COORDINATEWISE DECOMPOSITION OF
GROUP-VALUED BOREL FUNCTIONS
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ABSTRACT. Answering a question of Klopotowski-Nadkarni-Sarbad-
hikari-Srivastava [6], we characterize the Borel sets S C X x Y on which
every Borel function f : S — C is of the form wv|S, where u : X — C
and v :Y — C are Borel.

Suppose that S C X x Y and I' is a group. A coordinatewise decomposition of
a function f: S — T'is a pair (u,v), whereuw: X - T, v:Y — T, and

V(z,y) € S (f(z,y) = u(@)o(y)).

While our main goal here is to study coordinatewise decompositions in the de-
scriptive set-theoretic context, we will first study the existence of coordinatewise
decompositions without imposing any definability restrictions.

For the sake of notational convenience, we will assume that X NY = (. The
graph associated with S is the graph on the set Zg = X UY given by Gg = SUS™L.
The following fact was proven essentially by Cowsik-Klopotowski-Nadkarni [1]:

Proposition 1. Suppose that X,Y are disjoint, S C X xY, and I is a non-trivial
group. Then the following are equivalent:

1. Every function f : S — I' admits a coordinatewise decomposition;
2. Gg is acyclic.

Proof. To see =(2) = —(1) note that, by reversing the roles of X and Y if necessary,
we can assume that there is a proper cycle of the form zg,yo, z1,y1, ..., Tnt1 = o
through Gg. Fix 9 € T'\ {1r}, define f : S — T by

Yo if (I,y) = (xovyo)a
1r otherwise,

flx,y) =

and suppose that (u,v) is a coordinatewise decomposition of f. Then

Yo = f@o,y0)f(@1,90) " F(@ny Yn) f(@n1, yn)

(u(@o)v(yo)) (u(@1)v(yo)) ™" - (ul@n)v(yn)) (u(@ni1)v(yn)) "
= u(xo)u(er) " ulwn)u(@ni)

w(zo)u(rng1) "

= 1F7

which contradicts our choice of vq.
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To see (2) = (1), let Es be the equivalence relation whose classes are the
connected components of Gg, fix a transversal B C Zg of Fg (i.e., a set which
intersects every Eg-class in exactly one point), and define B,, C Z by

B, ={z€ Z:ds(z,B) =n},

where dg denotes the graph metric associated with Gg. For z € B, 11, let g(2) denote
the unique G-neighbor of z in B,,, and define recursively u : X - T',v:Y — T by

B 1p ifx € B,
u(x) —{ flx,g(x))v(g(z))~! otherwise,

B 1r if y € B,
o) _{ u(g(y))~'f(g(y),y) otherwise.

To see that (u,v) is a coordinatewise decomposition of f, suppose that (z,y) € S
and note that either g(z) = y or g(y) = x. In the former case, it follows that
uw(x) = fla,y)v(y)~L, thus f(z,y) = u(z)v(y). In the latter case, it follows that

v(y) = u(x) " f(2,y), thus f(z,y) = u(@)v(y). O

As a corollary of the proof of Proposition 1, we obtain a sufficient condition for
the existence of Borel coordinatewise decompositions:

Corollary 2. Suppose that X and Y are Polish spaces, S C X x Y is Borel, Gg is
acyclic, and Eg admits a Borel transversal. Then every standard Borel group-valued
Borel function on S admits a Borel coordinatewise decomposition.

Proof. 1t is sufficient to check that if f : S — I' is a standard Borel group-valued
Borel function, then the functions v and v constructed in the proof of Proposition
1 are Borel. Letting B,, C Zg and g : Zg — Zg be as constructed above, it follows
from the fact that Gg is acyclic that

2€Bu1 & z2¢ UB" and Jw € B, ((z,w) € G)
i<n
&S zd UBZ- and Jlw € B, ((z,w) € G),

i<n

and it follows from results of Souslin and Lusin (see, for example, Theorems 14.11
and 18.11 of Kechris [5]) that each of these sets is Borel. As

graph(g) = U Gs N (Byt1 X By),
neN

it follows that g is Borel as well (see, for example, Theorem 14.12 of Kechris [5]),
and this easily implies that u and v are Borel. O

Our main theorem is that the sufficient condition given in Corollary 2 is also
necessary to guarantee the existence of Borel coordinatewise decompositions:
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Theorem 3. Suppose that X,Y are disjoint Polish spaces, S C X x Y is Borel,
and I is a non-trivial standard Borel group. Then the following are equivalent:

1. Every Borel function f : S — I' admits a Borel coordinatewise decomposition;

2. Gg is acyclic and Fg admits a Borel transversal.

Proof. As (2) = (1) follows from Corollary 2, we need only show that (1) = (2).
As the map f described in the proof of =(2) = —(1) of Proposition 1 is clearly
Borel, it follows that Gg is acyclic, thus Eg is Borel (by Theorems 14.11 and 18.11
of Kechris [5]).

Fix a non-trivial countable subgroup A < I', endow A with the discrete topology,
and endow AN with the corresponding product topology. Define E§* on AN by

aES B < 3In € NVm > n (a(m) = B(m)),
and define F* C ES on AN by
aF8 4 3n €N (a(0)--a(n) = B(0)- - B(n) and Vm > n (a(m) = A(m))).
Let A act freely on AN by left multiplication on the 0*'-coordinate, i.e.,
0-a=(6a(0),a(l),a(2),...).
Lemma 4. The action of A on AN induces a free action of A on AN/F#.
Proof. It is enough to show that
Vo € AVa, e AN (aFRB = §-aFRs - ).
Towards this end, suppose that § € A and (a, 3) € F&, fix n € N such that
a(0)---a(n) = B(0)--- B(n) and Ym > n (a(m) = B(m)),
and note that
da(0) - --a(n) =06(0)--- B(n) and Ym > n (a(m) = B(m)),
thus § - aFS S - . O
Suppose now that F' C E are Borel equivalence relations on a Polish space Z.
We say that a set B C Z is F-invariant if V21 € BVzy € Z (21F 22 = 29 € B),
and B C Z is an E-complete section if Vzy € Z 329 € B (21Fz). We say that E
is relatively ergodic over F if there is no Borel way of choosing a non-empty proper

subset of the F-classes within each F-class, i.e., if there is no F-invariant Borel set
B C Z such that both B and Z \ B are E-complete sections.

Lemma 5. EZ is relatively ergodic over F5.

Proof. Suppose, towards a contradiction, that B C AN is an F()A—invariant Borel set
such that both B and AN\ B are E£-complete sections. As B is an E§*-complete
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section, it follows that B is non-meager, thus there exists s € A<N such that B is
comeager in N. Define C C AN by

C = A"\ [N, \ Blpa.

and observe that C is an EZ-invariant comeager Borel set and N; NC C BN C.
It only remains to show that C' C B, which implies that AN\ B is meager and
therefore contradicts the fact that AN\ B is an E&-complete section. Towards this
end, put n = |s|, and given any « € C, define 6 € A by

§ = (s(0)--s(n—1)7((0) -+~ a(n)).
As aF£5(0)...s(n — 1)da(n + 1)a(n +2)..., it follows that o € B. O

Suppose now that F; and Fy are Borel equivalence relations on Polish spaces
Z1 and Zs, respectively. A reduction of Fy into Es is a function 7 : Z; — Z5 such
that Vz,2’ € Zy (zE12" < w(z)Eem(2’)). An embedding is an injective reduction.
Let Ey denote the equivalence relation on 2 which is given by

aEyf < In € N¥m > n (a(m) = 5(m)).

While our next lemma follows from the much more general results of Dougherty-
Jackson-Kechris [2], it is easy enough to prove directly:

Lemma 6. There is a Borel embedding 7 : AN — 2N of ES into Ej.

Proof. Fix an enumeration (ky,,d,) of N x A, and define 71 : AN — 2N by

1 if a(k,) =9,, and
0 otherwise.

[m1()](n) = {

It is straightforward to check that 7y is the desired embedding. O
Now suppose, towards a contradiction, that Fs has no Borel transversal.
Lemma 7. There is a Borel embedding 7o : 2V — Zg of Ey into Eg|X.

Proof. An equivalence relation F on a Polish space Z is said to be smooth if there is
a Borel reduction of F into the trivial equivalence relation A(R) = {(x, ) : € R},
or equivalently, if F admits a Borel separating family, i.e., a family By, By, ... of
Borel subsets of Z such that

V21,20 € Z (:1F2z0 & Vn €N (21 € B, & 29 € By)).

Suppose, towards a contradiction, that there is no Borel embedding of Ej into
Eg|X. As Eg is Borel, so too is Eg|X. It follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that Eg|X is smooth. Fix a Borel separating family By, By, ...
for Eg|X, and observe that the sets

A, =B,U{yeY:3xe B, (r,y) € S)}

form a X} separating family for Es|(X U projy[S]), where projy : X x Y — Y
denotes the projection function. It then follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that Eg is smooth. As Gg is acyclic, it follows from Hjorth
[4] (see also Miller [7]) that Els admits a Borel transversal, which contradicts our
assumption that it does not. |



COORDINATEWISE DECOMPOSITION 5

For x1Fgzo, we say that z is Gg-between x; and x5 if z lies along the unique
injective Gg-path from z; to zo. Define B C Zg by

B={z€ Zs:3x1,29 € tng(m om) (z is Gg-between x; and z2)}.

As Gg is acyclic and rng(my o 1) intersects every Fg-class in a countable set, it
follows that B is Borel. As Eg N (B X rng(my o m1)) has countable sections, the
Lusin-Novikov uniformization theorem (see, for example, §18 of Kechris [5]) ensures
that it has a Borel uniformization 73 : B — rng(ms o 7). We can clearly assume
that 73| rng(me o m) = id. Define 7 : B — AN by

7= (mom) oms,
and finally, define f: S — A by
Ip ife € Bory¢ B, and
[l y) = : A
0 ifx,ye Bandd-n(y)F5n(z).

Now suppose, towards a contradiction, that there is a Borel coordinatewise
decomposition (u,v) of f.

Lemma 8. Suppose that z,2' € BN X and vEgz’. Then:
1. u(z)u(z')~t € A.
2. u(z)u(x) L w2 ) FPm(z).

Proof. Let zg, Yo, .., Tn,Yn, Tnt1 be the unique Gg-path from x to z’. To see (1),
observe that for all i < n,

w(ziu(zipn) ™t = (u()o(y:) (u(@i)o(y:)) ™
= fl@ny)f (@i m)
thus u(z;)u(r;1 1)~ € A. Noting that
w(zo)u(@ny1) ™ = u(@o)u(er) tula)u(rs) ™" - - ul@n)u(en1) ™,

it follows that u(z)u(z’)~! € A.
To see (2), recall that A acts freely on AN/F£ | thus for all i < n,

weu(riv) ™ [m(@i)lpa = F@oya) f(@ie, 4) 7" - 1)) pa
= fl@i,y)- [W(yi)]FUA
= [W(ffi)]FDA-
It then follows that
u(@o)u(@nr1) " [m(@ai)lps = u(zo)ulz) ™ u(@n)u(@nn) T [T (@)l pa

-1

= u(zo)u(r1) ™" w1 )u(zn) T - [r(2n)] pa

= [ﬂ—(mo)]FUAv

which completes the proof of the lemma. O
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Define now w : AN — I' by w = w o 75 o m;. Fix a countable Borel separating
family Ty, Ty, ... for T, and define n : AN — T by

n(a) = min{n € N: 361,02 € A (bw(a) € T, and dow(a) ¢ T'y)}.
Lemma 8 ensures that if a E5* 3, then w(a)w(B)~! € A, thus

Aw(a) = Afw(a)w(ﬂ)_lw(ﬁ)
= Aw(p),

and it follows that n(«) = n(8). As m3|rng(ms o m1) = id, Lemma 8 ensures also
that w(a)w(B)~! - BFfa. Tt follows that if a = § - 3, then w(a)w(B)~" = 4, thus
w(a) = dw(f). Defining A C AN by

A={aec AV :w(a) e L) }s

it follows that both A and AN\ A are Ef*-complete sections. As A is clearly F§*-
invariant, it follows that ES* is not relatively ergodic over F{*, which contradicts
Lemma 5, and therefore completes the proof of the theorem. O

Klopotowski-Nadkarni-Sarbadhikari-Srivastava [6] have studied coordinatewise
decomposition using another equivalence relation L which, modulo straightforward
identifications, is the equivalence relation whose classes are the connected compo-
nents of the dual graph Gson S , which is given by

Gs = {((z1,91), (2,92)) € S x St (w1,51) # (v2,y2) and (z1 = 22 or y1 = ya)}.

The equivalence classes of L are called the linked components of S, and the linked
components of S are said to be uniquely linked if Gg is acyclic.

Conjecture 9 (Klopotowski-Nadkarni-Sarbadhikari-Srivastava). Suppose
that X,Y are disjoint Polish spaces and S C X x Y is Borel. Then the following
are equivalent:

1. Every Borel function f : S — C admits a Borel coordinatewise decomposition;
2. The linked components of S are uniquely linked and L is smooth.

In light of Theorem 3 and the above remarks, the following observation implies
that Conjecture 9 is indeed correct:

Proposition 10. Suppose that X and Y are disjoint Polish spaces, S C X XY is
Borel, and Gg is acyclic. Then the following are equivalent:

1. Es admits a Borel transversal;

2. L is smooth.

Proof. To see (1) = (2), suppose that Es admits a Borel transversal B C Zg. Let
m : Zg — Zg be the function which sends z to the unique element of B N [z]g,,
and let 9 = projy |S. Then 7 is a Borel reduction of Fg into A(Zg) and 72 is a
Borel reduction of L into Eg, thus m o 7y is a Borel reduction of L into A(Zg), so
L is smooth.



COORDINATEWISE DECOMPOSITION 7

To see (2) = (1), suppose that L is smooth, and fix a Borel reduction 71 : S — R
of L into A(R). Put Z = projx[S] U projy[S]. By the Jankov-von Neumann
uniformization theorem (see, for example, §18 of Kechris [5]), there is a o(X7)-
measurable reduction 72 : Z — S of Eg|Z into L, thus 71 o7y is a 0(X1)-measurable
reduction of Fg|Z into A(R). It then follows from Theorem 1.1 of Harrington-
Kechris-Louveau [3] that Eg is smooth. As Gg is acyclic, it then follows from
Hjorth [4] (see also Miller [7]) that Es admits a Borel transversal. O
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