ′′ are distinct classes of F |C, and S ′ is GS-connected

to S ′′. After reversing the roles of S ′, S ′′ if necessary, every G -path from S to S ′ goes

through S ′′.

Proof. Let α, β be end-inequivalent rays of BS∪S′∪S′′ . Combining our last obser-

vation with the fact that S ′, S ′′ are GS-connected, it follows that, after reversing the

roles of α, β if necessary, we may assume that S ′, S ′′ are both GS-connected to β.

Let γβ,S′ be a path of minimal length from β to S ′ ∪ S ′′, noting that by reversing

the roles of S ′, S ′′ if necessary, we may assume that γβ,S′ avoids S ′′. Now suppose,

towards a contradiction, that there is a path γS′,S from S ′ to S which avoids S ′′. Let

γS,α be a G -path of minimal length from S to α, let γS be a (G \ GS)-path from the
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� r
γS,α

α ����
S

γS

γS′,S
����
S′

����
S′′

γS′ γβ,S′ r - β

Figure 3.5: If γS′,S avoids S ′′, then α, β are GS′′-connected.

terminal point of γS′,S to the initial point of γS,α, and let γS′ be a (G \GS′)-path from

the terminal point of γβ,S′ to the initial point of γS′,S. Then γβ,S′γS′γS′,SγSγS,α is a

GS′′-path from β to α, contradicting Lemma 6.4. a

Now let d be the graph metric on G |C, let F be the set of classes of F |C, and let

TC be the set of all distinct pairs (S, S ′) ∈ F 2 such that

∀S ′′ ∈ F (S ′, S ′′ are GS-connected ⇒ d(S, S ′) ≤ d(S, S ′′)).

Lemma 6.7. TC is a tree whose vertices are all of degree ≤ 2.

Proof. By our previous observations, it suffices to show that TC is symmetric and

contains no cycles. To see that TC is symmetric, suppose that (S, S ′) 6∈ TC , and find

S ′′ ∈ F such that S ′, S ′′ are GS-connected and d(S, S ′′) < d(S, S ′). Then S, S ′′ are GS′-

connected and every G -path from S ′ to S goes through S ′′, thus d(S ′, S ′′) < d(S ′, S),

so (S ′, S) 6∈ TC .

Now suppose, towards a contradiction, that there is a TC-cycle 〈Si〉i<n of length

n ≥ 3. Put S =
S
i<n Si, let α, β be end-inequivalent rays in BS, let γα be a G -path

of minimal length from α to S, let γβ be a G -path of minimal length from S to β,

and find Sn in our TC-cycle which avoids γα, γβ. Then there is a G -path γ from the

terminal point of γα to the initial point of γβ, and it follows that γαγγβ is a GSn-path

from α to β, contradicting the fact that Sn disconnects α, β. a



252

� r
γα

α ��������
Sn

����
γ

-r
γβ

β

Figure 3.6: Not all elements of a TC-cycle can disconnect α, β.

Finally we are ready to build the desired forest. Set T =
S

TC ⊆ ([E]<∞)2, noting

that T is a Borel forest. Now associate, in a Borel manner, with each (S, S ′) ∈ T a

G -path γS,S′ of minimal length connecting S, S ′ such that γS,S′ = γS′,S. Also associate,

in a Borel manner, with each F -class S a (G \GS)-path γS which connects γS,S′ , γS,S′′ ,

where S ′, S ′′ are the T -neighbors of S (if S does not have two T -neighbors, let

γS = ∅). Setting

L = {(x, y) ∈ E : ∃(S, S ′) ∈ T ((x, y) occurs in γS or γS,S′)},

it easily follows that L is a Borel subgraph of G | dom(L ) whose restriction to any

class of E is a tree of vertex degree ≤ 2. a

Remark 6.8. Lemma 3.19 of Jackson-Kechris-Louveau [48] provides a sort of con-

verse for Theorem 6.3. It implies that under (CH), if E is hyperfinite, then there is a

universally measurable EG -invariant set B ⊆ [G ]∞ which consists of 1 or 2 end-classes

of almost every component of G . In fact, this is true for graphings as well. This follows

from the simple fact that every Borel graphing of a hyperfinite equivalence relation

has a spanning Borel subforest.

Remark 6.8 leads to the following question:

Question 6.9. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, and every Borel graphing of E has a spanning Borel subforest. Must

E be hyperfinite?

Here we simply note the following related fact:
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Proposition 6.10 (Kechris-Miller). Suppose X is a Polish space, E is a countable

Borel equivalence relation on X, G is a Borel graphing of E, and n ∈ N. Then there

is a spanning Borel subgraphing H ⊆ G which has no cycles of length ≤ n.

Proof. Let degG (x) denote the vertex degree of x. We say that G is bounded if

sup
x∈X

degG (x) <∞.

Lemma 6.11. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a bounded Borel graphing of E, n ∈ N, and H ⊆ G is a

Borel graph with no cycles of length ≤ n. Then there is a spanning Borel graph

H ⊆ H ′ ⊆ G which has no cycles of length ≤ n.

Proof. Define X ⊆ [E]<∞ by

X = {S ∈ [E]<∞ : S is a G -cycle of length ≤ n},

and define a graph G on X by

(S, T ) ∈ G ⇔ (S 6= T and S ∩ T 6= ∅).

As G is bounded, so too is G. It follows from Proposition 4.6 of Kechris-Solecki-

Todorcevic [56] that for m ∈ N sufficiently large, there is a Borel coloring c : X →
{0, . . . ,m} of G.

Put G0 = G , and given Gk ⊆ · · · ⊆ G0, set

Xk = {S ∈ X : c(S) = k and S is an Gk-cycle}.

Fix a Borel assignment S 7→ (xS, yS) ∈ (Gk \H )|S of edges to be cut from S ∈ Xk,

and set

Gk+1 = Gk \
[

S∈Xk

{(xS, yS), (yS, xS)}.

Clearly H ′ = Gm+1 is the desired subgraph of G . a

By Feldman-Moore [36], there is an increasing, exhaustive sequence of bounded

Borel graphings Gk ⊆ G . Put H0 = ∅, and given a graph Hk ⊆ Gk with no cycles of
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length ≤ n, apply Lemma 6.11 to find a spanning Borel subgraph Hk ⊆ Hk+1 ⊆ Gk

with no cycles of length ≤ n. It is clear that H =
S
k∈N Hk is as desired. a

Next, we turn to graphs with more ends:

Theorem 6.12. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a Borel graphing of E, and B ⊆ [G ]∞ is an EG -invariant Borel

set consisting of at least three but only finitely many ends from every component of

G . Then E is smooth.

Proof. A G -connected set S ∈ [E]<∞ is a B-isolator if no ray α ∈ B through

G |[S]E is GS-connected to another ray in B with which it is not end-equivalent. Let

F ⊆ E be a maximal fsr whose classes are G -connected B-isolators. It follows from

the maximality of F and the fact that B contains a non-zero, finite number of ends of

each component of G that every E-class contains an F -class. As no two disjoint finite

subsets of an E-class can both be B-isolators, it follows that every E-class contains

exactly one F -class, thus E is smooth. a

Remark 6.13. Theorem 6.12 was noted independently by Blanc [15].

Given a Borel cocycle D : E → R+, a D-ray of G is simply a D-infinite ray of G .

We use [G ]∞D to denote the standard Borel space of D-rays through G . The D-ends

of G are simply the equivalence classes of EG |[G ]∞D .

Theorem 6.14. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a Borel graphing of E, D : E → R+ is a Borel cocycle, and B is

an EG -invariant Borel subset of [G ]∞. Then off of a D-negligible E-invariant Borel

set, B contains 0,1,2, or perfectly many D-ends of every connected component of G .

Proof. It is enough to show that if B contains at least three D-ends and at least

one isolated D-end of every component of G , then X is D-negligible. In fact, we

will show that there is a Borel E-complete section B ⊆ X and a smooth D-aperiodic

subequivalence relation of E|B. This easily implies that X is D-negligible.

Let F ⊆ E be a maximal fsr whose classes are B-isolators. As before, if C is an

E-class, then no two F -classes S0, S1 ⊆ C can isolate the same end of B. Moreover, if
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we associate with each F -class S a D-ray αS ∈ B which it isolates from B, as well as

the GS-connected component XS of αS, then it follows that S0 6= S1 ⇒ αS0 ∩αS1 = ∅.
Setting B =

S
x∈dom(F )X[x]F and defining F ′ ⊆ E by

xF ′y ⇔ ∃x ∈ dom(F ) (x, y ∈ X[x]F ),

it follows that F ′ is a smooth D-aperiodic subequivalence relation of E|B. a

A set B ⊆ X is dense in the D-ends of G if for every finite set S ⊆ X, B intersects

every D-infinite connected component of GS. The following fact can be viewed as a

generalization of the Poincaré recurrence lemma:

Theorem 6.15. Suppose that X is a Polish space, E is a countable Borel equivalence

relation on X, G is a Borel graphing of E, D : E → R+ is a Borel cocycle, and B is

a Borel complete section for E. Then off of a D-negligible E-invariant Borel set, B

is dense in the D-ends of G .

Proof. A G -connected set S ∈ [E]<∞ is a B-isolator if there is a D-infinite

connected component of GS which is disjoint from B. It is enough to show that if

every E-class contains a B-isolator, then X is D-negligible. In fact, we will show that

there is a Borel E-complete section A ⊆ X and a smooth D-aperiodic subequivalence

relation of E|B. This easily implies that X is D-negligible.

Let F ⊆ E be a maximal fsr whose classes are B-isolators, and associate with

each x ∈ dom(F ) the set

Ix = {y ∈ [x]E : [y]G[x]F
is D-infinite and disjoint from B}.

Although it need not be the case that Ix ∩ Iy = ∅ when x, y are F -inequivalent, the

following two lemmas essentially allow us to proceed as if this were the case:

Lemma 6.16. If Ix ∩ Iy 6= ∅, then either Ix ⊆ Iy or Iy ⊆ Ix.

Proof. Of course, we may assume that x, y are F -inequivalent. Fix z ∈ Ix ∩ Iy
and let γ be a G -path of minimal length from z to [x]F ∪ [y]F . By reversing the

roles of x, y is necessary, we may assume that γ avoids [x]F , and therefore that y is

G[x]F -connected to z. It then follows that Iy ⊆ [z]G[x]F
⊆ Ix. a
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Lemma 6.17. For each x ∈ dom(F ), there exists y ∈ dom(F ) such that

Ix ⊆ Iy and ∀z ∈ dom(F ) (Iy ∩ Iz 6= ∅ ⇒ Iz ⊆ Iy).

Proof. Suppose, towards a contradiction, that the lemma fails. It then follows

from Lemma 6.16 that there exists x0, x1, . . . ∈ [x]E such that

Ix ( Ix0 ( Ix1 ( · · · .

Fix w ∈ [x]E ∩B and let γ be a G -path of minimal length from w to the set

I =
[
n∈N

Ixn .

Fix n ∈ N sufficiently large that γ avoids [xn]F . It then follows that w is G[xn]-

connected to an element of Ixn , a contradiction. a

It now follows that the set

Y = {y ∈ dom(F ) : ∀x ∈ dom(F ) (Ix ∩ Iy 6= ∅ ⇒ Ix ⊆ Iy)}

is an E-complete section. Set A =
S
y∈Y Iy, and define F ′ on A by

xF ′z ⇔ ∃y ∈ Y (x, z ∈ Iy and x, z are G[y]F -connected).

It is clear that F ′ is a smooth D-aperiodic subequivalence relation of E|A. a



257

Bibliography

[1] Adams, S.: Trees and amenable equivalence relations. Erg. Theory and Dy-

nam. Systems, 10, 1–14 (1990)

[2] Adams, S., Kechris, A.S.: Linear algebraic groups and countable Borel equiv-

alence relations. J. Amer. Math. Soc., 13, 909–943 (2000)

[3] Alpern, S.: Generic properties of measure-preserving homeomorphisms. Er-

godic Theory, Springer Verlag Lecture Notes in Mathematics, 729, 16–27

(1979)

[4] Anderson, R.D.: The algebraic simplicity of certain groups of homeomor-

phisms. American Journal of Mathematics, 80, 955–963 (1958)

[5] Anzai, H.: On an example of a measure-preserving transformation which is

not conjugate to its inverse. Proceedings of the Japanese Academy of Sci-

ences, 27, 517–522 (1951)

[6] Becker, H., Kechris, A.: The descriptive set theory of Polish group actions.

London Mathematical Society Lecture Notes, 232, Cambridge University

Press, Cambridge (1996)

[7] Bergman, G.: Generating infinite symmetric groups. Preprint (2003)

[8] Bezuglyi, S.: Outer conjugation of the actions of countable amenable groups.

Mathematical physics, functional analysis, 145, 59–63 (1986)

[9] Bezuglyi, S., Dooley, A.H., Kwiatkowski, Topologies on the group of Borel

automorphisms of a standard Borel space. Preprint (2003)



258

[10] Bezuglyi, S., Dooley, A.H., Medynets, K.: The Rokhlin Lemma for homeo-

morphisms of a Cantor set. Preprint (2003)

[11] Bezuglyi, S., Golodets, V. Ya.: Topological properties of complete groups

of automorphisms of a measure space. Theoretical and applied questions of

differential equations and algebra, 259, 23–25 (1978)

[12] Bezuglyi, S., Golodets, V. Ya.: Groups of transformations of a space with

measure and invariants of outer conjugation for automorphisms from nor-

malizers of complete groups of type III. Dokl. Akad. Nauk SSSR, 254, 11–14

(1980)

[13] Bezuglyi, S., Golodets, V. Ya.: Outer conjugacy of actions of countable

amenable groups on a space with measure. Izv. Akad. Nauk SSSR Ser. Mat.,

50, 643–660 (1986)

[14] Bezuglyi, S., Golodets, V. Ya: Topologies on full groups and normalizers of

Cantor minimal systems. Mat. Fiz. Anal. Geom., 9, 455–464 (2002)

[15] Blanc, E.: Proprietes generiques des laminations. Ph.D. Thesis (2002)

[16] Bonnet, R., Monk, J.: (ed) Handbook of Boolean Algebras, Volume I. Else-

vier, Amsterdam (1989)

[17] Clemens, J.D.: Descriptive Set Theory, Equivalence Relations, and Classifi-

cation Problems in Analysis. Ph.D. Thesis, Berkeley (2001)

[18] Connes, A., Feldman, J., Weiss, B.: An Amenable Equivalence Relation

is Generated by a Single Transformation. Ergodic Theory and Dynamical

Systems, 1, 431–450 (1981)

[19] Connes, A., Krieger, W.: Measure space automorphisms, the normalizers

of their full groups, and approximate finiteness. J. Functional Analysis, 24,

336–352 (1977)



259

[20] del Junco, A.: Disjointness of measure-preserving transformations, mini-

mal self-joinings and category. In: Katok, A. (ed) Ergodic theory and dy-

namical systems, I (College Park, Md., 1979–80), 81–89, Progr. Math., 10,
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large gaps, 44, 138

local ∆-witness to the Γ-periodicity of

a, 51

local director, 145

marriage problem, 153

mass of S relative to z, 200

maximal π-discrete section, 10

maximal discrete section, 8

measure algebra, 46

measure on X, 190

non-crossing, 42

normalizer of [E], 170

notion of betweenness induced by L ,

142

nowhere recurrent, 124

odometer, 36, 120, 204

orbit, 26

orbit equivalence relation, 26, 91, 170,

189, 198

orbit equivalence relation of Γ, 1

order-preserving embedding, 112, 117
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ordinals, 39

outer arc, 42

outer measure, 228

paradoxical, 85, 186

partial Γ-transversal, 49

partial π-transversal, 23

partial transversal, 133

partial transversal for EX
Γ , 26

partial transversals of E2/E1, 164

period n part of ϕ, 68, 98

periodic, 24, 51

pre-ordering induced by D, 202

predense, 10

principal ideal induced by a ∈ A, 8

probability algebra, 108

probability measure on X, 191

projection, 126

purely atomic, 12

quasi-ordering induced by f , 117

quotient Borel structure on
Q
iXi/Fi,

168

range of ϕ, 224

recurrent, 145

recurrent part, 124

reduction, 117

remainder when l is divided by n, 34

restriction of ϕ to b, 224

rightmost piece of a, 25

semi-finite, 46

separating family for A, 12

shift, 122

simultaneously Φn-satisfying, 208

smooth, 24, 50, 119, 146, 163

smooth equivalence relation, 242

Stone space, 17

strict period n, 53

strong triangle inequality, 192

strongly k-Bergman, 82

strongly Bergman, 82

strongly nowhere recurrent, 124

support of π, 8

support of bπ, 17

support of f , 169

tail equivalence relation, 117, 241

tight, 193

trajectory equivalent, 137

transversal, 119

transversal of EX
Γ , 26

tree, 38

ultrametric, 192

undirectable, 114

uniform topology on Aut(B), 109

uniform topology on Aut(A), 108

unilateral shift, 14

Vershik automorphism, 40

weak Bergman property, 78

weakly wandering, 211
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witness to D-negligibility of B of type

1, 226

witness to D-negligibility of B of type

2, 226

witness to D-negligibility of B of type

3, 227

zero-dimensional, 192


