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Abstract. We generalize Kada’s definable strengthening of Dil-
worth’s characterization of the class of quasi-orders admitting an
antichain of a given finite cardinality.

Introduction

A binary relation R on a set X is a quasi-order if it is reflexive and
transitive. Two points x, y ∈ X are R-comparable if x R y or y R x,
and R-incomparable otherwise. A set Y ⊆ X is an R-chain if any two
points of Y are R-comparable, and an R-antichain if any two distinct
points of Y are R-incomparable.

Dilworth showed that if k ∈ Z+, X is finite, and there is no R-
antichain of cardinality k + 1, then there is a cover (Ci)i<k of X by
R-chains (see [Dil50, Theorem 1.1]).

A subset of a topological space X is Borel if it is in the σ-algebra
generated by the topology τX of X, analytic if it is a continuous image
of a closed subset of NN, and ℵ0-universally Baire if its preimage under
any continuous function φ : 2N → X has the Baire property.

Here we establish the following strengthening of Dilworth’s theorem:

Theorem 1. Suppose that k ∈ Z+, X is a Hausdorff space, and R is an
ℵ0-universally-Baire quasi-order on X whose incomparability relation
is analytic. Then exactly one of the following holds:

(1) There is a cover (Ci)i<k of X by Borel R-chains.
(2) There is an R-antichain of cardinality k + 1.

The equivalence relation on X associated with R is that with re-
spect to which two points x, y ∈ X are equivalent if x R y and y R x,
and the strict relation associated with R is that with respect to which
two points x, y ∈ X are related if x R y but ¬y R x. Kada estab-
lished the special case of Theorem 1 in which the strict quasi-order
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is co-analytic and both the equivalence and incomparability relations
are analytic (see [Kad89, Theorem 1′]). Whereas his intricate argu-
ment relied heavily upon recursion-theoretic methods, we utilize only
elementary ideas and the G0 dichotomy (see [KST99, Theorem 6.3]),
which itself has a classical proof (see [Mil11, Theorem 8]).

A subset of an analytic Hausdorff space is Σ1
1 if it is analytic. More

generally, for each n ∈ Z+, a subset of an analytic Hausdorff space is
Π1
n if its complement is Σ1

n, and Σ1
n+1 if it is a continuous image of a Π1

n

subset of an analytic Hausdorff space. A subset of an analytic Hausdorff
space is ∆1

n if it is both Σ1
n and Π1

n. Souslin’s theorem ensures that
the families of Borel and ∆1

1 sets coincide (see, for example, [Kec95,
Theorem 28.1]). The axiom of determinacy (AD) implies that the family
of ∆1

2n+1 sets has a rich structural theory analogous to that of the Borel
sets (see, for example, [Jac08]).

We also obtain the following analog of Theorem 1 under determinacy:

Theorem 2 (AD). Suppose that k ∈ Z+, n ∈ N, X is an analytic
Hausdorff space, and R is a quasi-order on X whose incomparability
relation is Σ1

2n+1. Then exactly one of the following holds:

(1) There is a cover (Ci)i<k of X by ∆1
2n+1 R-chains.

(2) There is an R-antichain of cardinality k + 1.

In addition, we generalize Dilworth’s theorem to arbitrary quasi-
orders on analytic Hausdorff spaces under the strengthening of deter-
minacy where the players specify elements of R instead of N (ADR):

Theorem 3 (ADR). Suppose that k ∈ Z+, X is an analytic Hausdorff
space, and R is a quasi-order on X. Then exactly one of the following
holds:

(1) There is a cover (Ci)i<k of X by R-chains.
(2) There is an R-antichain of cardinality k + 1.

In §1, we establish Theorem 1. In §2, we describe the minor alter-
ations to the proof necessary to obtain Theorems 2 and 3. We work in
the base theory ZF + DC throughout.

1. The classical case

A binary relation G on a set X is a graph if it is irreflexive and
symmetric. A (Y -)coloring of G is a function c : X → Y such that
w G x =⇒ c(w) 6= c(x) for all w, x ∈ X. The chromatic number of G,
written χ(G), is the least cardinal κ for which there is a κ-coloring of
G (if such a cardinal exists). We use χfin(G) to denote the supremum
of the chromatic numbers of the graphs of the form G � F , where
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F ⊆ X is a finite set. We use G∗ to denote the supergraph of G with
respect to which two points x, y ∈ X are related if and only if there
is a finite superset F ⊆ X of {x, y} such that c(x) 6= c(y) for every
χfin(G)-coloring c of G � F . Note that if χfin(G) = ℵ0, then G = G∗.

Given a set R ⊆ X × Y , define R−1 = {(y, x) ∈ Y ×X | x R y} and
R±1 = R ∪R−1.

Proposition 4. Suppose that X is a set, G is a graph on X, and G′ ⊆
G∗ is finite. Then there is a finite set F ⊆ X containing

⋃
i<2 proji(G

′)
such that every χfin(G)-coloring c of G � F is a coloring of (G′)±1.

Proof. For all (x, y) ∈ G′, fix a finite superset F(x,y) ⊆ X of {x, y} such
that c(x) 6= c(y) for every χfin(G)-coloring c of G � F(x,y), and observe
that the set F =

⋃
(x,y)∈G′ F(x,y) is as desired.

A set Y ⊆ X is a G-clique if any two distinct points of Y are G-
related, and G-independent if no two points of Y are G-related.

Proposition 5. Suppose that X is a set, G is a graph on X, and
C ⊆ X is a finite G∗-clique. Then |C| ≤ χfin(G).

Proof. By Proposition 4, there is a finite set F ⊆ X containing C such
that c � C is injective for every χfin(G)-coloring c of G � F , in which
case the pigeon-hole principle ensures that |C| ≤ χfin(G).

The horizontal sections of R are the sets Ry = {x ∈ X | x R y},
where y ∈ Y . The vertical sections are the sets Rx = {y ∈ Y | x R y},
where x ∈ X.

Proposition 6. Suppose that X is a set, G is a graph on X for which
χfin(G) < ℵ0, x, y ∈ X, and there is a G∗-clique C ⊆ G∗x ∪ G∗y of
cardinality χfin(G). Then x G∗ y.

Proof. Proposition 4 yields a finite set F ⊆ X containing C ∪ {x, y}
such that c � C is injective and ∀w ∈ {x, y}∀z ∈ C ∩ G∗w c(w) 6= c(z)
for every χfin(G)-coloring c of G � F . But if c is such a coloring, then
c(C) = χfin(G), so c(x) ∈ c(C∩G∗y), thus c(x) 6= c(y), hence x G∗ y.

We use ‖R, ≡R, ⊥R, and<R to denote the comparability, equivalence,
incomparability, and strict relations associated with R.

Proposition 7. Suppose that X is a set and R is a quasi-order on X.
Then R \ ⊥∗R is transitive.

Proof. Suppose, towards a contradiction, that there exist x, y, z ∈ X
for which x (R \ ⊥∗R) y (R \ ⊥∗R) z, as well as a finite superset F ⊆ X
of {x, z} such that c(x) 6= c(z) for every χfin(⊥R)-coloring c of ⊥R � F .
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Then x R z, so x and z are not ⊥R-related, thus χfin(⊥R) < ℵ0. For all
w ∈ {x, z}, the fact that w and y are not ⊥∗R-related yields a χfin(⊥R)-
coloring cw of ⊥R � (F ∪ {y}) for which cw(w) = cw(y) = 0, in which
case the set Cw = c−1

w ({0}) is an R-chain containing {w, y} for which
(F ∪{y})\Cw is a union of the R-chains c−1

w ({i}), for 0 < i < χfin(⊥R),
and therefore does not contain an R-antichain of cardinality χfin(⊥R).
Then the set C0 = (Cx ∩ Ry) ∪ (Cz ∩ Ry) is an R-chain containing
{x, z}, so (F ∪ {y}) \ C0 is not a union of a sequence (Ci)0<i<χfin(⊥R)

of R-chains, since otherwise the function c : F → χfin(⊥R), given by
c � (Ci∩F ) = i for all i < χfin(⊥R), is a χfin(⊥R)-coloring of ⊥R � F for
which c(x) = c(z). Dilworth’s theorem therefore yields an R-antichain
A ⊆ (F ∪ {y}) \ C0 of cardinality χfin(⊥R). Fix u ∈ A ∩ Cx and
w ∈ A ∩ Cz. As u,w /∈ C0, it follows that neither u R y nor y R w,
so the fact that Cx and Cz are R-chains ensures that w <R y <R u,
contradicting the fact that A is an R-antichain.

Define [x, y]R = {z ∈ X | x R z R y} and (x, y]R = [x, y]R \ [x]≡R
.

We use a, v, and (i) to denote concatenation, extension, and the
sequence of length one whose sole entry is i. Fix sequences sn ∈ 2n that
are dense in 2<N, in the sense that ∀s ∈ 2<N∃n ∈ N s v sn, and define
G0 = {(sn a (i) a c, sn a (1− i) a c) | c ∈ 2N, i < 2, and n ∈ N}.

Proposition 8. Suppose that X is a topological space, R is an ℵ0-
universally-Baire quasi-order on X that does not have antichains of ar-
bitrarily large finite cardinality, and ⊥∗R is ℵ0-universally Baire. Then
there is no continuous homomorphism φ : 2N → X from G0 to ⊥∗R.

Proof. As Dilworth’s theorem ensures that χfin(⊥R) < ℵ0, it is suffi-
cient to show that if φ : 2N → X is a continuous homomorphism from
G0 to ⊥∗R, then there exists x ∈ φ(2N) for which there is a continu-
ous homomorphism from G0 to ⊥∗R � (φ(2N) ∩ (⊥∗R)x), since χfin(⊥R)
applications of this fact yield a ⊥∗R-clique of cardinality χfin(⊥R) + 1,
contradicting Proposition 5.

Letting G′ be the pullback of ⊥∗R through φ×φ, it is sufficient to find
c ∈ 2N for which G′c has the Baire property and is not meager, as the
proof of [KST99, Proposition 6.2] ensures that every G0-independent
set with the Baire property is meager, so [KST99, Theorem 6.3] would
then yield a continuous homomorphism ψ : 2N → G′c from G0 to G0 � G′c
(although the existence of such a function also follows from a straight-
forward recursive construction), in which case the point x = φ(c) and
the homomorphism φ ◦ ψ are as desired.

Suppose, towards a contradiction, that every vertical section of G′

with the Baire property is meager, and let R′ be the pullback of R
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through φ × φ. As ⊥∗R and R are ℵ0-universally Baire, the horizontal
and vertical sections of G′ and R′ all have the Baire property. As
⊥R′ ⊆ G′, every vertical section of ⊥R′ is meager, and the Kuratowski-
Ulam theorem (see, for example, [Kec95, Theorem 8.41]) ensures that
‖R′ is comeager, so R′ is not meager.

Lemma 9. There exists (b, d) ∈ G0 for which [b, d]R′ is not meager.

Proof. It is trivial to check that the binary relation S ′ on 2N given by
c S ′ d ⇐⇒ ∀∗b ∈ 2N (b R′ c =⇒ b R′ d) is a quasi-order. Moreover, if
(d, c) ∈ ∼S ′, then ∃∗b ∈ 2N (b R′ d and ¬b R′ c), so the fact that (⊥R′)c
is meager ensures that (c, d]R′ is not meager. We can therefore assume
that G0 ⊆ S ′, so G0 ⊆ ≡S′ . As the smallest equivalence relation on
2N containing G0 is E0 (by a straightforward inductive argument), it
follows that E0 ⊆ ≡S′ . The Kuratowski-Ulam and Montgomery-No-
vikov theorems (see, for example, [Kec95, Theorem 16.1]) ensure that
for all t ∈ 2<N, the set Bt = {c ∈ 2N | ∀∗b ∈ Nt b R′ c} has the Baire
property. As these sets are ≡S′-invariant, and therefore E0-invariant,
they are either meager or comeager (see, for example, [Kec95, Theorem
8.47]). Define T = {t ∈ 2<N | Bt is comeager}. Then the comeager
set C =

⋂
t∈T Bt ∩

⋂
t∈∼T ∼Bt is an ≡S′-class, since c ≡S′ d ⇐⇒

∀t ∈ 2<N (c ∈ Bt ⇐⇒ d ∈ Bt) for all c, d ∈ 2N (see, for example,
[Kec95, Proposition 8.26]). Fixing t, u ∈ 2<N with the property that
R′ ∩ (Nt×Nu) is comeager in Nt×Nu, the Kuratowski-Ulam theorem
implies that ∀∗c ∈ Nu∀∗b ∈ Nt b R′ c, so t ∈ T , thus ∀∗b, c ∈ Nt b R′ c,
hence there is an ≡R′-class C ′ ⊆ 2N that is comeager in Ns. But non-
meager subsets of 2N with the Baire property are not G0-independent,
and any (b, d) ∈ G0 � C ′ is as desired.

As b G′ d, Proposition 7 ensures that ∀c ∈ [b, d]R′ (b G′ c or c G′ d),
so G′b or G′d is not meager, the desired contradiction.

Remark 10. A similar approach can be used to eliminate the need for
multiple applications of the G0 dichotomy, and therefore the need to
assume that add(M) < κ, in [MV19] (see [Mil20, Propositions 1.6.17
and 1.6.19]).

Proposition 11. Suppose that X is a set and R is a quasi-order on
X. Then ⊥∗R is ≡R-invariant.

Proof. It is sufficient to show that if x ≡R x′ and ¬x ⊥∗R y, then
¬x′ ⊥∗R y. Towards this end, given a finite superset F ⊆ X of {x′, y},
fix a χfin(⊥R)-coloring c of ⊥R � (F ∪ {x}) for which c(x) = c(y), and
observe that the extension c′ of c � (F \ {x′}), given by c′(x′) = c(x),
is a χfin(⊥R)-coloring of ⊥R � F for which c′(x′) = c′(y).
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Proposition 12. Suppose that X is a set, R is a quasi-order on X that
does not have antichains of arbitrarily large finite cardinality, A ⊆ X is
an R-antichain of cardinality χfin(⊥R), and Y ⊆ X is ⊥∗R-independent.
Then there exists x ∈ A for which {x} ∪ Y is ⊥∗R-independent.

Proof. Suppose, towards a contradiction, that there exists a function
φ : A → Y whose graph is contained in ⊥∗R. As Dilworth’s theorem
ensures that χfin(⊥R) < ℵ0, it follows that A is a maximal R-antichain,
and is therefore the union of the sets A′ = {x ∈ A | A∩Rφ(x) 6= ∅} and
A′′ = {x ∈ A | A ∩Rφ(x) 6= ∅}.

Lemma 13. The sets A′ and A′′ are disjoint, so A ∩ φ(A) = ∅.

Proof. Suppose, towards a contradiction, that there exists x ∈ A′∩A′′,
and fix y, z ∈ A for which y R φ(x) R z. As A is an R-antichain,
it follows that y = z, so φ(x) ≡R y, thus Proposition 11 yields that
φ(x) ⊥∗R φ(y), contradicting the ⊥∗R-independence of Y .

It only remains to note that if there exists x ∈ A for which φ(x) ∈ A,
then x ∈ A′ ∩ A′′, a contradiction.

Lemma 14. If w′, x′ ∈ A′ and φ(x′) R φ(w′), then w′ ⊥∗R φ(x′).

Proof. If w′ and φ(x′) are not ⊥∗R-related, then w′ ‖R φ(x′), so Lemma
13 ensures that w′ (R \ ⊥∗R) φ(x′). But the ⊥∗R-independence of Y
implies that φ(x′) (R \ ⊥∗R) φ(w′), thus Proposition 7 yields that w′

and φ(w′) are not ⊥∗R-related, a contradiction.

Lemma 15. If w′′, x′′ ∈ A′′ and φ(w′′) R φ(x′′), then w′′ ⊥∗R φ(x′′).

Proof. If w′′ and φ(x′′) are not⊥∗R-related, then w′′ ‖R φ(x′′), so Lemma
13 ensures that φ(x′′) (R \ ⊥∗R) w′′. But the ⊥∗R-independence of Y
implies that φ(w′′) (R \ ⊥∗R) φ(x′′), thus Proposition 7 yields that φ(w′′)
and w′′ are not ⊥∗R-related, a contradiction.

If A′ 6= ∅, then the fact that Y is an R-chain yields x′ ∈ A′ for which
φ(x′) is (R � φ(A′))-minimal, so Lemma 14 ensures that A′ ∪{φ(x′)} is
an ⊥∗R-clique, and since Lemma 13 implies that φ(x′) /∈ A′, Proposition
5 yields that |A′| < χfin(⊥R). Similarly, if A′′ 6= ∅, then the fact that Y
is an R-chain yields x′′ ∈ A′′ for which φ(x′′) is (R � φ(A′′))-maximal, so
Lemma 15 ensures that A′′∪{φ(x′′)} is an ⊥∗R-clique, and since Lemma
13 implies that φ(x′′) /∈ A′′, Proposition 5 implies that |A′′| < χfin(⊥R).
It follows that A′ and A′′ are non-empty, so there are indeed x′ ∈ A′
and x′′ ∈ A′′ for which φ(x′) is (R � φ(A′))-minimal and φ(x′′) is
(R � φ(A′′))-maximal. As A ⊆ (⊥∗R)φ(x′) ∪ (⊥∗R)φ(x′′) by Lemmas 14
and 15, Proposition 6 implies that φ(x′) ⊥∗R φ(x′′), contradicting the
⊥∗R-independence of Y .
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For each k ∈ N, let [X]k denote the family of all subsets of X of
cardinality k, equipped with the topology generated by the sets of the
form {F ∈ [X]k | ∃π : F ↪→ F ∀x ∈ F x ∈ π(x)}, where F ∈ [τX ]k.
Let [X]≤k denote the disjoint union of the spaces of the form [X]j, for
j ≤ k. Similarly, let [X]<ℵ0 denote the disjoint union of the spaces of
the form [X]k, for k ∈ N. A set Y ⊆ X punctures a family F ⊆ [X]<ℵ0

if F ∩ Y 6= ∅ for all F ∈ F .

Proposition 16. Suppose that X is a Hausdorff space, G is an analytic
graph on X that admits a Borel coloring c : X → N, and F ⊆ [X]<ℵ0

is an analytic set with the property that for every G-independent set
Y ⊆ X, the corresponding set {x ∈ X | {x} ∪ Y is G-independent}
punctures F . Then every G-independent Borel subset of X is contained
in a G-independent Borel subset of X that punctures F .

Proof. For each natural number k and G-independent set Y ⊆ X, we
use FkY to denote the family of sets F ∈ F with the property that
|{x ∈ F | {x}∪Y is not G-independent}| ≥ |F |−k. Note that F0

Y = ∅
and F∩ [X]≤k ⊆ FkY , since |F |−k ≤ 0 for all F ∈ [X]≤k. It is sufficient
to show that for all k ∈ N, every G-independent Borel set B ⊆ X that
punctures FkB is contained in a G-independent Borel set C ⊆ X that
punctures Fk+1

C , as repeated application of this fact yields an increasing
sequence of G-independent Borel supersets Bk ⊆ X of any given G-
independent Borel subset of X that puncture FkBk

, in which case the G-

independent set
⋃
k∈NBk punctures

⋃
k∈NFkBk

⊇
⋃
k∈NF ∩ [X]≤k = F .

Suppose that k ∈ N, we have already established the aforementioned
fact strictly below k, and B ⊆ X is a G-independent Borel set that
punctures FkB. Fix natural numbers ij such that ∀i ∈ N∃∞j ∈ N i = ij,
and define B′0 = B. Given j ∈ N and a G-independent Borel set
B′j ⊆ X that punctures FkB′

j
, let A′j be the set of x ∈ X for which there

exists F ∈ F , disjoint from B′j, with the property that x ∈ F and
|{y ∈ F \ {x} | B′j ∪ {y} is not G-independent}| ≥ |F | − (k + 1). As

B′j punctures FkB′
j
, no such F is in FkB′

j
, so B′j ∪ {x} is G-independent

for any such x, thus (A′j ∩ c−1({ij})) ∪ B′j is also G-independent. As
the latter set is analytic, it is contained in a G-independent Borel set
(see, for example, the proof of [Mil11, Proposition 2]), in which case k
applications of the induction hypothesis yield a G-independent Borel
set B′j+1 ⊆ X containing (A′j ∩ c−1({ij})) ∪B′j that punctures FkB′

j+1
.

To see that the G-independent Borel set C =
⋃
j∈NB

′
j punctures

Fk+1
C , observe that if F ∈ Fk+1

C , then the hypothesis on F yields a
point x ∈ F for which C ∪ {x} is G-independent, as well as j ∈ N
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for which F ∈ Fk+1
B′

j
, and j′ ≥ j for which ij′ = c(x), in which case

B′j′ ∩ F 6= ∅ or x ∈ B′j′+1.

The Borel chromatic number of a graph G on X is the least cardinal
χB(G) of the form |Y |, where Y is an analytic Hausdorff space for which
there exists a Borel Y -coloring of G (if such a space exists).

Proposition 17. Suppose that X is a Hausdorff space and R is a quasi-
order on X with the property that ⊥R is analytic and χB(⊥∗R) ≤ ℵ0.
Then χB(⊥∗R) = χfin(⊥R).

Proof. As the case χfin(⊥R) ∈ {1,ℵ0} is trivial, suppose that k ∈ Z+,
we have already established the proposition for χfin(⊥R) ≤ k, and
χfin(⊥R) = k + 1. As ⊥∗R is analytic, Propositions 12 and 16 yield an
⊥∗R-independent Borel set B ⊆ X that intersects every R-antichain of
cardinality k+ 1. As Dilworth’s theorem ensures that χfin(⊥R � ∼B) =
k, the induction hypothesis yields a Borel k-coloring c of (⊥R � ∼B)∗.
Observe that ⊥∗R � ∼B ⊆ (⊥R � ∼B)∗, for if x, y ∈ ∼B and F ⊆ X is
a finite set containing {x, y} such that d(x) 6= d(y) for every (k + 1)-
coloring d of ⊥R � F , then F \ B is a finite set containing {x, y} such
that d(x) 6= d(y) for every k-coloring d of ⊥R � (F \ B). In particular,
it follows that the extension of c to X with constant value k on B is a
Borel (k + 1)-coloring of ⊥∗R.

As every analytic subset of a topological space is ℵ0-universally Baire
(see, for example, [Kec95, Theorem 21.6]), Theorem 1 follows from
Proposition 8, the G0 dichotomy, and Proposition 17.

2. Generalizations under determinacy

Given an ordinal α, a subset of a topological space X is α-Borel if it
is in the closure of τX under complements and unions of length strictly
less than α. Given an aleph κ, a topological space is κ-Souslin if it is
a continuous image of a closed subset of κN.

For all n > 0, let δ1
n denote the supremum of the lengths of well-

orders of the form R/≡R, where R is a ∆1
n quasi-order on an analytic

Hausdorff space. The axiom of determinacy ensures that the ∆1
2n+1

and δ1
2n+1-Borel subsets of analytic Hausdorff spaces coincide. It also

yields an aleph λ1
2n+1 for which δ1

2n+1 = (λ1
2n+1)+, and implies that the

Σ1
2n+1 and λ1

2n+1-Souslin subsets of analytic Hausdorff spaces coincide
(see, for example, [Jac08]).

A tree on a set I is a set T ⊆ I<N that is closed under initial segments,
in the sense that ∀t ∈ T∀n < |t| t � n ∈ T . A subtree of T is a tree
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S ⊆ T on I. A branch through T is a sequence x ∈ IN such that
∀n ∈ N x � n ∈ T . A tree is well-founded if it has no branches.

The pruning derivative associates with each tree T on a set I the
subtree T ′ = {t ∈ T | ∃i ∈ I t a (i) ∈ T}. The iterates of the pruning
derivative are given by T (0) = T , T (α+1) = (T (α))′ for all ordinals α,
and T (λ) =

⋂
α<λ T

(α) for all limit ordinals λ. The pruning rank of T is

the least ordinal ρ(T ) for which T (ρ(T )) = T (ρ(T )+1). A straightforward
induction shows that T is well-founded if and only if T (ρ(T )) = ∅. For
each t ∈ T , let ρT (t) denote the largest ordinal for which t ∈ T (ρT (t))

(if such an ordinal exists).
An (α + 1)-Borel code for a subset of X is a pair (f, T ), where T is

a well-founded tree on α × α and f is a function associating to each
sequence t ∈ ∼T a subset ofX that is closed or open. Given such a code,
we recursively define f (β) on ∼T (β) by setting f (0) = f , letting f (β+1) be
the extension of f (β) given by f (β+1)(t) =

⋃
γ<α

⋂
δ<α f

(β)(t a ((γ, δ)))

whenever ρT (t) = β for all ordinals β, and defining f (λ) =
⋃
β<λ f

(β) for

all limit ordinals λ. The (α+ 1)-Borel set coded by (f, T ) is f (ρ(T ))(∅).
The proof of Souslin’s theorem shows that there is a function sending

each pair of functions witnessing that a set and its complement are κ-
Souslin to a (κ + 1)-Borel code for the set. Under AD, the coding
lemma (see [Mos09, Lemma 7D.5]) and projective uniformization (see,
for example, [Kec95, Theorem 39.9]) can be used to obtain a function
sending each (λ1

2n+1+1)-Borel code for a subset of an analytic Hausdorff

space to a function witnessing that the encoded set is λ1
2n+1-Souslin.

Proposition 18 (AD). Suppose that n ∈ N, X is an analytic Haus-
dorff space, G is a Σ1

2n+1 graph on X that admits a ∆1
2n+1 coloring

c : X → λ1
2n+1, and F ⊆ [X]<ℵ0 is a Σ1

2n+1 set with the property that
for every G-independent set Y ⊆ X, the corresponding set {x ∈ X |
{x} ∪ Y is G-independent} punctures F . Then every G-independent
∆1

2n+1 subset of X is contained in a G-independent ∆1
2n+1 subset of X

that punctures F .

Proof. We proceed essentially as in the proof of Proposition 16. The
first paragraph remains unchanged. The induction beginning in the
second paragraph, however, has length λ1

2n+1 instead of ω, which is
problematic because naively applying [Mil11, Proposition 2] at each
stage of the induction requires too large a fragment of the axiom of
choice. This problem can be alleviated by using the above remarks to
keep track of codes for the sets B′j that are built along the way, which
can be achieved because the proof of [Mil11, Proposition 2] utilizes
little more than Souslin’s theorem.
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Proposition 18 gives rise to an analogous version of Proposition 17.
As every subset of a topological space is ℵ0-universally Baire under AD
(see, for example, [Mos09, Theorem 7D.2]), this can be combined with
Proposition 8 and Kanovei’s generalization of the G0 dichotomy (see
[Kan97], although the elementary proof of [Mil11, Theorem 8] can be
adapted to obtain the special cases we need by keeping track of codes
as above) to establish Theorem 2.

By eliminating the outer induction and the use of [Mil11, Proposition
2] in the proof of Proposition 16, one obtains a proof of the weaker
result without definability conditions on the sets involved. Moreover,
this proof trivially generalizes to colorings c : X → κ, for any aleph κ,
and gives rise to an analogous version of Proposition 17. As a result
of Woodin’s ensures that every subset of an analytic Hausdorff space
is κ-Souslin, for some aleph κ, under ADR (see, for example, [Kan03,
Theorem 32.23]), this can be combined with Proposition 8 and the
weakening of Kanovei’s generalization of the G0 dichotomy in which
there are no definability constraints on the coloring (which follows from
the simplification of the proof of [Mil11, Theorem 8] in which the use
of Souslin’s theorem is eliminated) to establish Theorem 3.
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of the paper.

References

[Dil50] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann.
of Math. (2) 51 (1950), 161–166. MR 32578

[Jac08] S.C. Jackson, Suslin cardinals, partition properties, homogeneity. Intro-
duction to Part II, Games, scales, and Suslin cardinals. The Cabal Sem-
inar. Vol. I, Lecture Notes in Logic, vol. 31, Association for Symbolic
Logic, Chicago, IL, 2008, pp. 273–313. MR 2463617

[Kad89] K. Kada, Une version borélienne du théorème de Dilworth, Ph.D. thesis,
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Zoltán Vidnyánszky, Department of Mathematics, University of Vi-
enna, Kolingasse 14–16, 1090 Wien, Austria

E-mail address: zoltan.vidnyanszky@univie.ac.at
URL: http://www.logic.univie.ac.at/~vidnyanszz77

http://www.logic.univie.ac.at/~millerb45/dichotomies.pdf
http://www.logic.univie.ac.at/~millerb45/dichotomies.pdf
http://www.logique.jussieu.fr/~carroy/indexeng.html
https://homepage.univie.ac.at/benjamin.miller/
http://www.logic.univie.ac.at/~vidnyanszz77

	Introduction
	1. The classical case
	2. Generalizations under determinacy
	References

