COORDINATEWISE DECOMPOSITION OF GROUP-VALUED BOREL FUNCTIONS

BENJAMIN D. MILLER

ABSTRACT. Answering a question of Kłopotowski-Nadkarni-Sarbadhikari-Srivastava [6], we characterize the Borel sets $S \subseteq X \times Y$ on which every Borel function $f: S \to \mathbb{C}$ is of the form uv|S, where $u: X \to \mathbb{C}$ and $v: Y \to \mathbb{C}$ are Borel.

Suppose that $S \subseteq X \times Y$ and Γ is a group. A *coordinatewise decomposition* of a function $f: S \to \Gamma$ is a pair (u, v), where $u: X \to \Gamma$, $v: Y \to \Gamma$, and

$$\forall (x,y) \in S \ (f(x,y) = u(x)v(y)).$$

While our main goal here is to study coordinatewise decompositions in the descriptive set-theoretic context, we will first study the existence of coordinatewise decompositions without imposing any definability restrictions.

For the sake of notational convenience, we will assume that $X \cap Y = \emptyset$. The graph associated with S is the graph on the set $Z_S = X \cup Y$ given by $\mathcal{G}_S = S \cup S^{-1}$. The following fact was proven essentially by Cowsik-Kłopotowski-Nadkarni [1]:

Proposition 1. Suppose that X, Y are disjoint, $S \subseteq X \times Y$, and Γ is a non-trivial group. Then the following are equivalent:

- 1. Every function $f: S \to \Gamma$ admits a coordinatewise decomposition;
- 2. \mathcal{G}_S is acyclic.

Proof. To see $\neg(2) \Rightarrow \neg(1)$ note that, by reversing the roles of X and Y if necessary, we can assume that there is a proper cycle of the form $x_0, y_0, x_1, y_1, \ldots, x_{n+1} = x_0$ through \mathcal{G}_S . Fix $\gamma_0 \in \Gamma \setminus \{1_{\Gamma}\}$, define $f: S \to \Gamma$ by

$$f(x,y) = \begin{cases} \gamma_0 & \text{if } (x,y) = (x_0,y_0), \\ 1_{\Gamma} & \text{otherwise,} \end{cases}$$

and suppose that (u, v) is a coordinatewise decomposition of f. Then

$$\begin{aligned} \gamma_0 &= f(x_0, y_0) f(x_1, y_0)^{-1} \cdots f(x_n, y_n) f(x_{n+1}, y_n)^{-1} \\ &= (u(x_0) v(y_0)) (u(x_1) v(y_0))^{-1} \cdots (u(x_n) v(y_n)) (u(x_{n+1}) v(y_n))^{-1} \\ &= u(x_0) u(x_1)^{-1} \cdots u(x_n) u(x_{n+1})^{-1} \\ &= u(x_0) u(x_{n+1})^{-1} \\ &= 1_{\Gamma}. \end{aligned}$$

which contradicts our choice of γ_0 .

BENJAMIN D. MILLER

To see (2) \Rightarrow (1), let E_S be the equivalence relation whose classes are the connected components of \mathcal{G}_S , fix a *transversal* $B \subseteq Z_S$ of E_S (i.e., a set which intersects every E_S -class in exactly one point), and define $B_n \subseteq Z$ by

$$B_n = \{ z \in Z : d_S(z, B) = n \},\$$

where d_S denotes the graph metric associated with \mathcal{G}_S . For $z \in B_{n+1}$, let g(z) denote the unique \mathcal{G} -neighbor of z in B_n , and define recursively $u: X \to \Gamma, v: Y \to \Gamma$ by

$$u(x) = \begin{cases} 1_{\Gamma} & \text{if } x \in B, \\ f(x, g(x))v(g(x))^{-1} & \text{otherwise,} \end{cases}$$

and

$$v(y) = \begin{cases} 1_{\Gamma} & \text{if } y \in B, \\ u(g(y))^{-1} f(g(y), y) & \text{otherwise} \end{cases}$$

To see that (u, v) is a coordinatewise decomposition of f, suppose that $(x, y) \in S$ and note that either g(x) = y or g(y) = x. In the former case, it follows that $u(x) = f(x, y)v(y)^{-1}$, thus f(x, y) = u(x)v(y). In the latter case, it follows that $v(y) = u(x)^{-1}f(x, y)$, thus f(x, y) = u(x)v(y).

As a corollary of the proof of Proposition 1, we obtain a sufficient condition for the existence of Borel coordinatewise decompositions:

Corollary 2. Suppose that X and Y are Polish spaces, $S \subseteq X \times Y$ is Borel, \mathcal{G}_S is acyclic, and E_S admits a Borel transversal. Then every standard Borel group-valued Borel function on S admits a Borel coordinatewise decomposition.

Proof. It is sufficient to check that if $f: S \to \Gamma$ is a standard Borel group-valued Borel function, then the functions u and v constructed in the proof of Proposition 1 are Borel. Letting $B_n \subseteq Z_S$ and $g: Z_S \to Z_S$ be as constructed above, it follows from the fact that \mathcal{G}_S is acyclic that

$$z \in B_{n+1} \quad \Leftrightarrow \quad z \notin \bigcup_{i \le n} B_i \text{ and } \exists w \in B_n \ ((z,w) \in \mathcal{G})$$
$$\Leftrightarrow \quad z \notin \bigcup_{i \le n} B_i \text{ and } \exists ! w \in B_n \ ((z,w) \in \mathcal{G}),$$

and it follows from results of Souslin and Lusin (see, for example, Theorems 14.11 and 18.11 of Kechris [5]) that each of these sets is Borel. As

$$\operatorname{graph}(g) = \bigcup_{n \in \mathbb{N}} \mathcal{G}_S \cap (B_{n+1} \times B_n),$$

it follows that g is Borel as well (see, for example, Theorem 14.12 of Kechris [5]), and this easily implies that u and v are Borel.

Our main theorem is that the sufficient condition given in Corollary 2 is also necessary to guarantee the existence of Borel coordinatewise decompositions: **Theorem 3.** Suppose that X, Y are disjoint Polish spaces, $S \subseteq X \times Y$ is Borel, and Γ is a non-trivial standard Borel group. Then the following are equivalent:

- 1. Every Borel function $f: S \to \Gamma$ admits a Borel coordinatewise decomposition;
- 2. \mathcal{G}_S is acyclic and E_S admits a Borel transversal.

Proof. As $(2) \Rightarrow (1)$ follows from Corollary 2, we need only show that $(1) \Rightarrow (2)$. As the map f described in the proof of $\neg(2) \Rightarrow \neg(1)$ of Proposition 1 is clearly Borel, it follows that \mathcal{G}_S is acyclic, thus E_S is Borel (by Theorems 14.11 and 18.11 of Kechris [5]).

Fix a non-trivial countable subgroup $\Delta \leq \Gamma$, endow Δ with the discrete topology, and endow $\Delta^{\mathbb{N}}$ with the corresponding product topology. Define E_0^{Δ} on $\Delta^{\mathbb{N}}$ by

$$\alpha E_0^{\Delta}\beta \Leftrightarrow \exists n \in \mathbb{N} \,\forall m > n \,\left(\alpha(m) = \beta(m)\right),$$

and define $F_0^{\Delta} \subseteq E_0^{\Delta}$ on $\Delta^{\mathbb{N}}$ by

$$\alpha F_0^{\Delta}\beta \Leftrightarrow \exists n \in \mathbb{N} \ \left(\alpha(0) \cdots \alpha(n) = \beta(0) \cdots \beta(n) \text{ and } \forall m > n \ \left(\alpha(m) = \beta(m)\right)\right).$$

Let Δ act freely on $\Delta^{\mathbb{N}}$ by left multiplication on the 0th-coordinate, i.e.,

$$\delta \cdot \alpha = (\delta \alpha(0), \alpha(1), \alpha(2), \ldots).$$

Lemma 4. The action of Δ on $\Delta^{\mathbb{N}}$ induces a free action of Δ on $\Delta^{\mathbb{N}}/F_0^{\Delta}$.

Proof. It is enough to show that

$$\forall \delta \in \Delta \,\forall \alpha, \beta \in \Delta^{\mathbb{N}} \, \left(\alpha F_0^{\Delta} \beta \Rightarrow \delta \cdot \alpha F_0^{\Delta} \delta \cdot \beta \right).$$

Towards this end, suppose that $\delta \in \Delta$ and $(\alpha, \beta) \in F_0^{\Delta}$, fix $n \in \mathbb{N}$ such that

$$\alpha(0) \cdots \alpha(n) = \beta(0) \cdots \beta(n)$$
 and $\forall m > n \ (\alpha(m) = \beta(m)),$

and note that

$$\delta \alpha(0) \cdots \alpha(n) = \delta \beta(0) \cdots \beta(n)$$
 and $\forall m > n \ (\alpha(m) = \beta(m)),$

thus $\delta \cdot \alpha F_0^{\Delta} \delta \cdot \beta$.

Suppose now that $F \subseteq E$ are Borel equivalence relations on a Polish space Z. We say that a set $B \subseteq Z$ is *F*-invariant if $\forall z_1 \in B \forall z_2 \in Z \ (z_1Fz_2 \Rightarrow z_2 \in B)$, and $B \subseteq Z$ is an *E*-complete section if $\forall z_1 \in Z \exists z_2 \in B \ (z_1Ez_2)$. We say that E is relatively ergodic over F if there is no Borel way of choosing a non-empty proper subset of the F-classes within each E-class, i.e., if there is no F-invariant Borel set $B \subseteq Z$ such that both B and $Z \setminus B$ are E-complete sections.

Lemma 5. E_0^{Δ} is relatively ergodic over F_0^{Δ} .

Proof. Suppose, towards a contradiction, that $B \subseteq \Delta^{\mathbb{N}}$ is an F_0^{Δ} -invariant Borel set such that both B and $\Delta^{\mathbb{N}} \setminus B$ are E_0^{Δ} -complete sections. As B is an E_0^{Δ} -complete

section, it follows that B is non-meager, thus there exists $s \in \Delta^{<\mathbb{N}}$ such that B is comeager in \mathcal{N}_s . Define $C \subseteq \Delta^{\mathbb{N}}$ by

$$C = \Delta^{\mathbb{N}} \setminus [\mathcal{N}_s \setminus B]_{E_{\alpha}^{\Delta}},$$

and observe that C is an E_0^{Δ} -invariant comeager Borel set and $\mathcal{N}_s \cap C \subseteq B \cap C$. It only remains to show that $C \subseteq B$, which implies that $\Delta^{\mathbb{N}} \setminus B$ is meager and therefore contradicts the fact that $\Delta^{\mathbb{N}} \setminus B$ is an E_0^{Δ} -complete section. Towards this end, put n = |s|, and given any $\alpha \in C$, define $\delta \in \Delta$ by

$$\delta = (s(0)\cdots s(n-1))^{-1}(\alpha(0)\cdots \alpha(n))$$

As $\alpha F_0^{\Delta} s(0) \dots s(n-1) \delta \alpha(n+1) \alpha(n+2) \dots$, it follows that $\alpha \in B$.

Suppose now that E_1 and E_2 are Borel equivalence relations on Polish spaces Z_1 and Z_2 , respectively. A reduction of E_1 into E_2 is a function $\pi: Z_1 \to Z_2$ such that $\forall z, z' \in Z_1 \ (zE_1z' \Leftrightarrow \pi(z)E_2\pi(z'))$. An embedding is an injective reduction. Let E_0 denote the equivalence relation on $2^{\mathbb{N}}$ which is given by

$$\alpha E_0 \beta \Leftrightarrow \exists n \in \mathbb{N} \, \forall m > n \, (\alpha(m) = \beta(m)).$$

While our next lemma follows from the much more general results of Dougherty-Jackson-Kechris [2], it is easy enough to prove directly:

Lemma 6. There is a Borel embedding $\pi_1 : \Delta^{\mathbb{N}} \to 2^{\mathbb{N}}$ of E_0^{Δ} into E_0 .

Proof. Fix an enumeration (k_n, δ_n) of $\mathbb{N} \times \Delta$, and define $\pi_1 : \Delta^{\mathbb{N}} \to 2^{\mathbb{N}}$ by

$$[\pi_1(\alpha)](n) = \begin{cases} 1 & \text{if } \alpha(k_n) = \delta_n, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to check that π_1 is the desired embedding.

Now suppose, towards a contradiction, that E_S has no Borel transversal.

Lemma 7. There is a Borel embedding $\pi_2 : 2^{\mathbb{N}} \to Z_S$ of E_0 into $E_S|X$.

Proof. An equivalence relation E on a Polish space Z is said to be *smooth* if there is a Borel reduction of E into the trivial equivalence relation $\Delta(\mathbb{R}) = \{(x, x) : x \in \mathbb{R}\},$ or equivalently, if E admits a Borel *separating family*, i.e., a family B_0, B_1, \ldots of Borel subsets of Z such that

$$\forall z_1, z_2 \in Z \ (z_1 E z_2 \Leftrightarrow \forall n \in \mathbb{N} \ (z_1 \in B_n \Leftrightarrow z_2 \in B_n)).$$

Suppose, towards a contradiction, that there is no Borel embedding of E_0 into $E_S|X$. As E_S is Borel, so too is $E_S|X$. It follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that $E_S|X$ is smooth. Fix a Borel separating family B_0, B_1, \ldots for $E_S|X$, and observe that the sets

$$A_n = B_n \cup \{ y \in Y : \exists x \in B_n \ ((x, y) \in S) \}$$

form a Σ_1^1 separating family for $E_S|(X \cup \operatorname{proj}_Y[S])$, where $\operatorname{proj}_Y : X \times Y \to Y$ denotes the projection function. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_S is smooth. As \mathcal{G}_S is acyclic, it follows from Hjorth [4] (see also Miller [7]) that E_S admits a Borel transversal, which contradicts our assumption that it does not.

П

For $x_1E_Sx_2$, we say that z is \mathcal{G}_S -between x_1 and x_2 if z lies along the unique injective \mathcal{G}_S -path from x_1 to x_2 . Define $B \subseteq Z_S$ by

$$B = \{ z \in Z_S : \exists x_1, x_2 \in \operatorname{rng}(\pi_2 \circ \pi_1) \ (z \text{ is } \mathcal{G}_S \text{-between } x_1 \text{ and } x_2) \}.$$

As \mathcal{G}_S is acyclic and $\operatorname{rng}(\pi_2 \circ \pi_1)$ intersects every E_S -class in a countable set, it follows that B is Borel. As $E_S \cap (B \times \operatorname{rng}(\pi_2 \circ \pi_1))$ has countable sections, the Lusin-Novikov uniformization theorem (see, for example, §18 of Kechris [5]) ensures that it has a Borel uniformization $\pi_3 : B \to \operatorname{rng}(\pi_2 \circ \pi_1)$. We can clearly assume that $\pi_3 | \operatorname{rng}(\pi_2 \circ \pi_1) = \operatorname{id}$. Define $\pi : B \to \Delta^{\mathbb{N}}$ by

$$\pi = (\pi_2 \circ \pi_1)^{-1} \circ \pi_3,$$

and finally, define $f: S \to \Delta$ by

$$f(x,y) = \begin{cases} 1_{\Gamma} & \text{if } x \notin B \text{ or } y \notin B, \text{ and} \\ \delta & \text{if } x, y \in B \text{ and } \delta \cdot \pi(y) F_0^{\Delta} \pi(x). \end{cases}$$

Now suppose, towards a contradiction, that there is a Borel coordinatewise decomposition (u, v) of f.

Lemma 8. Suppose that $x, x' \in B \cap X$ and xE_Sx' . Then:

1. $u(x)u(x')^{-1} \in \Delta$. 2. $u(x)u(x')^{-1} \cdot \pi(x')F_0^{\Delta}\pi(x)$.

Proof. Let $x_0, y_0, \ldots, x_n, y_n, x_{n+1}$ be the unique \mathcal{G}_S -path from x to x'. To see (1), observe that for all $i \leq n$,

$$u(x_i)u(x_{i+1})^{-1} = (u(x_i)v(y_i))(u(x_{i+1})v(y_i))^{-1}$$

= $f(x_i, y_i)f(x_{i+1}, y_i)^{-1}$,

thus $u(x_i)u(x_{i+1})^{-1} \in \Delta$. Noting that

$$u(x_0)u(x_{n+1})^{-1} = u(x_0)u(x_1)^{-1}u(x_1)u(x_2)^{-1}\cdots u(x_n)u(x_{n+1})^{-1},$$

it follows that $u(x)u(x')^{-1} \in \Delta$.

To see (2), recall that Δ acts freely on $\Delta^{\mathbb{N}}/F_0^{\Delta}$, thus for all $i \leq n$,

$$\begin{aligned} u(x_i)u(x_{i+1})^{-1} \cdot [\pi(x_{i+1})]_{F_0^{\Delta}} &= f(x_i, y_i)f(x_{i+1}, y_i)^{-1} \cdot [\pi(x_{i+1})]_{F_0^{\Delta}} \\ &= f(x_i, y_i) \cdot [\pi(y_i)]_{F_0^{\Delta}} \\ &= [\pi(x_i)]_{F_0^{\Delta}}. \end{aligned}$$

It then follows that

$$\begin{aligned} u(x_0)u(x_{n+1})^{-1} \cdot [\pi(x_{n+1})]_{F_0^{\Delta}} &= u(x_0)u(x_1)^{-1} \cdots u(x_n)u(x_{n+1})^{-1} \cdot [\pi(x_{n+1})]_{F_0^{\Delta}} \\ &= u(x_0)u(x_1)^{-1} \cdots u(x_{n-1})u(x_n)^{-1} \cdot [\pi(x_n)]_{F_0^{\Delta}} \\ &\vdots \\ &= [\pi(x_0)]_{F_0^{\Delta}}, \end{aligned}$$

which completes the proof of the lemma.

Define now $w : \Delta^{\mathbb{N}} \to \Gamma$ by $w = u \circ \pi_2 \circ \pi_1$. Fix a countable Borel separating family $\Gamma_0, \Gamma_1, \ldots$ for Γ , and define $n : \Delta^{\mathbb{N}} \to \Gamma$ by

$$n(\alpha) = \min\{n \in \mathbb{N} : \exists \delta_1, \delta_2 \in \Delta \ (\delta_1 w(\alpha) \in \Gamma_n \text{ and } \delta_2 w(\alpha) \notin \Gamma_n)\}.$$

Lemma 8 ensures that if $\alpha E_0^{\Delta}\beta$, then $w(\alpha)w(\beta)^{-1} \in \Delta$, thus

$$\Delta w(\alpha) = \Delta w(\alpha) w(\beta)^{-1} w(\beta)$$

= $\Delta w(\beta),$

and it follows that $n(\alpha) = n(\beta)$. As $\pi_3 | \operatorname{rng}(\pi_2 \circ \pi_1) = \operatorname{id}$, Lemma 8 ensures also that $w(\alpha)w(\beta)^{-1} \cdot \beta F_0^{\Delta} \alpha$. It follows that if $\alpha = \delta \cdot \beta$, then $w(\alpha)w(\beta)^{-1} = \delta$, thus $w(\alpha) = \delta w(\beta)$. Defining $A \subseteq \Delta^{\mathbb{N}}$ by

$$A = \{ \alpha \in \Delta^{\mathbb{N}} : w(\alpha) \in \Gamma_{n(x)} \},\$$

it follows that both A and $\Delta^{\mathbb{N}} \setminus A$ are E_0^{Δ} -complete sections. As A is clearly F_0^{Δ} -invariant, it follows that E_0^{Δ} is not relatively ergodic over F_0^{Δ} , which contradicts Lemma 5, and therefore completes the proof of the theorem. \Box

Kłopotowski-Nadkarni-Sarbadhikari-Srivastava [6] have studied coordinatewise decomposition using another equivalence relation L which, modulo straightforward identifications, is the equivalence relation whose classes are the connected components of the dual graph $\tilde{\mathcal{G}}_S$ on S, which is given by

$$\check{\mathcal{G}}_S = \{((x_1, y_1), (x_2, y_2)) \in S \times S : (x_1, y_1) \neq (x_2, y_2) \text{ and } (x_1 = x_2 \text{ or } y_1 = y_2)\}.$$

The equivalence classes of L are called the *linked components* of S, and the linked components of S are said to be *uniquely linked* if \mathcal{G}_S is acyclic.

Conjecture 9 (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava). Suppose that X, Y are disjoint Polish spaces and $S \subseteq X \times Y$ is Borel. Then the following are equivalent:

- 1. Every Borel function $f: S \to \mathbb{C}$ admits a Borel coordinatewise decomposition;
- 2. The linked components of S are uniquely linked and L is smooth.

In light of Theorem 3 and the above remarks, the following observation implies that Conjecture 9 is indeed correct:

Proposition 10. Suppose that X and Y are disjoint Polish spaces, $S \subseteq X \times Y$ is Borel, and \mathcal{G}_S is acyclic. Then the following are equivalent:

- 1. E_S admits a Borel transversal;
- 2. L is smooth.

Proof. To see $(1) \Rightarrow (2)$, suppose that E_S admits a Borel transversal $B \subseteq Z_S$. Let $\pi_1 : Z_S \to Z_S$ be the function which sends z to the unique element of $B \cap [z]_{E_S}$, and let $\pi_2 = \operatorname{proj}_X | S$. Then π_1 is a Borel reduction of E_S into $\Delta(Z_S)$ and π_2 is a Borel reduction of L into E_S , thus $\pi_1 \circ \pi_2$ is a Borel reduction of L into $\Delta(Z_S)$, so L is smooth.

To see $(2) \Rightarrow (1)$, suppose that L is smooth, and fix a Borel reduction $\pi_1 : S \to \mathbb{R}$ of L into $\Delta(\mathbb{R})$. Put $Z = \operatorname{proj}_X[S] \cup \operatorname{proj}_Y[S]$. By the Jankov-von Neumann uniformization theorem (see, for example, §18 of Kechris [5]), there is a $\sigma(\Sigma_1^1)$ measurable reduction $\pi_2 : Z \to S$ of $E_S | Z$ into L, thus $\pi_1 \circ \pi_2$ is a $\sigma(\Sigma_1^1)$ -measurable reduction of $E_S | Z$ into $\Delta(\mathbb{R})$. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_S is smooth. As \mathcal{G}_S is acyclic, it then follows from Hjorth [4] (see also Miller [7]) that E_S admits a Borel transversal. \Box

References

- [1] R. C. Cowsik, A. Kłopotowski, and M. G. Nadkarni. When is f(x, y) = u(x) + v(y)? *Proc. Indian Acad. Sci. Math. Sci.*, **109** (1), (1999), 57–64
- [2] R. Dougherty, S. Jackson, and A. Kechris. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc., 341 (1), (1994), 193–225
- [3] L. Harrington, A. Kechris, and A. Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3 (4), (1990), 903–928
- [4] G. Hjorth. A selection theorem for treeable sets (2007). Preprint
- [5] A. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York (1995)
- [6] A. Kłopotowski, M. Nadkarni, H. Sarbadhikari, and S. Srivastava. Sets with doubleton sections, good sets and ergodic theory. *Fund. Math.*, **173** (2), (2002), 133–158
- [7] B. Miller. Definable transversals of analytic equivalence relations (2007). Preprint