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Abstract. Answering a question of K lopotowski-Nadkarni-Sarbad-
hikari-Srivastava [6], we characterize the Borel sets S ⊆ X×Y on which
every Borel function f : S → C is of the form uv|S, where u : X → C
and v : Y → C are Borel.

Suppose that S ⊆ X × Y and Γ is a group. A coordinatewise decomposition of
a function f : S → Γ is a pair (u, v), where u : X → Γ, v : Y → Γ, and

∀(x, y) ∈ S (f(x, y) = u(x)v(y)).

While our main goal here is to study coordinatewise decompositions in the de-
scriptive set-theoretic context, we will first study the existence of coordinatewise
decompositions without imposing any definability restrictions.

For the sake of notational convenience, we will assume that X ∩ Y = ∅. The
graph associated with S is the graph on the set ZS = X ∪Y given by GS = S ∪S−1.
The following fact was proven essentially by Cowsik-K lopotowski-Nadkarni [1]:

Proposition 1. Suppose that X, Y are disjoint, S ⊆ X ×Y , and Γ is a non-trivial
group. Then the following are equivalent:

1. Every function f : S → Γ admits a coordinatewise decomposition;

2. GS is acyclic.

Proof. To see ¬(2) ⇒ ¬(1) note that, by reversing the roles of X and Y if necessary,
we can assume that there is a proper cycle of the form x0, y0, x1, y1, . . . , xn+1 = x0

through GS . Fix γ0 ∈ Γ \ {1Γ}, define f : S → Γ by

f(x, y) =

¨
γ0 if (x, y) = (x0, y0),
1Γ otherwise,

and suppose that (u, v) is a coordinatewise decomposition of f . Then

γ0 = f(x0, y0)f(x1, y0)−1 · · · f(xn, yn)f(xn+1, yn)−1

= (u(x0)v(y0))(u(x1)v(y0))−1 · · · (u(xn)v(yn))(u(xn+1)v(yn))−1

= u(x0)u(x1)−1 · · ·u(xn)u(xn+1)−1

= u(x0)u(xn+1)−1

= 1Γ,

which contradicts our choice of γ0.
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To see (2) ⇒ (1), let ES be the equivalence relation whose classes are the
connected components of GS , fix a transversal B ⊆ ZS of ES (i.e., a set which
intersects every ES-class in exactly one point), and define Bn ⊆ Z by

Bn = {z ∈ Z : dS(z,B) = n},

where dS denotes the graph metric associated with GS . For z ∈ Bn+1, let g(z) denote
the unique G-neighbor of z in Bn, and define recursively u : X → Γ, v : Y → Γ by

u(x) =
§

1Γ if x ∈ B,
f(x, g(x))v(g(x))−1 otherwise,

and

v(y) =
§

1Γ if y ∈ B,
u(g(y))−1f(g(y), y) otherwise.

To see that (u, v) is a coordinatewise decomposition of f , suppose that (x, y) ∈ S
and note that either g(x) = y or g(y) = x. In the former case, it follows that
u(x) = f(x, y)v(y)−1, thus f(x, y) = u(x)v(y). In the latter case, it follows that
v(y) = u(x)−1f(x, y), thus f(x, y) = u(x)v(y). 2

As a corollary of the proof of Proposition 1, we obtain a sufficient condition for
the existence of Borel coordinatewise decompositions:

Corollary 2. Suppose that X and Y are Polish spaces, S ⊆ X × Y is Borel, GS is
acyclic, and ES admits a Borel transversal. Then every standard Borel group-valued
Borel function on S admits a Borel coordinatewise decomposition.

Proof. It is sufficient to check that if f : S → Γ is a standard Borel group-valued
Borel function, then the functions u and v constructed in the proof of Proposition
1 are Borel. Letting Bn ⊆ ZS and g : ZS → ZS be as constructed above, it follows
from the fact that GS is acyclic that

z ∈ Bn+1 ⇔ z 6∈
[
i≤n

Bi and ∃w ∈ Bn ((z, w) ∈ G)

⇔ z 6∈
[
i≤n

Bi and ∃!w ∈ Bn ((z, w) ∈ G),

and it follows from results of Souslin and Lusin (see, for example, Theorems 14.11
and 18.11 of Kechris [5]) that each of these sets is Borel. As

graph(g) =
[
n∈N

GS ∩ (Bn+1 ×Bn),

it follows that g is Borel as well (see, for example, Theorem 14.12 of Kechris [5]),
and this easily implies that u and v are Borel. 2

Our main theorem is that the sufficient condition given in Corollary 2 is also
necessary to guarantee the existence of Borel coordinatewise decompositions:
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Theorem 3. Suppose that X, Y are disjoint Polish spaces, S ⊆ X × Y is Borel,
and Γ is a non-trivial standard Borel group. Then the following are equivalent:

1. Every Borel function f : S → Γ admits a Borel coordinatewise decomposition;

2. GS is acyclic and ES admits a Borel transversal.

Proof. As (2) ⇒ (1) follows from Corollary 2, we need only show that (1) ⇒ (2).
As the map f described in the proof of ¬(2) ⇒ ¬(1) of Proposition 1 is clearly
Borel, it follows that GS is acyclic, thus ES is Borel (by Theorems 14.11 and 18.11
of Kechris [5]).

Fix a non-trivial countable subgroup ∆ ≤ Γ, endow ∆ with the discrete topology,
and endow ∆N with the corresponding product topology. Define E∆

0 on ∆N by

αE∆
0 β ⇔ ∃n ∈ N ∀m > n (α(m) = β(m)),

and define F∆
0 ⊆ E∆

0 on ∆N by

αF∆
0 β ⇔ ∃n ∈ N (α(0) · · ·α(n) = β(0) · · ·β(n) and ∀m > n (α(m) = β(m))) .

Let ∆ act freely on ∆N by left multiplication on the 0th-coordinate, i.e.,

δ · α = (δα(0), α(1), α(2), . . .).

Lemma 4. The action of ∆ on ∆N induces a free action of ∆ on ∆N/F∆
0 .

Proof. It is enough to show that

∀δ ∈ ∆ ∀α, β ∈ ∆N (αF∆
0 β ⇒ δ · αF∆

0 δ · β).

Towards this end, suppose that δ ∈ ∆ and (α, β) ∈ F∆
0 , fix n ∈ N such that

α(0) · · ·α(n) = β(0) · · ·β(n) and ∀m > n (α(m) = β(m)),

and note that

δα(0) · · ·α(n) = δβ(0) · · ·β(n) and ∀m > n (α(m) = β(m)),

thus δ · αF∆
0 δ · β. 2

Suppose now that F ⊆ E are Borel equivalence relations on a Polish space Z.
We say that a set B ⊆ Z is F -invariant if ∀z1 ∈ B ∀z2 ∈ Z (z1Fz2 ⇒ z2 ∈ B),
and B ⊆ Z is an E-complete section if ∀z1 ∈ Z ∃z2 ∈ B (z1Ez2). We say that E
is relatively ergodic over F if there is no Borel way of choosing a non-empty proper
subset of the F -classes within each E-class, i.e., if there is no F -invariant Borel set
B ⊆ Z such that both B and Z \B are E-complete sections.

Lemma 5. E∆
0 is relatively ergodic over F∆

0 .

Proof. Suppose, towards a contradiction, that B ⊆ ∆N is an F∆
0 -invariant Borel set

such that both B and ∆N \ B are E∆
0 -complete sections. As B is an E∆

0 -complete
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section, it follows that B is non-meager, thus there exists s ∈ ∆<N such that B is
comeager in Ns. Define C ⊆ ∆N by

C = ∆N \ [Ns \B]E∆
0

,

and observe that C is an E∆
0 -invariant comeager Borel set and Ns ∩ C ⊆ B ∩ C.

It only remains to show that C ⊆ B, which implies that ∆N \ B is meager and
therefore contradicts the fact that ∆N \B is an E∆

0 -complete section. Towards this
end, put n = |s|, and given any α ∈ C, define δ ∈ ∆ by

δ = (s(0) · · · s(n− 1))−1(α(0) · · ·α(n)).

As αF∆
0 s(0) . . . s(n− 1)δα(n + 1)α(n + 2) . . ., it follows that α ∈ B. 2

Suppose now that E1 and E2 are Borel equivalence relations on Polish spaces
Z1 and Z2, respectively. A reduction of E1 into E2 is a function π : Z1 → Z2 such
that ∀z, z′ ∈ Z1 (zE1z

′ ⇔ π(z)E2π(z′)). An embedding is an injective reduction.
Let E0 denote the equivalence relation on 2N which is given by

αE0β ⇔ ∃n ∈ N ∀m > n (α(m) = β(m)).

While our next lemma follows from the much more general results of Dougherty-
Jackson-Kechris [2], it is easy enough to prove directly:

Lemma 6. There is a Borel embedding π1 : ∆N → 2N of E∆
0 into E0.

Proof. Fix an enumeration (kn, δn) of N×∆, and define π1 : ∆N → 2N by

[π1(α)](n) =

¨
1 if α(kn) = δn, and
0 otherwise.

It is straightforward to check that π1 is the desired embedding. 2

Now suppose, towards a contradiction, that ES has no Borel transversal.

Lemma 7. There is a Borel embedding π2 : 2N → ZS of E0 into ES |X.

Proof. An equivalence relation E on a Polish space Z is said to be smooth if there is
a Borel reduction of E into the trivial equivalence relation ∆(R) = {(x, x) : x ∈ R},
or equivalently, if E admits a Borel separating family, i.e., a family B0, B1, . . . of
Borel subsets of Z such that

∀z1, z2 ∈ Z (z1Ez2 ⇔ ∀n ∈ N (z1 ∈ Bn ⇔ z2 ∈ Bn)).

Suppose, towards a contradiction, that there is no Borel embedding of E0 into
ES |X. As ES is Borel, so too is ES |X. It follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that ES |X is smooth. Fix a Borel separating family B0, B1, . . .
for ES |X, and observe that the sets

An = Bn ∪ {y ∈ Y : ∃x ∈ Bn ((x, y) ∈ S)}

form a Σ1
1 separating family for ES |(X ∪ projY [S]), where projY : X × Y → Y

denotes the projection function. It then follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that ES is smooth. As GS is acyclic, it follows from Hjorth
[4] (see also Miller [7]) that ES admits a Borel transversal, which contradicts our
assumption that it does not. 2
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For x1ESx2, we say that z is GS-between x1 and x2 if z lies along the unique
injective GS-path from x1 to x2. Define B ⊆ ZS by

B = {z ∈ ZS : ∃x1, x2 ∈ rng(π2 ◦ π1) (z is GS-between x1 and x2)}.

As GS is acyclic and rng(π2 ◦ π1) intersects every ES-class in a countable set, it
follows that B is Borel. As ES ∩ (B × rng(π2 ◦ π1)) has countable sections, the
Lusin-Novikov uniformization theorem (see, for example, §18 of Kechris [5]) ensures
that it has a Borel uniformization π3 : B → rng(π2 ◦ π1). We can clearly assume
that π3| rng(π2 ◦ π1) = id. Define π : B → ∆N by

π = (π2 ◦ π1)−1 ◦ π3,

and finally, define f : S → ∆ by

f(x, y) =

¨
1Γ if x 6∈ B or y 6∈ B, and
δ if x, y ∈ B and δ · π(y)F∆

0 π(x).

Now suppose, towards a contradiction, that there is a Borel coordinatewise
decomposition (u, v) of f .

Lemma 8. Suppose that x, x′ ∈ B ∩X and xESx′. Then:

1. u(x)u(x′)−1 ∈ ∆.

2. u(x)u(x′)−1 · π(x′)F∆
0 π(x).

Proof. Let x0, y0, . . . , xn, yn, xn+1 be the unique GS-path from x to x′. To see (1),
observe that for all i ≤ n,

u(xi)u(xi+1)−1 = (u(xi)v(yi))(u(xi+1)v(yi))−1

= f(xi, yi)f(xi+1, yi)−1,

thus u(xi)u(xi+1)−1 ∈ ∆. Noting that

u(x0)u(xn+1)−1 = u(x0)u(x1)−1u(x1)u(x2)−1 · · ·u(xn)u(xn+1)−1,

it follows that u(x)u(x′)−1 ∈ ∆.
To see (2), recall that ∆ acts freely on ∆N/F∆

0 , thus for all i ≤ n,

u(xi)u(xi+1)−1 · [π(xi+1)]F∆
0

= f(xi, yi)f(xi+1, yi)−1 · [π(xi+1)]F∆
0

= f(xi, yi) · [π(yi)]F∆
0

= [π(xi)]F∆
0

.

It then follows that

u(x0)u(xn+1)−1 · [π(xn+1)]F∆
0

= u(x0)u(x1)−1 · · ·u(xn)u(xn+1)−1 · [π(xn+1)]F∆
0

= u(x0)u(x1)−1 · · ·u(xn−1)u(xn)−1 · [π(xn)]F∆
0

...
= [π(x0)]F∆

0
,

which completes the proof of the lemma. 2
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Define now w : ∆N → Γ by w = u ◦ π2 ◦ π1. Fix a countable Borel separating
family Γ0, Γ1, . . . for Γ, and define n : ∆N → Γ by

n(α) = min{n ∈ N : ∃δ1, δ2 ∈ ∆ (δ1w(α) ∈ Γn and δ2w(α) /∈ Γn)}.

Lemma 8 ensures that if αE∆
0 β, then w(α)w(β)−1 ∈ ∆, thus

∆w(α) = ∆w(α)w(β)−1w(β)
= ∆w(β),

and it follows that n(α) = n(β). As π3| rng(π2 ◦ π1) = id, Lemma 8 ensures also
that w(α)w(β)−1 · βF∆

0 α. It follows that if α = δ · β, then w(α)w(β)−1 = δ, thus
w(α) = δw(β). Defining A ⊆ ∆N by

A = {α ∈ ∆N : w(α) ∈ Γn(x)},

it follows that both A and ∆N \ A are E∆
0 -complete sections. As A is clearly F∆

0 -
invariant, it follows that E∆

0 is not relatively ergodic over F∆
0 , which contradicts

Lemma 5, and therefore completes the proof of the theorem. 2

K lopotowski-Nadkarni-Sarbadhikari-Srivastava [6] have studied coordinatewise
decomposition using another equivalence relation L which, modulo straightforward
identifications, is the equivalence relation whose classes are the connected compo-
nents of the dual graph ĞS on S, which is given by

ĞS = {((x1, y1), (x2, y2)) ∈ S × S : (x1, y1) 6= (x2, y2) and (x1 = x2 or y1 = y2)}.

The equivalence classes of L are called the linked components of S, and the linked
components of S are said to be uniquely linked if GS is acyclic.

Conjecture 9 (K lopotowski-Nadkarni-Sarbadhikari-Srivastava). Suppose
that X, Y are disjoint Polish spaces and S ⊆ X × Y is Borel. Then the following
are equivalent:

1. Every Borel function f : S → C admits a Borel coordinatewise decomposition;

2. The linked components of S are uniquely linked and L is smooth.

In light of Theorem 3 and the above remarks, the following observation implies
that Conjecture 9 is indeed correct:

Proposition 10. Suppose that X and Y are disjoint Polish spaces, S ⊆ X × Y is
Borel, and GS is acyclic. Then the following are equivalent:

1. ES admits a Borel transversal;

2. L is smooth.

Proof. To see (1) ⇒ (2), suppose that ES admits a Borel transversal B ⊆ ZS . Let
π1 : ZS → ZS be the function which sends z to the unique element of B ∩ [z]ES

,
and let π2 = projX |S. Then π1 is a Borel reduction of ES into ∆(ZS) and π2 is a
Borel reduction of L into ES , thus π1 ◦ π2 is a Borel reduction of L into ∆(ZS), so
L is smooth.
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To see (2) ⇒ (1), suppose that L is smooth, and fix a Borel reduction π1 : S → R
of L into ∆(R). Put Z = projX [S] ∪ projY [S]. By the Jankov-von Neumann
uniformization theorem (see, for example, §18 of Kechris [5]), there is a σ(Σ1

1)-
measurable reduction π2 : Z → S of ES |Z into L, thus π1◦π2 is a σ(Σ1

1)-measurable
reduction of ES |Z into ∆(R). It then follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that ES is smooth. As GS is acyclic, it then follows from
Hjorth [4] (see also Miller [7]) that ES admits a Borel transversal. 2
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