COORDINATEWISE DECOMPOSITION OF GROUP-VALUED BOREL FUNCTIONS

BENJAMIN D. MILLER

Abstract

Answering a question of Kłopotowski-Nadkarni-Sarbad-hikari-Srivastava [6], we characterize the Borel sets $S \subseteq X \times Y$ on which every Borel function $f: S \rightarrow \mathbb{C}$ is of the form $u v \mid S$, where $u: X \rightarrow \mathbb{C}$ and $v: Y \rightarrow \mathbb{C}$ are Borel.

Suppose that $S \subseteq X \times Y$ and Γ is a group. A coordinatewise decomposition of a function $f: S \rightarrow \Gamma$ is a pair (u, v), where $u: X \rightarrow \Gamma, v: Y \rightarrow \Gamma$, and

$$
\forall(x, y) \in S(f(x, y)=u(x) v(y))
$$

While our main goal here is to study coordinatewise decompositions in the descriptive set-theoretic context, we will first study the existence of coordinatewise decompositions without imposing any definability restrictions.

For the sake of notational convenience, we will assume that $X \cap Y=\emptyset$. The graph associated with S is the graph on the set $Z_{S}=X \cup Y$ given by $\mathcal{G}_{S}=S \cup S^{-1}$. The following fact was proven essentially by Cowsik-Kłopotowski-Nadkarni [1]:

Proposition 1. Suppose that X, Y are disjoint, $S \subseteq X \times Y$, and Γ is a non-trivial group. Then the following are equivalent:

1. Every function $f: S \rightarrow \Gamma$ admits a coordinatewise decomposition;
2. \mathcal{G}_{S} is acyclic.

Proof. To see $\neg(2) \Rightarrow \neg(1)$ note that, by reversing the roles of X and Y if necessary, we can assume that there is a proper cycle of the form $x_{0}, y_{0}, x_{1}, y_{1}, \ldots, x_{n+1}=x_{0}$ through \mathcal{G}_{S}. Fix $\gamma_{0} \in \Gamma \backslash\left\{1_{\Gamma}\right\}$, define $f: S \rightarrow \Gamma$ by

$$
f(x, y)= \begin{cases}\gamma_{0} & \text { if }(x, y)=\left(x_{0}, y_{0}\right) \\ 1_{\Gamma} & \text { otherwise }\end{cases}
$$

and suppose that (u, v) is a coordinatewise decomposition of f. Then

$$
\begin{aligned}
\gamma_{0} & =f\left(x_{0}, y_{0}\right) f\left(x_{1}, y_{0}\right)^{-1} \cdots f\left(x_{n}, y_{n}\right) f\left(x_{n+1}, y_{n}\right)^{-1} \\
& =\left(u\left(x_{0}\right) v\left(y_{0}\right)\right)\left(u\left(x_{1}\right) v\left(y_{0}\right)\right)^{-1} \cdots\left(u\left(x_{n}\right) v\left(y_{n}\right)\right)\left(u\left(x_{n+1}\right) v\left(y_{n}\right)\right)^{-1} \\
& =u\left(x_{0}\right) u\left(x_{1}\right)^{-1} \cdots u\left(x_{n}\right) u\left(x_{n+1}\right)^{-1} \\
& =u\left(x_{0}\right) u\left(x_{n+1}\right)^{-1} \\
& =1_{\Gamma}
\end{aligned}
$$

which contradicts our choice of γ_{0}.

To see $(2) \Rightarrow(1)$, let E_{S} be the equivalence relation whose classes are the connected components of \mathcal{G}_{S}, fix a transversal $B \subseteq Z_{S}$ of E_{S} (i.e., a set which intersects every E_{S}-class in exactly one point), and define $B_{n} \subseteq Z$ by

$$
B_{n}=\left\{z \in Z: d_{S}(z, B)=n\right\}
$$

where d_{S} denotes the graph metric associated with \mathcal{G}_{S}. For $z \in B_{n+1}$, let $g(z)$ denote the unique \mathcal{G}-neighbor of z in B_{n}, and define recursively $u: X \rightarrow \Gamma, v: Y \rightarrow \Gamma$ by

$$
\begin{aligned}
& u(x)=\left\{\begin{array}{cl}
1_{\Gamma} & \text { if } x \in B \\
f(x, g(x)) v(g(x))^{-1} & \text { otherwise }
\end{array}\right. \\
& \text { and } \\
& v(y)=\left\{\begin{array}{cl}
1_{\Gamma} & \text { if } y \in B \\
u(g(y))^{-1} f(g(y), y) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

To see that (u, v) is a coordinatewise decomposition of f, suppose that $(x, y) \in S$ and note that either $g(x)=y$ or $g(y)=x$. In the former case, it follows that $u(x)=f(x, y) v(y)^{-1}$, thus $f(x, y)=u(x) v(y)$. In the latter case, it follows that $v(y)=u(x)^{-1} f(x, y)$, thus $f(x, y)=u(x) v(y)$.

As a corollary of the proof of Proposition 1, we obtain a sufficient condition for the existence of Borel coordinatewise decompositions:

Corollary 2. Suppose that X and Y are Polish spaces, $S \subseteq X \times Y$ is Borel, \mathcal{G}_{S} is acyclic, and E_{S} admits a Borel transversal. Then every standard Borel group-valued Borel function on S admits a Borel coordinatewise decomposition.

Proof. It is sufficient to check that if $f: S \rightarrow \Gamma$ is a standard Borel group-valued Borel function, then the functions u and v constructed in the proof of Proposition 1 are Borel. Letting $B_{n} \subseteq Z_{S}$ and $g: Z_{S} \rightarrow Z_{S}$ be as constructed above, it follows from the fact that \mathcal{G}_{S} is acyclic that

$$
\begin{aligned}
z \in B_{n+1} & \Leftrightarrow z \notin \bigcup_{i \leq n} B_{i} \text { and } \exists w \in B_{n}((z, w) \in \mathcal{G}) \\
& \Leftrightarrow z \notin \bigcup_{i \leq n} B_{i} \text { and } \exists!w \in B_{n}((z, w) \in \mathcal{G})
\end{aligned}
$$

and it follows from results of Souslin and Lusin (see, for example, Theorems 14.11 and 18.11 of Kechris [5]) that each of these sets is Borel. As

$$
\operatorname{graph}(g)=\bigcup_{n \in \mathbb{N}} \mathcal{G}_{S} \cap\left(B_{n+1} \times B_{n}\right)
$$

it follows that g is Borel as well (see, for example, Theorem 14.12 of Kechris [5]), and this easily implies that u and v are Borel.

Our main theorem is that the sufficient condition given in Corollary 2 is also necessary to guarantee the existence of Borel coordinatewise decompositions:

Theorem 3. Suppose that X, Y are disjoint Polish spaces, $S \subseteq X \times Y$ is Borel, and Γ is a non-trivial standard Borel group. Then the following are equivalent:

1. Every Borel function $f: S \rightarrow \Gamma$ admits a Borel coordinatewise decomposition;
2. \mathcal{G}_{S} is acyclic and E_{S} admits a Borel transversal.

Proof. As $(2) \Rightarrow(1)$ follows from Corollary 2, we need only show that $(1) \Rightarrow(2)$. As the map f described in the proof of $\neg(2) \Rightarrow \neg(1)$ of Proposition 1 is clearly Borel, it follows that \mathcal{G}_{S} is acyclic, thus E_{S} is Borel (by Theorems 14.11 and 18.11 of Kechris [5]).

Fix a non-trivial countable subgroup $\Delta \leq \Gamma$, endow Δ with the discrete topology, and endow $\Delta^{\mathbb{N}}$ with the corresponding product topology. Define E_{0}^{Δ} on $\Delta^{\mathbb{N}}$ by

$$
\alpha E_{0}^{\Delta} \beta \Leftrightarrow \exists n \in \mathbb{N} \forall m>n(\alpha(m)=\beta(m))
$$

and define $F_{0}^{\Delta} \subseteq E_{0}^{\Delta}$ on $\Delta^{\mathbb{N}}$ by

$$
\alpha F_{0}^{\Delta} \beta \Leftrightarrow \exists n \in \mathbb{N}(\alpha(0) \cdots \alpha(n)=\beta(0) \cdots \beta(n) \text { and } \forall m>n(\alpha(m)=\beta(m)))
$$

Let Δ act freely on $\Delta^{\mathbb{N}}$ by left multiplication on the $0^{\text {th }}$-coordinate, i.e.,

$$
\delta \cdot \alpha=(\delta \alpha(0), \alpha(1), \alpha(2), \ldots)
$$

Lemma 4. The action of Δ on $\Delta^{\mathbb{N}}$ induces a free action of Δ on $\Delta^{\mathbb{N}} / F_{0}^{\Delta}$.
Proof. It is enough to show that

$$
\forall \delta \in \Delta \forall \alpha, \beta \in \Delta^{\mathbb{N}}\left(\alpha F_{0}^{\Delta} \beta \Rightarrow \delta \cdot \alpha F_{0}^{\Delta} \delta \cdot \beta\right)
$$

Towards this end, suppose that $\delta \in \Delta$ and $(\alpha, \beta) \in F_{0}^{\Delta}$, fix $n \in \mathbb{N}$ such that

$$
\alpha(0) \cdots \alpha(n)=\beta(0) \cdots \beta(n) \text { and } \forall m>n(\alpha(m)=\beta(m))
$$

and note that

$$
\delta \alpha(0) \cdots \alpha(n)=\delta \beta(0) \cdots \beta(n) \text { and } \forall m>n(\alpha(m)=\beta(m))
$$

thus $\delta \cdot \alpha F_{0}^{\Delta} \delta \cdot \beta$.
Suppose now that $F \subseteq E$ are Borel equivalence relations on a Polish space Z. We say that a set $B \subseteq Z$ is F-invariant if $\forall z_{1} \in B \forall z_{2} \in Z\left(z_{1} F z_{2} \Rightarrow z_{2} \in B\right)$, and $B \subseteq Z$ is an E-complete section if $\forall z_{1} \in Z \exists z_{2} \in B\left(z_{1} E z_{2}\right)$. We say that E is relatively ergodic over F if there is no Borel way of choosing a non-empty proper subset of the F-classes within each E-class, i.e., if there is no F-invariant Borel set $B \subseteq Z$ such that both B and $Z \backslash B$ are E-complete sections.

Lemma 5. E_{0}^{Δ} is relatively ergodic over F_{0}^{Δ}.
Proof. Suppose, towards a contradiction, that $B \subseteq \Delta^{\mathbb{N}}$ is an F_{0}^{Δ}-invariant Borel set such that both B and $\Delta^{\mathbb{N}} \backslash B$ are E_{0}^{Δ}-complete sections. As B is an E_{0}^{Δ}-complete
section, it follows that B is non-meager, thus there exists $s \in \Delta^{<\mathbb{N}}$ such that B is comeager in \mathcal{N}_{s}. Define $C \subseteq \Delta^{\mathbb{N}}$ by

$$
C=\Delta^{\mathbb{N}} \backslash\left[\mathcal{N}_{s} \backslash B\right]_{E_{0}^{\Delta}}
$$

and observe that C is an E_{0}^{Δ}-invariant comeager Borel set and $\mathcal{N}_{s} \cap C \subseteq B \cap C$. It only remains to show that $C \subseteq B$, which implies that $\Delta^{\mathbb{N}} \backslash B$ is meager and therefore contradicts the fact that $\Delta^{\mathbb{N}} \backslash B$ is an E_{0}^{Δ}-complete section. Towards this end, put $n=|s|$, and given any $\alpha \in C$, define $\delta \in \Delta$ by

$$
\delta=(s(0) \cdots s(n-1))^{-1}(\alpha(0) \cdots \alpha(n))
$$

As $\alpha F_{0}^{\Delta} s(0) \ldots s(n-1) \delta \alpha(n+1) \alpha(n+2) \ldots$, it follows that $\alpha \in B$.
Suppose now that E_{1} and E_{2} are Borel equivalence relations on Polish spaces Z_{1} and Z_{2}, respectively. A reduction of E_{1} into E_{2} is a function $\pi: Z_{1} \rightarrow Z_{2}$ such that $\forall z, z^{\prime} \in Z_{1}\left(z E_{1} z^{\prime} \Leftrightarrow \pi(z) E_{2} \pi\left(z^{\prime}\right)\right)$. An embedding is an injective reduction. Let E_{0} denote the equivalence relation on $2^{\mathbb{N}}$ which is given by

$$
\alpha E_{0} \beta \Leftrightarrow \exists n \in \mathbb{N} \forall m>n(\alpha(m)=\beta(m))
$$

While our next lemma follows from the much more general results of Dougherty-Jackson-Kechris [2], it is easy enough to prove directly:
Lemma 6. There is a Borel embedding $\pi_{1}: \Delta^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ of E_{0}^{Δ} into E_{0}.
Proof. Fix an enumeration $\left(k_{n}, \delta_{n}\right)$ of $\mathbb{N} \times \Delta$, and define $\pi_{1}: \Delta^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by

$$
\left[\pi_{1}(\alpha)\right](n)= \begin{cases}1 & \text { if } \alpha\left(k_{n}\right)=\delta_{n}, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

It is straightforward to check that π_{1} is the desired embedding.
Now suppose, towards a contradiction, that E_{S} has no Borel transversal.
Lemma 7. There is a Borel embedding $\pi_{2}: 2^{\mathbb{N}} \rightarrow Z_{S}$ of E_{0} into $E_{S} \mid X$.
Proof. An equivalence relation E on a Polish space Z is said to be smooth if there is a Borel reduction of E into the trivial equivalence relation $\Delta(\mathbb{R})=\{(x, x): x \in \mathbb{R}\}$, or equivalently, if E admits a Borel separating family, i.e., a family B_{0}, B_{1}, \ldots of Borel subsets of Z such that

$$
\forall z_{1}, z_{2} \in Z\left(z_{1} E z_{2} \Leftrightarrow \forall n \in \mathbb{N}\left(z_{1} \in B_{n} \Leftrightarrow z_{2} \in B_{n}\right)\right)
$$

Suppose, towards a contradiction, that there is no Borel embedding of E_{0} into $E_{S} \mid X$. As E_{S} is Borel, so too is $E_{S} \mid X$. It follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that $E_{S} \mid X$ is smooth. Fix a Borel separating family B_{0}, B_{1}, \ldots for $E_{S} \mid X$, and observe that the sets

$$
A_{n}=B_{n} \cup\left\{y \in Y: \exists x \in B_{n}((x, y) \in S)\right\}
$$

form a $\boldsymbol{\Sigma}_{1}^{1}$ separating family for $E_{S} \mid\left(X \cup \operatorname{proj}_{Y}[S]\right)$, where $\operatorname{proj}_{Y}: X \times Y \rightarrow Y$ denotes the projection function. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_{S} is smooth. As \mathcal{G}_{S} is acyclic, it follows from Hjorth [4] (see also Miller [7]) that E_{S} admits a Borel transversal, which contradicts our assumption that it does not.

For $x_{1} E_{S} x_{2}$, we say that z is \mathcal{G}_{S}-between x_{1} and x_{2} if z lies along the unique injective \mathcal{G}_{S}-path from x_{1} to x_{2}. Define $B \subseteq Z_{S}$ by

$$
B=\left\{z \in Z_{S}: \exists x_{1}, x_{2} \in \operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)\left(z \text { is } \mathcal{G}_{S} \text {-between } x_{1} \text { and } x_{2}\right)\right\}
$$

As \mathcal{G}_{S} is acyclic and $\operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)$ intersects every E_{S}-class in a countable set, it follows that B is Borel. As $E_{S} \cap\left(B \times \operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)\right)$ has countable sections, the Lusin-Novikov uniformization theorem (see, for example, $\S 18$ of Kechris [5]) ensures that it has a Borel uniformization $\pi_{3}: B \rightarrow \operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)$. We can clearly assume that $\pi_{3} \mid \operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)=\mathrm{id}$. Define $\pi: B \rightarrow \Delta^{\mathbb{N}}$ by

$$
\pi=\left(\pi_{2} \circ \pi_{1}\right)^{-1} \circ \pi_{3},
$$

and finally, define $f: S \rightarrow \Delta$ by

$$
f(x, y)= \begin{cases}1_{\Gamma} & \text { if } x \notin B \text { or } y \notin B, \text { and } \\ \delta & \text { if } x, y \in B \text { and } \delta \cdot \pi(y) F_{0}^{\Delta} \pi(x)\end{cases}
$$

Now suppose, towards a contradiction, that there is a Borel coordinatewise decomposition (u, v) of f.

Lemma 8. Suppose that $x, x^{\prime} \in B \cap X$ and $x E_{S} x^{\prime}$. Then:

1. $u(x) u\left(x^{\prime}\right)^{-1} \in \Delta$.
2. $u(x) u\left(x^{\prime}\right)^{-1} \cdot \pi\left(x^{\prime}\right) F_{0}^{\Delta} \pi(x)$.

Proof. Let $x_{0}, y_{0}, \ldots, x_{n}, y_{n}, x_{n+1}$ be the unique \mathcal{G}_{S}-path from x to x^{\prime}. To see (1), observe that for all $i \leq n$,

$$
\begin{aligned}
u\left(x_{i}\right) u\left(x_{i+1}\right)^{-1} & =\left(u\left(x_{i}\right) v\left(y_{i}\right)\right)\left(u\left(x_{i+1}\right) v\left(y_{i}\right)\right)^{-1} \\
& =f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1}
\end{aligned}
$$

thus $u\left(x_{i}\right) u\left(x_{i+1}\right)^{-1} \in \Delta$. Noting that

$$
u\left(x_{0}\right) u\left(x_{n+1}\right)^{-1}=u\left(x_{0}\right) u\left(x_{1}\right)^{-1} u\left(x_{1}\right) u\left(x_{2}\right)^{-1} \cdots u\left(x_{n}\right) u\left(x_{n+1}\right)^{-1}
$$

it follows that $u(x) u\left(x^{\prime}\right)^{-1} \in \Delta$.
To see (2), recall that Δ acts freely on $\Delta^{\mathbb{N}} / F_{0}^{\Delta}$, thus for all $i \leq n$,

$$
\begin{aligned}
u\left(x_{i}\right) u\left(x_{i+1}\right)^{-1} \cdot\left[\pi\left(x_{i+1}\right)\right]_{F_{0}^{\Delta}} & =f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1} \cdot\left[\pi\left(x_{i+1}\right)\right]_{F_{0}^{\Delta}} \\
& =f\left(x_{i}, y_{i}\right) \cdot\left[\pi\left(y_{i}\right)\right]_{F_{0}^{\Delta}} \\
& =\left[\pi\left(x_{i}\right)\right]_{F_{0}^{\Delta}} .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
u\left(x_{0}\right) u\left(x_{n+1}\right)^{-1} \cdot\left[\pi\left(x_{n+1}\right)\right]_{F_{0}^{\Delta}} & =u\left(x_{0}\right) u\left(x_{1}\right)^{-1} \cdots u\left(x_{n}\right) u\left(x_{n+1}\right)^{-1} \cdot\left[\pi\left(x_{n+1}\right)\right]_{F_{0}^{\Delta}} \\
& =u\left(x_{0}\right) u\left(x_{1}\right)^{-1} \cdots u\left(x_{n-1}\right) u\left(x_{n}\right)^{-1} \cdot\left[\pi\left(x_{n}\right)\right]_{F_{0}^{\Delta}} \\
& \vdots \\
& =\left[\pi\left(x_{0}\right)\right]_{F_{0}^{\Delta}}
\end{aligned}
$$

which completes the proof of the lemma.

Define now $w: \Delta^{\mathbb{N}} \rightarrow \Gamma$ by $w=u \circ \pi_{2} \circ \pi_{1}$. Fix a countable Borel separating family $\Gamma_{0}, \Gamma_{1}, \ldots$ for Γ, and define $n: \Delta^{\mathbb{N}} \rightarrow \Gamma$ by

$$
n(\alpha)=\min \left\{n \in \mathbb{N}: \exists \delta_{1}, \delta_{2} \in \Delta\left(\delta_{1} w(\alpha) \in \Gamma_{n} \text { and } \delta_{2} w(\alpha) \notin \Gamma_{n}\right)\right\}
$$

Lemma 8 ensures that if $\alpha E_{0}^{\Delta} \beta$, then $w(\alpha) w(\beta)^{-1} \in \Delta$, thus

$$
\begin{aligned}
\Delta w(\alpha) & =\Delta w(\alpha) w(\beta)^{-1} w(\beta) \\
& =\Delta w(\beta)
\end{aligned}
$$

and it follows that $n(\alpha)=n(\beta)$. As $\pi_{3} \mid \operatorname{rng}\left(\pi_{2} \circ \pi_{1}\right)=$ id, Lemma 8 ensures also that $w(\alpha) w(\beta)^{-1} \cdot \beta F_{0}^{\Delta} \alpha$. It follows that if $\alpha=\delta \cdot \beta$, then $w(\alpha) w(\beta)^{-1}=\delta$, thus $w(\alpha)=\delta w(\beta)$. Defining $A \subseteq \Delta^{\mathbb{N}}$ by

$$
A=\left\{\alpha \in \Delta^{\mathbb{N}}: w(\alpha) \in \Gamma_{n(x)}\right\}
$$

it follows that both A and $\Delta^{\mathbb{N}} \backslash A$ are E_{0}^{Δ}-complete sections. As A is clearly F_{0}^{Δ} invariant, it follows that E_{0}^{Δ} is not relatively ergodic over F_{0}^{Δ}, which contradicts Lemma 5, and therefore completes the proof of the theorem.

Kłopotowski-Nadkarni-Sarbadhikari-Srivastava [6] have studied coordinatewise decomposition using another equivalence relation L which, modulo straightforward identifications, is the equivalence relation whose classes are the connected components of the dual graph $\breve{\mathcal{G}}_{S}$ on S, which is given by

$$
\breve{\mathcal{G}}_{S}=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in S \times S:\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right) \text { and }\left(x_{1}=x_{2} \text { or } y_{1}=y_{2}\right)\right\}
$$

The equivalence classes of L are called the linked components of S, and the linked components of S are said to be uniquely linked if \mathcal{G}_{S} is acyclic.

Conjecture 9 (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava). Suppose that X, Y are disjoint Polish spaces and $S \subseteq X \times Y$ is Borel. Then the following are equivalent:

1. Every Borel function $f: S \rightarrow \mathbb{C}$ admits a Borel coordinatewise decomposition;
2. The linked components of S are uniquely linked and L is smooth.

In light of Theorem 3 and the above remarks, the following observation implies that Conjecture 9 is indeed correct:

Proposition 10. Suppose that X and Y are disjoint Polish spaces, $S \subseteq X \times Y$ is Borel, and \mathcal{G}_{S} is acyclic. Then the following are equivalent:

1. E_{S} admits a Borel transversal;
2. L is smooth.

Proof. To see (1) $\Rightarrow(2)$, suppose that E_{S} admits a Borel transversal $B \subseteq Z_{S}$. Let $\pi_{1}: Z_{S} \rightarrow Z_{S}$ be the function which sends z to the unique element of $B \cap[z]_{E_{S}}$, and let $\pi_{2}=\operatorname{proj}_{X} \mid S$. Then π_{1} is a Borel reduction of E_{S} into $\Delta\left(Z_{S}\right)$ and π_{2} is a Borel reduction of L into E_{S}, thus $\pi_{1} \circ \pi_{2}$ is a Borel reduction of L into $\Delta\left(Z_{S}\right)$, so L is smooth.

To see $(2) \Rightarrow(1)$, suppose that L is smooth, and fix a Borel reduction $\pi_{1}: S \rightarrow \mathbb{R}$ of L into $\Delta(\mathbb{R})$. Put $Z=\operatorname{proj}_{X}[S] \cup \operatorname{proj}_{Y}[S]$. By the Jankov-von Neumann uniformization theorem (see, for example, $\S 18$ of Kechris [5]), there is a $\sigma\left(\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}\right)$ measurable reduction $\pi_{2}: Z \rightarrow S$ of $E_{S} \mid Z$ into L, thus $\pi_{1} \circ \pi_{2}$ is a $\sigma\left(\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}\right)$-measurable reduction of $E_{S} \mid Z$ into $\Delta(\mathbb{R})$. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_{S} is smooth. As \mathcal{G}_{S} is acyclic, it then follows from Hjorth [4] (see also Miller [7]) that E_{S} admits a Borel transversal.

References

[1] R. C. Cowsik, A. Kłopotowski, and M. G. Nadkarni. When is $f(x, y)=u(x)+v(y)$? Proc. Indian Acad. Sci. Math. Sci., 109 (1), (1999), 57-64
[2] R. Dougherty, S. Jackson, and A. Kechris. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc., 341 (1), (1994), 193-225
[3] L. Harrington, A. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3 (4), (1990), 903-928
[4] G. Hjorth. A selection theorem for treeable sets (2007). Preprint
[5] A. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York (1995)
[6] A. Kłopotowski, M. Nadkarni, H. Sarbadhikari, and S. Srivastava. Sets with doubleton sections, good sets and ergodic theory. Fund. Math., 173 (2), (2002), 133-158
[7] B. Miller. Definable transversals of analytic equivalence relations (2007). Preprint

